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Defective Sensor Identification for WSNs

involving Generic Local Outlier Detection Tests
Wenjie Li1, Francesca Bassi1,2, Davide Dardari3, Michel Kieffer1,4, and Gianni Pasolini3

Abstract

The behavior of a wireless sensor network dedicated to distributed estimation tasks may be significantly altered

by the presence of nodes whose sensors are defective and produce erroneous measurements. This paper proposes and

analyzes the performance of two distributed algorithms to help each node in determining whether it is equipped with a

defective sensor. A node first collects data from its neighborhood, processes them to decide, using some generic local

outlier detection test, whether these data contain outliers and broadcasts the result. Then, it determines the status of its

own sensor using its result and those received from neighboring nodes. A single-decision and an iterative algorithm

for defective sensor detection are proposed. Bounds on the performance of the single-decision algorithm are derived.

A theoretical analysis of the probability of error and of the equilibrium of the iterative algorithm is provided for a

wide class of local outlier detection tests. The trade-off between false alarm probability and detection probability is

characterized theoretically and by simulation. MAC-layer issues, as well as the effect of packet losses are accounted

for.

I. INTRODUCTION

The behavior of a wireless sensor network (WSN) [2] dedicated to distributed estimation tasks may be significantly

altered by the presence of nodes whose sensors produce outliers, i.e. abnormal measurements which cannot be

justified by the mere effects of sensing noise [3]. It is thus very important to detect such nodes efficiently (with

low communication and computation costs), ideally in a distributed way. Many efforts have been considered in this

direction in the last years see [4], [5], [6] and references therein. As far as the distributed fault detection (DFD)

is concerned, in particular, many different techniques have been proposed in the literature (see the survey paper

[5] for a detailed classification). Some techniques rely only on data coming from the direct neighborhood of each

node [7], others also use data coming for farther nodes [8], [9]. Some techniques are model-based and rely on a

parametric model of the system observed by the sensors to identify outliers [10], [11], whereas model-free techniques

mainly exploit statistical properties of the measurements, such as spatial and temporal correlation. For example,
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the algorithm in [7] allows each node to estimate its own status by comparing its local measurements with those at

neighboring nodes. In a first phase only a tendency status (good, faulty, likely good, or likely faulty) is determined.

In the second phase the tendency status of neighbors are collected and associated to their measurements to obtain

a more reliable assessment. In [12] the local test is based on the comparison between the local measurement and

the median of the measurements of the neighbors. In [13], a modified three-sigma edit test is proposed to identify

nodes producing measurements with very high variance. Iterative algorithms are proposed in [14], [15], where the

weighted-median and the weighted average criterion are considered, respectively. In both cases the local test weights

the measurements of the neighbors by the confidence level obtained from the previous detection rounds, under the

assumption of permanent node failure. In [16], the algorithm uses time redundancy to tolerate transient faults in

sensing and in communication. The adaptive algorithm proposed in [17] adjusts the decision threshold at each round

to improve its detection accuracy. In [9], a generic outlier identification function is assumed to be available at each

node. The results provided by this function at each node as well as measurements are exchanged to allow the whole

network to identify all outliers in a given dataset. In [8], a distributed Bayesian approach is proposed to detect the

outliers in a large set of data collected by a WSN.

In general the availability of more data at a given node facilitates the detection and identification of outliers, at

the price of higher communication costs and detection delays. An interesting approach to reduce the number of

tests is group testing (GT), which is a statistical method allowing to identify a small number of outliers within a

large set of data by performing only a limited number of elementary tests, referred to as local outlier detection tests

(LODTs), on data subsets [18]. The elementary test is only able to determine whether outliers are present in the

considered set. A distributed GT-based algorithm extending the results of centralized GT [19] is proposed in [20],

under the assumption of vanishing ratio of defective sensors. The solution provided in [20] suffers however from a

significant drawback in the communication overhead necessary for node indexing and for the dissemination of the

test results from the cluster heads to the rest of the WSN.

Despite the significant number of papers on this topic, there are still open issues to be addressed, as pointed out

in [5], [6]. It is well known, in this regard, that WSNs are usually constrained in terms of memory, computational

power and energy sources. Most of the traditional fault detection schemes, conceived for wired networks, have paid

little attention to these issues. They are usually memory and energy eager, and are often high demanding in terms

of communication effort and computational complexity. It is certainly true, on the one hand, that the exchange of

messages and their processing are the only means of fault diagnosis; on the other hand, however, outlier detection

schemes targeted to WSNs must be lightweight and impose a limited communication cost.

Moreover, the literature is mainly focused on new or improved LODTs, which are validated considering specific

case studies through simulation, thus without determining a priori the relationship between the parameters of the

algorithm (e.g., detection threshold) and the performance. At the authors’ best knowledge, no attempts are present

to widen the perspective, generalizing the DFD methodology and providing equilibrium or stability analysis of

iterative DFD algorithms. The latter are very important issues as the knowledge of the conditions under which the

algorithm reaches the equilibrium and is stable, prevents the system to fail in an unpredictable way.
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In order to address these issues, in this paper we propose and analyze two low-delay, low-complexity DFD

algorithms inspired by the GT technique: a single-decision one and an iterative one, the second being better suited

to WSNs with a large proportion of defective sensors. In both cases we decouple the LODT, that provides only

an indication (true, false) of the existence of outliers in the neighborhood, from the final decision on the node

status (good, faulty). The proposed algorithms consist, in fact, of two stages, namely local outlier detection using

a LODT, and decision. In the first stage, each node collects data from its neighborhood, performs the LODT

to determine whether outliers are present among the collected data, and broadcasts the result. Then, each node

estimates the status of its sensor in the decision stage, on the basis of the outcomes of the LODTs performed in

the neighborhood.

The two-stage nature of the algorithm makes the decision phase agnostic for what the LODT is regarded. This is

particularly relevant because in this paper we provide the quite mild assumptions the LODT should satisfy in order

to analytically prove the existence of an equilibrium condition. Moreover, the same analytical framework allows to

predict the performance of the algorithm and tune the value of its parameters. This aspect is worth special attention,

as most of the DFD algorithms proposed by the literature rely on some decision thresholds, whose values must be

properly defined according to the given specification (in terms of detection probability and false alarm probability,

for instance). As pointed out in [4], [5], this is still an open issue and one of the shortcomings of many outlier

detection strategies, whose thresholds are chosen according to heuristic guidelines or via simulation in some specific

scenarios.

Some preliminary results of our work have been presented in [1]. In this extended version, the DFD algorithms

have been modified to cope with channel access issues and transmission impairments resulting in packet losses.

Theoretical results in [1] involve some conjectures, whereas here sufficient conditions to be satisfied by the LODT

have been established to ensure the existence of an equilibrium of the DFD algorithms. These results are general,

since no specific form of the LODT need to be considered. We show that the LODT is only required to determine

whether outliers are present in a set of data, without necessarily being able to identify which data are erroneous,

thus widening the range of applicable LODTs to those requiring a few measurements from neighboring nodes.

Such LODTs are easily accessible, e.g., in the context of bounded-error estimation [21], [22] and may provide

good results even with as few as two or three measurements available to perform the test. This aspect is crucial in

the WSNs context because it allows to relieve the network traffic and prolong its lifetime. Let us stress, in this

regard, that most of traditional outlier detection tests (based on the median [14] or the mean [15] of measurements,

for instance) are not very efficient when only few measurements are available. Furthermore, the low complexity of

such LODTs is well-suited to the stringent resource (memory, computational power, etc.) constraints that usually

affect sensor nodes.

Finally, the trade-off between false alarm probability and detection probability is characterized theoretically and

by simulation for some outlier models in realistic channel conditions.

Summarizing, the main novelties of this paper are:

• Proposed a low-complexity DFD algorithm based on very generic LODTs that have the potential to work with

very few measurements;
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• Found the mild conditions to be satisfied by the LODT and by the density of nodes in the network to ensure

that the iterative DFD algorithm leads to an equilibrium;

• Characterized analytically the performance in realistic channel conditions, related to packet losses and to

channel access issues at the MAC layer, the latter being seldom considered in other papers.

The rest of the paper is organized as follows. Section II presents the system model and basic assumptions. Section III

describes the two variants of the proposed DFD algorithm. Section IV develops the theoretical analysis of the

proposed algorithms. Section V presents some outlier models and a LODT. Section VI provides some numerical

results and Section VII concludes this paper.

II. NOTATIONS AND SYSTEM MODEL

A. Network model

Consider an infinite plane where nodes, equipped with one sensor each, are uniformly and independently deployed,

with spatial density ρ, according to a 2D homogeneous Poisson point process (PPP) [23]. Let S denote the set

of nodes. Each sensor observes some physical phenomenon and produces measurements perturbed by random

noise. The noise samples at different nodes, or corrupting different measurements at the same node, are assumed

statistically independent. A sensor is defective if it produces outliers. Several examples of sensing noise and outlier

models are introduced in Section V-A. The sets of nodes equipped with defective and non-defective (good) sensors

are denoted by D and G respectively, with D ∪ G = S. The spatial densities of nodes with defective and good

sensors are ρd and ρg, respectively, with ρ = ρd + ρg. Let θi denote the status (defective or good) of an arbitrary

sensor node i ∈ S. One has θi = 1 if i ∈ D and θi = 0 if i ∈ G. In this work, it is assumed that θi remains

constant in the time interval during which the DFD is performed.

Assume that any pair of nodes (i, j) can communicate only if ri,j 6 R0, where ri,j is their physical distance

and R0 is the communication range, dependent on the transmission power, transmitter and receiver characteristics,

and propagation scenario. Define Ni = {j ∈ S | 0 < ri,j 6 R0} as the set of the neighbors of Node i. The number

of nodes in Ni follows a Poisson distribution

P {|Ni| = n} =
µ̄n

n!
exp (−µ̄) , (1)

with µ̄ = ρπR2
0, see [24]. The probability of having n1 nodes with good sensors and n2 = n − n1 nodes with

defective sensors in Ni is

P {|Ni ∩ G|=n1, |Ni ∩ D|=n2} =
µ̄n1

g µ̄n2

d

n1!n2!
exp(−(µ̄g + µ̄d)) ,

= P (µ̄g, µ̄d, n1,n2) , (2)

where µ̄g = ρgπR
2
0 and µ̄d = ρdπR

2
0.

When nodes try to broadcast messages to their neighbors, we assume that some collision avoidance mechanism is

put at work to limit packet losses. As a consequence, in a given finite time interval, all nodes are not necessarily able

to access the channel to broadcast their message. Moreover, a message broadcast by some node is not necessarily

received by all its neighbors due to transmission errors, residual packet collisions, shadowing, etc. Packet integrity
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is assumed to be determined with some CRC or checksum. Corrupted packets are considered as lost. To model all

these phenomena, we assume that in the communication interval ∆t, Node i only receives the messages transmitted

by a subset N ′i ⊆ Ni of its neighbors. The probability of having n nodes in N ′i still follows a Poisson distribution

P {|N ′i | = n} =
µn

n!
exp (−µ) , (3)

where µ = ρπR2
0 (1− ε (∆t)) is the average number of nodes from which Node i receives a message during

the transmission interval, see [24]. We assume that ε (∆t) is a decreasing function of ∆t accounting for all the

above mentioned channel access impairments. This is reasonable, because as ∆t increases more nodes have the

opportunity to access the channel.

B. Local outlier detection test

Consider a generic set of nodes A ⊆ S and define

ϕ (A) =

1, if A ∩D 6= ∅,

0, otherwise,
(4)

as the indicator function for the presence of nodes with defective sensors in A. At a given time instant, let the

random variable Mi ∈ Rη denote the η-dimensional data provided by the sensor of Node i, i ∈ A. Mi may be a

scalar or vector measurement, may contain a measurement and the value of some regressor in the case of system

models linear in their parameters, or may contain measurements and experimental conditions, for general nonlinear

system models.

The data provided by all nodes in A are gathered in MA = [Mi]i∈A ∈ Rη|A|. For a given realization mA ∈ Rη|A|

of MA, denote T (mA) the outcome of some LODT

T (mA) =

0, if no outlier is detected from mA,

1, otherwise.
(5)

Even if ϕ (A) = 1, i.e., at least one node with a defective sensor belongs to A, the noise characteristics of the

defective sensors may produce realizations mA that do not allow for the detection of the outliers. Thus, one

introduces the probability of detection of the LODT

qD (MA) = P
{
T (MA) = 1

∣∣ϕ (A) = 1
}
. (6)

Similarly, one considers the probability of false alarm of the LODT

qFA (MA) = P
{
T (MA) = 1

∣∣ϕ (A) = 0
}
. (7)

In this work we consider only LODTs satisfying the following properties.

1. Let ng = |A ∩ G| and nd = |A ∩ D|, then

qFA (MA) = qFA (ng) , qD (MA) = qD (ng, nd) . (8)

2. Let k be an arbitrary node in A, then
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P
{
T
(
MA\{k}

)
= 1 | T (MA) = 0, ϕ (A) = 0

}
= 0. (9)

P
{
T
(
MA\{k}

)
= 1 | T (MA) = 0, ϕ (A) = 1

}
= 0. (10)

In Property 1, we consider only the class of LODTs T (MA) processing the random data vector MA in a way

that disregards the knowledge of the identity of the node producing the data. For this reason, (6) and (7) depend

only on the number of sensors in each status belonging to A. In practice, the LODT takes a realization mA as

input and does not need to know ng and nd. The notations in (8) indicate the dependence of the probabilities qFA

and qD in ng and nd that will be exploited in the analysis of the proposed DFD algorithms involving the LODT

outcomes.

Property 2 implies that if no outlier is detected testing the whole vector mA, then no outlier will be detected

testing any sub-vector of mA. LODTs satisfying Properties 1 and 2 are characterized by probabilities of false alarm

and of detection depending on ng and nd as described by the following lemma.

Lemma 1. The following inequalities hold for any LODT T (MA) satisfying Properties 1 and 2:

qFA (ng) 6 qFA (ng + 1) , (11)

qD (ng, nd) 6 qD (ng + 1, nd) , (12)

qD (ng, nd) 6 qD (ng, nd + 1) . (13)

The proof of Lemma 1 is given in Appendix A. Lemma 1 implies that a LODT satisfying Properties 1 and 2

is more likely to detect an outlier when the number of data involved in the test increases. Examples of LODTs

satisfying Properties 1 and 2 are provided in Section V-B.

Properties 1 and 2 correspond to mild sufficient conditions a LODT has to satisfy to ensure the existence of an

equilibrium of Algorithm 2 introduced in Section III-B. LODTs, which do not satisfy these properties, may also

be considered, but the behavior of Algorithm 2 cannot be analyzed theoretically in such cases.

III. DFD ALGORITHM

This section proposes two DFD algorithms (a single-decision variant and an iterative variant). In the single-

decision variant, several measurement rounds and LODTs are performed by each node. At the end of the last

round, a single decision concerning the status of its sensor is taken locally by each node. In the iterative variant,

a decision is taken at each round and may be updated at the next one. As will be seen in Section VI, the most

appropriate variant depends on the ratio µ̄d/µ̄ of defective sensors in the network. In what follows, we assume that

the network topology does not change within a round of both algorithms.

A. Single-decision DFD algorithm

The proposed single-decision DFD algorithm is described in Algorithm 1. The local outlier detection stage

consists of two successive phases (Phase I and Phase II), alternating during L rounds. Then, the decision stage

consists of a final decision phase, whose outcome is an estimate θ̂i of the status θi of the sensor of Node i.
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In the `-th round, during Phase I, Node i collects fresh data transmitted by its neighborhood Ni. A subset

containing a proportion ζ of randomly chosen data among the received ones is then used with Node i fresh privy

data to perform the LODT described in Section II-B. Define Ui = Ni ∪ {i} and let N (`,I)
i ⊂ Ni be the subset of

nodes from which Node i received data (excluding itself) during Phase I of Round `. Consider

V(`,I)
i = Sζ

(
N (`,I)
i

)
∪ {i} (14)

the set of node indices whose data are involved in the LODT performed by Node i at Round `. The function Sζ

selects a random subset of nodes in N (`,I)
i such that∣∣∣Sζ (N (`,I)

i

)∣∣∣ =
⌈
ζ
∣∣∣N (`,I)

i

∣∣∣⌉ , (15)

where
∣∣∣N (`,I)

i

∣∣∣ is the cardinal number of N (`,I)
i and d·e denotes upwards rounding. The role of ζ is illustrated in

Example 3 and further discussed in Section IV-C. The LODT outcome is denoted Y (`)
i = T (MV(`,I)

i
), which, for

a given realization MV(`,I)
i

= mV(`,I)
i

, provides y(`)
i = T (mV(`,I)

i
). Then, during Phase II, Node i tries to broadcast

(y
(`)
i ,V(`,I)

i ) to indicate the other nodes which data were involved in the LODT it just performed. At the end of

Phase II, Node i has received pairs (y
(`)
j ,V(`,I)

j ) from a subset of nodes V(`,II)
i ⊆ Ui. Denote

B(`)
i =

{
j ∈ V(`,II)

i such that i ∈ V(`,I)
j

}
. (16)

Node i then adds to a first counter zi all y(`)
j s such that j ∈ B(`)

i . Thus only LODT outcomes involving the data

produced by Node i are added to zi. Node i also accumulates in a second counter ni the cardinal number
∣∣∣B(`)
i

∣∣∣ of

B(`)
i . This counter represents the number of LODT outcomes received by Node i in which its data were involved

(including its own LODT outcomes). At the end of the L rounds the value zi/ni is the statistics on which the

decision is taken in the final decision phase.

The decision (19) can result in both false alarm, with probability PFA, and non-detection, with probability PND =

1− PD, where PD is the detection probability. The value of ζ and of the threshold γ affect the trade-off between

PD and PFA, and have to be adjusted to meet the targeted performance (see Appendix B for more details). For a

fixed value of ζ, when γ is close to one, PD may be low. On the other hand, PFA may be high for values of γ close

to zero. Increasing L provides a better averaging effect in (19), which reduces the variance of θ̂i. Nevertheless,

L cannot be taken too large, to preserve the hypothesis that the status θi does not vary during the whole DFD

procedure.

As will be seen in Section VI, the single-decision DFD algorithm performs well when µ̄d � µ̄g. However, PFA

rapidly increases with µ̄d/µ̄. Consider the case where µ̄d is large enough so that every non-defective sensor node

has at least one defective sensor node in its neighborhood. When ζ = 1, all measurements from neighbors are

involved in the LODT of Node i. As a consequence, for all sensors i ∈ S , the LODT outcome will be y(`)
i = 1

with a high probability. Non-defective sensors are then frequently diagnosed as defective. Reducing ζ increases the

chance for Node i to get an outlier-free subset of data on which the LODT can be performed and thus reduces

PFA. The idea of selecting only a subset of data to perform the LODT is reminiscent to GT [19].

Now, when µ̄ is small, i.e., the degree of connectivity of the network is low, it may be useful to collect

measurements from the h-hop neighborhood of each node and to broadcast test outcomes to the same h-hop
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Algorithm 1 Single-decision DFD

1) Initialize θ̂(0)
i = 0, zi = 0, and ni = 0 for all i ∈ S.

2) For each round 1 ≤ ` ≤ L:

• Phase I, lasting 4tI: Node i tries to broadcast a packet containing its local data m(`)
i , receives the data

produced by the nodes in Ni, randomly selects a subset Sζ
(
N (`,I)
i

)
of received data and performs the

test (5) with outcome

y
(`)
i = T

(
mV(`,I)

i

)
; (17)

• Phase II, lasting 4tII: each node broadcasts
(
y

(`)
i ,V(`,I)

i

)
generated in Phase I and updates zi and ni as

follows zi = zi +
∑
j∈B(`)

i
y

(`)
j ,

ni = ni +
∣∣∣B(`)
i

∣∣∣ . (18)

3) After L rounds:

• Decision phase: each node i estimates the status θi of its sensor

θ̂i =

1 (defective) if zi/ni > γ,

0 (non defective) otherwise,
(19)

where γ is some threshold, 0 < γ 6 1.

neighborhood. Appendix C describes the updates required in Algorithm 1 to handle DFD with multi-hop data

collection and LODT result dissemination.

Examples 2 and 3 illustrate the behavior of the single decision DFD algorithm in various situations.

Example 2. Figure 1 depicts a first example WSN, where no channel access issues nor collisions are considered,

thus ε = 0. Let k be the only node equipped with a defective sensor. Assume that both qFA defined in (7) and

qND defined in (6) are negligible: all the sensors in Uk successfully detect outliers. Moreover consider L = 1

(unique round) and take γ = 0.7 and ζ = 1. At the end of Phase II, B(1)
i = Ui, i = 1, . . . , k. Moreover,

z
(1)
k = |Uk| = 7, z(1)

1 = |Uk ∩ U1| = 4, z(1)
2 = |Uk ∩ U2| = 1, and z(1)

3 = |Uk ∩ U3| = 0. Since z(1)
k / |Uk| = 1 > γ,

z
(1)
1 / |U1| ≈ 0.67 < γ, z(1)

2 / |U2| = 0.25 < γ, and z
(1)
3 / |U3| = 0 < γ, only Node k determines its sensor as

defective, according to (19), while Nodes 1, 2, and 3 diagnose their own sensor as non-defective. All decisions are

thus correct.

Example 3. Figure 2 represents a second example of a WSN with a minimum degree of connectivity. Node 2 is

equipped with a defective sensor. With the same assumptions as in Example 2, considering L = 1, ε = 0, γ = 0.7,

and ζ = 1, Node 1 and 2 will determine themselves as defective. Allowing two-hop data collection and the LODT

outcome dissemination worsens the situation since all nodes will have the outlier produced by Node 2 in their

collected data. As a consequence, all LODTs will detect the presence of an outlier, and all nodes will determine
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defective

sensor:

non-defective	

sensor:

Fig. 1. Example where k is the only node with a defective sensor, (a) shows that z(1)
k = |Uk| = 7. In (b), Node 1 belongs to Uk and z(1)

1 = 4.

In (c), Node 2 is not in Uk but r2,k 6 2R0, which results in z(1)
2 = 1. In (d), Node 3 has a distance r3,k > 2R0, so z(1)

3 = 0.

21 3 4

Fig. 2. Example where Node 2 is the only defective sensor.

themselves as defective. This is why it is necessary to perform the LODT only on a subset of data. Consider again

a two-hop data collection with ζ = 0.5. In Phase I, Nodes 1 and 4 receive data from Nodes 2 and 3. Their LODTs

will provide y(1)
1 = 0 with a probability 0.5 and y

(1)
4 = 0 with a probability 0.5. Node 2 always uses its own

data and produces y(1)
2 = 1. Node 3 receives data from Nodes 1, 2, and 4. It randomly selects d0.5× 3e = 2 data

out of these 3 data and provides thus y(1)
1 = 0 with a probability 2/3. In Phase II, Node 1 will receive LODT

outcomes from Nodes 2 and 3. Only outcomes such that y(1)
i = 1 and {1} ⊂ V(1,I)

i contribute to zi. Moreover, all

outcomes with {1} ⊂ V(1,I)
i contribute to n1. The third line of Table I provides Pr

(
{j} ⊂ V(1,I)

i

)
, i, j = 1, . . . , 4.

For example, Pr
(
{1} ⊂ V(1,I)

1

)
= 1, Pr

(
{1} ⊂ V(1,I)

2

)
= 2/3. One deduces for example

E (N1) =

4∑
i=1

Pr
(
{1} ⊂ V(1,I)

i

)
= 7/3.

The fourth line of Table I provides Pr
(
{j, 2} ⊂ V(1,I)

i

)
, i, j = 1, . . . , 4. This helps to evaluate E (Zi) .For example,

E (Z1) =

4∑
i=1

Pr
(
{1, 2} ⊂ V(1,I)

i

)
= 11/6.
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Node i 1 2 3 4

Pr
(
Y

(1)
i = 1

)
0.5 1 0.66 0.5

Pr
(
{j} ⊂ V(1,I)

i

)
(1, 1/2, 1/2, 0) (2/3, 1, 2/3, 2/3) (2/3, 2/3, 1, 2/3) (0, 1/2, 1/2, 1)

Pr
(
{j, 2} ⊂ V(1,I)

i

)
(1/2, 1/2, 0, 0) (2/3, 1, 2/3, 2/3) (1/3, 2/3, 2/3, 1/3) (0, 1/2, 0, 1/2)

E(Zi) 3/2 8/3 4/3 3/2

E(Ni) 7/3 8/3 8/3 7/3

E(Zi)/E(Ni) 9/14 1 1/2 9/14

TABLE I

BEHAVIOR OF THE SINGLE DECISION DFD FOR EXAMPLE 3

The last line of Table I provides E (Zi) /E (Ni). One observes that a proper selection of γ > 9/14 allows in

average to detect the node producing an outlier, while avoiding false alarms. One also observes that E(Zi)/E(Ni)

is larger for Nodes 1 and 4 which are connected (at one or two hops) to fewer good nodes than Node 3. This

illustrates the fact that the level of protection against a false alarm is related to the number of connections to good

nodes.

Example 3 illustrates the importance of the choices of the values of γ and ζ. Some insights are provided for

their tuning in Section IV-C and Appendix B.

B. Iterative DFD algorithm

To improve the single-decision DFD algorithm for increasing µ̄d/µ̄, an iterative variant of Algorithm 1 is described

in Algorithm 2. The iterative algorithm is composed of two parts, of duration L1 and L2 rounds, respectively. In

each round of the first part (Lines 1 to 4 of Algorithm 2) nodes collect data from their neighborhood, perform

a LODT, and are allowed to take temporary decisions θ̂(`)
i about the status of their sensor (i.e., a single round

consists of both the local outlier detection and the decision stages). The temporary decision at Round `− 1 affects

the set of sensor data tested by Node i at Round `, i.e., the nodes with θ̂(`−1) = 1 remain silent during Round `.

The set of active neighbors of Node i is then Û (`)
i = {j ∈ Ui s.t. θ̂(`−1)

j = 0} and one has V(`,I)
i ⊆ Û (`)

i and

V(`,II)
i ⊆ Û (`)

i . Any temporary decision can be updated during the next rounds of the first part. This is why zi and

ni are reinitialized at the beginning of Phase I in each round of this first part. Finally, Algorithm 1 is performed

during the second part (Lines 6 and 7 of Algorithm 2) involving only nodes with sensors deemed as non-defective.

The core procedure of the first part is described in Lines 2 and 3. One has θ̂(`)
i = 1 if Node i and all neighbors

which have used the data of Node i detect an outlier. Note that (20) is similar to (19) with L = 1 and γ = 1.

This choice has been considered in the first part of Algorithm 2 to minimize the number of nodes with sensors

wrongly deemed as defective, while having a reasonable probability of detection PD. This allows then to work in

the second part of Algorithm 2 with a smaller value of µ̄d/µ̄. This is especially important when µ̄d > 1: a large

amount of non-defective sensors may be diagnosed as defective even with γ = 1. In Line 2, if θ̂(`−1)
i = 1, Node i

stops broadcasting its data in Round `. Nevertheless, Node i still performs the LODT: this gives it a chance to

become active again at Round `+ 1, in case it erroneously considered its sensor as defective at Round `.
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Algorithm 2 Iterative DFD

1) Set ` = 1; θ̂(0)
i = 0 for all i ∈ S.

2) Phase I, lasting 4tI: Set zi = ni = 0.

a) If θ̂(`−1)
i = 0, Node i tries to broadcast a packet containing its local data m(`)

i , receives the data produced

by the nodes in N (`,I)
i ⊂Ni , randomly selects a subset Sζ

(
N (`,I)
i

)
of received data and performs the test

(5) with outcome y(`)
i = T (mV(`,I)

i
);

b) Else Node i is silent, i.e., it does not broadcast its data but receives data from its neighbors.

3) Phase II, lasting 4tII:

a) If θ̂(`−1)
i = 0, Node i tries broadcast (y

(`)
i ,V(`,I)

i ) , evaluates zi and ni, and performs the decision

θ̂
(`)
i =

1, if zi/ni = 1,

0, otherwise.
(20)

b) Else, Node i performs the decision θ̂(`)
i = y

(`)
i .

4) ` = `+ 1.

5) If ` 6 L1, go to 2.

6) After round L1:

• each node i such that θ̂(L1)
i = 0 sets zi = ni = 0.

• each node i such that θ̂(L1)
i = 1 is determined as defective. It stops broadcasting its data. It does not

participate in the single-decision DFD during the following rounds.

7) Single-decision DFD is performed during L2 rounds with threshold γ.

IV. ANALYSIS OF THE PROPOSED DFD ALGORITHMS

In Section IV-A we characterize analytically the probabilities of detection PD and of false alarm PFA of the

proposed DFD algorithms, when the decision is taken after collecting a single data by each node in the neighborhood.

These represent PD and PFA of the single-decision DFD algorithm for L = 1, or the probability of detection and

false alarm on the temporary decision of the first stage of the iterative algorithm. Conditions for the existence of

an equilibrium of the iterative algorithm are also evaluated in Section IV-C. An analysis of the traffic generated by

both algorithms is then performed in Sections IV-B and IV-E.

A. PD and PFA for a single round of the single-decision DFD algorithm

To lighten the notations, the round index is omitted in this section, e.g., Y (`)
i , V(`,I)

i and V(`,II)
i are replaced by

Yi, V(I)
i and V(II)

i respectively. Moreover, ε (4tI) and ε (4tII) are simplified to εI and εII respectively. Assume that

Node i successfully accesses the channel during Phase I with probability α1. One has α1 > 1 − εI since εI also

accounts for channel impairments, such as packet collisions.

In order to perform the analysis of PD and PFA for a decision involving a single round of data collection from

the neighborhood of Node i, one has to characterize the probability P {Yi = 1} of the LODT (5). This probability
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depends on the numbers N (I)
g =

∣∣∣V(I)
i ∩ G

∣∣∣ and N
(I)
d =

∣∣∣V(I)
i ∩ D

∣∣∣ of nodes equipped with good and defective

sensors in V(I)
i . Define the function h(ng, nd) as the probability a LODT yields Yi = 1, conditioned on N (I)

g = ng

and N (I)
d = nd, i.e.,

h (ng, nd) = P
{
Yi = 1 | N (I)

g = ng, N
(I)
d = nd

}
=

qFA (ng) , if nd = 0,

qD (ng, nd) , if nd 6= 0.

(21)

Now, P {Yi = 1 | θi = 0} can be expressed as a function of µ(I)
g = α2ζµ̄g and µ(I)

d = α2ζµ̄d, respectively, where

α2 = (1 − εI) indicates the probability Node i successfully received a packet from one of its neighbors and ζ

accounts for the probability a node has to select in its LODT the data produced by a neighboring node. The

rounding effects have been neglected. One has thus

f1

(
µ(I)

g , µ
(I)
d

)
= P {Yi = 1 | θi = 0}

(a)
=

∞∑
ng=1

∞∑
nd=0

P{Yi = 1 | N (I)
g = ng, N

(I)
d = nd, θi = 0}

· P{N (I)
g = ng, N

(I)
d = nd | θi = 0}

(b)
=

∞∑
ng=1

∞∑
nd=0

h (ng, nd) · P (µ(I)
g , µ

(I)
d , ng − 1, nd), (22)

where P is the function defined in (2). Moreover, (a) is due to the fact that if i ∈ V(I)
i and θi = 0, then N (I)

g > 1,

and (b) comes from Property 1, which states that qFA and qD depend only on the number of good and defective

sensors. Similarly, one may introduce

f2

(
µ(I)

g , µ
(I)
d

)
= P {Yi = 1 | θi = 1}

=

∞∑
ng=0

∞∑
nd=1

h (ng, nd) · P (µ(I)
g , µ

(I)
d , ng, nd − 1). (23)

In order to characterize PFA, introduce N (II)
g = |Bi ∩ G|, N (II)

d = |Bi ∩ D| and the conditional false alarm event

Eng,nd
i,FA =

{∑
j∈Bi Yj

ng + nd
> γ

∣∣∣∣N (II)
g = ng, N

(II)
d = nd, θi = 0

}
(24)

representing, according to (20), the situation where Node i with non-defective sensor diagnoses it as defective,

knowing that N (II)
g = ng > 1 and N (II)

d = nd > 0. Introducing

τFA (ng, nd) = P
{
Eng,nd
i,FA

}
, (25)

then PFA can be expressed as

PFA =

∞∑
ng=1

∞∑
nd=0

τFA(ng, nd)P
{
N (II)

g = ng, N
(II)
d = nd

∣∣∣∣θi = 0

}
. (26)

Two situations need to be considered. If Node i fails to access the channel, then Bi = {i}, which means that

N
(II)
g = 1 and N (II)

d = 0. Otherwise N (II)
g −1 and N (II)

d follow Poisson distributions. To evaluate their averages µ(II)
g
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and µ(II)
d , one has to consider the probability α3 = (1− εI)(1− εII)/α1 that Node i received a packet in Phase II

from one of its neighbors, assuming that Node i actually accessed the channel in Phase I. Moreover, knowing that

such packet comes from a neighbor of Node i, it contains a decision involving the data of Node i with a probability

equal to ζ. Consequently, µ(II)
g = α3ζµ̄g and µ(II)

d = α3ζµ̄d. Then

PFA = α1P̃FA

(
µ(II)

g , µ
(II)
d

)
+ (1− α1) f1

(
µ(I)

g , µ
(I)
d

)
(27)

where

P̃FA

(
µ(II)

g , µ
(II)
d

)
=

∞∑
ng=1

∞∑
nd=0

τFA (ng, nd)

· P (µ(II)
g , µ

(II)
d , ng − 1, nd). (28)

Similarly, consider Node i with defective sensor. The conditional defective sensor detection event is

Eng,nd
i,D =

{∑
j∈Bi Yj

ng + nd
> γ

∣∣∣∣N (II)
g = ng, N

(II)
d = nd, θi = 1

}
, (29)

where ng > 0 and nd > 1. Introducing

τD (ng, nd) = P
{
Eng,nd
i,D

}
, (30)

then PD can be expressed as

PD = α1P̃D

(
µ(II)

g , µ
(II)
d

)
+ (1− α1) f2

(
µ(I)

g , µ
(I)
d

)
, (31)

where

P̃D

(
µ(II)

g , µ
(II)
d

)
=

∞∑
ng=0

∞∑
nd=1

τD (ng, nd)

· P
(
µ(II)

g , µ
(II)
d , ng, nd − 1

)
. (32)

Lemma 4. PFA and PD are decreasing functions of γ.

Proof: The monotonicity of PFA and PD with respect to γ comes from the fact that if γ1 > γ2,
∑
j∈Bi Yj >

γ1 (ng + nd) implies
∑
j∈Bi Yj > γ2 (ng + nd).

In what follows, we assume that γ is fixed, and express PFA and PD as functions of µ(II)
g and µ

(II)
d . To find a

closed-form expression for PFA and PD, one has to evaluate the pmf of
(∑

j∈Bi Yj | N
(II)
g , N

(II)
d , θi

)
. Consider now

the event

Yng,nd
j,D =

{
Yj = 1

∣∣∣∣j ∈ Bi, N (II)
g = ng, N

(II)
d = nd, θi = 1

}
,

with j ∈ Bi. For any k ∈ Bi with j 6= k, Yng,nd
j,D and Yng,nd

k,D are dependent. Their dependency comes from the

fact that in general Nj ∩ Nk 6= ∅. The pmf of
∑
j∈Bi Yj is thus quite difficult to evaluate, since the dependency

between the Yjs is not explicit. For this reason, only upper bounds of PFA and PD are derived in what follows.
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Lemma 5. Consider an arbitrary γ with 0 < γ 6 1, then for all µg > 0 and µd > 0, one has

PFA

(
µ(II)

g , µ
(II)
d

)
6 f1 (4µ̄g, 4µ̄d) , (33)

PD

(
µ(II)

g , µ
(II)
d

)
6 f2 (4µ̄g, 4µ̄d) . (34)

The proof of Lemma 5 is given in Appendix E. The upper bounds in Lemma 5 are tight only if γ → 0 but loose

if γ = 1. Since γ = 1 in the first stage of the iterative algorithm, tighter upper bounds for PFA

(
µ

(II)
g , µ

(II)
d

)
and

PD

(
µ

(II)
g , µ

(II)
d

)
are needed in this situation.

Lemma 6. If γ = 1, one has

PFA

(
µ(II)

g , µ
(II)
d

)
6 f1

(
µ(II)

g , µ
(II)
d

)
, (35)

PD

(
µ(II)

g , µ
(II)
d

)
6 f2

(
µ(II)

g , µ
(II)
d

)
. (36)

Proof: By definition of Eng,nd
i,FA in (24), if γ = 1, one has

τFA (ng, nd)

= P

 ⋂
j∈Bi

{Yj = 1}
∣∣∣∣θi = 0, Ng = ng, Nd = nd


6 P

{
Yi = 1

∣∣∣∣θi = 0, Ng = ng, Nd = nd

}
= h (ng, nd) . (37)

Then (35) can be obtained from (22), (28), and (37). Equation (36) can be obtained similarly.

B. Traffic generated by the single-decision DFD algorithm

This analysis assumes that a single-hop data collection and LODT result dissemination is employed.

During Phase I of each round `, the data m(`)
i collected by each node has to be transmitted, with its identifier,

usually already present in the packet header. This type of information typically fits a single IEEE 802.15.4 payload

[2].

During Phase II,
(
y

(`)
i ,V(`,I)

i

)
has to be broadcast. One single bit is needed for y(`)

i . The transmission of

V(`,I)
i is necessary if the network topology is dynamic or in presence of packet losses. This information requires

(µ̄+ 1) dlog2 |S|e bits in average, assuming that each node can be identified with an index of dlog2 |S|e bits only.

In a static network, nodes usually know the index of their neighbors. Thus, only the indexes of neighbors which

do not participate to the LODT of Node i need to be transmitted. These nodes belong to Ui \ V(`,I)
i . In this case,

the required average number of bits boils down to (1− α2ζ) µ̄ dlog2 |S|e.

Without the knowledge of V(`,I)
i , the algorithm can still be performed with somewhat degraded performance, as

will be shown in Section VI-C.
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 µ̄
(`+1)
00 = F1

(
µ̄

(`)
00 , µ̄

(`)
10

)
= α1µ̄

(`)
00

(
f1

(
α2ζµ̄

(`)
00 , α2ζµ̄

(`)
10

)
− P̃FA

(
α3ζµ̄

(`)
00 , α3ζµ̄

(`)
10

))
+ µ̄g

(
1− f1

(
α2ζµ̄

(`)
00 , α2ζµ̄

(`)
10

))
,

µ̄
(`+1)
10 = F2

(
µ̄

(`)
00 , µ̄

(`)
10

)
= α1µ̄

(`)
10

(
f2

(
α2ζµ̄

(`)
00 , α2ζµ̄

(`)
10

)
− P̃D

(
α3ζµ̄

(`)
00 , α3ζµ̄

(`)
10

))
+ µ̄d

(
1− f2

(
α2ζµ̄

(`)
00 , α2ζµ̄

(`)
10

))
.

(41)

C. Equilibrium of the iterative algorithm

Let the pair (θi, θ̂i) denote the state of the sensor of Node i, where θi is its actual status and θ̂i is its estimated

status. Among the four possible states, (0, 0) and (1, 1) are states resulting from a correct decision, (0, 1) corresponds

to a false alarm, and (1, 0) corresponds to a non-detection. Let µ̄(`)

θi,θ̂i
denote the density of sensors in the state

(θ
(`)
i , θ̂

(`)
i ) at the beginning of round `. The aim of this section is to characterize the evolution of µ̄(`)

θi,θ̂i
to determine

whether the iterative algorithm converges to a steady state.

Before the first round of the iterative algorithm, one has µ̄(0)
00 = µ̄g, µ̄(0)

10 = µ̄d, and µ̄(0)
01 = µ̄

(0)
11 = 0. Note that at

any round `, µ̄(`)
00 + µ̄

(`)
01 = µ̄g and µ̄(`)

10 + µ̄
(`)
11 = µ̄d. Since the actual status of a sensor is assumed constant during

the rounds of the DFD algorithm, the only possible transitions are between states (0, 0) and (0, 1) and between

states (1, 0) and (1, 1). The evolution of the densities during round ` is given by
µ̄

(`+1)
00

µ̄
(`+1)
01

µ̄
(`+1)
10

µ̄
(`+1)
11

 =


P

(`)
0,00 P

(`)
0,10 0 0

P
(`)
0,01 P

(`)
0,11 0 0

0 0 P
(`)
1,00 P

(`)
1,10

0 0 P
(`)
1,01 P

(`)
1,11




µ̄

(`)
00

µ̄
(`)
01

µ̄
(`)
10

µ̄
(`)
11

 , (38)

where P (`)
a,bc = P

{
θ̂

(`)
i = c | θ̂(`−1)

i = b, θi = a
}

is the transition probability from (a, b) to (a, c), for any a, b, c ∈

{0, 1}. The sensors considered as defective in the previous iteration are silent, so all the transition probabilities are

functions of µ̄(`)
00 and µ̄(`)

10 . For different values of θ̂(`−1)
i , θ̂(`)

i is obtained according to Line 2 of Algorithm 2. More

precisely, if θ̂(`−1)
i = 0, one applies (20). According to (27) and (31), one has



P
(`)
0,01 = α1P̃FA

(
µ

(`,II)
00 , µ

(`,II)
10

)
+ (1− α1) f1

(
µ

(`,I)
00 , µ

(`,I)
10

)
,

P
(`)
0,00 = 1− P (`)

0,01,

P
(`)
1,01 = α1P̃D

(
µ

(`,II)
00 , µ

(`,II)
10

)
+ (1− α1) f2

(
µ

(`,I)
00 , µ

(`,I)
10

)
,

P
(`)
1,00 = 1− P (`)

1,01,

(39)

where µ(`,I)
θi,θ̂i

= α2ζµ̄
(`)

θi,θ̂i
and µ(`,II)

θi,θ̂i
= α3ζµ̄

(`)

θi,θ̂i
. If θ̂(`−1)

i = 1, one has θ̂(`)
i = y

(`)
i andP

(`)
0,11 = f1

(
µ

(`,I)
00 , µ

(`,I)
10

)
, P

(`)
0,10 = 1− P (`)

0,11,

P
(`)
1,11 = f2

(
µ

(`,I)
00 , µ

(`,I)
10

)
, P

(`)
1,10 = 1− P (`)

1,11.

(40)

From (38-40), one thus obtains the reduced non-linear state equation (41) (at the top of the next page), describing

the evolution of µ̄(`)
00 and µ̄(`)

10 in the iterative DFD algorithm.
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Let µ∗00 and µ∗10 be values at equilibrium of µ̄(`)
00 and µ̄

(`)
10 , respectively. From (41), one deduces that µ∗00 and

µ∗10 should satisfy
α1µ

∗
00P̃FA(α3ζµ

∗
00, α3ζµ

∗
10)

µ̄g − µ∗00

=1−
µ̄g−α1µ

∗
00

µ̄g − µ∗00

f1(α2ζµ
∗
00, α2ζµ

∗
10) , (42)

and
α1µ

∗
10P̃D (α3ζµ

∗
00, α3ζµ

∗
10)

µ̄d − µ∗10

=1− µ̄d−α1µ
∗
10

µ̄d − µ∗10

f2(α2ζµ
∗
00, α2ζµ

∗
10) . (43)

The existence property of the equilibrium point depend on the monotonicity of f1, f2, P̃FA, and P̃D.

Lemma 7. f1 (µ00, µ10) and f2 (µ00, µ10) are non-decreasing functions of µ00 and µ10.

Proof: One has

∂f1

∂µ00
=

∞∑
ng=1

∞∑
nd=0

µnd
10µ

ng−1
00

nd! (ng − 1)!
exp (−µ10 − µ00)

· (h (ng + 1, nd)− h (ng, nd)) , (44)

as shown in Appendix D. From Lemma 1, one has h (ng, nd + 1) > h (ng, nd) and then ∂f1
∂µ00

> 0. Similarly, one

has ∂f1
∂µ10

> 0, ∂f2
∂µ00

> 0, and ∂f2
∂µ10

> 0.

The following lemma provides sufficient conditions to have monotone left hand-side expressions in (42) and (43).

Lemma 8. Assume that the LODT (5) satisfies Properties 1 and 2. Assume also that for some reference Node i

and some node with random index K ∈ Ni with θi = θK = 0 and Yi = 1, the LODT is such that

P {YK =1 | Yi=1, θi = θK = 0,K ∈ Bi}>1− 4

α3ζµ̄g
, (45)

qD (0, 2) > 1− 4

α3ζµ̄d
, (46)

then, for any µ10,

gFA (µ00, µ10) =
µ00P̃FA (µ00, µ10)

α3ζµ̄g − µ00
(47)

is an increasing function of µ00 over [0, µ̄g] and for any µ00,

gD (µ00, µ10) =
µ10P̃D (µ00, µ10)

α3ζµ̄d − µ10
(48)

is an increasing function of µ10 over [0, µ̄d].

The proof of Lemma 8 is in Appendix F.

Lemma 8 allows us to propose a sufficient condition on the LODT, so that existence and uniqueness of the

equilibrium point can be guaranteed.

Proposition 9. Assume that the considered LODT satisfies Properties 1 and 2, as well as (45) and (46), then

(42-43) admits a solution, and an equilibrium of (41) exists.
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Proof: We study first the behavior of the right-hand side of (42) for a fixed value of µ10. As shown in

Section IV-A, both µ̄g−α1µ00

µ̄g−µ00
and f1 are positive and non-decreasing function of µ00, then

s1 (µ00, µ10) = 1−
µ̄g − α1µ00

µ̄g − µ00
f1 (α2ζµ00, α2ζµ10) (49)

is a non-increasing function of µ00. If (45) is satisfied, the left-hand side of (42), α1gFA (α3ζµ00, α3ζµ10), is a

strictly increasing function of µ00 over [0, µ̄g]. Moreover

α1gFA (0, α3ζµ10) = 0 < 1− f1 (0, µ10) ,

and

lim
µ00→µ̄g

α1gFA (α3ζµ00, α3ζµ10)� lim
µ00→µ̄g

s1 (µ00, µ10)

since limµ00→µ̄g gFA (µ00, µ10) → ∞ and s1 (µ00, µ10) 6 1. Therefore, there exists a unique intersection of the

graphs of functions α1gFA (α3ζµ00, α3ζµ10) and s1 (µ00, µ10) as µ00 goes from 0 to µ̄g, for any fixed µ10 ∈ [0, µ̄d].

The value µ+
00 of µ00 at which they intersect is thus a function of µ10. One may write

µ+
00 = β1 (µ10) ,

where β1 : [0, µ̄d]→ [0, µ̄g]. The continuity of β1 is deduced from that of s1 and gFA.

Similarly, one may show that if (46) is satisfied, for any fixed µ00, there exists a unique intersection of the graphs

of α1gD (α3ζµ00, α3ζµ10) and

s2 (µ00, µ10) = 1− µ̄d − α1µ10

µ̄d − µ10
f2 (α2ζµ00, α2ζµ10) (50)

as µ10 varies from 0 to µ̄d. The value µ+
10 of µ10 at which both graphs intersect is thus a function of µ00. One

may write

µ+
10 = β2 (µ00) ,

where β2 : [0, µ̄g]→ [0, µ̄d]. The continuity of β2 is deduced from that of f2 and gD. Then, the equation

µ∗00 = β1 (β2 (µ∗00))

admits at least a solution from Brouwer’s fixed-point theorem, since β1 ◦ β2 : [0, µ̄g] → [0, µ̄g] is continuous. In

this way, Proposition 9 is proved.

The unicity of the equilibrium requires additional monotonicity conditions on α and β, which are not easy to

establish for a generic LODT.

If α3ζµ̄g < 4 and α3ζµ̄d < 4, one has 1 − 4/(α3ζµ̄g) < 0 and 1 − 4/(α3ζµ̄d) < 0. Then an equilibrium

exists for any type of LODT. In practice, µ̄d is usually small and (46) is easily satisfied. When α3ζµ̄g > 4, (45)

imposes some constraint on the LODT: considering two non-defective nodes i and k, the conditional probability

P {Yk = 1 | Yj = 1} should be larger than 1− 4/(α3ζµ̄g). The fact that Yi and Yk are dependent when k ∈ Bi helps

to have P {Yk = 1 | Yj = 1} relatively large. The expression of a lower bound for P {Yk = 1 | Yj = 1} depends

on the type of LODT (Section V-B). In all cases, for large values of µ̄g, one has to choose small ζ to ensure

equilibrium.
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The fact that µ̄g should not be too large may appear counter-intuitive. To explain this, assume that R0 is large

enough to allow all nodes to communicate directly with all other nodes and that Bi = Ui. At each node, in presence

of a node with defective sensor, all LODTs are likely to yield Yi = 1 for all nodes. All nodes will then stop

communicating their data, perform a LODT at the next round with their own data only, be unable to detect an

outlier, and finally turn on again. As a consequence, most of the nodes will turn on and off alternately, preventing

the DFD algorithm to reach an equilibrium.

A simple way to address this issue is by reducing µ̄g and µ̄d. This may be done with a smaller R0, obtained

by lowering the power with which nodes are transmitting data. Alternatively, one may use a small ζ, reducing the

number of data involved in each LODT.

D. Local asymptotic stability of the iterative algorithm

Consider a small perturbation µ̄(`)
00 = µ∗00 + δ

(`)
0 and µ̄(`)

10 = µ∗10 + δ
(`)
1 around equilibrium (µ∗00, µ

∗
10). One may

linearize (41) around equilibrium to get  δ
(`+1)
0

δ
(`+1)
1

 = A

 δ
(`)
0

δ
(`)
1

 , (51)

where

A =

 ∂F1

∂µ̄00
(µ∗00, µ

∗
10) ∂F1

∂µ̄10
(µ∗00, µ

∗
10)

∂F2

∂µ̄00
(µ∗00, µ

∗
10) ∂F2

∂µ̄10
(µ∗00, µ

∗
10)

 .
The linearized system (51) is asymptotically stable if the eigenvalues of A are in the unit circle. Providing

stability conditions independently of the LODT is difficult. Nevertheless, for a given LODT, the local stability of

(41) may be verified numerically. This requires an evaluation of the derivatives of f1, f2, PFA and PD with respect

to µ̄00 and µ̄10 at equilibrium (Section VI-A).

E. Traffic generated by the iterative DFD algorithm

Compared to the single-decision DFD algorithm, the traffic generated by the iterative DFD algorithm is less

heavy. Consider Round ` of the iterative algorithm, only the nodes with θ̂(`−1)
i = 0 will try to broadcast packets.

As discussed in Section IV-C, the proportion of the active nodes is κ(`) =
µ̄
(`−1)
00 +µ̄

(`−1)
10

µ̄ . Therefore, the average

number of bits per sensor to perform an L-round iterative algorithm is

•
∑L
`=1 κ

(`) (µ̄+ 1) dlog2 |S|e, if the network topology is time-varying.

•
∑L
`=1 κ

(`) (1− α2ζ) µ̄ dlog2 |S|e =
∑L
`=1 (1− α2ζ)

(
µ̄

(`−1)
00 + µ̄

(`−1)
10

)
dlog2 |S|e, if the network is static.

V. APPLICATION EXAMPLES

This section presents different outlier models and an example of LODT to be used in the simulations presented

in Section VI.

December 19, 2015 DRAFT



19

A. Outlier model

Assume that each sensor i gets a noisy observation of the same scalar physical quantity φ

xi = φ+ wi, ∀i ∈ S. (52)

The components wi of the measurement noise in (52) are assumed to be realizations of independent random variables

Wi. Here three different outlier models are considered, with different distributions of the measurement noise. When

successive measurements are taken by the same sensor, we assume that the noise realizations are also independent.

• UHV: Uniform distribution with High Variance. The measurement noise of a good sensor i ∈ G is assumed to

be uniformly distributed in the interval [−∆,∆]. For a defective sensor i ∈ D, Wi is also uniformly distributed,

but in a larger interval [−ξ∆, ξ∆] with ξ > 1.

• GHV: Gaussian distribution with High Variance. The measurement noise follows a zero-mean Gaussian

distribution, i.e.,

Wi ∼

N
(
0, σ2

)
, if i ∈ G,

N
(

0, (ξσ)
2
)
, if i ∈ D,

(53)

where σ is the standard deviation and ξ > 1.

• BGLV: Bias Gaussian distribution with Low Variance. In this situation, we assume that Wi ∼ N
(
Ei, σ

2
)

where the bias Ei is also a random variable. If i ∈ G, then Ei is uniformly distributed in [−∆,∆]. If i ∈ D,

then Ei is uniformly distributed in [−ξ∆,−∆]∪ [∆, ξ∆] with ξ > 1. Moreover, the value of Ei of each sensor

is constant, i.e., Ei does not vary over time.

B. Local outlier detection test

Consider some threshold ν ∈ R and the interval [mi] = [mi − ν,mi + ν] of width 2ν centered around each

measurement mi. Consider a set of nodes A ⊂ S and the intersection of all [mi]s with i ∈ A[
φ̂ (mA)

]
=
⋂
i∈A

[mi] . (54)

With and without presence of outliers, one is able to evaluate P
{[
φ̂
]

= ∅
}

as a function of σ, ξ, and ∆ for the

three models introduced in Section V-A. Equation (54) can be used to define a low-complexity LODT

T (mA) =

1, if
[
φ̂ (mA)

]
= ∅,

0, else.
(55)

The following example illustrates the behavior of the LODT in (55) with a small number of measurements.

1. Consider three sensors measuring some constant temperature, e.g., with actual value t = 20◦C. Suppose that

non-defective sensors have a bounded measurement error, e.g., ±1◦C. Assume that the local measurement of the

first sensor is t1 = 19.5◦C, and that two other sensors provide t2 = 20.8◦C and t3 = 18.2◦C, respectively.

Assuming that there is no defective sensor, and taking into account the bounded measurement noise, one deduces

that t ∈ t1 = [t1 − 1, t1 + 1] = [18.5, 20.5], t ∈ t2 = [19.8, 21.8], and t ∈ t3 = [17.2, 19.2]. However since
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t1 ∩ t2 ∩ t3 = ∅, either the bounds on the measurement noise are too optimistic, or there is at least one outlier.

Considering the second hypothesis, it remains difficult to determine which sensor produces an outlier, as t1∩t2 6= ∅

and t1 ∩ t3 6= ∅.

The test (55) allows to detect the presence of an outlier based on mA only, without having to consider the

identity of nodes producing each measurement. This test does not give any insight on the nodes with defective

sensors. Thus qFA and qD defined in (7) and (6) only depend on ng and nd, where ng = |A ∩ G| and nd = |A ∩ D|.

Property 1 is thus satisfied.

T (mA) = 0 implies
[
φ̂ (mA)

]
6= ∅. As consequence,

[
φ̂
(
mA\{j}

)]
6= ∅ for any j ∈ A, since[

φ̂ (mA)
]

=
⋂
i∈A

[mi] ⊆
⋂

i∈A\{j}

[mi] =
[
φ̂
(
mA\{j}

)]
.

Therefore, (10) holds and Property 2 is satisfied as well.

Hereafter we investigate the conditions introduced by Proposition 9.

Lemma 10. Consider the LODT defined in (55). Consider a reference Node i and a node with random index

K ∈ Ni such that θi = θK = 0, and Yi = 1, then

P {YK = 1 | Yi = 1, θi = θK = 0,K ∈ Bi} > 1−
√

3

π
− 5

6π2
. (56)

See Appendix H for the proof. From (56), one obtains that the condition (45) is 1−
√

3
π −

5
6π2 > 1− 4

α3ζµ̄g
and

thus α3ζµ̄g <
24π2

5+6
√

3π
≈ 6.3.

VI. SIMULATION RESULTS

We consider a WSN of 1000 nodes randomly deployed according to a 2D PPP over a square of size 10 × 10

units, with µ̄ = 6. To avoid boundary effects, only nodes in the central square area of size (10− 2R0)×(10− 2R0)

units are considered in the evaluations of PD and PFA. The parameters of the outlier models and of the LODT are

in Table II.

TABLE II

PARAMETERS OF THE OUTLIER MODELS PRESENTED IN SECTION V-A AND OF THE LODT PRESENTED IN SECTION V-B.

outlier model outlier detection test

UHV ξ = 10 ν = 2∆

GHV ξ = 10 ν = 6σ

BGLV ξ = 10, ∆ = 10σ ν = 2∆

The values of ν reported in Table II have been chosen in each case via Monte-Carlo simulation of the measurement

models for ng = 10 and nd = 1. Since qD (ng, nd) and qFA (ng) are increasing functions of ng, the derived values

of qD and qFA are valid upper bounds for all ng ∈ [1, 10]. Meanwhile, one uses nd = 1 so that the obtained qD is

the lower bound for all values of nd > 1. Figure 3 represents the evolutions of qD (10, 1) and qFA (10) as a function

of ω = ν/∆ for the UHV and BGLV outlier models, and ω = ν/ (3σ) for the GHV outlier model. With the UHV
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Fig. 3. qD (10, 1) (left) and qFA (10) (right) as functions of ω = ν/∆ for the UHV and BGLV outlier models, and ω = ν/ (3σ) for the GHV

outlier model

outlier model, the noise corrupting data produced by a good sensor is bounded in [−∆,∆], thus qFA = 0 if ν > 2∆.

With a GHV outlier model, qFA (10) 6 10−3 as soon as ν > 6σ. With the BGLV model, ν = 2∆ ensures both

qD (10, 1) > 0.95 and qFA (10) ≤ 10−1.

In what follows, all results have been averaged over 2000 independent realizations of the WSN.

A. Performance of proposed DFD algorithm, ideal communication model

One considers here that εI = εII = 0, i.e., channel access issues and packets losses are neglected.

First, the performance of a single round of the DFD algorithm described in Section III-A is evaluated. Figure 4

shows PD as a function of PFA parametrized in the threshold γ ∈ (0, 1], for different values of the ratio µ̄d/µ̄ ∈

{0.02, 0.1} and for the different outlier models presented in Section V-A. These curves are obtained with ζ = 1.

When γ increases, PD and PFA decrease in all cases, as shown by Lemma 4. For a given outlier model, the

performance (in terms of detection accuracy) becomes worse as µ̄d/µ̄ goes larger. Among the different outlier

models, the GHV provides the worst performance. This comes from the fact that nodes with defective sensors may

produce measurements that appear valid with a relatively high probability. Figure 4 also represents with straight

lines the upper bounds for PD and PFA provided by Lemma 5 for all possible values of γ ∈ (0, 1]. For small values

of γ, these bounds are relatively tight.

Figure 5 represents PD and PFA as a function of µ̄, with γ ∈ {0.8, 1} and ζ = 1, and for different values of µ̄d/µ̄.

Increasing µ̄ increases PD, but also increases PFA. For large values of µ̄, PFA is unacceptable. Figure 6 represents a

similar curve, but now, ζ is adapted for each value of µ̄ to have LODT involving less than 6 data in average. The

main benefit is a decrease of PFA when µ̄ increases. The price to be paid is a saturation of PD when µ̄ > 6.

The role played by the number of rounds on the achievable performance of the proposed DFD algorithms (single-

decision and iterative) is then illustrated in Figures 7-9 corresponding to the outlier models UHV, GHV, and BGLV,
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Fig. 4. PD as a function of PFA for a single round of the DFD of Section III-A parametrized in γ, for different µ̄d/µ̄, for µ̄ = 6; upper bounds

for PD and PFA are also provided (straight lines)

respectively. PD and PFA are shown as functions of the round index 1 6 ` 6 10. One sets ζ = 1 and γ = 0.6

in the iterative algorithm in all the cases, while the value of γ in the single-decision algorithm is adjusted so that

both algorithms result to a similar PD when L = 10. With this setting, one may evaluate the performance by

comparing PFA only. As can be observed, the single-decision DFD performs well when µ̄d/µ̄ is small. However,

when µ̄d/µ̄ = 0.1, PFA is larger than 10% to keep a large PD.

For the single decision algorithm, an oscillating behavior of PD, depending on the iteration after which the

decision is taken can be observed. This is due to the decision rule (19), where zi/ni, for small values of L, may

vary significantly, since ni and zi are small. This effect vanishes as L increases, since ni and zi increase as well.

For the iterative algorithm, one considers L1 = 7, and L2 = 3. As can be observed, the seven iterative rounds of

the first stage significantly reduces PFA. The oscillations of PD and PFA are due to the fact that, during the iterative

phase of the algorithm, a decreasing proportion of nodes in false alarm alternatively turns off and on in subsequent

rounds until the algorithm switches to the single-decision phase. During the following three rounds, PD improves

rapidly, while PFA remains small. This is due to the fact that most of the defective sensors have been detected and
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Fig. 5. PD (left) and PFA (right) as functions of µ̄ for a single round of DFD for different values of µ̄d/µ̄ with γ ∈ {0.8, 1} and ζ = 1.

turned off during the previous iterative phase. Hence at the beginning of the single-decision rounds the residual

µ̄d/µ̄ is much lower than the initial µ̄d/µ̄. Thus the iterative DFD algorithm performs better than the single-decision

variant. For the same value of PD, PFA is almost one order of magnitude smaller with the iterative variant.

To better understand the oscillating behavior observed in Figures 7-9, one has to study the stability of the iterative

DFD algorithm. Consider for example µ̄ = 6 and the UHV outlier model with ξ = 10 and ν = 2∆. Evaluating f1,

f2, PFA and PD as a function of µ̄00 and µ̄10, the equilibrium can be characterized numerically. Consider ζ = 1

and E1 (µ00, µ10) = α1gFA (α3µ00, α3µ10)− s1 (α3µ00, α3µ10) ,

E2 (µ00, µ10) = α1gD (α3µ00, α3µ10)− s2 (α3µ00, α3µ10) ,

deduced from (42-43), the equilibrium conditions may be rewritten asE1 (µ∗00, µ
∗
10) = 0,

E2 (µ∗00, µ
∗
10) = 0.
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Fig. 6. PD (left) and PFA (right) as functions of µ̄ for a single round of DFD for different values of µ̄d/µ̄ with γ ∈ {0.8, 1} and ζ adapted

to have LODT involving less than 6 neighboring data.

Figure 10 shows that E1 (µ∗00, µ
∗
10) = E2 (µ∗00, µ

∗
10) = 0 for the pairs (µ∗00, µ

∗
10) reported in Table III, with

µ̄d/µ̄ ∈ {0.02, 0.1, 0.2}. The simulation results (µ∗00/µ̄g, µ
∗
10/µ̄d)s obtained from Figure 7 are also presented in

Table III showing a very good match with the theoretical results (µ∗00/µ̄g, µ
∗
10/µ̄d)t obtained by solving (42-43).

The derivatives of f1, f2, PFA and PD with respect to µ00 and µ10 allow to get the matrix A of the linearized

model (51) and to evaluate its eigenvalues λ1 and λ2. Table III shows that for three different values of the ratio

µ̄d/µ̄, the eigenvalues are within the unit circle. The linearized system is thus asymptotically stable. Moreover, the

norms of the eigenvalues increase with µ̄d/µ̄. The iterative DFD algorithm converges thus faster to equilibrium

when µ̄d/µ̄ is small.

B. Performance of proposed DFD algorithm, realistic communication model

In this section, channel access issues as well as packet losses are considered. For that purpose, we assume

α1 = 0.95, εI = εII = 0.10. This leads to α2 ≈ 0.9, and α3 ≈ 0.85. A node manages to access the channel in 95%
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Fig. 7. PD (left) and PFA (right) as a function of the round index, with µ̄ = 6, ζ = 1, and µ̄d/µ̄ ∈ {0.02, 0.1}. The outlier model is UHV;

For the single-decision algorithm, γ = 0.65, for the iterative algorithms, γ = 0.6, and L1 = 7 and L2 = 3.

TABLE III

ENTRIES OF THE MATRIX A IN (51) AND OF ITS EIGENVALUES λ1 AND λ2 FOR THE UHV OUTLIER MODEL WHEN µ̄ = 6, ξ = 10, AND

ν = 2∆

µ̄d/µ̄ 0.02 0.1(
µ∗
00
µ̄g
,
µ∗
10
µ̄d

)
t

( 0.998, 0.145 ) ( 0.988, 0.145 )(
µ∗
00
µ̄g
,
µ∗
10
µ̄d

)
s

( 0.995, 0.142 ) ( 0.988, 0.142 )

A

 0.011, −2.02

−0.001, −0.006

  0.075 − 2.01

−0.005 − 0.052


(λ1, λ2) ( 0.05, 0.046 ) ( 0.13, 0.10 )
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Fig. 8. PD (left) and PFA (right) as a function of the number of rounds, with µ̄ = 6, ζ = 1, and µ̄d/µ̄ ∈ {0.02, 0.1}. The outlier model

is GHV. For the single-decision algorithm, γ = 0.5 as µ̄d/µ̄ = 0.02 and γ = 0.59 as µ̄d/µ̄ = 0.1. For the iterative algorithms, γ = 0.6,

L1 = 7, and L2 = 3.

of the cases during a given phase of the considered algorithms. It has 90% chance to receive in Phase I a packet

from one of its neighbors, and 85% chance to receive in Phase II a packet containing a decision involving the data

it manages to broadcast in Phase I.

Figure 11 is the counterpart of Figure 7 for the UHV outlier model. PD (left) and PFA (right) are depicted as

a function of the round index, with µ̄ = 6, ζ = 1, and µ̄d/µ̄ ∈ {0.02, 0.1}. For the single-decision algorithm,

γ = 0.65, whereas for the iterative algorithms, γ = 0.6, and L1 = 7 and L2 = 3.

As far as the iterative algorithm is concerned, the values of PD and PFA are very close to those obtained with ideal

communication conditions. During iterations, the oscillations are better damped. For example, when µ̄d/µ̄ = 0.1,

it results λ1 = 0.034 and λ2 = −0.117.

For the single decision algorithm, performance are more degraded, e.g., PD is reduced from 0.97 to 0.91 when

the more realistic communication model is considered.

C. Comparison with other DFD solutions

This section compares the proposed approach with two alternative DFD algorithms presented in [7] and in [16].

These reference DFD schemes have a LODT relatively close to that considered here. Nevertheless, a fair comparison
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between the two algorithms is quite difficult because the tests have some differences in their form and parameters.

First, ideal communication conditions are considered. In [7], in the first stage, each node exchanges its mea-

surement with its neighbors and then performs a LODT. Compared to the proposed approach, Node i performs

pairwise comparisons of its local measurement with all measurements received from its neighbors, to produce a

binary value ci,j indicating whether there exists an outlier among mi and mj . Then, Node i decides whether its

sensor is defective based on ci,j , j ∈ Ni. In a second stage, Node i broadcasts the estimate of its status, as well as

its table of neighbors (including the index of Node j and ci,j), which needs (µ̄+ 1) (1 + log2 |S|) bits in average.

This is of the same order of magnitude as the results indicated in Sections IV-B and IV-E.

Figure 12 compares the proposed DFD and the DFD algorithm in [7] in terms of PD and PFA, after 10 rounds of

the algorithms, with µ̄ = 6. In fact, the only parameter one can control in the DFD algorithm of [7] is the threshold

of a local test (similar to ν in our case), whereas the performance of the proposed DFD depends on ν, γ, ζ, L1,

and L2. For example, we fix ν (as the value in Table II), L1 = 7, L2 = 3 and choose different values of γ and

ζ = 1. As can be seen in Figures 12, the (PD, PFA) curve of the proposed DFD algorithm is in most of the cases

above that of the DFD algorithm of [7].

Now packet losses and the channel access issues are taken into account. The DFD algorithm of [16] is considered,
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Fig. 10. Evolution of E1

(
µ00, µ∗10

)
and E2

(
µ00, µ∗10

)
as functions of µ00/µ̄g (top), and of E1

(
µ∗00, µ10

)
and E2

(
µ∗00, µ10

)
as functions

of µ10/µ̄d (bottom), with µ̄d/µ̄ ∈ {0.02, 0.1, 0.2} and ζ = 1

since it is a modified version of that of [7] accounting for channel impairments. The UHV and BGLV models are

considered for different values of the probability Psuccess of successful channel access and transmission. Results

shown in Figure 13 compare also the performance of the proposed algorithm with and without transmission of

nodes indices in V(`,I)
i . The performance of the algorithm in [16] is also indicated. With or without the knowledge

of V(`,I)
i , the performance of the proposed algorithm are very close, especially when Psuccess > 0.8. The amount

of data that needs to be transmitted between nodes can thus be reduced to one bit per node for the LODT result

dissemination phase.

For the UHV model, the DFD algorithm in [16] provides lower PFA for a similar PD than the proposed algorithm

only when Psuccess is close to 1. When Psuccess decreases the price to be paid in [16] for a low PFA translates in

a significantly degraded PD. For the BGLV model, the DFD algorithm in [16] provides higher PFA for a similar

PD for Psuccess ∈ [0.6, 1] compared to the proposed approach. When Psuccess < 0.6, the value of PD significantly

decreases, even if PFA decreases too. In this case, the proposed approach performs better for all values of Psuccess.
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Fig. 13. Comparison of the iterative algorithms with or without the transmission of V(`,I)
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VII. CONCLUSIONS

This work proposed two variants of a two-stage DFD algorithm, which allows each node of a WSN to decide

whether its sensor is producing outliers. The performance of the single-decision algorithm has been theoretically

characterized. For the iterative variant, sufficient conditions to be satisfied by the LODT are identified to ensure

existence of an equilibrium. These results are generic, since no specific form of the LODT needs to be considered.

These conditions translate into upper bounds on µ̄g and µ̄d. Conditions for the local asymptotic stability of this

equilibrium are also provided. The influence of channel access issues and packet losses has been analyzed.

The DFD algorithm has been tested considering three outliers models and a simple local outlier detection

algorithm. When the bounds on µ̄g and µ̄d are satisfied, the algorithms behave well. When they are not satisfied,

some oscillating behavior appears, and an equilibrium is more difficult to reach. Randomly selecting a subset of

the received data to perform each LODT addresses this issue.

The performance of both variants have been characterized by simulations, which enables to get some insights

on the impact of the algorithm parameters (number of rounds, local test threshold, probability of packet loss) and

of the network topology (density of faulty sensors, size of the neighborhood) on the trade-off between PD and

PFA. Comparisons with two alternative DFD algorithms have been performed, showing that for comparable or even

lower traffic requirements, the proposed algorithm performs better in most of the cases.

A way to account for the effect of node mobility during rounds is, e.g., by an adaptation of ζ. Nevertheless, a

precise analysis of the performance of both algorithm in case of significant node mobility is left for future research.

APPENDIX

A. Proof of Lemma 1

We start with the proof of (11).
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Note that both qD and qFA represent the probability that the LODT yields 1. One has, for any k ∈ A

P
{
T
(
MA\{k}

)
= 1
∣∣ϕ (A) = 0

}
= P

{
T
(
MA\{k}

)
= 1, T (MA) = 0

∣∣ϕ (A) = 0
}

+ P
{
T
(
MA\{k}

)
= 1, T (MA) = 1

∣∣ϕ (A) = 0
}

(a)
= P

{
T
(
MA\{k}

)
= 1, T (MA) = 1

∣∣ϕ (A) = 0
}

6 P
{
T (MA) = 1

∣∣ϕ (A) = 0
}
, (57)

where (a) is obtained from Property 2. Combining (7) and (57), one gets

qFA
(
MA\{K}

)
6 qFA (MA) . (58)

Suppose that |A| = ng + 1 with ng > 1, then based on Property 1, (58) is equivalent to qFA (ng) 6 qFA (ng + 1),

which proves (11).

One may prove (12) and (13) in a similar way, by considering ϕ (A) = 1 in the derivations.

B. Analysis of the decision rule (19)

At the end of Algorithm 1, each node estimates its status from the results of the LODTs, which may be gathered

in the vector

Y
(L)
i =

[
Y

(`)
j

]
j∈B(`)

i ,1≤`≤L
. (59)

Let y(L)
i be one realization of Y (L)

i . In what follows, one will show that the decision rule (19) corresponds, under

some simplifying assumptions, to

θ̂i = arg max
φ∈{0,1}

cφP
{
Y

(L)
i = y

(L)
i | θi = φ

}
, (60)

where cφ is some weight. If c0 = c1 = 1, then (60) is a maximum likelihood estimate of θi from y
(L)
i ; if

cφ = P {θi = φ}, then (60) is the maximum a posteriori estimate of θi.

Expressing the likelihoods in (60) is complicated due to the correlation between the components of Y
(L)
j .

Nevertheless, assuming that the Y (`)
j s are iid, one obtains

P
{
Y

(L)
i = y

(L)
i | θi = φ

}
=

L∏
`=1

∏
j∈B(`)

i

P
{
Y

(`)
j = y

(`)
j | θi = φ

}
. (61)

Assuming further that P
{
Y

(`)
j = y

(`)
j | θi = φ

}
= P

{
Y

(`)
i = y

(`)
i | θi = φ

}
for all j ∈ B(`)

i , which can be justified

by Property 1 when the number of measurements considered by Node j to get Y (`)
j is equal to the number of

measurements by Node i to get Y (`)
i . Then for all j ∈ B(`)

i , one gets

P
{
Y

(`)
j = 1 | θi = 0

}
= f1 (µ̄g, µ̄d) , (62)

P
{
Y

(`)
j = 1 | θi = 1

}
= f2 (µ̄g, µ̄d) . (63)
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Let zi =
∑L
`=1

∑
j∈B(`)

i
y

(`)
j = zi and ni =

∑L
`=1

∣∣∣B(`)
i

∣∣∣, then from (61-62) one obtains

c0P
{
Y

(L)
i = y

(L)
i | θi = 0

}
c1P

{
Y

(L)
i = y

(L)
i | θi = 1

} =
c0f

zi
1 (1− f1)

ni−zi

c1f
zi
2 (1− f2)

ni−zi . (64)

Therefore, one obtains the following decision rule

θ̂i =


0, if zi

ni
<

1
ni

log
c1
c0
−log

1−f1
1−f2

log
f1(1−f2)

f2(1−f1)

,

1, otherwise.
(65)

When c0 = c1 = 1, the threshold corresponding to the maximum likelihood estimate is

γML =
log 1−f1

1−f2

log 1−f1
1−f2 + log f2

f1

. (66)

When cφ = P {θi = φ}, the threshold corresponding to the maximum a posteriori estimate of θ depends on ni as

follows

γMAP (ni) =
log 1−f1

1−f2 −
1
ni

log µ̄d
µ̄g

log 1−f1
1−f2 + log f2

f1

. (67)

One notes that limni→∞ γMAP (ni) = γML.

Figure 14 represents the theoretical values of γML, γMAP (µ̄) with L = 1, and γMAP (µ̄) with l = 10 as functions

of µ̄ for different values of µ̄d/µ̄. For a constant value of µ, γ increases with µ̄d. Moreover, γML and γMAP (µ̄)

with L = 10 behave very similarly, increasing with µ̄. Finally, γMAP (µ̄) with L = 1 is always larger than the other

thresholds: when a limited number of measurements is available, this limits the probability of false alarm.

C. Multi-hop Algorithm

When the WSN is sparse, i.e., when µ̄ is small, the performance of DFD algorithms may be poor, due to a reduced

amount of data to perform LODT. This appendix presents the modifications to be performed in the DFD algorithm to

allow multi-hop data collection and LODT result dissemination. It is a variant of multi-hop dissemination protocol,

see, e.g., [2, Chap. 4.5], where data aggregation in packets is performed to limit the number of transmitted packets.

This feature requires that each node acts as a router to forward the packets it has received. This forwarding has

to be limited using some time-to-live information T TL associated to each data. T TL has to be initialized to H , the

maximum number of allowed hops. Let p(`,I,k)
i be the payload of the k-th packet transmitted by Node i, during

Phase I in the `-th round. Initially k = 1 and one has

p
(`,I,1)
i =

{(
T TL
i , m

(`)
i

)}
, (68)

with T TL
i = H . The identification of Node i, stored in Addri, is included in the packet header. Node i has received

packets from its neighbors in the set N (`,I,1)
i during the first transmission of Phase I of Round `. The corresponding

data and associated T TL are denoted
(
T TL
j ,m

(`)
j

)
, j ∈ N (`,I,1)

i ⊂ S . Node i then needs to forward all data

which have a TjTL > 0. To save bandwidth resources, these data are aggregated into one packet to get

p
(`,I,2)
i =

⋃
j∈N (`,I,1)

i st T TL>0

{(
Addrj , T TL

j − 1, m
(`)
j

)}
. (69)
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Fig. 14. γML, γMAP (µ̄) with L = 1, and γMAP (µ̄) with L = 10 as functions of µ̄ for different values of µ̄d/µ̄.

During k-th transmission with k ≥ 2, packets are transmitted similarly, accounting for newly received data.

A similar process is performed during Phase II where LODT results are broadcast with limited hop count. Now,

the payload of the first packet transmitted by Node i, during Phase II in the `-th round is

p
(`,II,1)
i =

[
T TL
i , y

(`)
i ,

∣∣∣V(`,I)
i

∣∣∣ , ⋃
j∈V(`,I)

i
{Addrj}

]
. (70)

In (70), T TL
i is again initialized at H . The number of nodes participating to the LODT results y(`)

i as well as their

addresses are also indicated. For the k-th transmitted packets, payload containing LODT outcomes with T TL > 0

can again be aggregated as done in (69).

D. Proof of (44)

Consider a bounded sequence 0 6 B (n) 6 1 for any n ∈ N and a real-valued function GN (µ) =
∑N
n=0B (n) ·

µn

n! exp (−µ) with µ > 0. First, one evaluates the derivative of GN (µ),

dGN (µ)

dµ
= exp (−µ) ·(

N∑
n=0

(B (n+ 1)−B (n))
µn

n!
−B (N + 1)

µN

N !

)
. (71)

Second, one shows that dGN (µ)
dµ converges uniformly to

H (µ) =

∞∑
n=0

(B (n+ 1)−B (n))
µn

n!
exp (−µ) . (72)
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Let ε ∈ R+ be an arbitrary number, then for any µ > 0, there exists Nµ ∈ N+, such that
∞∑

n=Nµ

µn

n!
exp (−µ) < ε. (73)

One has ∣∣∣∣dGNµ (µ)

dµ
−H (µ)

∣∣∣∣ 6 B (Nµ + 1) · µ
Nµ

Nµ!
exp (−µ) +

∞∑
n=Nµ+1

|B (n+ 1)−B (n)| · µ
n

n!
exp (−µ)

(a)

6
∞∑

n=Nµ

µn

n!
exp (−µ)

(b)
< ε,

where (a) comes from the fact that 0 6 B (n) 6 1 and −1 6 B (n+ 1) − B (n) 6 1 for any n ∈ N, and (b) is

by (73). Similarly, one can also show that GN (µ) converges uniformly to G (µ) =
∑N
n=0B (n) · µ

n

n! exp (−µ) for

any µ > 0.

Therefore, according to [25, Thm 7.17], one obtains that limN→∞
dGN (µ)

dµ = H (µ) , G (µ) is differentiable for

any µ > 0 and dG(µ)
dµ = H (µ).

E. Proof of Lemma 5

Let Ri = {j ∈ S such that ri,j 6 2R0} be the set of nodes at a distance to the reference Node i less than 2R0,

including i itself. For any j ∈ Bi, V(I)
j ⊆ Ri. Let MRi and MV(I)

j
be the vectors of data provided by the sensors

in Ri and V(I)
j respectively. From Property 2, one has for all Uj , j ∈ Ui

P
{
T
(
MV(I)

j

)
= 0 | T (MRi) = 0

}
= 1, ∀j ∈ Bi. (74)

To lighten notations, define Zi =
∑
j∈Bi T

(
MV(I)

j

)
. From (74), one deduces

P {Zi = 0 | T (MRi) = 0} = 1. (75)

Then

P {Zi = 0} =

1∑
y=0

P {Zi = 0, T (MRi) = y}

> P {Zi = 0, T (MRi) = 0}

= P {Zi = 0 | T (MRi) = 0} · P {T (MRi) = 0}

= P {T (MRi) = 0} . (76)

On the other hand

P {Zi < (Ng +Nd) γ} > P {Zi = 0} . (77)

Combining (76) and (77), one gets

P {Zi > (Ng +Nd) γ} 6 1− P {Zi = 0}

6 P {T (MRi) = 1} , (78)
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independently of the status of Node i. When θi = 0,

PFA

(
µ(II)

g , µ
(II)
d

)
6 P {T (MRi) = 1 | θi = 0}

=

∞∑
ng=1

∞∑
nd=0

h (ng, nd)
(4µ̄d)

nd−1
(4µ̄g)

ng

(ng − 1)!nd!
exp (−4µ̄d − 4µ̄g) ,

leading to (33). Note that the area of the disk associated to Ri is 4πR2
0, thus in average |Ri ∩ G| is 4µ̄g and in

average |Ri ∩ D| is 4µ̄d. One may show (34) in a similar way.

F. Proof of Lemma 8

To prove that gFA (µ00, µ10) as defined in (47) is monotone increasing in µ00, one has to show that

∂gFA

∂µ00
=

µ00

α3ζµ̄g − µ00

∞∑
ng=1

∞∑
nd=0

µnd
10µ

ng−1
00 exp (−µ10 − µ00)

nd! (ng − 1)!(
τFA (ng + 1, nd) +

µ2
00 − α3ζµ00µ̄g + α3ζµ̄g

µ00 (α3ζµ̄g − µ00)
τFA (ng, nd)

)
(79)

is strictly positive. Therefore, a sufficient condition to have ∂gFA
∂µ00

> 0 is

τFA (ng + 1, nd)

τFA (ng, nd)
> −

µ2
00 − α3ζµ00µ̄g + α3ζµ̄g

(α3ζµ̄g − µ00)µ00
. (80)

Since

−
µ2

00 − α3ζµ00µ̄g + α3ζµ̄g

(α3ζµ̄g − µ00)µ00
= 1−

α3ζµ̄g

(α3ζµ̄g − µ00)µ00
6 1− 4

α3ζµ̄g
,

a sufficient condition to have (80) is

τFA (ng + 1, nd)

τFA (ng, nd)
>

(
1− 4

α3ζµ̄g

)
for any ng > 1 and nd > 0, which is equivalent to

min
ng>1,nd>0

τFA (ng + 1, nd)

τFA (ng, nd)
> 1− 4

α3ζµ̄g
. (81)
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One needs to find a lower bound of τFA (ng + 1, nd) as a function of τFA (ng, nd). Introducing I = {θi = 0, Ng = ng + 1, Nd = nd},

by definition,

τFA (ng + 1, nd) = P
{ ∑

j∈Bi Yj

ng + nd + 1
= 1

∣∣∣∣I}
(a)
= P

{∑
j∈Bi\{K} Yj

ng + nd
= 1

∣∣∣∣θK = 0, I

}

· P

{
YK = 1

∣∣∣∣
∑
j∈Bi\{K} Yj

ng + nd
= 1, θK = 0, I

}
(b)

> P

{∑
j∈Bi\{K} Y

′
j

ng + nd
= 1

∣∣∣∣θK = 0, I

}

· P

{
YK = 1

∣∣∣∣
∑
j∈Bi\{K} Yj

ng + nd
= 1, θK = 0, I

}
(c)
= P

{∑
j∈Bi\{K} Y

′
j

ng + nd
= 1

∣∣∣∣θi = θK = 0, N ′g = ng, Nd = nd

}

· P

{
YK = 1

∣∣∣∣
∑
j∈Bi\{K} Yj

ng + nd
= 1, θK = 0, I

}
(82)

(d)
= τFA (ng, nd) · P

{
YK = 1

∣∣∣∣
∑
j∈Bi\{K} Yj

ng + nd
= 1, θK = 0, I

}
(e)

> τFA (ng, nd) · P
{
YK = 1

∣∣∣∣Yi = 1, θK = 0, I
}
, (83)

where the considered Bi is such that θi = 0, Ng = ng + 1, and Nd = nd. For all j ∈ Bi, the LODTs are performed

based on the data vector MV(I)
j

with outcome Yj . In (a), K 6= i is a random node in Ni∩G; such node exists since

ng > 1. In (b), Y ′j = T
(
MV(I)

j \{K}

)
and one uses the results of Lemma 1 to get P {Yj = 1} > P

{
Y ′j = 1

}
for all

j ∈ Bi \ {K}. To get (c), one uses the fact that Node K, equipped with a good sensor, is not used to get Y ′j and

(82) accounts only for the presence of N ′g = ng nodes with good sensors. Then (d) is by definition of τFA (ng, nd)

and see Appendix G for the proof of (e). According to (81) and (83), the first statement of Lemma 8 is proved.

In the similar way, a sufficient condition to have µ10PD (µ00, µ10) / (µ̄d − µ10) an increasing function of µ10 is

that

τD (ng, nd + 1)

τD (ng, nd)
> P {Yk = 1 | θi = θk = 1}

> qD (0, 2) > 1− 4

α3ζµ̄d
, (84)

which corresponds to the second statement of Lemma 8.

G. Proof of P {Yj1 = 1} 6 P {Yj1 = 1 | Yi = 1, Yj2 = 1, . . . }

In this section, one aims to prove the following lemma.
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Lemma 11. Consider a LODT satisfying Properties 1 and 2, and some Node i. For any set of distinct indexes

{i, j1, j2, . . . } ⊂ Bi, one has

P {Yj1 = 1} 6 P {Yj1 = 1 | Yi = 1}

6 P {Yj1 = 1 | Yi = 1, Yj2 = 1} 6 .... (85)

Proof: Let Yik = T
(
MV(I)

i ∩V
(I)
k

)
. Note that if

∣∣∣V(I)
i ∩ V

(I)
k

∣∣∣ 6 1, one has Yik = 0 .

P {Yk = 1 | Yi = 1} =

1∑
y=0

P {Yk = 1, Yik = y | Yi = 1}

(a)
= P {Yik = 1 | Yi = 1}+ P {Yk = 1, Yik = 0 | Yi = 1}
(b)
= P {Yik = 1 | Yi = 1}

+ P {Yik = 0 | Yi = 1} · P {Yk = 1 | Yik = 0}

= P {Yik = 1 | Yi = 1} · (1− P {Yk = 1 | Yik = 0})

+ P {Yk = 1 | Yik = 0} , (86)

where (a) comes from Property 2 which states that if Yik = 1, then Yk = 1. Then (b) is by

P {Yk = 1, Yik = 0 | Yi = 1}

= P {Yik = 0 | Yi = 1} · P {Yk = 1 | Yik = 0, Yi = 1}

= P {Yik = 0 | Yi = 1} · P {Yk = 1 | Yik = 0}

as Yi and Yk are independent knowing that Yik = 0. Similarly,

P {Yk = 1} = P {Yik = 1} · (1− P {Yk = 1 | Yik = 0})

+ P {Yk = 1 | Yik = 0} . (87)

Moreover,

P {Yik = 1 | Yi = 1}

=
P {Yik = 1, Yi = 1}

P {Yi = 1}
=

P {Yik = 1}
P {Yi = 1}

> P {Yik = 1} . (88)

>From (86), (87), and (88), one obtains that P {Yk = 1} 6 P {Yk = 1 | Yi = 1}. The other inequalities of Lemma 11

are proved in the same way.

H. Proof of Lemma 10

Consider the reference Node i and a node with random index K ∈ Bi \ {i}, both known with non-defective

sensors. The location of Node K is uniformly distributed on the disk of center i and radius R0. One has to evaluate

P {YK = 1 | Yi = 1, θi = θK = 0,K ∈ Bi \ {i}}

= P
{
T
(
MV(I)

K

)
= 1 | Yi = 1, θi = θK = 0,K ∈ Bi \ {i}

}
.
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Since Yi = 1, for any realization mBi , there exists at least a pair of nodes (j1, j2) ∈ B2
i with j1 6= j2 such that

[mj1 ]∩ [mj2 ] = ∅. For the random measurement vector MBi , let Di the set of such (random) pairs of node indexes.

If for some (J1, J2) ∈ Di, one has also (J1, J2) ∈
(
V(I)
K

)2

, then T
(
MV(I)

K

)
= 1. As a consequence,

P
{
T
(
MV(I)

K

)
= 1 | Yi = 1, θi = θK = 0,K ∈ Bi \ {i}

}
> P

{
J1 ∈ V(I)

K , J2 ∈ V(I)
K | (J1, J2) ∈ Di,K ∈ Bi \ {i}

}
.

One has thus to evaluate the probability that V(I)
K contains the nodes J1 and J2, which themselves belong to Bi.

To evaluate this probability, the fact that (J1, J2) belong to Di is not important, since the outcome of the LODT

does not account for the indexes of the nodes. As a consequence

P
{
T
(
MV(I)

K

)
= 1 | Yi = 1, θi = θK = 0,K ∈ Bi \ {i}

}
> P

{
J1, J2 ∈ V(I)

K ∩ Bi | (J1, J2) ∈ Di,K ∈ Bi \ {i}
}

=
(
P
{
J1 ∈ V(I)

K ∩ Bi | J1 ∈ Bi,K ∈ Bi \ {i}
})2

(89)

since the locations of the nodes are independent.

The distance Ri,K between Nodes i and K is a random variable with distribution

πR (r) = 2r/R2
0. (90)

Now, let S1 be the intersection of the two disks of radius R0 and centers i and K respectively, see Figure 15. The

probability of a node known to belong to Ni to be in Ui ∩ UK is equal to the area of S1 divided by πR2
0, which

is a function of Ri,K . When Ri,K = r, the area of S1 is S1 (β) = R2
0 (2β − sin (2β)), with β = arccos

(
r

2R0

)
.

Thus, one has to average (89) over all possible values of RiK to obtain from (90),

P {YK = 1 | Yi = 1, θi = θK = 0,K ∈ Ni}

>
ˆ R0

0

2r

R2
0

(
S1 (r)

πR2
0

)2

dr

=

ˆ π/2

π/3

4 sin (2β) ·
(

2β − sin (2β)

π

)2

dβ

= 1−
√

3

π
− 5

6π2
. (91)
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