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a b s t r a c t

In urban canyons, non-line-of-sight (NLOS) multipath interferences affect position

estimation based on global navigation satellite systems (GNSS). This paper proposes to

model the effects of NLOS multipath interferences as mean value jumps contaminating

the GNSS pseudo-range measurements. The marginalized likelihood ratio test (MLRT) is

then investigated to detect, identify and estimate the corresponding NLOS multipath

biases. However, the MLRT test statistics is difficult to compute. In this work, we consider

a Monte Carlo integration technique based on bias magnitude sampling. Jensen's inequal-

ity allows this Monte Carlo integration to be simplified. The multiple model algorithm is

also used to update the prior information for each bias magnitude sample. Some strategies

are designed for estimating and correcting the NLOS multipath biases. In order to

demonstrate the performance of the MLRT, experiments allowing several localization

methods to be compared are performed. Finally, results from a measurement campaign

conducted in an urban canyon are presented in order to evaluate the performance of the

proposed algorithm in a representative environment.

1. Introduction

Global navigation satellite systems (GNSS) have been

widely used in many applications requiring demanding

signal processing algorithms. These applications include

surveillance of unmanned aerial/landing vehicles, search

and rescue in urban canyons and location-based intelligent

transport system applications. In these applications, the

multipath (MP) interference is one of the largest sources of

GNSS errors. MP errors are mainly due to the fact that a

signal transmitted by a satellite is very likely to be

reflected or diffracted and can follow different paths

before arriving at the GNSS receiver antenna [1]. MP

interferences can be divided into two classes: (a) the

non-line-of-sight (NLOS) interferences which result from

a unique reflected signal received and tracked by the GNSS

receiver; (b) the line-of-sight (LOS) interferences which

result from the sum of the direct signal and of delayed

reflections. NLOS interferences frequently occur in urban

canyons, where the direct path of a satellite signal is

vulnerable to masking or blocking whereas reflected

signals can be tracked within the receiver [2].

Different approaches can be found in the literature for

mitigating MP interference errors. The use of high quality

antenna arrays has shown to be efficient for detecting and

mitigating MP [3,4], or for estimating parameters of MP
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components. Unfortunately, these antennas are expensive

and have large dimensions. Considering that the GNSS

receiver has to track the signal composed of the direct

signal and of delayed reflections in the LOS situation,

several MP mitigation methods based on the narrow

correlator delay lock loop [5] have been proposed, such

as the strobe correlator [6], the early–late-slope technique

[7], the double-delta correlator [8] and the MP insensitive

delay lock loop [9]. Moreover, the direct and reflected

signal parameters can be estimated by using a robust

statistical approach based on maximum likelihood princi-

ple [10–14]. Bayesian approaches have also been proposed

to estimate the MP parameters within GNSS receivers

since they allow the nonlinear estimation problem to be

handled [15–18]. In the NLOS situation, MP interferences

can be hardly mitigated by these strategies while the

direct signal is blocked or masked. To overcome these

difficulties, a 3D model of the environment can be used to

deliver a priori knowledge about the shadowed satellites

[19,20]. Another possibility is to exploit the geometric path

model [21] in order to estimate a possible reflected path

related to NLOS MP interferences. The reflected signal due

to an MP interference can be converted to a bias appearing

on the GNSS pseudo-range measurement. When prior

information for this bias is obtained, MP mitigation meth-

ods based on Bayesian statistical theory can be considered

[22]. For instance, Spangenberg considered in [23] two

different models for pseudo-range measurements depend-

ing on the availability of LOS signals. Viandier proposed in

[24] different ways of handling pseudo-range measure-

ments contaminated by MP biases in urban scenarios, and

of estimating the position of a vehicle by using a particle

filter applied to a jump Markov system. Giremus proposed

in [25] a fixed Rao-blackwellized particle filter to jointly

detect and estimate MP biases associated with GNSS

pseudo-range measurements.

The generalized likelihood ratio test (GLRT) (also

known as the Bayesian detector [26]), used for fault

detection and diagnosis in a state space was first proposed

by Willsky and Jones [27]. In this GLRT, the test statistic is

the innovation sequence of the Kalman filter and nuisance

parameters appearing in the test statistic are replaced by

their maximum likelihood estimator. The marginalized

likelihood ratio test (MLRT) proposed by Gustafsson [28]

incorporates prior knowledge about the nuisance para-

meters that are eliminated by the marginalization of the

likelihood function. Accordingly, different bias detection

and isolation approaches have been developed based on

the MLRT. For instance, dos Santos proposed in [29] a

maximum a posteriori criterion based on the margin-

alization of the likelihood function with the gamma prior

distribution. Kiasi proposed in [30] a modified MLRT with

a uniform distribution to estimate the occurrence time of

fault. Considering that the test statistic of the MLRT is

generally difficult to compute, Giremus proposed in [31] a

numerical solution based on the unscented transform to

solve this problem.

In this work, we propose an approximated margin-

alized likelihood ratio test based on Jensen's inequality to

detect, identify and estimate the NLOS multipath biases

affecting GNSS pseudo-range measurements. The test

statistic in the MLRT is approximated by a Monte Carlo

integration technique based on bias magnitude sampling.

Jensen's inequality allows this Monte Carlo integration to

be simplified, and the multiple model algorithm is used to

update the prior information for each bias magnitude

sample. Some strategies are also designed for estimating

and correcting the NLOS multipath biases. The empirical

cumulative distribution function of the approximate test

statistic is analyzed and the corresponding detection

threshold is determined via Monte Carlo simulations. In

addition, a comprehensive simulation study is implemen-

ted to compare the performance of the proposed approach

with other state-of-the-art detection approaches. Finally,

the proposed approach is evaluated based on data

obtained from a measurement campaign conducted in a

street urban canyon.

The paper is organized as follows: the system con-

sidered for GNSS positioning is introduced in Section 2.

Section 3 studies the MLRT and its approximation based

on Jensen's inequality to detect MP biases possibly

affecting GNSS measurements. Section 4 investigates

the identification, estimation and correction of GNSS

measurements in the presence of NLOS MP biases. Sec-

tion 5 analyzes the test statistic used in the proposed MP

detection approach. The performance of the proposed

algorithm is evaluated in Section 6, first from simulated

data representative of realistic scenarios, and then from

real data collected by a UBLOX receiver operating in an

urban canyon. Conclusions are finally reported in

Section 7.

2. System description

2.1. State model

For the considered application which addresses vehi-

cles moving slowly in an urban environment, we investi-

gate a second-order model (i.e., a constant velocity model)

to describe the dynamic of the vehicle in the earth-

centered earth-fixed (ECEF) frame. Moreover, the GNSS

receiver clock offset and its drift are taken into account.

Therefore, the state model can be divided into two parts

containing the position and velocity of the vehicle in the

ECEF frame, and the receiver clock offset and drift, respec-

tively. More precisely, the state vector considered in this

paper is defined as follows [32]:

Xt ¼ ðxt ; _xt ; yt ; _yt ; zt ; _zt ; bt ; dtÞ
T ð1Þ

where ðxt ; yt ; ztÞ and ð _xt ; _yt ; _ztÞ are the vehicle position and

velocity in the ECEF frame (Cartesian coordinate), respec-

tively, bt and dt are the GNSS receiver clock offset and drift,

ð$ÞT is the transpose of a vector.

The velocity can be reasonably modelled as a random

walk, e.g., €x ¼ ex where ex is a zero mean Gaussian noise of

variance σa
2
. For short-term applications in which the

periodical clock resets of the GNSS receiver are not taken

into account, the GNSS receiver clock offset bt and its drift

dt can also be modelled as random walks, i.e., _bt ¼ dtþeb
and _dt ¼ ed where eb and ed are zero-mean Gaussian white

noises of variance σb
2
and σd

2
. Based on the above assump-

tions, the discrete-time state model which describes the



propagation of the vehicle state Xt can be formulated as

Xkþ1 ¼Φkþ1jkXkþek ð2Þ

where k¼ 1;…;K denotes the kth sampling time instant,

ek ¼ ðex; ey; ez; eb; edÞ
T is the zero mean Gaussian white

noise vector of covariance matrix Q k. Considering a rela-

tive independence between the kinematic parameters and

the GNSS clock parameters, the state matrix Φkþ1jk is a

block-diagonal matrix. More precisely, the matricesΦkþ1jk

and Q k can be defined as follows:

Φkþ1jk ¼
Ak 0

0 Ck

 !

and Q k ¼
Σ

a
k 0

0 Σ
c
k

 !

ð3Þ

where the block matrices Ak, Ck, Σ
a
k and Σ

c
k are
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0 Ck 0

0 0 Ck
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and where Δt represents the time interval between two

successive sampling instants.

2.2. Measurement model in the presence of multipath

As the GNSS receiver tracking loops filter MP interfer-

ences whose relative delays vary with time, only the MP

interferences resulting in a constant bias affecting the

pseudo-range measurements (during the observation per-

iod) are considered in this paper. Thus we introduce a

mean value jump affecting the GNSS pseudo-range mea-

surements in the presence of NLOS MP interferences.

Consequently, the mth in-view satellite pseudo-range

measurement model including an NLOS MP bias can be

defined as [32]

Zm
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxm
k
'xkÞ

2þðym
k
'ykÞ

2þðzm
k
'zkÞ

2
q

þbkþvmk;θþemk ð7Þ

where Zk
m

(m¼ 1;…;Ns) is the pseudo-range measure-

ment associated with the mth in-view satellite, Ns is the

number of in-view satellites, ðxmk ; y
m
k ; z

m
k Þ and ðxk; yk; zkÞ are

the mth satellite position and the vehicle position in the

ECEF frame, respectively, bk is the GNSS receiver clock

offset, vm
k;θ is the magnitude of the NLOS MP bias

associated with the mth pseudo-range measurement,

characterized by the parameter θ which represents the

possible occurrence time of the NLOS MP bias (θ¼ k for

v¼0), and ek
m
is the mth satellite pseudo-range measure-

ment noise with a normal distribution emk (N ð0;σ2
r Þ

where N ð$Þ is a univariate Gaussian distribution with

mean value 0 and variance σr
2
.

In (7), the pseudo-range measurement related to the

vehicle position is defined by a non-linear equation of the

vehicle position. An unscented Kalman filter and a particle

filter could be investigated with the advantage to estimate

the state of this non-linear estimation problem. However,

the corresponding computational costs of these filters can

be prohibitive for practical applications. Thus, we consider

in this chapter an extended Kalman filter (EKF) which

leads to apply a conventional Kalman filter by linearizing

the non-linear equation (7) and is known to provide an

efficient and low-cost solution for weakly non-linear

systems.

3. Non-line-of-sight bias detection based on MLRT

3.1. Problem formulation

In the NLOS situation, we propose to model the MP

interference as a mean value jump affecting the GNSS

pseudo-range measurements. We assume that NLOS MP

biases do not appear simultaneously on different pseudo-

range measurements and that the pseudo-range measure-

ment which is affected by NLOS MP bias is known. The

case of multiple NLOS MP interferences appearing simul-

taneously on different pseudo-range measurements will

be discussed in the next section. Assuming that only the

mth satellite measurement is contaminated, the NLOS MP

bias vector for the pseudo-range measurements is denoted

as v¼ ð0;…; v;…;0ÞARNs where the only non-zero ele-

ment of v is located at the known position m.

According to the hypothesis testing theory, the like-

lihood ratio test for detecting the presence or absence of a

mean value jump is a binary hypothesis test which

compares two likelihood functions associated with the

absence ðH0Þ and presence ðH1Þ of a mean value jump in

the measurements. The two hypotheses considered in this

paper are defined as follows:

H0:no mean value jump up to present time k;

H1: a mean value jump ðof amplitude va0Þ

has occurred at time θok:

The log-likelihood ratio for these two hypotheses is

lk θ; v
+ ,

¼ ln
pðZ1:kjH1ðθ; vÞÞ

pðZ1:kjH0Þ
ð8Þ

where Z1:k ¼ fZig
k
i ¼ 1 is the pseudo-range measurement

vector sequence up to time k with Zi ¼ ðZ1
i ;…; ZNs

i ÞT, and

Ns is the number of in-view satellites. Note that we have

denoted as pðZ1:kjH1ðθ; vÞÞ and pðZ1:kjH0Þ the probability

density functions of the measurement vector associated

with the hypotheses H1 and H0 respectively.

In the likelihood ratio test, the occurrence time and

the magnitude of the mean value jump denoted as θ and

v are assumed to be known. However, in practice the

jump magnitude v is unknown and can be regarded as a

nuisance parameter for the likelihood ratio test. Accord-

ing to the literature, there are two classes of methods for

eliminating the nuisance parameter v. The first method

consists of replacing the nuisance parameter by its

maximum likelihood estimator (maximizing the likeli-

hood function) in the probability density function

pðZ1:kjH1ðθ; vÞÞ leading to the GLRT. The second method

marginalizes the log-likelihood ratio with respect to the

nuisance parameter yielding the MLRT. The key point of

the GLRT based on a state space model is that the



maximum likelihood estimator of parameter v can be

obtained by the innovation of an appropriate Kalman

filter. Contrary to the GLRT, the nuisance parameter v is

eliminated by marginalization of the likelihood function

under the hypothesis H1 in the MLRT. In [28], Gustafsson

proposed an MLRT approach based on a state space

model as a more robust method for bias detection.

Unfortunately, the marginal likelihood function under

hypothesis H1 is generally difficult to compute in the

MLRT. An alternative was proposed by Giremus in [31]

where a numerical solution of the MLRT based on the

unscented transform was used for bias detection in space

state models. The method studied in [31] introduced a

prior distribution for the nuisance parameter v which

can be obtained from our experience about MP or from

previous experiments. This work studies a similar

approach which differs from [31] by the use of an

approximation based on Jensen's inequality, as explained

below. According to the error envelope of MP interfer-

ences (which is a function of the MP relative delay

interfering the direct signal for a given GNSS receiver

configuration [33]), a possible prior distribution for the

MP bias with magnitude v is a uniform distribution

defined by pðvÞ (Uðvmin; vmaxÞ where Uð$Þ denotes the

uniform distribution, vmin and vmax are the minimum

and maximum magnitudes of the MP bias, respectively.

This distribution reflects the fact that the only knowl-

edge about MP biases is their minimum and maximum

values that have to be specified by the user, depending

on the environment. Using this prior distribution for the

nuisance parameter, we propose in this paper an approx-

imate MLRT based on Jensen's inequality to detect the

occurrence time of NLOS MP biases.

The marginalization of (8) with respect to v leads to

lk θ
+ ,

¼ ln
pðZ1:kjH1ðθÞÞ

pðZ1:kjH0Þ
ð9Þ

where

pðZ1:kjH1ðθÞÞ ¼

Z

pðZ1:kjH1ðθ; vÞÞpðvÞ dv ð10Þ

and where pðvÞ is the prior distribution of v. Considering

that the integral in (10) is difficult to compute in closed-

form, a Monte Carlo integration method can be used to

evaluate (10). According to the Monte Carlo integration,

(10) is approximated as

pðZ1:kjH1ðθÞÞ +
X

n

i ¼ 1

ωipðZ1:kjH1ðθ; viÞÞ ð11Þ

where vi ði¼ 1;…;nÞ is the ith sampling value of the MP

bias magnitude belonging to the interval ðvmin; vmaxÞ, and n

is the number of magnitude samples. Accordingly, a group

of NLOS MP bias vectors (denoted as vi ¼ ð0;…; vi;…;0Þ for

i¼ 1;…;n) are generated with weights ωi ¼ 1=n such that
Pn

i ¼ 1ω
i ¼ 1. As a consequence, the test statistic lkðθÞ in

the MLRT can be approximated as

lk θ
+ ,

¼ ln
pðZ1:kjH1ðθÞÞ

pðZ1:kjH0Þ
+ ln

Pn
i ¼ 1ω

ipðZ1:kjH1ðθ; viÞÞ

pðZ1:kjH0Þ
: ð12Þ

By decomposing the pseudo-range measurement vector

sequence as Z1:k ¼ fZ1:θ'1;Zθ:kg, the probability density

functions of the measurement vector associated with the

hypotheses H1 and H0 can be rewritten as

pðZ1:kjH1ðθ; vÞÞ ¼ pðZθ:kjZ1:θ'1;H1ðθ; vÞÞpðZ1:θ'1jH1ðθ; vÞÞ

pðZ1:kjH0Þ ¼ pðZθ:kjZ1:θ'1;H0ÞpðZ1:θ'1jH0Þ: ð13Þ

Since v¼ 0 for koθ, using (13) in (12) leads to

lk θ
+ ,

¼ ln

Pn
i ¼ 1ω

ipðZθ:kjZ1:θ'1;H1ðθ; viÞÞ

pðZθ:kjZ1:θ'1;H0Þ
: ð14Þ

The maximum likelihood estimator of the occurrence time

θ is

θ̂ ¼ argmax
θ

lkðθÞ: ð15Þ

The presence of a mean value jump is decided using the

following MLRT rule:

lkðθ̂Þ ≷
H1

H0

ε ð16Þ

where ε is a threshold related to the probability of false

alarm of the test. In order to reduce the computational

complexity, the optimization of θ is constrained to the last

Lw units of time, i.e., k'Lwoθrk at any time k, where Lw
is the window length.

3.2. An approximate MLRT based on Jensen's inequality

According to the Kalman filter theory, the denominator

of (14) which is the likelihood function associated with the

hypothesis H0 can be defined as

pðZθ:kjZ1:θ'1;H0Þ ¼∏k
j ¼ θpðZjjZ1:j'1;H0Þ ð17Þ

with

pðZjjZ1:j'1;H0Þ ¼N ðZj; Ẑ
0

jjj'1; S
0
j Þ ¼ pðγ0j jH0Þ

where N ðZj; Ẑ
0

jjj'1; S
0
j Þ is a Gaussian distribution with

mean vector Ẑ
0

jjj'1 and covariance matrix S0j ,

γ0j ¼ Zj' Ẑ
0

jjj'1 and S0j are the filter innovation vector and

covariance matrix under the hypothesis H0 at time j, Zj and

Ẑ
0

jjj'1 are the pseudo-range measurement and predicted

measurement vectors under the hypothesis H0 at time j,

respectively. Thus, the numerator of (14) is a weighted sum

of likelihood functions associated with different mean

value jump hypotheses with magnitudes vi ði¼ 1;…;nÞ.

Indeed the likelihood function under the hypothesis of a

mean value jump with magnitude vi is

pðZθ:kjZ1:θ'1;H1ðθ; viÞÞ ¼∏k
j ¼ θpðZjjZ1:j'1;H1ðθ; viÞÞ ð18Þ

with

pðZjjZ1:j'1;H1ðθ; viÞÞ ¼N ðZj; Ẑ
i

jjj'1; S
i
jÞ ¼ pð ~γ i

jjH1ðθ; viÞÞ

where ~γ
i
j ¼ γ0j 'vi and Sij are the filter innovation vector

and its associated covariance matrix, respectively, under

the hypothesis H1 with a bias magnitude vi at time j. Note

that Ẑ
i

jjj'1 is the predicted measurement vector under the

hypothesis H1 with a bias magnitude vi at time j.



After replacing (17) and (18) in (14), the MLRT test

statistic based on the Monte Carlo integration can be

expressed as follows:

lk θ
+ ,

¼ ln

Pn
i ¼ 1ω

i∏k
j ¼ θN Zj; Ẑ

i

jjj'1; S
i
j

0 1

∏k
j ¼ θ
N Zj; Ẑ

0

jjj'1; S
0
j

0 1

¼ ln

Pn
i ¼ 1ω

i∏k
j ¼ θpð ~γ

i
jjH1ðθ; viÞÞ

∏k
j ¼ θ

pðγ0j jH0Þ
: ð19Þ

According to (19), it is clear that the multiplication of

several normal probability density functions in the

denominator can be easily handled by the logarithm

function. Conversely, the numerator of (19) is a weighted

sum of normal probability density functions and thus is

not easily tractable after the logarithm operation. Since the

natural logarithm is a concave function over its range,

Jensen's inequality [34] can be advocated leading to

ln
X

n

i ¼ 1

λigðxiÞ

" #

Z
X

n

i ¼ 1

λiln gðxiÞ ð20Þ

where gð$Þ is any functional, λi40 and
Pn

i ¼ 1 λi ¼ 1.

Expanding the numerator of (19), (20) leads to

ln
X

n

i ¼ 1

ωi ∏
k

j ¼ θ

pð ~γ i
jjH1ðθ; viÞÞZ

X

n

i ¼ 1

ωiln ∏
k

j ¼ θ

pð ~γ i
jjH1ðθ; viÞÞ:

ð21Þ

After replacing (21) in (19), the test statistic lkðθÞ can be

rewritten as follows:

lk θ
+ ,

¼ ln

Pn
i ¼ 1ω

i∏k
j ¼ θpð ~γ

i
jjH1ðθ; viÞÞ

∏k
j ¼ θ

pðγ0j jH0Þ

Z
X

n

i ¼ 1

ωiln ∏
k

j ¼ θ

pð ~γ i
jjH1ðθ; viÞÞ' ln ∏

k

j ¼ θ

pðγ0j jH0Þ9
1

2
~l
0

k θ
+ ,

;

ð22Þ

i.e.,

~l
0

kðθÞ ¼
X

k

j ¼ θ

ðγ0j Þ
TðS0j Þ

'1ðγ0j Þ'
X

n

i ¼ 1

ωi
X

k

j ¼ θ

ð ~γ
i
jÞ
TðSijÞ

'1ð ~γ
i
jÞ

2

4

3

5þK 0

ð23Þ

where

K 0 ¼
X

k

j ¼ θ

lnjS0j j'
X

n

i ¼ 1

ωi
X

k

j ¼ θ

lnjSijj

is independent of the measurements. According to (23), in

order to obtain filter innovations based on n measurement

equations, several measurement equations (as many mea-

surement equations as the number of bias magnitude

samples) have to be processed in parallel and the con-

tributions of all these measurement equations are

weighted by ωi. In such case, each sample vi corresponds

to one measurement equation, and the weight of each

measurement equation actually depends on how close the

magnitude sample vi is to the exact magnitude v. Thus, the

weight associated with each measurement equation is

time-varying (hidden Markov chain) and will be denoted

as ~ω i
j (weight of the ith measurement equation at time j).

After replacing ωi by ~ωi
j in (23), the following result can be

obtained:

~lkðθÞ ¼
X

k

j ¼ θ

ðγ0j Þ
TðS0j Þ

'1
γ
0
j

0 1

'
X

n

i ¼ 1

~ωi
jð ~γ

i
jÞ
TðSijÞ

'1ð ~γ
i
jÞ

" #

þK

ð24Þ

where

K ¼
X

k

j ¼ θ

ln S0j

8

8

8

8

8

8'
X

n

i ¼ 1

~ωi
j ln Sij

8

8

8

8

8

8

" #

:

Finally, using the previous derivations, the presence of a

mean value jump is accepted or rejected using the follow-

ing rule:

~lk θ
+ ,

≷
H1

H0

ε0 ð25Þ

where ε0 is a threshold related to the probability of false

alarm of the test. The parameter θ is then replaced by its

maximum likelihood estimator θ̂ defined as

θ̂ ¼ argmax
θ

~lk θ
+ ,

: ð26Þ

The rest of this section discusses how to adjust the weights
~ωi
j defining

~lk θ
+ ,

. Considering that several measurement

equations need to be processed in parallel, ~ω i
j can be

computed based on the multiple model algorithmwhich is

defined in [35]. A set of measurement models associated

with the jump magnitude samples vi (i¼ 1;…;n) is

denoted as

M9 Mi
n on

i ¼ 1
ð27Þ

where Mi ¼ ð0;…; vi;…;0Þ and the corresponding model

probability ~ω i
j can be obtained based on the current

measurement Zj and the predicted model probability,

leading to

~ωi
j ¼ p Mi

jjZj

0 1

¼
1

c
p ~γ

i
jjH1 θ; vi

+ ,

0 1

p Mi
jjZj'1

0 1

ð28Þ

where j¼ θ;…; k and c is the normalization constant.

4. Identification/estimation/correction of multipath

biases

According to the test statistic ~lk θ
+ ,

resulting from the

approximate MLRT derived in Section 3, the occurrence

time of the NLOS MP bias can be estimated. In order to

determine which pseudo-range measurements are

affected by NLOS MP biases, we study in this section a

simultaneous detection and identification procedure

which allows NLOS MP biases appearing simultaneously

on different pseudo-range measurements to be handled.

Note that the pseudo-range measurements associated

with a mean value jump can be isolated after the presence

of an MP interference has been confirmed by the bias

detection methods, such as the receiver autonomous



integrity monitoring (RAIM) method [32] and the method

of [31]. However, considering that the number of in-view

satellites is limited in urban scenarios, the exclusion of

pseudo-range measurements may weaken the observabil-

ity and impair the accuracy of positioning solution based

on GNSS. In order to implement the positioning solution

with a maximum of pseudo-range measurements, we

propose in this paper to estimate the NLOS MP biases for

correcting measurement errors related to these biases. All

these operations referred to as identification, estimation

and correction are detailed below.

4.1. Identification of multipath biases

In order to make identification possible, a possible

method is to compute one MLRT test statistic for each

in-view satellite pseudo-range measurement. In this case,

two hypotheses for detecting the presence of an NLOS MP

bias on the mth (m¼ 1;…;Ns) in-view satellite pseudo-

range measurement can be defined as

Hm
0 : no mean value jump for the mth measurement up to present

time k,

Hm
1 : a mean value jump (of amplitude vma0Þ

has occurred for the mth measurement at time θok.

The detection and identification of NLOS MP biases can be

converted into a group of hypothesis tests for all pseudo-

range measurements. The corresponding test statistic

~l
m

k θ
+ ,

(m¼ 1;…;Ns) associated with the hypothesis of an

NLOS MP bias affecting the mth in-view satellite pseudo-

range measurement from time θ to k can be obtained

based on the approximate MLRT theory presented in

Section 3. The maximum likelihood estimator of the

occurrence time θ associated with the mth measurement

is finally defined as

θ̂
m
¼ argmax

θ

~l
m

k θ
+ ,

: ð29Þ

For detecting the presence of an NLOS MP bias at a

possible occurrence time θ̂
m
, our decision rule is

~l
m

k ðθ̂
m
Þ≷
Hm

1

Hm
0

ε0 ð30Þ

where ε0 is the mth hypothesis threshold related to a given

probability of false alarm. In order to simplify the compu-

tation, a set of possible amplitudes (for the NLOS MP

biases) vi (i¼ 1;…;n) can be uniformly sampled in the

interval vmin; vmaxð Þ, and used for each calculation of the

test statistic ~l
m

k θ
+ ,

.

4.2. Estimation and correction of multipath biases

The optimization of θ̂ is constrained to the data

belonging to a finite window (k'Lwo θ̂rk). Since the

bias detection has to be performed in real time, the value

of Lw is set to a relatively small value, i.e., Lw¼11 in [27] or

Lw¼5 in [28]. Note that a larger threshold could be chosen

to control the probability of false alarm.

After it has been detected that themth satellite pseudo-

range measurement is affected by an NLOS MP

interference, we propose to estimate the magnitude of

the NLOS MP bias. The multiple model algorithm is used to

update the measurement model probabilities associated

with the magnitude samples defining the proposed

approximate MLRT. Thus the model probability ~ω i
j

depends on how close the magnitude sample vi is to the

exact magnitude v and can adaptively adjust for each

magnitude sample vi (i¼ 1;…;n). The bias magnitude

estimation v̂
m
ðθ̂

m

k Þ for the mth in-view satellite pseudo-

range measurement at time k can be defined as

v̂
m
ðθ̂

m

k Þ ¼ v
ı̂k
þ r̂

m
ı̂k
ðθ̂

m

k Þ ð31Þ

with

ı̂k ¼ argmax
i

~ωi
k ð32Þ

and

r̂
m
ı̂k

θ̂
m

k

0 1

¼
1

k' θ̂
m

k þ1

X

k

j ¼ θ̂
m

k

~γm
ı̂k ;j

ð33Þ

where n is the number of bias magnitude samples, θ̂
m

k is

the maximum likelihood estimator of the occurrence time

θ associated with the mth measurement at time k, v
ı̂k

is

the ı̂k th sampling value of the NLOS MP bias magnitude,

~γm
ı̂k ;j

¼ Zm
j ' Ẑ

m

ı̂k ;jjj'1 is the filter innovation under the

hypothesis Hm
1 with a bias sampling magnitude v

ı̂k
, Zj

m

and Ẑ
m

ı̂k ;jjj'1 are the mth in-view satellite pseudo-range and

predicted pseudo-range measurements under the hypoth-

esis Hm
1 with a bias sampling magnitude v

ı̂k
at time j,

respectively.

Once the NLOS MP bias and its magnitude have been

detected and estimated, we propose to correct the corre-

sponding filter innovation and to use it for the positioning

solution based on the standard EKF algorithm. For the mth

pseudo-range measurement which is affected by the NLOS

MP bias, the corresponding filter innovation can be cor-

rected as follows:

γm
k ¼ γmk ' v̂

m
ðθ̂

m

k Þ ð34Þ

where γm
k is the corrected filter innovation which will be

used in the EKF algorithm at time k, γmk ¼ Zm
k ' Ẑ

m

kjk'1 is the

filter innovation under the hypothesis Hm
0 at time k, Ẑ

m

kjk'1

is the predicted pseudo-range measurement of the mth in-

view satellite under the hypothesis Hm
0 at time k.

Note that the objective of correcting the filter innova-

tion rather than the pseudo-range measurement itself is to

enable the detection of an NLOS MP bias during its whole

duration. Finally, an approximate MLRT to detect, estimate

and correct the NLOS MP biases is summarized in

Algorithm 1.

Algorithm 1. The approximate MLRT to detect, estimate

and correct NLOS MP biases in GNSS signals.



5. Test threshold analysis

According to the hypothesis testing theory, the MLRT

threshold can be determined from the cumulative distri-

bution function of the test statistic under hypothesis H0

and the significance level α (false alarm rate). Based on the

aforementioned derivations, the test statistic ~l θ
+ ,

of the

proposed approximate MLRT in (24) was derived from the

test statistic l θ
+ ,

of the MLRT in (19). However, the

cumulative distribution functions of the test statistics

l
m θ
+ ,

and ~l
m
θ
+ ,

under hypothesis Hm
0 have no closed-

form expression when the NLOS MP bias has a uniform

distribution. Therefore, the empirical cumulative distribu-

tion functions of the test statistics l
m θ
+ ,

and ~l
m
θ
+ ,

under

hypothesis Hm
0 have been computed by Monte Carlo

simulations performed using the parameters provided in

Table 1. In addition, the state space model defined in

Section 2 has been simulated with the parameters

reported in Table 1 and the fault-free GNSS pseudo-range

measurements have been computed based on an almanac

file including all useful satellite orbit data in the

simulations.

The empirical cumulative distribution functions of the

test statistics l
m θ
+ ,

and ~l
m
θ
+ ,

under hypothesis Hm
0 can be

defined as follows:

F̂ l;ns lð Þ ¼
1

ns

X

ns

i ¼ 1

I l
m
i r l Hm

0

8

8

,+

ð35Þ

and

F̂ ~l ;ns
lð Þ ¼

1

ns

X

ns

i ¼ 1

I ~l
m

i r l Hm
0

8

8

,

0

ð36Þ

where I is the indicator function, ðl
m
1 ;…; l

m
ns
Þ and ð~l

m

1 ;…; ~l
m

ns
Þ

are ns samples of the test statistics l
m θ
+ ,

and ~l
m
θ
+ ,

under

hypothesis Hm
0 computed by Monte Carlo simulations with

a finite window length.



As depicted in Fig. 1, the two empirical cumulative

distribution functions (computed with Lw ¼ 5) satisfy the

relation F̂ l;ns
lð Þ4 F̂ ~l ;ns

lð Þ. Accordingly, the false alarm rates

for the two empirical cumulative distribution functions

satisfy α0Zα when the test threshold is set as the same

value for two empirical cumulative distribution functions,

where α¼ F̂ l;ns lZεjHm
0

+ ,

and α0 ¼ F̂ ~l ;ns
lZεjHm

0

+ ,

. Thus the

false alarm rate α0 can be considered as an upper bound for

α when the test threshold is given.

The test threshold for the approximate MLRT can be

determined by the empirical cumulative distribution func-

tions F̂ ~l ;ns
lð Þ (which depends on the window length Lw) and

the false alarm rate α0. The empirical cumulative distribu-

tion functions of the test statistic ~l
m
θ
+ ,

for different

window lengths Lw are displayed in Fig. 2. The correspond-

ing thresholds associated with different false alarm rates

are given in Table 2. It is clear that the empirical cumula-

tive distribution function decreases as the window length

increases. Accordingly, the test threshold is an increasing

function of the window length Lw when the false alarm

rate α0 is given.

6. Algorithm assessment

6.1. Simulation results

6.1.1. Performance measures and test scenarios

In order to evaluate the detection and identification

performance of the proposed approximate MLRT approach,

the GLRT and to compare it with the approach studied in

[31], the following performance measures have been used

in this paper:

- Average probability of correct detection (denoted as PCD):

A correct detection is obtained when an NLOS MP bias

has been detected and a bias is effectively present.
- Average probability of correct detection and identification

(denoted as PCDI): A correct detection and identification

is obtained when an NLOS MP bias has been detected

and when the bias sample associated with the largest

model probability is the closest to the exact bias

magnitude (at a given time).
- Average probability of correct detection and incorrect

identification (denoted as PCDII): A correct detection

and incorrect identification is obtained when an NLOS

MP bias has been detected and the bias sample asso-

ciated with the largest model probability is not closest

to the exact bias magnitude (at a given time).
- Mean detection delay and standard deviation of correct

detection (denoted as τ (s) and σ (s) respectively): A

mean detection delay time (s) is obtained by averaging

100 differences between the time instant of the first

bias appearance and the time instant of the first bias

detection.

In order to evaluate the impact of different numbers of

biases on the performance of the approximate MLRT, the

multiple model algorithm has been tested with 3, 5 and 7

biases denoted as MLRT(3), MLRT(5) and MLRT(7), for all

simulation scenarios. In theory, the pseudo-range MP error

can reach magnitudes close to 0.5 of a code chip, i.e., 150 m

in the C/A case, depending on the receiver correlation

technology [33]. We have assumed in this study that the

prior distribution of the MP bias magnitude v is a uniform

distribution in the interval ð'75 m;75 mÞ, i.e.,

Table 1

Simulation parameters.

Process noise (velocity) σa ¼ 1 m=s2

Clock offset noise σb ¼ 3c. 10'10 m

Clock drift noise σd ¼ 2πc. 10'10 m/s

GNSS measurement noise σr ¼ 10 m

c¼ 3. 108 m/s denotes the velocity of light.
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Fig. 1. Empirical cumulative distribution functions of F̂ l;ns
ðlÞ (dashed line)

and F̂ ~l ;ns
ðlÞ (solid line) for a data window length Lw ¼ 5.
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Fig. 2. Empirical cumulative distribution functions associated with dif-

ferent data window lengths.

Table 2

Threshold for different false alarm ratios.

Data window length Lw False alarm rate

0.025 0.05 0.1

5 4.01 2.78 1.62

10 5.83 4.39 2.94

15 7.28 5.62 4.06



p vð Þ (U '75;75ð Þ.2 The values of the MP bias magnitudes

used in our simulations are summarized in Table 3.

Finally, it is assumed that there are 4 in-view satellite

pseudo-range measurements during the simulation. In

order to reduce the influence of false alarms, the threshold

has been set to ensure a false alarm rate of 0.1. The length

of the data window is Lw ¼ 5 and the filter period equals

1 Hz in all simulations. All algorithms have been coded

using MATLAB and run on a laptop with Intel i-7 4710MQ

and 8 GB RAM.

6.1.2. Results for single multipath detection

Scenarios with different bias magnitudes have been

generated according to the measurement model (7) and

100 Monte Carlo runs.3 In each scenario, an NLOS MP bias

with a deterministic magnitude appears on the first

pseudo-range measurement (satellite #1) at the 100th

second and the bias duration is 20 s.

First, in order to evaluate the influence of Jensen's

inequality used in (22) on the detection performances

and on the computation load required to compute the test

statistic l θ
+ ,

and ~l θ
+ ,

, Table 4 shows the detection results

and the execution times for 100 Monte Carlo runs by using

the different test statistics with 3 different bias samples. It

is clear that the values of PCD for the test statistic l θ
+ ,

and
~l θ
+ ,

are similar in each scenario. However, the execution

time for ~l θ
+ ,

is much less than that for l θ
+ ,

. Thus, without

impacting the detection performance, Jensen's inequality

can reduce the computation load of the MLRT.

Tables 5 and 6 show the detection performance and the

delay measures for the GLRT and the approximate MLRT

approaches with different bias samples. The results

reported in Table 5 indicate that more than 70% of NLOS

MP biases cannot be correctly detected for all approaches

when the NLOS MP bias magnitude is less than or close to

the measurement noise. The value of PCD gradually

increases with the NLOS MP bias magnitude for any

detector, as expected. In addition, the value of PCD is larger

for the proposed approach than for the GLRT when the

bias magnitude is small. This difference between the two

detectors gradually disappears as the bias magnitude

increases. Due to the competition between too many

models in the multiple model, PCDII, significantly increases

with the number of models considered in the multiple

model for the proposed approximate MLRT.

The results reported in Table 6 indicate that the detec-

tion delays for all approaches are decreasing functions of

the NLOS MP bias magnitude. The decrease of detection

delay for the approximate MLRT is smaller than with the

GLRT as the bias magnitude increases. Although the mean

detection delay and the standard deviation of the

proposed approach are slightly inferior to those of the

GLRT, the proposed approach significantly improves the

probability of correct detection. Thus the proposed

approach provides better bias detection performance than

the GLRT for a single NLOS MP.

6.1.3. Results for multiple multipath detection

In order to evaluate the detection performance in the

presence of several NLOS MP biases appearing at the same

time instant, a second scenario has been generated accord-

ing to the measurement model (7) as follows:

- The first satellite pseudo-range measurement (satellite

#1) is affected by a mean value jump of 28 m during

the time interval (40 s, 80 s), and an NLOS MP bias of

'26 m appears during the time interval (100 s, 140 s).
- The second satellite pseudo-range measurement (satel-

lite #2) is affected by an NLOS MP bias of 32 m

occurring during the time interval (70 s, 150 s).

Since the approach studied in [31] excludes a contami-

nated measurement after the presence of a mean value

jump has been detected, we propose to compare (1) the

multiple bias detection performance of the proposed

approach with that obtained using the approach of [31]

and the GLRT, and (2) the positioning estimation accuracy

of the proposed approach with that obtained using the

standard EKF, the approach of [31] respectively. 100 Monte

Carlo simulations have been run for any scenario. The

accurate detection times for multiple NLOS MP (denoted

by M) is used to compute the root mean square errors

(RMSE) of the estimates defined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M'1PM
i ¼ 1 X̂

ðiÞ

k 'Xk

0 12
r

, where X̂
ðiÞ

k is the ith run result,

and k¼ 1;…;K denotes the kth sampling time instant.

The accurate detection times for multiple NLOS MP are

depicted in Fig. 3. These results show that the detection

Table 3

Bias magnitude samples used for the multiple model algorithm.

Bias sampling magnitudes (m)

1 2 3 4 5 6 7

MLRT(3) '20 0 20

MLRT(5) '30 '20 0 20 30

MLRT(7) '35 '25 '15 0 15 25 35

Table 4

Detection performance using the different test statistics.

NLOS MP bias magnitude (m) l θð Þ ~l θð Þ

PCD Time (s) PCD Time (s)

7 0.06 12.0477 0.05 10.9283

12 0.29 12.0416 0.26 10.9405

18 0.55 12.0378 0.62 10.9456

24 0.94 12.0125 0.98 10.9218

28 0.97 12.0239 0.95 11.0296

32 0.97 12.0198 0.97 10.8992

2 The sign of the MP bias magnitude depends on the value of the MP

signal carrier phase relative to the LOS signal. When the relative carrier

phase δϕ is such that '901rδϕr901, the MP signal is referred to as a

constructive interference and the LOS signal is strengthened by the MP

signals (the sign of the MP bias is positive). Conversely, the MP signal is a

destructive interference when the relative carrier phase satisfies the

condition '1801rδϕr'901 or 901rδϕr1801. In this case, the LOS

signal is weakened by the MP signals (the sign of the MP bias is negative).
3 We have observed that the results do not change significantly if we

increase the number of Monte Carlo simulations.



performances of the proposed approximate MLRT and the

approach studied in [31] are more reliable than for the

GLRT due to the prior information considered for the bias

magnitude. Moreover, the performance of the approach

studied in [31] is close to that of the MLRT(3) and more

models in the multiple model algorithm can facilitate the

bias detection.

In order to evaluate the effect of different NLOS bias

detection approaches on the positioning solution, the

RMSEs of the estimated positions with different detection

approaches in the Y-direction of the ECEF frame are

depicted in Fig. 4. The NLOS MP biases severely impair

the positioning solution based on GNSS, as expected.

Although the exclusion of contaminated pseudo-range

measurements can partly improve the position accuracy,

the accuracy obtained with the MLRT(7) is much better

than that obtained with the approach of [31]. This

improvement can be explained by the fact that the

corrected pseudo-range measurements allow a better

system observability.

6.2. Experiment results

6.2.1. Measurement campaign

In this section, the proposed approach is evaluated

based on experimental data collected during a measure-

ment campaign carried out in Toulouse center (France). A

synchronized integrated navigation system composed of a

Novatel receiver coupled to a tactical grade IMAR IMU has

been used to provide a reference trajectory. Taking advan-

tage of a ground reference station, differential corrections

have been performed to obtain position accuracy close to

1 m for the reference trajectory, which is considered as the

ground truth. For assessing the algorithm performance,

the vehicle has been equipped with a UBLOX 6T receiver.

This receiver delivers not only the position, velocity and

time solution, but also, for each satellite, the raw pseudo-

range and Doppler frequency measurements, as well as the

navigation message. It allows us to compute satellite

locations, and to perform timing and propagation correc-

tion on the measured pseudo-range. As the aim of the

algorithm is to detect and mitigate pseudo-range biases in

Table 5

Detection performance for different scenarios.

NLOS MP bias magnitude (m) MLRT(3) MLRT(5) MLRT(7) GLRT

PCD PCDI PCDII PCD PCDI PCDII PCD PCDI PCDII PCD

7 0.05 – – 0.07 – – 0.10 – – 0

12 0.26 0.20 0.06 0.30 0.27 0.03 0.24 0.18 0.06 0.14

18 0.62 0.57 0.05 0.59 0.34 0.25 0.74 0.32 0.42 0.40

24 0.98 0.97 0.01 0.90 0.59 0.31 0.94 0.45 0.49 0.61

28 0.95 0.95 0 0.97 0.61 0.36 0.96 0.47 0.49 0.93

32 0.97 0.97 0 0.96 0.50 0.46 0.98 0.47 0.51 0.98

Table 6

Detection delay for different scenarios.

NLOS MP bias

magnitude

(m)

MLRT(3) MLRT(5) MLRT(7) GLRT

τ σ τ σ τ σ τ σ

7 6.54 – 6.34 – 7.86 – 8.67 –

12 4.23 3.17 4.63 3.04 4.58 3.21 4.75 4.56

18 1.14 2.39 1.27 1.55 1.38 1.79 1.78 3.59

24 '0.66 1.51 '0.94 1.53 '0.86 1.24 1.19 1.79

28 '0.56 1.43 0.76 1.36 '0.80 1.10 0.19 0.87

32 0.52 1.24 '0.71 1.34 '0.78 1.06 0.18 0.71
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Fig. 3. Accurate detection times for multiple NLOS MP. The bias detection

approaches corresponding to the sequence number in the figure are: (1) –

GLRT; (2) – Approach in [31]; (3) – MLRT(3); (4) – MLRT(5); (5) – MLRT

(7).
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the presence of MP, Doppler frequencies that are related to

the vehicle velocity are not used here. Data are collected in

street urban canyons during which the receiver is strongly

affected by MP interferences, and post-processed using

Matlab.

Fig. 5 shows the trajectory considered in our measure-

ment campaign (lasting 230 s). Fig. 6 displays the evolu-

tion of the trip distance (considered in our experiment)

versus time, where the original point is defined as the

initial position on the trajectory and the trip distance

represents the horizontal distance travelled from the

initial position. It is clear that the trip distance does not

change during the time interval (71 s, 154 s), as the vehicle

is stopped in the middle of two buildings during this

period. In this case, the receiver is very sensitive to any MP

interference. As it appears at the LOS frequency (the

Doppler frequency related to the vehicle velocity is zero),

pseudo-range measurements are severely impacted by MP

interference during this period.

We propose to compare the positioning estimation

accuracy of the MLRT(5) with that obtained using the

standard EKF. The in-view satellites observed during the

experience are satellites #3, #6, #19, #26, and #27. The

standard deviations, which are used to define the process

and measurement noises are σa ¼ 0:4 m=s2 and σr ¼ 4 m

respectively. The bias sampling magnitudes considered in

the multiple model for the MLRT(5) are set as

'8 m; '4 m;0 m;4 m;8 mð Þ in order to make the algo-

rithm sensitive to short-delay MP interferences which

characterize urban canyons. Accordingly, we obtain five

estimators corresponding to the different bias magnitudes

referred to as estimators #1: '8 m; #2: '4 m; #3:

0 m; #4:4 m; #5:8 m. The length of the data window is

set to Lw¼5.

Table 7

Estimated MP appearance times.

In-view

satellite

Satellite

elevation (deg)

Detected MP

appearance time

(s)

Bias sample with the largest model

probability

Experiment time

(s)

Sequence

index

Satellite #3 81.9–82.4 – – –

Satellite #6 77.9–77.5 71–79 71–78 #3

79–92 #2

93–97 #1

Satellite #16 56.1–55.5 42–46 #3

47–49 #4

42–113 50–113 #5

127–182 127–129 #5

130–131 #4

132–182 #5

Satellite #19 60.8–60.3 73–78 #3

73–96 79–81 #4

99–154 82–96 #5

99–154 #5

Satellite #27 82.95–82.92 – – –

Fig. 5. Urban canyon trajectory used in the proposed experiments

(obtained with Google Earth).
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Fig. 6. Trip distance versus time.



6.2.2. Results

The results reported in Table 7 indicate the MP appear-

ance time period detected by the MLRT(5). According to

the results of the detection algorithm, no MP interference

impacting pseudo-range measurements has been detected

for the satellites #3 and #27. Conversely, the pseudo-range

measurements of satellites #6, #16 and #19, which are

impacted by the MP interference, are detected by the

proposed approach during the same period. The elevation

angles of the different in-view satellites are also reported

in Table 7. Note that the elevation angles for satellites #3,

#6 and #27 are larger than 751, whereas the elevation

angles for satellites #16 and #19 are less than or equal to

601. The signals from low-elevation-angle satellites, such

as satellites #16 and #19, are usually vulnerable to the MP

interferences in urban canyons. Conversely, the signals

from satellites with high elevation angles, such as satellites

#3 and #27, can hardly be impacted by the MP interfer-

ences. Accordingly, the detection results for MP appear-

ance coincide with the in-view satellite elevations as

reported in Table 7. As mentioned above, five measure-

ment models associated with different bias sampling

magnitudes in the multiple model are considered for

MLRT(5). The estimators, which correspond to bias sam-

pling magnitudes with the largest model probability for

the detected time intervals, are indicated in Table 7. Since

the magnitude of the MP interferences changes for differ-

ent time instants, the magnitude of the bias sample

Fig. 7. Positioning results for different approaches in a urban canyon

(obtained with Google Earth). Reference trajectory: white line; proposed

approach: red line; standard EKF: blue line. (For interpretation of the

references to color in this figure caption, the reader is referred to the web

version of this paper.)
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Fig. 8. Positioning errors versus time. (a) Horizontal error. (b) Vertical error.
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Fig. 9. Positioning errors versus trip distance. (a) Horizontal error. (b) Vertical error.



associated with the largest model probability also changes

with time.

Figs. 7 and 8 display the positioning results (illustrated

with Google Earth) and the corresponding positioning

errors (the horizontal and vertical errors versus time) for

the different approaches. It is clear that MP interferences

severely impair the positioning solution if these interfer-

ences are not processed within the receiver. As shown in

Fig. 8 the time instances, from which the horizontal and

vertical positioning errors based on the standard EKF start

to deteriorate, coincide with the MP appearance time

determined by the proposed approach. Conversely, the

positioning errors obtained with the proposed approach

remains lower than 10 m, confirming that the MP inter-

ferences appearing on the pseudo-range measurements

have been detected and mitigated.

Fig. 9 displays the horizontal and vertical errors versus

the trip distance. It is clear that the positioning accuracy,

especially in the vertical direction, is sensitive to the MP

interferences when the vehicle stops in the middle of two

buildings. As a consequence, the impact resulting from the

MP interference error is the maximum during this period.

However, the proposed approach can effectively mitigate

the impact of the MP interference in this case. Increasing

the duration of the observation window depending on the

vehicle dynamic could also facilitate MP detection when

the vehicle remains at the same location.

7. Conclusion

This paper proposed an approximated marginalized

likelihood ratio test based on Jensen's inequality to detect,

identify and estimate the NLOS multipath biases affecting

GNSS pseudo-range measurements in urban canyons. The

effects of NLOS multipath interferences were modeled as

mean value jumps. The proposed approach was based on a

marginalized likelihood ratio test approximated using a

Monte Carlo integration and Jensen's inequality. The multi-

ple model algorithm was introduced to update the prior

information of each bias magnitude sample in order to

improve its detection. A simulation study was implemen-

ted in order to compare the performance of the proposed

approach with the GLRT and the approach studied in [31].

Although the mean detection delay and the standard

deviation of the proposed approach were slightly inferior

to those of the GLRT, the probability of correct detection

increases significantly (when compared to the GLRT) due

to the introduction of a prior information about the bias

magnitude. A comparison with the standard EKF and the

approach studied in [31] showed that the positioning

accuracy was improved by the proposed approach. Finally,

the proposed approach was validated by processing data

collected from a measurement campaign carried out in an

urban environment. The proposed approach proved its

efficiency for MP interference detection and mitigation,

resulting in improving positioning accuracy.

Considering that more accurate state models facilitate

the NLOS MP bias detection and that inertial measurement

units (IMU) can provide more reliable information about

the dynamic of the vehicle, our future work will be

devoted to implement the proposed approach within an

IMU/GNSS integration. It would also be interesting to

allow the length of the observation window to adapt

dynamically depending on the receiver motion (especially

when the receivers stop and do not move anymore).

Finally the application of the proposed approach for other

applications, such as mobile phone communication in

urban environments, would deserve some attention.
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