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Abstract

This paper deals with the problem of the stabilization and control of linear time
invariant high order systems with two unstable real poles plus time delay. A
simple observer based controller is designed in order to achieve a stable behavior
of the closed loop system. Necessary and sufficient conditions for the existence
of the proposed control structure are stated. Hence, only four proportional
gains and the model of the plant are enough to obtain a stable response of the
delayed system. Moreover, a robustness analysis is presented in order to com-
pute the maximal uncertainty bound accepted for the delay term. In addition,
a two degrees of freedom PI control action is implemented in order to track
step references and to reject step disturbances. The achieved performance of
the proposed control strategy is illustrated by mean of numerical simulations.

1. Introduction

Systems with significant delay term are very common, they appear in various
systems as biological, ecological, social, industrial, etc., and are due to several
mechanisms like material or energy transport, recycling loops, etc,. In addition,
actuators, sensors and field networks that are involved in feedback loops usually
introduce such delays, [1, 2]. Also delays can be used in model reduction where
high-order (finite-dimensional) systems are approximated (in some norm sense)
by low order systems with delays, [3]. It is known that time-delay is often
a source of complex behaviors (oscillations, instability, bad performance), in
many dynamic systems, and thus considerable attention has been paid on the
stability analysis and controller design of time delay systems. Hence, there exists
a great motivation to study delay effects on dynamical systems properties for two
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main reasons: first to understand how the delay presence may deteriorate the
behavior of the system, and second to control their effects for better performance
achievement on closed-loop systems, [4, 5].

Several control strategies have been developed to deal with delayed systems.
A common approach is to approximate the time-delay operator by means of
Taylor or Padé series which could lead to a non minimum-phase system with
rational transfer function representation. This method can be successfully used
only when the delay term is small compared with the dominant time constant
of the plant.

A different approach to deal with dead time systems is the classical Smith
Predictor (SP), which consists in counteracting the time delay effects by mean of
strategies intended to estimate the effects of current inputs over future outputs,
[6, 7]. The main limitation of the original SP is the fact that the prediction
scheme does not have a stabilization step, which restricts its application to
open-loop stable plants. However, open-loop unstable processes arise frequently
in different dynamical systems and are fundamentally difficult to control. To
overcome this problem, some modifications of the SP original structure have
been proposed to deal with non-stable delayed process. For instance, [8] has
presented an efficient modification to the Smith predictor in order to control
unstable first order system plus time delay, in this case the stability bound is
determined by the relationship τ/τun < 1.5, where τ is the process time delay
and τun the dominant unstable time-constant. With a different perspective, [9]
proposes a modification to the original Smith structure in order to deal with
unstable first order delayed systems. Using a similar structure, the result is
extended to delayed high order systems in [10]. In both works, a robustness
analysis is done concluding that for unstable dead time dominant systems, the
closed-loop system can be unstabilized with an infinitesimal value of the model-
ing error, i.e., that robustness is strongly dependent on the relationship τ/τun.
For the control scheme proposed in this later work, it can be easily proven that
in the case of unstable plants, the internal stability is not guaranteed. In fact it
is obtained an unstable estimation error and, as a result, a minimal initial con-
dition difference between the original plant and the model produces an internal
unbounded signal.

The classical controllers Proportional-Integral-Derivative (P, PI, PID or PD)
are also included between the tools used to deal with time delay systems. For
instance, [11] introduce a study about the control of integral systems with dead
time which includes the design and tune of PI and PID controllers by mean
of different methods. In [12], the authors proposes a methodology to obtain a
complete PI and PID parametrization for first order unstable delayed systems
when τ < 2τun. With a different perspective, in [13] upper bounds on the delay
size (τ < 2τun) are provided when using linear time invariant controllers on the
stabilization of strictly proper delayed real rational plants. It is important to
note that in general, the provided bounds are not tight and the authors prevent
that the developed controllers are not intended as practical solutions and are
only used as a tool to compute the achievable delay margin for some particular
cases. In [14], based in a numerical method, it is considered the stabilization of
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linear time-delay systems of order n. However, stability conditions with respect
to time-delay and time constant of the process are not provided. The proposed
method consists in shifting the unstable eigenvalues to the left half plane by
static state feedback by applying small changes to the feedback gain. Using an
observer based approach, in [15] a methodology is proposed in order to control
unstable first order delayed systems allowing to deal with τ/τun < 3 and with
a similar approach but including PID controllers in the loop, in [16] is stated a
methodology to stabilize FOTD unstable Systems with τ/τun < 4.

The problem of proposing a controller scheme to deal with high order unsta-
ble systems, providing specific conditions on the delay size is more complex and
they are not many works on this problem. For instance, in the work presented
by Madhuranthakam et al., [17] it is proposed a method to the optimal tuning of
PID controllers for first and second order systems plus time delay, nevertheless
the method is restricted to stable processes. With a different perspective, [18]
presents a strategy based on a modified smith predictor in order to control sec-
ond order system but only the case of one unstable pole is dealt. On the other
hand, [19] introduces a PID control strategy for second order unstable processes
designed using the direct synthesis method. With a similar perspective, [20]
presents a methodology in order to control second order delayed systems using
the Internal Model Control guides for PID controllers. However, this works do
not provide the stability bound in terms of the time delay size.

This paper is concerned with the stabilization problem of systems with two
unstable poles and m stable poles plus time delay. The control scheme relies
on an observer-based structure with a memory observer and a memoryless state
feedback, so only two gains are enough to stabilize the observer scheme and two
other to stabilize the open loop unstable plant. Necessary and sufficient con-
ditions are stated to guarantee the existence of the proposed scheme in terms
of the relation between the size of the delayed term and the system time con-
stants. On the contrary of modified Smith predictors, the scheme only contains
discrete time delay (and not distributed ones) which makes easy its practical
implementation (see [2] for details on numerical implementation of modified
Smith predictor scheme). Moreover, it is implemented a Proportional-Integral
controller which allows to track step references. It is worth stressing that, to
the best of our knowledge, in the literature there is not reported similar results
for this class of systems.

This paper is organized as follows; the Section 2 is dedicated to the problem
formulation. The Section 3 yields the preliminaries results used to obtain the
main result of this work. An observer based controller is proposed in the Section
4 in order to stabilize the unstable delayed system previously described, also the
stability conditions of the proposed control structure are stated. In addition, it
is illustrated how to deal with a zero in the left half plane in the delayed transfer
function. Then, in Section 5 a robustness analysis for the observer based scheme
with respect to the uncertainty in the delay operator is presented. Numerical
simulations are presented in order to show the controller performance under
different conditions in Section 6. Moreover, an application example related
with a continuous stirred tank reactor (CSTR) is presented in order to refer the
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control strategy proposed with a practical framework. Finally some conclusions
are drawn in Section 7.

2. Problem Formulation

Consider the following class of single-input single-output (SISO) linear sys-
tems with input delay:

Y (s)

U(s)
=

N(s)

D(s)
e−τs = G(s)e−τs, (1)

where U(s) and Y (s) are the input and output signals respectively, τ ≥ 0 is the
constant time delay, N(s) and D(s) are polynomials in the complex variable s
and G(s) is the delay-free transfer function. Notice that with respect to the
class of systems (1) a traditional control strategy based on an output feedback
of the form:

U(s) = C(s)[R(s) − Y (s)], (2)

yields a closed-loop system given by:

Y (s)

R(s)
=

C(s)G(s)e−τs

1 + C(s)G(s)e−τs
, (3)

where the exponential term e−τs located at the denominator of the transfer
function (3) leads to a system with an infinite number of poles and where the
closed-loop stability properties must be carefully stated.

This work proposes an observer based control scheme in order to stabilize a
system characterized by the following transfer function:

Y (s)

U(s)
=

α

(s− a)(s− b)(s+ c1)(s+ c2)...(s+ cm)
e−τs. (4)

Where τ ≥ 0, a, , b , c1, c2 ...cm > 0 are positive constants, and without loss
of generality, a ≥ b > 0. The proposed control scheme has been designed taking
into account the traditional observer theory hence only the plant model and two
static gains are enough to get an adequate estimation of an internal delay free
variable which will be used in the final stabilizing control scheme.

For sake of simplicity, we denote the stable subsystem Gstb(s) as follows

Gstb(s) =
α

(s+ c1)(s+ c2)...(s+ cm)
. (5)

3. Preliminary Results

Preliminary results are presented, which will be used later in order to state
the stability conditions of the proposed strategy in this work.

Considering the following unstable first order system plus time delay:
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Y (s)

U(s)
= G(s)e−τs =

α

s− σ
e−τs, (6)

with σ > 0, and a proportional output feedback control as follows:

U(s) = R(s)− kY (s), (7)

which produces a closed-loop system:

Y (s)

R(s)
=

αe−τs

s− σ + kαe−τs
. (8)

The following result has been widely studied in the literature and the proof
can be easily obtained by considering different approaches as a classical fre-
quency domain. An alternative simple proof based on a discrete time approach
is shown in [21].

Lemma 1. Taking into account the delayed system (6) and the proportional
output feedback (7). Then, there exists a proportional gain k such that the
closed loop system (8), is stable if and only if τ < 1

σ .

Now, take into consideration the high-order unstable system characterized
by:

G(s) =
α

(s− σ)(s + φ1)(s+ φ2)...(s+ φn)
e−τs. (9)

with σ, φ1, φ2...φn > 0. With the proportional output feedback (7), the
closed-loop system obtained is:

Y (s)

R(s)
=

αe−τs

[(s− σ)(s+ φ1)(s+ φ2)...(s+ φn)] + kαe−τs
. (10)

Lemma 2. Considering the delayed system (9) and the proportional output
feedback (7). Then, there exists a proportional gain k such that the closed loop

system (10), is stable if and only if τ < 1
σ −

n
∑

i=1

1

φi
.

The proof of the previous lemma is presented in the Appendix A.

4. Control Strategy Proposed

Taking into account the class of systems studied in this work and charac-
terized by the transfer function (4) with a, b, c1, c2, · · · , cm > 0 and the time
delay τ ≥ 0, and assuming without loss of generality a ≥ b. An observer based
control is designed in order to obtain an estimation of the internal states of the
system to be used as control signals for the original process.

As a first step, the stability conditions for the controller and the observer
systems are stated separately. This conditions will be used later in order to state
the closed loop stability conditions for the proposed observer based controller.
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4.1. Controller Scheme

First, taking into consideration the controller structure shown in Figure 1,
with the control law u(t) = r(t)−k1w(t)−k2y(t), let us introduce the following
result.

Figure 1: Control Scheme

Lemma 3. Consider the delayed system (4), and the control law mentioned
above. There exist gains k1 and k2 such that the closed-loop system is stable if
and only if

τ <
1

b
−

m
∑

i=1

1

ci
.

The aim of the foregoing proof is to apply the stability conditions given in
Lemma 2 to the state feedback strategy shown in the Figure 1.

Proof. Sufficiency. Let us consider τ < 1
b −

m
∑

i=1

1

ci
. Then, τ = 1

b −

m
∑

i=1

1

ci
− β,

for some β > 0. Therefore, there exists k1 such that β > 1
k1−a > 0. Then, it is

easy to determine

τ <
1

b
−

m
∑

i=1

1

ci
−

1

k1 − a
. (11)

Finally, we can conclude from Lemma 2, where σ = b, φi = ci and φm+1 = k1−a
there exists k2 such that the plant behavior is stable.
Necessity. Considering the delayed system (4), and the state feedback controller
shown in Figure 3, with constant gains k1 and k2 such that the process is stable.
The closed loop transfer function of the plant can be written as follows:

Y (s)

R(s)
=

αe−τs

(s− b)(s+ c1) · · · (s+ cm)(s+ φ) + αk2e−τs
, (12)
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with φ = k1 − a. It is well known that a k2 that stabilizes the delayed system
(12) must also stabilize the delay free system (see for instance [5] or [22]), which

implies that φ > 0. Indeed, from Lemma 2, τ < 1
σ −

n
∑

i=1

1

φi
with σ = b and

φi = ci, where n = m+ 1 (note that φ > 0 is a free parameter function of k1).

Let us consider β > 1
φ > 0, denoting β = 1

σ −

m
∑

i=1

1

φi
− τ , therefore:

τ =
1

σ
−

m
∑

i=1

1

φi
− β <

1

σ
−

m
∑

i=1

1

φi
=

1

b
−

m
∑

i=1

1

ci

�

Remark 1. A simple methodology for choosing the values for the gains of the
controller will be given below.

Step 1. In order to ensure the existence of a proportional gain k2 such that
the closed loop system is stable, from the proof of Lemma 3, eq.(11) we obtain

k1 >
1

1
b −

m
∑

i=1

1

ci
− τ

+ a. (13)

It is worth stress that if k1 is selected near to the bound stated in (13), the gain
margin for the gain k2 will be reduced.

Step 2. Once a gain k1 is selected, we can compute the gain k2 by means
of a frequency domain analysis, Nyquist stability criterion for instance, for the
auxiliary system (12) such that the controller scheme shown in the Figure 1 is
stable.

4.2. Observer Scheme

In most of the practical applications, the internal variables are not measured.
Thus, an observer based on an output injection strategy is proposed, let us take
into consideration the static output injection scheme shown in Figure 2, the
stability of the observer can be tackled as follows.

Lemma 4. Considering the delayed system (4), and the static output injection
scheme shown in Figure 2. There exist constants g1 and g2 such that the closed-
loop system is stable if and only if

τ <
1

a
−

m
∑

i=1

1

ci
.

Proof. The proof can be easily derived from a dual procedure of the previous
result.
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Figure 2: Observer Scheme.

�

Remark 2. As in the controller design, the computation of the gains g1 and
g2 can be obtained in a dual way to Remark 1, i.e.,

Step 1. In order to ensure the existence of a proportional gain g1 such that
the closed loop system is stable, from Lemma 4 we obtain

g2 >
1

( 1a −
m
∑

i=1

1

ci
− τ)

+ b.

Step 2. Once the gain g2 is selected, we can compute the gain g1 by means of
a frequency domain analysis, Nyquist stability criterion for instance, such that
the controller scheme shown in Figure 5 is stable.

4.3. Observer-Based Controller: the case without zeros

Finally, the main result of this work is presented, we propose an observed
based controller as in the Figure 3, where the observer allows to estimate the
state variables, to be used in state feedback controller. The authors would like
to stress that, in the proposed scheme, only four proportional gains are enough
to get a stable closed loop behavior. As a consequence of the previous results,
the following lemma can be stated.

Lemma 5. Consider the observer based controller scheme shown in Figure 3.
There exist proportional gains k1, k2, g1 and g2 such that the closed-loop system
is stable if and only if

τ <
1

a
−

m
∑

i=1

1

ci
.

Proof. Consider a state space representation of the system (4) characterized
by the following equation:

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t) (14)
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Figure 3: Control Strategy Proposed.

y(t) = Cx(t),

with x(t) =
[

w(t) x1(t) x2(t) · · · xm(t) z(t)
]T

,
where the states xi(t) represent the stable part of the system, w(t) and z(t) are
linked with the unstable poles of the open loop system. Then we have,
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A0 =



















a 0 0 · · · 0 0 0
1 −c1 0 · · · 0 0 0
0 1 −c2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −cm 0
0 0 0 · · · 0 0 b



















,

A1 =



















0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · 0 1 0



















,

B =



















α
0
0
...
0
0



















,

C =
[

0 0 0 · · · 0 1
]

.

Note that the state state representation characterized by (14) can be re-
turned to its transfer function representation by mean of:

Y (s)

U(s)
= C(sI − (A0 +A1e

−τs))−1B, (15)

which brings us back to the delayed transfer function (4). The dynamics of the
estimated states and the control law can be described as follows.

˙̂x(t) = A0x̂(t) +A1x̂(t− τ) +Bu(t)−G(Cx̂(t)− y(t)) (16)

Where x̂(t) is the estimated state of x(t), and the gain vectors K and G are
defined by

K =
[

k1 0 0 · · · 0 k2
]

,

G =
[

g1 0 0 · · · 0 g2
]T

.

Let e(t) := x(t) − x̂(t), then we have:

ė(t) = ẋ(t)− ˙̂x(t) = (A0 −GC)e(t) +A1e(t− τ), (17)

and the controlled system:
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ẋ(t) = A0x(t) +A1x(t− τ)−BKx̂(t). (18)

Noting xe = [x(t) e(t)]T and after a simple manipulation of variables we have
the following closed loop system with the observer and the controller proposed
in the Figure 3

ẋe(t) =

[

A0 − BK BK
0 A0 −GC

]

xe(t) +

[

A1 0
0 A1

]

xe(t− τ) (19)

y(t) =
[

C 0
]

xe(t).

It is easy to see that the observer based controller proposed satisfies the
separation principle. Hence, the stability of the observer scheme is enough to
assure an adequate error convergence, i.e. there exist proportional gains g1 and
g2 such that lim

t→∞

[ŵ(t)− w(t)] = 0 if and only if

τ <
1

a
−

m
∑

i=1

1

ci
,

then, considering the fact of the observer and controller can be designed sep-
arately and reminding the stability conditions stated previously in Lemmas 3
and 4, is clear that the observer stability condition is more restrictive than the
controller one, i.e.,

1

a
−

m
∑

i=1

ci <
1

b
−

m
∑

i=1

1

ci
,

therefore, there exist k1, k2, g1 and g2 such that the closed-loop system is stable
if and only if

τ <
1

a
−

m
∑

i=1

1

ci
.

Remark 3. Different works have been presented recently in order to obtain a
maximum upper bound for the time delay. For instance, in [13] the authors
adopt a frequency domain approach to demonstrate that, for a strictly proper
rational plant, there exists an uniform upper bound on the delay that can be
tolerated when using a finite dimensional linear time invariant (FDLTI) con-
troller. Thus, for plants with an unstable pole p, the maximum margin delay
obtained is DM ≤ 2/p. Furthermore, the authors consider a controller (see [13],
Remark 8) to achieve this delay margin, although this class of controller may
suffer difficulties such poor sensitivity, phase margin, etc., therefore, it is not
intended as a practical controller. Also, the authors have the assumption that,
for a plant with two unstable poles (the class of systems dealt in this work) the
delay margin of the system is DM ≤ min{2/p1, 2/p2}, where p1 and p2 are the
unstable poles of the system. However the authors do not propose a controller
in order to obtain this delay margin.
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4.4. Observer-Based Controller: the case with a left half plane zero

The proposed control strategy can be easily implemented when the system
contains a left half plane zero. For this, the main idea is to cancel the zero
dynamics for each case (controller and observer), placing an unstable pole in
the position of the zero. For this consider the stable subsystem Gstb(s) given
by the following transfer function

Gstb(s) =
α(s+ β)

(s+ c1)(s+ c2)...(s+ cm)
. (20)

Remark 4. As was mentioned before, the main idea to deal with the case of
systems with a left half plane zero is to cancel the zero dynamics by means the
relocation of an unstable pole, from this we can state the following procedure
to obtain the gains for the observer based structure in this case.

Step 1. In order to cancel the zero dynamics by means of the selection of k1
in the controller scheme, we have the following equality

k1 = β + a (21)

Step 2. From this, by means of a frequency domain analysis, Nyquist stability
criterion for instance, we can compute the gain k2 for the obtained system

Y (s)

R(s)
=

αe−τs

(s− b)(s+ c1) · · · (s+ cm)
, (22)

Step 3. In order to cancel the zero dynamics by means of the selection of g2
in the observer scheme, we have the following equality

g2 = β + b (23)

Step 4. From this, by means of a frequency domain analysis, Nyquist stability
criterion for instance, we can compute the gain g1 for the obtained system

Y (s)

R(s)
=

αe−τs

(s− a)(s+ c1) · · · (s+ cm)
, (24)

4.5. Step tracking reference

In order to solve the step tracking reference problem, the observed based
structure can be complemented with a proportional-integral (PI) control action,
shown in Figure 4. For high-order time delay systems, a PI controller design is
proposed in [23]. As it is well known, conventional methods of PI controllers
design involve a zero on the closed loop system which yields an undesirable
overshoot on the response. Therefore, a two degrees of freedom PI controller
will be considered to overcome this undesirable overshot response, [11], [24].
The PI controller is characterized as follows
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Figure 4: Control Structure

U(s) = Gff (s)R(s) −Gc(s)Ŷ (s), (25)

where

Gc(s) = Kp

(

1 +
KI

s

)

(26)

and

Gff (s) = Kp

(

ǫ+
KI

s

)

. (27)

Here, the main idea is to relocate the unstable pole a by means of the gain
k1, then we have a open loop process with an unstable pole located at s = b
and m+ 1 stable poles, characterized by the equation (12). Then it is possible
to use the methodology given in [23] in order to tune a PI controller. We can
resume the procedure as follows (for more details see [23]); first the gain KI

must be selected such that Φ(ω) > −π, for some w⋆ > 0, with the function

Φ(ω) = −τω − π + arctan
(ω

b

)

− arctan

(

KI

ω

)

−

m+1
∑

i=1

arctan

(

ω

ci

)

. (28)

Then, the range of stabilizing gains Kp is given by

√

√

√

√

(ω2
c1 + b2)

∏m
i=1 +1(ω2

c1 + c2i )

1 +
(

KI

ωc1

) < Kp <

√

√

√

√

(ω2
c2 + b2)

∏m
i=1 +1(ω2

c2 + c2i )

1 +
(

KI

ωc2

) ,

with ωc1 < ωc2 being the first two phase frequencies solved from
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−τω + arctan
(ω

b

)

− arctan

(

KI

ω

)

−

m+1
∑

i=1

arctan

(

ω

ci

)

= 0.

Then, in order to reduce the undesirable overshoot in the response, the
parameter ǫ can be chosen from 0 < ǫ < 1.

5. Robustness Analysis With Respect To Delay Uncertainty.

Here, we refer to robustness with respect to delay to the fact that the exact
value of the delay is not known a priori. Therefore, we assume now that the
delay is uncertain, i. e. the delay of the real system is τ = d(1+δθ) and may be
different from the one used in the observer (the nominal delay d). Consider the
delay uncertainty in the original process, and the design of the observer taking
into account the nominal time delay, i.e.

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t) (29)
˙̂x(t) = Ax̂(t) +A1x̂(t− d) +Bu(t)−G(Cx̂(t)− y(t))

u(t) = −Kx̂(t)

Let us consider the observer-controller system with the form (29) and its
extended closed loop system considering the delay uncertainty characterized as
follows.

ẋe(t) =

[

A0 −BK BK
0 A0 −GC

]

xe(t) +

[

A1 0
A1 0

]

(xe)τ (t− τ) + · · ·

· · · +

[

0 0
−A1 A1

]

(xe)d(t− d). (30)

= A0xe(t) +Aτ (xe)τ (t− τ) +Ad(xe)d(t− d) (31)

Note that when the delay value of the actual process matches to the nominal
one, the extended closed loop system (31) is equivalent to the nominal closed
loop system (19), [25]. Now modeling the time delay with a multiplicative
uncertainty as τ = d(1 + δθ), with θ normalized, i.e. |θ| ≤ 1 we obtain.

e−sτ = e−sd(1+δθ) = e−sde−sdδθ = e−sd(1−∆) (32)

With ∆(s) = 1 − e−sdδθ. Therefore the characteristic polynomial of the above
system is given by:

Ψ(s) = det[Ψ0(s)]det[In +Ψ−1
0 (s)Aτe

−sd∆(s)] (33)

Where Ψ0(s) = I2n − A0 − (Aτ + Ad)e
−sd. Now, when the design of the

controller and the observer ensures that the nominal extended system is stable,
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i. e. det[Ψ0(s)] is stable, the perturbed closed loop system remains stable if
det[In+Ψ−1

0 (s)Aτ e
−sd∆(s)] does not change sign when s sweeps the imaginary

axis. Invoking Rouche’s Theorem, it follows that the condition for stability is:

‖Qd(s)∆(s)‖∞ < 1 (34)

WhereQd(s) = Ψ−1
0 (s)Aτe

−sd. Note that the term 1−e−sdδθ = sdδθe−sdδθ/2 |s=jω

sincωdδθ
2π . Hence, on the imaginary axis, |1 − e−sdδθ| ≤ |sdδθ|, then if one can

show stability for 1−esdδθ replacing it by sdδθ in the analysis, then the stability
for the uncertain system will follow. Note that this amounts to replacing the
delayed term by its first order Taylor expansion. This means that the maximal
uncertainty bound δ that preserves stability for the worst case, i.e. θ = 1, is
determined by:

δmax =
1

‖sde−sdΨ−1
0 (s)Aτ‖∞

(35)

Then for all |θ| ≤ 1 and the uncertainty bound δmax the determinant has a
fixed sign, implying the absence of zero crossings, and henceforth the stability
of the perturbed system (provided the nominal one is stable) [25, 26].

Remark 5. Note that the stabilizing gains computed for the observer based
controller for the nominal time delay d are able to preserve stability of the closed
loop system with a nominal delay belongs to the interval [0 d], the analysis of
the stability sets and regions are dealt in [5] and [22]

6. Examples

Below, numeric simulations are performed in order to illustrate the observer
based scheme performance. Moreover, the PI control action is implemented to
achieve step reference tracking and step disturbance rejection.

Example 1. Consider the fourth order delayed system with two unstable
poles characterized with the following transfer function:

Y (s)

U(s)
=

5

(s− 0.7)(s− 0.4)(s+ 5)(s+ 10)
e−s (36)

Let be a = 0.7, b = 0.4, c1 = 5, c2 = 10, α = 1 and τ = 1 the parameters
of the system, it is clear that the stability condition given in Lemma 5 is satis-
fied, therefore there exists an observer based structure with proportional gains
k1, k2, g1 and g2 such that the resulting closed-loop system is stable due to:

τ = 1 <
1

a
−

m
∑

i=1

1

ci
= 1.128.

Following the methodology given in remarks 1 and 2, the stability regions
for the stabilizing gains are presented in Figure 5, from this the selected values
for the control structure are shown in Table 1. Figure 6 illustrate the output
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performance of the observer based controller in numerical simulations. The
continuous line indicates the output of the closed loop system with identical
initial conditions between y(t) and ŷ(t). The dashed line point to the system
performance whit different initial conditions, (ŷ(0)− y(0) = 0.01).

k1 10.7
k2 55
g1 145
g2 20.4

Table 1: Observer Based Controller Gains: Example 1.
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Figure 5: Stability regions for proportional gains in the observer based controller

Remark 6. As can be shown in Figure 5, the selection of a larger value of k1,
(resp. g2), gives a larger gain margin for k2, (resp. g1). However, a selection
of high gains for the observer based controller could give the problem of high
control signals.

Remark 7. It is possible to implement a similar controller as the presented in
[13] (Remark 8) in order to obtain better stability conditions for the control
strategy proposed in this work, however some properties of the system (phase
margin, gain margin, etc.) can be affected.

Robustness Analysis

The Figure 7 shown the output signal of the closed loop system with different
initial conditions between the plant and the observer system,(ŷ(t)−y(t) = 0.01),
when there is not uncertainty in the delay value (continuous line), and the closed
loop system behavior when the maximum uncertainty bound is presented in the
system (dashed line). The following table shows the relation between the size
of the time delay d of the nominal system and the maximal uncertainty bound
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Figure 6: Numerical Simulation Results.

δmax in the above example. The terms τmin and τmax indicate the minimal
and maximal value respectively of the delay term τ , such that the closed loop
system with nominal delay d remains stable.
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Figure 7: Robustness Analysis with respect to Time Delay

Example 2. Chemical reactors often have significant heat effects, so it is
important to be able to add or remove heat from them. In a jacketed CSTR
(continuously stirred tank reactor) the heat is added or removed by virtue of
the temperature difference between a jacket fluid and the reactor fluid. Often,
the heat transfer fluid is pumped through agitation nozzles that circulate the
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d δmax τmin τmax

0.1 0.593279 0.040672 0.159328
0.2 0.286649 0.142670 0.257330
0.3 0.184523 0.244643 0.355357
0.4 0.133386 0.346646 0.453354
0.5 0.102516 0.448742 0.551258
0.6 0.081652 0.551009 0.648991
0.7 0.066381 0.653533 0.746467
0.8 0.054500 0.756400 0.843600
0.9 0.044822 0.859660 0.940340
1 0.036679 0.963321 1.036679

Table 2: Robustness Analysis with different time delay size.

fluid through the jacket at high velocity, as is shown in Figure 8.

Figure 8: Continuos Stirred Tank Reactor

Here we consider a CSTR carrying out the simple reaction A → B. The
balance on component A is

V
dCA

dt
= FCAf − FCA − V rA, (37)

where CA is the concentration of component A in the reactor and rA is the rate
of reaction per unit volume. The Arrhenius expression is normally used for the
rate of reaction. A first order reaction results in the following
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rA = k0e
(−∆E

RT
CA), (38)

where k0 is the frequency factor, Ea is the activation energy, R is the ideal
gas constant, and T is the reactor temperature on an absolute scale. A detailed
model of a CSTR includes the effect of cooling jacket dynamics. Then, the three
modelling equations are

dCA

dt
=

F

V
(CAf − CA)− k0e

(−∆E

RT )CA, (39)

dT

dt
=

F

V
(Tf − T ) +

−∆H

RT
k0e

(−∆E

RT )CA −
UA

V ρcp
(T − Tj), (40)

dTj

dt
=

Fjf

Vj
(Tjf − Tj) +

UA

Vjρjcpj
(T − Tj). (41)

Where where −∆H is the heat of the reaction, U is the heat transfer coef-
ficient, A is the heat transfer area, Tf is the feed temperature, Tj is the jacket
temperature, Tjf is the jacket feed temperature and Fjf the jacket make-up
flow rate, [27].

The parameter values of the system are given as ∆E = 20000Btu/lbmol,
k0 = 16.96× 107hr−1, −∆H = 19000Btu/lbmol, U = 75Btu/hr◦Fft2 , ρcp =
53.25Btu/◦Fft3, ρjcpj = 55.6Btu/◦Fft3 . The operating values of the re-
actor are given by A = 88ft2, CAf = 0.132lbmol/ft3, Tf = 60◦F , the op-
erating volume V = 85ft3, the flow rate F = 35ft3/hr, the jacket volume
Vj = 25ft3, the jacket temperature Tjf = 0◦F and the jacket make-up flow rate
is Fjf = 28.75ft3/hr. A steady state operating point is CA = 0.166lbmol/ft3

and T = 101.1◦F . Let consider the flow rate as the manipulated variable and
the temperature of the CSTR as the controlled variable. Linearisation around
this steady state operating point yields the following transfer function model
(by assuming a measurement time delay of 54 minutes)

T (s)

Fj(s)
=

−4.7475(s+ 3.129)

(s− 0.5545)(s− 0.09395)(s+ 6.394)
e−0.9s (42)

Figure 9 illustrates the output response of the closed loop system stabilized
by means of the observer-based controller for a unit step reference in numer-
ical simulations, the computed gains are shown in Table 3. Continuous line
denotes the nominal system, dashed line denotes the closed loop system with
an uncertainty of 10% in the real process.

For the present example, following the methodology proposed in [23], the pa-
rameters computed for the PI controller are shown in Table 3 and for the feed
forward compensatorGff , the set-point weighting parameter ǫ = 0.01. The pro-
portional gains k1, g1 and g2 are the same that the computed before. The closed
loop response is shown in Figure 10, continuous line shows the performance of
the observer based controller with the complement of the PI control action con-
sidering the nominal plant. A step disturbance with magnitude d = 0.01 is
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Figure 9: Control Strategy Performance

applied at t = 50hr, as it can be noticed, also the PI controller is able to reject
step disturbances. The dashed line point to the behavior for the closed loop sys-
tem with different initial conditions in the observer scheme (y(t) − ŷ(t) = 0.2).

k1 3.6835
k2 −1
g1 −1.2
g2 3.2230
Kp −0.6
KI 0.2774

Table 3: Observer Based Controller Gains: Example 2.

Remark 8. Numerical simulations above show an efficient performance of the
control strategy proposed even in face of different initial conditions as well as
parametric uncertainties in the system.

Example 3. The following example is presented in [19], it is a second order
system plus time delay (a particular case of the class of systems dealt in this
work) with the transfer function given by

Y (s)

U(s)
=

2

(3s− 1)(s− 1)
e−τs (43)

For this example, the parameters of the system are a = 1, b = 0.333, α =
0.6667 and τ = 0.3.The gains computed for the observer and the PI controller
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Figure 10: Step Tracking Performance

are shown in Table 4. Figure 11 shows the response of the system of example
3. A step negative disturbance is presented in t = 30. Solid line point the
performance for the control strategy proposed in this work and dashed line shows
the performance of the methodology proposed in [19]. It can be noticed that the
observer based structure proposed in this work gives a better performance that
the PID controller proposed in [19]. In addition, the methodology proposed in
[19] does not state bounds in terms of the time delay size, while our control
structure can be implemented in the system with a larger delay as it is shown
in Figure 12. The system of Example 3 is controlled with the observer based
controller proposed, but with a time delay τ = 0.8. The computed parameters
of the observer structure and the PI controller are shown in Table 4.

τ = 0.3 τ = 0.8
k1 151.5 76.5
g1 250 520
g2 50.33 320.33
Kp 200 90
KI 0.3 0.25

Table 4: Observer Based Controller Gains: Example 3.

7. Conclusions

An observer based controller is proposed in order to stabilize high order sys-
tem with two unstable poles plus time delay. The necessary and sufficient con-
ditions that ensure the existence of the stabilizing controller scheme are stated.
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Figure 12: Closed Loop Performance

The scheme is simple and may be easily implemented: only four proportional
gains and the model of the process are enough to stabilize the system. The pro-
cedure to design the controller can be performed easily using well know analysis
of classical control theory. Numerical examples illustrate the performance of the
controller under ideal conditions. The examples show the closed loop system
behavior working under different initial conditions between the plant and the
observer, as well as parametric variations. Moreover, the introduction of a PI
controller allows to one to solve the problem of regulation and step disturbance
rejection. Also, a robustness analysis is presented to show the effects of the
modeling errors of the delay operator.

Appendix A. Proof of The Lemma 2.

Let us consider the High-Order Unstable System with time delay given by:

G(s) =
α

(s− σ)(s + φ1)(s+ φ2)...(s+ φn)
e−τs. (A.1)
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First, analyzing the First Order Unstable Delayed System given by:

G(s) =
α

s− σ
e−τs. (A.2)

Considering the Lemma 1, there exists a proportional gain k such that a
closed loop system with a simple proportional output feedback is stable if and
only if τ < 1

σ . An analysis in the frequency domain shall confirm this result.
The Nyquist stability criteria establishes that, when closing the loop whit a
proportional gain k, the system will be stable if 0 = N + P , with P being the
number of poles in the right half plane ”s” and N the numbers of clockwise
round trips to the point −1 (N negative suggests round trips in the opposite
direction) in the Nyquist diagram. The angle as a function of the frequency ω
is given by:

∠G(jω) = −(180◦ − arctan
(ω

σ

)

)− (ωτ) (A.3)

Taking into consideration that for small frequencies arctanωϕ ≈ ωϕ, it can
be shown that the condition τ < 1

σ is equivalent to ask that the angle path taps
at least one point (for some frequency) with a value exceeding −180◦, that is
∠G(jω) > −180◦, i.e., one counter-clockwise round trip to the point −1 in the
Nyquist diagram. Now, analyzing the system with n = 1 characterized by:

G(s) =
α

(s− σ)(s+ φ)
e−τs (A.4)

Then, there exists a proportional gain k such that a closed loop system whit
a simple proportional output feedback is stable if and only if τ < 1

σ − 1
φ . It

can be easy to see that the Nyquist condition remains the same (one counter-
clockwise round trip to the point −1 in the Nyquist diagram), now the angle
condition is:

∠G(jω) = −(180◦ − arctan
(ω

σ

)

)− (arctan

(

ω

φ

)

)− (ωτ) (A.5)

For small frequencies arctanωϕ ≈ ωϕ, and starting from ∠G(jω) > −180◦

it is no difficult to conclude the relation τ < 1
σ − 1

φ . Below considering the
system whit n = 2 given by:

G(s) =
α

(s− σ)(s+ φ1)(s+ φ2)
e−τs. (A.6)

It can be easy to see that the Nyquist condition remains the same (one
counter-clockwise round trip to the point −1 in the Nyquist diagram), now the
angle condition is:

∠G(jω) = −(180◦ − arctan
(ω

σ

)

)− (arctan

(

ω

φ1

)

)− · · ·

· · · − (arctan

(

ω

φ2

)

)− (ωτ) (A.7)
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Again considering that for small frequencies arctanωϕ ≈ ωϕ, and starting from
∠G(jω) > −180◦ it is no difficult to conclude the relation τ < 1

σ − 1
φ1

− 1
φ2
.

This reflection can be generalized to any n ∈ R concluding that for the
systems characterized by (A.1) with a proportional output feedback, there exist
a constant gain k such that the closed loop system is stable if and only if:

τ <
1

σ
−

n
∑

i=1

1

φi
. (A.8)
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