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Performances of Weighted Cyclic Prefix OFDM

with Low-Complexity Equalization
Damien Roque and Cyrille Siclet

Abstract—In this paper, we justify low-complexity equalization
techniques for weighted cyclic prefix (WCP)-OFDM. This modu-
lation technique refers to filter bank based multicarrier (FBMC)
transmission system provided with short filters. It allows the use
of non-rectangular waveforms in order to mitigate interference
caused by time-frequency selective channels while preserving an
efficient implementation.

Index Terms—time-varying multipath channels, filter bank
based multicarrier modulations, equalization, efficient realiza-
tion.

I. INTRODUCTION

Mobile radio applications in terrestrial environment usually

imply multipath propagation and motion-induced Doppler

spread. Such a channel may be modeled as a time-frequency

spreading operator. Under narrowband assumptions, it simpli-

fies to a linear time-varying (LTV) system. The approximate

eigenstructure of LTV systems has been discussed in [1]. This

study reveals the need of pulse shaped multicarrier systems

in order to match the time-frequency characteristics of doubly

selective channels.

A practical implementation of the resulting transceiver relies

on filter bank based multicarrier (FBMC) systems. Efficient

realization schemes have been proposed in [2], providing

orthogonal sub-channels and making use of fast Fourier trans-

form (FFT) algorithm. Apart from the implementation, the

design of pulse-shaping filters is an active area of research

[3]–[5].

Since the pulse shapes are usually longer than each data

block, the underlying transceiver requires a polyphase decom-

position and advanced equalization techniques. Consequently,

despite attractive performances results [6], FBMC systems are

not widely used because of their relative complexity compared

to traditional block transmission frameworks.

Therefore, the most common multicarrier scheme remains

cyclic prefix orthogonal frequency-division multiplexing (CP-

OFDM) scheme. It is based on a rectangular pulse-shaping

and presents the advantage of diagonalizing time-invariant

channels if a guard interval longer than the channel impulse

response is used. Assuming invertibility of this eigensystem,

perfect reconstruction of the transmitted symbols is performed

using a single-tap per sub-channel equalizer [7]. However, the

Doppler spread introduced by time-variant channels breaks

orthogonality between sub-channels, resulting in inter-carrier

interference (ICI).
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In this work, we focus on short pulse shape filters,

whose impulse response is shorter than data blocks [8].

This particular class of FBMC system is referred to as

weighted cyclic prefix orthogonal frequency-division multi-

plexing (WCP-OFDM). Such a generalization of CP-OFDM

through the use of non-rectangular filters offers an interesting

trade-off between channel-induced interference mitigation and

complexity [9].

Previous work has shown that WCP-OFDM outperforms

CP-OFDM for several mobile radio environment with a single-

tap per sub-channel equalizer [10]. We propose here more-

than-one coefficient per sub-channel equalization scenarios,

keeping a linear inversion complexity and show that WCP-

OFDM still outperforms CP-OFDM using these scenarios.

II. GENERAL FRAMEWORK

In this section, we describe the input-output relation of a

WCP-OFDM transmultiplexer (fig. 1) in presence of a doubly

selective channel.

A. WCP-OFDM transmultiplexer structure

Let cn = [c0,n . . . cM−1,n]
T be the nth block of M

complex symbols, with ·T being the transpose operator. The

corresponding block at the output of the transmitter consists in

N samples sn = [sn[0] . . . sn[N−1]]T , with ∆ = N−M ≥ 1.

Given γ[k] = 0 if k < 0 or k > N − 1, the transmitted signal

fullfils the relation

sn[k] =
1√
M

M−1∑

m=0

cm,nγ[k]e
j 2πmk

M . (1)

If we let FM be the M -size discrete Fourier transform (DFT)

matrix with entries FM [k, l] = 1/
√
M exp(−j2πkl/M) for

0 ≤ k, l ≤ M−1 and P∆ the N×M cyclic extension matrix

with entries P∆[k,m] = δk,m + δk−M,m for 0 ≤ k ≤ N − 1
and 0 ≤ m ≤ M − 1 we may write in a similar way

sn = DγP∆F
H
Mcn (2)

where ·H denotes the transpose conjugate operation and Dγ =
diag (γ[0], . . . , γ[N − 1]).

Let rn = [rn[0] . . . rn[N − 1]]T be the nth block of N
received symbols. The corresponding M estimated symbols

are given by

c̃m,n =
1√
M

N−1∑

k=0

r[k]γ̌[k]e−j 2πmk

M . (3)
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Fig. 1: Efficient implementation of a WCP-OFDM transmultiplexer.

If we denote Dγ = diag (γ[0], . . . , γ[N − 1]), we can write

equivalently

c̃n = FMP T
∆Dγ̌rn. (4)

In the case of a perfect channel without noise, namely if

rn = sn, the combination of (2) and (4) gives

c̃n = FMP T
∆Dγ̌DγP∆F

H
Mcn. (5)

Since FH
M = F−1

M , the perfect reconstruction (PR) of the

transmitted symbols is achieved when

P T
∆Dγ̌DγP∆ = IM (6)

with IM the M -size identity matrix. A PR system is said

biorthogonal if γ[k] 6= γ̌[k] and orthogonal if γ[k] = γ̌[k].

As an example, CP-OFDM is a biorthogonal system. The

transmitter pulse shape is given by γCP[k] = 1 for 0 ≤ k ≤
N−1 whereas the receiver pulse shape is written as γ̌CP[k] = 0
for 0 ≤ k ≤ ∆− 1 and γ̌CP[k] = 1 for ∆ ≤ k ≤ N − 1.

Two orthogonal systems have been proposed in [8], assum-

ing N/∆ = M/∆ + 1 and odd values of M/∆. One of

them is optimized with respect to time-frequency localization

(TFL) criterion and the underlying pulse shapes are denoted

γTFL[k] = γ̌TFL[k] (fig. 2). Compared to rectangular pulses

used in CP-OFDM, a previous study confirms the interest of

the TFL criterion for mobile channels [10]. The orthogonal

setup also offers an optimal approach over additive white

Gaussian noise channels [11, p. 160].
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Fig. 2: Time and frequency responses of the prototype fil-

ters with Γ(ν) = 1/ ‖γ‖
∞

∑N−1

k=0
γ[k] exp(−j2πνk/N) and

‖γ‖
∞

= max{|γ[k]|}k∈Z, using M = 1024 and N = 1280.

B. Multipath time-variant channel model

In a mobile radio environment, we consider a time-variant

channel H, with I resolvable paths. Let s(t) be the baseband

equivalent transmitted signal, limited to a band B. In a

narrowband context, the received signal is given by

r(t) = (Hs)(t) + z(t) =
I∑

i=1

αi(t)s(t− τi) + z(t) (7)

where αi(t) is a complex gain associated to the ith path, at

delay τi. The signal z(t) is a complex bandlimited Gaussian

noise characterised by its power spectral density 2N0 = σ2
z/B

for |f | ≤ B/2 and 0 otherwise.

In order to relate the channel model to a filter bank

transceiver, we express a discrete-time version of H, de-

noted H̃. Using the bandlimited hypothesis and if we let

sn[k] = s[k + nN ] = s((k + nN)/B), zn[k] = z[k + nN ] =
z((k + nN)/B) and rn[k] = r[k + nN ] = r((k + nN)/B),
for 0 ≤ k ≤ N − 1, the input-output relation becomes

r[q] =
(

H̃s
)

[q] + z[q] =
∑

l∈Z

α̃l[q]s[q − l] + z[q] (8)

with

α̃l[q] =
I∑

i=1

αi

( q

B

)

sinc (Bτi − l) . (9)

Bandlimiting operation leads to an infinite number of coeffi-

cients α̃l(t) (l ∈ Z). In practice, the sequence is truncated to

L taps whenever {|α̃l(t)|2}l>L ≈ 0 .

In the context of short filters used by WCP-OFDM, the

input-output relation given in (8) may be simplified if L ≤ N .

In other words, if the channel delay is less than the block

length, interblock interference (IBI) is restricted to two con-

secutive blocks and we have

rn = Hnsn +Gnsn−1 + zn, n ∈ N (10)

where zn = [zn[0] . . . zn[N − 1]]T . The transfer function of

the discrete-time equivalent channel over the nth block is
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described by two N ×N matrices defined as

Hn =










α̃1[nN ] 0 0 · · · 0
... α̃1[nN + 1] 0 · · · 0

α̃L[nN ] · · · . . . · · · 0
...

. . . · · · . . . 0
0 · · · α̃L[nN + 2] · · · α̃1[nN +N − 1]











(11)

Gn =










0 · · · α̃L[nN − L+ 1] · · · α̃2[nN − 1]
...

. . . 0
. . .

...

0 · · · . . . · · · α̃L[nN − 1]
...

...
...

. . .
...

0 · · · 0 · · · 0










. (12)

Combining (2), (4) and (10), the overall transmultiplexer input-

output relation writes

c̃n = FMP T
∆Dγ̌HnDγP∆F

H
M

︸ ︷︷ ︸

An

cn

+ FMP T
∆Dγ̌GnDγP∆F

H
M

︸ ︷︷ ︸

Bn

cn−1 + FMP T
∆Dγ̌zn

︸ ︷︷ ︸

ζ
n

. (13)

where ζn corresponds to the noise term projection on the

receiver and An and Bn represent the WCP-OFDM transfer

matrices associated to the nth block.

III. WCP-OFDM EQUALIZATION SCHEMES FOR A GIVEN

SIMULATION FRAMEWORK

As stated above, IBI and ICI may occur in the general

case of WCP-OFDM transmultiplexer in presence of a time-

frequency selective channel. However, IBI involves at most

two consecutive blocks. As a consequence, the analysis of

E{|A[m, p]|2} and E{|B[m, p]|2} is sufficient to determine the

most appropriate equalization scheme for a given application.

In this simulation framework, we consider a QPSK modu-

lated transmission system, using a band B = 8 MHz, centered

around a frequency fc = 5 GHz. We use a 6-path WSSUS

channel model where the last path occurs at 5 µs (COST 207

TUx6 [12]). It implies a highly frequency selective behavior

over the band B. Two mobility scenarios are developed with

regard to the fast fading assumption: pedestrian (vmax = 3
km/h) and vehicular (vmax = 350 km/h).

Using TFL optimized pulses, figures 3 and 4 confirm

that IBI and ICI decrease as N/M increases. As expected,

ICI increases with the Doppler spread. Furthermore, IBI is

negligible compared to ICI in both mobility scenarios. As

a consequence, a single-tap per sub-carrier equalizer may

be sufficient in the low mobility scenario whereas ICI from

adjacent sub-channels should be mitigated in the high mobility

case.

In the following, we consider two low-complexity equalizers

and we denote c̄n the equalized signal. Channel impulse

response estimation is beyond the scope of this paper.
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(a) N/M = 9/8.
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(b) N/M = 5/4.

Fig. 3: WCP-OFDM system mean gains E{|A[m, p]|2} and

E{|B[m, p]|2} with M = 512, vmax = 3 km/h.
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Fig. 4: WCP-OFDM system mean gains E{|A[m, p]|2} and

E{|B[m, p]|2} with M = 512, vmax = 350 km/h.

1) Equalizer 1: We first propose a single tap per sub-

channel equalizer. This approach considers that IBI and ICI

terms are negligible. It relies on the approximation of An as

a diagonal matrix written

Ãn[m, p] = An[m, p]δm,p. (14)

Assuming that Ãn is invertible, the equalized symbols are

given by

c̄n = Ã
−1

n c̃n = Ã
−1

n Ancn + Ã
−1

n Bncn−1 + Ã
−1

n ζn. (15)

This equalizer may lead to perfect reconstruction in the case

of a CP-OFDM facing a frequency selective channel, provided

a prefix greater than the last echo is used. However, if Ãn

has close-to-zero diagonal terms, noise and interference terms

may be amplified. In the general case of WCP-OFDM with

a severe time-frequency selective channel, IBI and ICI terms

may remain preponderant over the noise term [10].

2) Equalizer 2: In the case of mainly time-selective chan-

nels, the major performances degradation is caused by ICI

and it becomes interesting to cancel interferences induced by

adjacent sub-channels. To this end, we approximate An as a

tridiagonal matrix defined by

Ãn[m, p] = An[m, p](δm,p + δm,p−1 + δm,p+1). (16)

If Ãn is invertible, we retrieve the expression given in

(15). Thanks to Thomas algorithm [13], the resolution of a

tridiagonal system results in a O(N) operation wich is much

more affordable than a general N×N matrix inversion whose

complexity is usually O(N3).
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IV. BER SIMULATION RESULTS

We compare the performances of CP-OFDM and WCP-

OFDM with TFL pulses using M = 512 and N/M = 5/4. We

focus our analysis on the two equalization scenarios described

above. Bit error rate (BER) is plotted as a function of Eb/N0,

where Eb = σ2
c ‖γ‖2 /2MB and N0 = σ2

z/2B (fig. 5).

When the Doppler spread tends to zero (fig. 5a), ICI is

negligible and equalizers 1 and 2 yield the same results.

WCP-OFDM with TFL pulses shows better results than CP-

OFDM in presence of noise, thanks to prototypes functions

orthogonality.

In a high mobility scenario (fig. 5b), an interference floor

appears at high Eb/N0 values. It demonstrates the interest

of three taps per sub-carrier equalization for both WCP-

OFDM and CP-OFDM. The clear advantage of WCP-OFDM

is justified by the good frequency containment of the TFL

pulses.

V. CONCLUSION

The focus of our work on short filters leads to an efficient

FBMC modulator-demodulator referred to as WCP-OFDM

and whose complexity is similar to traditional cyclic prefix

OFDM.

Through the analysis of the transfer matrices of a realistic

system, we proposed two block equalization scenarios, pre-

serving a linear inversion complexity.

Finally, BER simulation results confirm the interest of

WCP-OFDM with TFL filters with regard to CP-OFDM.

This system, provided with one to three coefficients per sub-

channel, is particularly resilient to ICI in the case of highly

time-selective channels.
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