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In an effort to deal with many ionizing radiation imaging mechanisms involving the Compton effect,
we study a Radon transform on circular cone surfaces having a fixed axis direction, which is called
here conical Radon transform (CRT). Concretely we seek to recover a density function f(x, y, z) in R3

from its integrals over such circular cone surfaces or its conical projections. Although the existence
of the inverse CRT has been established, it is the aim of this work to use this result to extent the
concept of back-projection well known in Computed Tomography (CT) to this type of cone surfaces.
We discuss in some details the features of back-projection in relation to the corresponding conical
Radon transform adjoint operator as well as the filters that arise naturally from the exact solution
of the inversion problem. This intuitive approach is attractive, lends itself to efficient computational
algorithms and may provide hints and guide for more general back-projection methods on other
classes of cone surfaces, for example occurring in Compton camera imaging. Comprehensive numerical
simulations results are presented and discussed to illustrate and validate this approach based on the
concept of back-projection.

Keywords: Radon transforms; gamma-ray imaging; Compton scattering; conical Radon transform;
filtered back-projection (FBP)

AMS Subject Classifications: 44A12; 65J22; 65R10; 92C55

1. Introduction

Emission imaging with ionizing radiation has made a quantum leap when it was proposed
about four decades ago to use coincidence detection of two gamma ray events (a Compton
scattering and an absorption) to improve sensitivity realizing the so-called electronic
collimation. This concept can be implemented by removing the mechanical collimator of
a gamma camera and by adding a scattering plane detector put in front of it. The new
device is called a Compton camera [1, 2], see Figure 1.

The idea is attractive but the corresponding mathematical challenge is huge. This is
due to the fact that the detected signal, which is the amount of gamma photons of given
energy arriving along the line joining the scattering site to the detection site contains
the contribution of all the emitting sites of the radiating object situated on a circular
cone sheet. One may speak of this data as a conical projection in analogy to the linear
projection known in conventional emission (SPECT: Single Photon Emission Computed
Tomography, or PET: Positron Emission Tomography) or absorption (CT) tomography
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Figure 1. Compton Camera.

[3]. Such conical projections lead naturally to the notion of Conical Radon transform
since linear projections have led to the Classical Line Radon transform. Several attempts
have been made to find the inversion formula for this case [4–7].

However, many classes of conical projections can be found in R3. The ones relevant to
one type of Compton cameras are conical projections that swing around a fixed point
such that the cone vertex moves on a two-dimensional surface. The related Conical
Radon transform has unfortunately no inversion formula to this date. To gain insight to
the inversion of such a difficult problem, it is reasonable to consider first more tractable
families of conical projections. This is why, in this work, we consider conical projections
that have fixed axis direction. This family of conical projections has some nice symmetry
properties, such as translational invariance in a plane perpendicular to the cone axis
direction, which permit to find an inversion formula. The corresponding Conical Radon
Transform (CRT) has been studied first by Cree and Bones although they did not succeed
to get an inversion formula in [8]. It turns out that this CRT may be viewed as the
working support of a particular Compton camera, which consists of the usual gamma
camera with a hole collimator to which a scattering detector is placed ahead of it, see
Figure 2. Of course technologically, this proposal is awkward since the presence of the
mechanical collimator dispels the very concept of electronic collimation. Nonetheless, on
a theoretical level this camera makes use of a class of special conical projections (with
cone axis direction perpendicular to a plane), which belongs to the CRT.

In 2005, a first inversion formula for the CRT was established [9] in R3, using circular
harmonic components of functions. Very recently, in 2014, under more general conditions
Haltmeier [10] has obtained the general analytic inverse of a large class of CRT parame-
terized by two variables (p, d), where d is the space dimension and p may be related to
some physical effect. Thus this work opens a wide perspective in mathematics as well as
potential applications in imaging1. In this paper, the aim is to develop efficient computa-
tion image reconstruction algorithms for the CRT, which positively illustrate these recent
analytic results and possibly usher research into a new direction for emission imaging
based on Radon transforms on cone surfaces.

To this end, we first revisit the concept of back-projection, well-known for the clas-
sical Radon transform in R2 and extend this notion to circular cone surfaces having
fixed axis direction. We believe that this step may provide useful hints for constructing
back-projections of more general conical projections occurring for example in Compton

1In two dimensions applications to emission imaging have been considered in [11]
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Figure 2. Cree-Bones Camera.

cameras, which is thought to be a future potential imaging tool for astronomy, industry
applications, homeland security and medical diagnosis. Due to the inherent geometrical
complexity of Compton camera data and in the absence of exact inversion formulas image
reconstruction of distributed sources may be attempted first by back-projection method
and later by adequate filtered back-projection. In new Compton cameras built on high
pressure gaseous scintillation chamber, the conical projections may depend on more than
three parameters and image reconstruction is performed mostly via back-projections [12].
We next show that this back-projection operation is globally represented by the adjoint
of the CRT. Following the approach detailed in [13, 14], for the convenience of the reader,
an inversion formula, which is a special case of the general results given in [10], is derived
and shown to appear in the form of a filtered back-projection procedure. This speaks
favorably for the design of efficient reconstruction algorithms as will be shown later.

The plan of this article is as follows. Section 2 introduces the CRT as resulting from
the working of the Cree-Bones camera. It gives the definition of the CRT, its Point
Spread Function and derives its analytic inversion formula. The next Section 3 is the
main section on the notion of back-projection and how it is formulated for the CRT via
an adjoint CRT as well as the occurrence of filters in the exact reconstruction formula
(see Section 4). Then numerical simulation results are presented and commented in the
following section. From a practical stand point, they are the necessary evidence which
prove the relevance and importance of theoretical results since practitioners rely on them
to build scanner prototypes. A conclusion closes the paper exposing some future research
perspectives based on the present work.

2. Image formation and the Conical Radon transform

2.1. Definition

This section describes the working context needed for later use. Some of the results
have appeared in the literature. The setup has been given in [9] for a slightly different
model in which no account of radiation spreading is made. The inversion results as well
as the expression of the Point Spread Function have been also obtained for this model
although through the method of harmonic circular components. Inversion results for more
generalized models are given in [10].

Consider the working of the Cree-Bones camera shown by Figure 2. A radiating site
V of an object emits isotropically radiation of calibrated energy E0. Some part of it hits

3
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the scattering detector at site D and then enters the collimator along its axis direction
which is perpendicular to the scattering detector, so that the scattering angle is ω. The
absorption detector, which stands behind the scattering detector and after the collimator,
is now set to register only scattered radiation of energy E(ω).

To write down the scattered flux density received by a site of the absorption detector,
we need the total incoming flux density at site D, before scattering and the expression
of the differential cross section of the Compton effect. This incoming flux density is due
to the contribution of all emitting sites V on the object that are located on a circular
cone of vertex D, of axis perpendicular to the detectors and of opening angle ω.

Let f(x, y, z) be a nonnegative and smooth function in R3, representing the radio-
activity density of the object, i.e. it is the density of radiation emitters in the object,
which is in upper half-space z > 0. In the coordinate system of Figure 3, [9], it can
be seen that the integral of f(x, y, z), called RCf(xD, yD, ω) (the subindex C refers to
the relevant cone and distinguish it from the classical Radon transform R), on all the
emitting sites V on the cone, is given by

RCf(xD, yD, ω) =

∫ ∞
0

∫ 2π

0
da f(xD + r sinω cosψ, yD + r sinω sinψ, r cosω)

1

r2
, (1)

where r = DV , da = r sinω dψ dr (the integration measure on the cone) and 1/r2

accounts for the photometric spreading of radiation from V to D.
Equation (1) defines RCf(xD, yD, ω) as the Conical Radon Transform (CRT) of

f(x, y, z). It is a function on E = R2× [0, π/2). From physical considerations, f(x, y, z) is
an integrable density on R2 × R+ with compact support. Nevertheless, RCf(xD, yD, ω)
does not have compact support on E . Recently Haltmeier in [10] has studied a more
general CRT with parameters (p, d), where d is the space dimension and p a variable
describing the radial behavior due to possible physical effects. Most importantly he has
established its analytic inverse. The case considered here corresponds to his CRT with
(p = 2, d = 3), which corresponds to an imaging system in real three dimensions in which
radiation undergoes the usual photometric spreading law. Some properties of the CRT
with (p = 0, d = 3) are analyzed in [9, 15].

O

V

y

z

x
ψ

ϖ

y

x D
D

D

Figure 3. Used coordinate system, see [9].
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2.2. Image of a point source or Point Source Function (PSF)

Proposition 2.1 The image of a unit point source is the kernel

K(xD, yD, ω|x, y, z) =
cosω

z2
δ(
√

(x− xD)2 + (y − yD)2 − z tanω). (2)

Proof. Equation (1) can be rewritten in terms of an integral on z = r cosω

RCf(xD, yD, ω) = sinω

∫ ∞
0

dz

z

∫ 2π

0
dψ f(xD + z tanω cosψ, yD + z tanω sinψ, z). (3)

We set in equation (3), f(x, y, z) = δ(x − x0) δ(y − y0) δ(z − z0) when the object is a
unit point source at site (x0, y0, z0). Then RCf(xD, yD, ω) = K(xD, yD, ω|x0, y0, z0), the
kernel of the CRT. Integration over z yields

K(xD, yD, ω|x0, y0, z0) =
sinω

z0

∫ 2π

0
dψ δ(x0−xD−z0 tanω cosψ) δ(y0−yD−z0 tanω sinψ).

(4)
We convert the two-dimensional cartesian delta function into two-dimensional polar delta
function according to

δ(ξ − ξ′)δ(η − η′) =
1√

ξ′2 + η′2
δ(
√
ξ′2 + η′2 −

√
ξ2 + η2) δ(θ − θ′),

where θ =argη/ξ and θ′ =argη′/ξ′.
To get the result we set

ξ = x0 − xD, ξ′ = z0 tanω cosψ

η = y0 − yD, η′ = z0 tanω sinψ.

Then we obtain

ρ =
√

(x0 − xD)2 + (y0 − yD)2 ρ′ = z0 tanω

θ = tan−1 y0 − yD
x0 − xD

θ′ = ψ.

Equation (4) becomes

K(xD, yD, ω|x0, y0, z0) =
sinω

z0

∫ 2π

0
dψ

1√
(x0 − xD)2 + (y0 − yD)2

δ(
√

(x0 − xD)2 + (y0 − yD)2 − z0 tanω) δ(θ − ψ).

The ψ-integration yields 1 and equation (2) is obtained since√
(x0 − xD)2 + (y0 − yD)2 = z0 tanω.

In fact, the presence of the delta function means that the two sets of coordinates
(x0, y0, z0) and (x, y, z) are related by an homogeneous equation. Thus given the point
source (x0, y0, z0), the variables in Radon space (xD, yD, ω) are linked the other by this

5



April 13, 2018 Inverse Problems in Science and Engineering IPSE˙Cebeiro˙Morvidone˙Nguyen

homogeneous equation. For fixed ω, we see that the point D = (xD, yD, 0) is on a circle
in the xOy plane of center (x, y, 0) and radius z0 tanω.

2.3. Inversion

Let f̂ be the Fourier transform on the first two variables of a function f , i.e.,

f̂(u, v, ·) =

∫
R

∫
R
dx dy f(x, y, ·)e−2iπ(ux+vy).

Theorem 2.2 The function f is reconstructed from the two-dimensional Fourier trans-
form of the data RCf by the following integral

f(x, y, z) =

2πz2

∫
R2

du dv e2iπ(xu+yv) (u2 + v2)

∫ π/2

0
dω

J0(2π tanω
√

(u2 + v2)z)

cos3 ω
R̂Cf(u, v, ω).

(5)

where J0(·) is the Bessel function of the first kind and order zero.

Proof. To get the inverse formula of the CRT, we take the Fourier transform of equation
(1) first and rewrite it in polar coordinates in order to convert it to a Hankel transform
of order zero, which is readily invertible.

We first apply the Fourier transform to both sides of equation (1). The left-hand-side

becomes R̂Cf(u, v, ω). We get for the right-hand-side

= sinω

∫ 2π

0
dψ

∫ ∞
0

dr

r∫
R

∫
R
dxD dyD f(xD + r sinω cosψ, yD + r sinω sinψ, r cosω) e−2iπ(uxD+vyD),

= sinω

∫ 2π

0
dψ

∫ ∞
0

dr

r

∫
R

∫
R
dx dy f(x, y, r cosω) e−2iπ(u(x−r sinω cosψ)+v(y−r sinω sinψ)),

= sinω

∫ 2π

0
dψ

∫ ∞
0

dr

r
f̂(u, v, r cosω) e2iπr sinω(u cosψ+v sinψ).

Now in Fourier space (u, v), we change to polar coordinates via u = q cosβ, v = q sinβ2.
Equation (1) reads now

R̂Cf(q, β, ω) = sinω

∫ 2π

0
dψ

∫ ∞
0

dr

r
f̂(q, β, r cosω) e2iπr sinω(q cosβ cosψ+q sinβ sinψ),

= 2π sinω

∫ ∞
0

dr

r
J0(2π qr sinω)f̂(q, β, r cosω),

2For the sake of readability, we keep the same name of the functions even after making a change of variables.
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where J0(·) is the Bessel function of order zero, given by the integral representation [16]

J0(x) =
1

2π

∫ 2π

0
dθ eix sin θ.

Changing to variables z = r cosω and t = tanω, for which sinω =
t√

1 + t2
, and

√
1 + t2

t
R̂Cf(q, β, ω) = 2π

∫ ∞
0

dz

z
J0(2πtzq) f̂(q, β, z). (6)

This is essentially the Hankel transform of
f̂(q, β, z)

z2
. By applying the so-called Hankel

identity [17], we obtain

f̂(q, β, z) = 2πq2z2

∫ ∞
0

t dt

√
1 + t2

t
J0(2πtzq) R̂Cf(q, β, t).

Finally, in order to recover f , we perform an inverse Fourier transform to this equation
and get

f(x, y, z) = 2π z2

∫ ∞
0

dt
√

1 + t2
∫ ∞

0
dq q3 J0(2π t z q)

∫ 2π

0
dβ e2iπq(x cosβ+y sinβ) R̂Cf(q, β, t).

Going back to variables u, v, ω, for which dt = dω/ cos2 ω, q =
√
u2 + v2 and q dβ dq =

du dv, we obtain the inversion formula of equation (5).

3. Alternative inversion of the CRT by conical back-projection

3.1. A heuristic discussion on projections and back-projections

As announced before, we wish to discuss in some details the notion of back-projection.
In some outstanding future imaging concepts, image reconstruction usually faces the
non-existence of analytic solutions. In this situation one may attempt a crude method
of reconstruction, which goes under the name of back-projection. The purpose of this
section is to analyze the very concept of back-projection in the widely known case of
classical Radon transform and see how it may be understood in the case of the CRT.
It is known that such an approach by back-projection is a very popular reconstruction
method, albeit approximate, for many imaging integral transforms, such as the one in
Compton Camera imaging.

3.1.1. Back-projection for the classical Radon transform R [18]

The notion of back-projection has its origin in the fact that the inverse formula of the
classical Radon transform can be put under the form of the so-called filtered back-
projection of the measured data, see for example [19]. The analytic reconstruction formula
of the classical Radon transform for a function f(x, y) may be put under the form of the
integral over the rotation angle φ of a function which depends uniquely on the expression
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(x cosφ+ y sinφ), i.e.

f(x, y) =
1

2π2

∫ π

0
dφ

∫ ∞
−∞

ds
1

(x cosφ+ y sinφ)− s
∂

∂s
Rf(s, φ). (7)

Such a function, for given φ takes clearly a constant value on lines perpendicular to the
direction specified by the angle φ.

The word projection in Computed Tomography should not be confused with the notion
of geometric projection in R2 of a point (or a figure) along a direction onto a line. Here it
means the registered cumulated (or integrated) values of a physical density along a line in
the plane at a point of this line. Generally the process of back-projecting this measured
value means a kind of ‘inversion’, which assigns this measured value to all points on the
measurement line. When this is done for all available projections in a given direction
(specified by the angle φ), a summation over all directions (which is sometimes called
a ‘summation image’ in [19]) is carried out, a ‘rough’ image of the density is obtained.
In fact this image suffers from artifacts and blurs. In some cases these reconstruction
defects can be removed by using appropriate filters. This is why this method is favored
as a first step in many imaging processes which do not have an analytic reconstruction
formula.

LetRf(s, φ) be the projection of some object density function f(x, y) along the straight
line L(s, φ), where s is the distance of the coordinate origin O to this line and φ is the
angle of the unit normal vector of the line with the axis Ox. Assigning the value Rf(s, φ)
to all points of the line L(s, φ), means to construct from Rf(s, φ) a function of (x, y),
which takes this value for all (x, y) ∈ L(s, φ). To achieve this goal, we use the canonical
equation of the line L(s, φ)

x cosφ+ y sinφ− s = 0, (8)

and construct the function Rf(x cosφ + y sinφ, φ), by putting s = x cosφ + y sinφ in
Rf(s, φ). It can be verified that this function satisfies all the wanted requirements, hence
the mapping

Rf(s, φ) → Rf(x cosφ+ y sinφ, φ), (9)

represents the back-projection of Rf(s, φ) on L(s, φ).

Conversely given a point (x, y) ∈ R2 and a specified value of φ, there is only one
projection line on which (x, y) is situated. Consequently for this point (x, y) and for
given φ, there corresponds only one projection Rf(s, φ), where s is the distance of the
origin to the projection line. If we put together all back-projections by summing on φ,
but keeping (x, y) fixed, we get the ‘summation image’ (or the ‘rough’ reconstruction) of
the density at (x, y), ∫ π

0
dφRf(x cosφ+ y sinφ, φ). (10)

3.1.2. Back-projection for the Conical Radon transform or RC
As stated in the introduction, a conical projection means the integral of a density
f(x, y, z) on the upper sheet of a circular cone with vertical axis (parallel to Oz), vertex
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at (xD, yD) in the xOy-plane and opening angle ω. So the measured quantity is the data
RCf(xD, yD, ω), a function of three variables in E = R2 × [0, π/2).

Back-projecting this measured value RCf(xD, yD, ω) on the measurement cone consists
in constructing a function of (x, y, z) from this data RCf(xD, yD, ω), such that, when the
running point (x, y, z) sits on the cone C, or (x, y, z) ∈ C, this function takes the value
RCf(xD, yD, ω). For this construction, we use the parametric equations of the cone C

x = xD + z tanω cosψ,

y = yD + z tanω sinψ,

z = z (11)

where ψ is given by

tanψ =
y − yD
x− xD

, (12)

and, similarly to equation (9), the mapping

RCf(xD, yD, ω)→RCf(x− z tanω cosψ, y − z tanω sinψ, ω)

= RCf(x− z tanω cos tan−1 y − yD
x− xD

, y − z tanω sin tan−1 y − yD
x− xD

, ω),

(13)

defines the back-projection of RCf(xD, yD, ω) on the cone C. It can be verified that this
function satisfies the requirement that it takes the value RCf(xD, yD, ω) at any point on
the upper sheet of the cone C.

Conversely given a point (x, y, z) ∈ R3 and a fixed value of ω, this point may be
found on an infinite number of circular cones of vertical axis, of opening angle ω and
of vertex (xD, yD, 0), which is on a circle Γ of center (x, y, 0) in the xOy-plane and of

radius ρ =
√

(xD − x)2 + (yD − y)2 = z tanω, see Figure 4. The position of the vertex
(xD, yD, 0) on this circle is given by the angle ψ. Therefore the point (x, y, z) ∈ R3 belongs
to an infinite set of conical projections parameterized by (ψ, ω) ∈ [0, 2π]× [0, π/2).

Hence in the back-projection process, with the aim to reconstruct the density f(x, y, z)
from the dataRCf(xD, yD, ω), one should take into account this full infinite set of conical
projections by an integration over ψ ∈ [0, 2π]

∫ 2π

0
dψRCf(x− z tanω cosψ, y − z tanω sinψ, ω). (14)

Then a second integration over ω ∈ [0, π/2), would yield the ‘summation image’, which
constitutes a ‘rough image’ reconstruction of the density f(x, y, z), i.e.

∫ π/2

0
dω

∫ 2π

0
dψRCf(x− z tanω cosψ, y − z tanω sinψ, ω). (15)

9
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Figure 4. Point source and circle Γ

3.2. The adjoint operator

In this section we discuss the role of the adjoint operator (for the classical Radon trans-
form as well as the conical Radon transform) in the back-projection operation. Broadly
speaking the adjoint operator of a linear operator is its transpose. It is related to the
dual of the same operator but a Hilbert structure on the space on which it acts must
be specified3. In the present context, the linear operators being given by their real delta
function kernels (such as (2)), we shall see how the adjoint operates on functions in image
spaces. First we review the case of the classical Radon transform before going to the case
of the conical Radon transform.

3.2.1. The classical Radon transform adjoint

As is well known the Radon transform maps functions in R2 to functions in E = R×[0, π],
via

Rf(s, φ) =

∫
R2

dx dy δ(x cosφ+ y sinφ− s) f(x, y). (16)

The adjoint R† is thus the mapping from functions in E = R× [0, π] to functions in R2,
via

R†g(x, y) =

∫
R×[0,π]

ds dφ δ(x cosφ+ y sinφ− s) g(s, φ). (17)

Integration on s yields directly the result of the back-projection described in the previous
subsection

R†g(x, y) =

∫ π

0
dφ g(x cosφ+ y sinφ, φ). (18)

3The difference between adjoint and dual is discussed in [20]

10



April 13, 2018 Inverse Problems in Science and Engineering IPSE˙Cebeiro˙Morvidone˙Nguyen

So the intuitive notion of back-projection has a natural mathematical realization as the
adjoint operator. More details on R† can be found in [18].

Suppose now that we take for Rf(s, φ) the classical Radon data for a point source at
(x0, y0) (or PSF), i.e.

Rf(s, φ) = δ(x0 cosφ+ y0 sinφ− s). (19)

It will be back-projected on the line L(s, φ) as g(x cosφ+ y sinφ, φ) = δ((x− x0) cosφ+
(y−y0) sinφ). The resulting ‘summation image’, obtained by applying the adjoint Radon
transform R†, is not a delta function, as expected, but the following function (see [19])∫ π

0
dφ δ((x− x0) cosφ+ (y − y0) sinφ) =

1√
(x− x0)2 + (y − y0)2

, (20)

which is clearly a ‘rough’ image of the delta function at (x0, y0).

3.2.2. The conical Radon transform adjoint

Let R†C be the adjoint of RC .

Proposition 3.1 The action of R†C on a function g(xD, yD, ω) can be readily computed
using the integral kernel of RC as

R†Cg(x, y, z) =
1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψ g(x− z tanω cosψ, y − z tanω sinψ, ω). (21)

Proof. By definition using the PSF kernel (equation (2)), we have

R†Cg(x, y, z) =∫
R2

dxD dyD

∫ π/2

0
dω

cosω

z2
δ
(√

(xD − x)2 + (yD − y)2 − z tanω
)
g(xD, yD, ω).

(22)

To calculate this integral we go to the variable t = tanω, which implies that dω =
dt/(1 + t2). Then denoting G(xD, yD, t) = g(xD, yD, ω), equation (22) becomes

R†Cg(x, y, z) =

1

z3

∫
R2

dxD dyD

∫ ∞
0

dt
1

(1 + t2)3/2
δ

(√
(xD − x)2 + (yD − y)2

z
− t

)
G(xD, yD, t).

(23)

The t-integration can be easily carried out, the result is

R†Cg(x, y, z) =
1

z3

∫
R2

dxD dyD

G

(
xD, yD,

√
(xD−x)2+(yD−y)2

z

)
(

1 + (xD−x)2+(yD−y)2

z2

)3/2
(24)

11
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The next step consists in setting polar coordinates in the plane with origin at (x, y), see
Figure 4, so that

x− xD = ρ cosψ

y − yD = ρ sinψ

dxD dyD = ρ dψ dρ. (25)

Equation (24) now reads

R†Cg(x, y, z) =
1

z3

∫ ∞
0

dρ ρ

∫ 2π

0
dψ

G(x− ρ cosψ, y − ρ sinψ, ρ/z)(
1 + ρ2

z2

)3/2
. (26)

Figure 4 shows precisely that ρ/z = tanω = t. This is a geometric relation which should
not be confused with the ω used in equation (21) as an integration variable in the

definition of R†C . Hence replacing ρ by zt in equation (26), we get the expected result
after going back to g(xD, yD, ω) via G(xD, yD, t) = g(xD, yD, ω).

Remark 3.2 If L2(R2 × R+) and L2(E) are real valued function spaces equipped with
their respective inner products

〈f, g〉 =

∫ ∞
0

dz

∫ ∞
−∞

∫ ∞
−∞

dx dy f(x, y, z) g(x, y, z),

[f, g] =

∫ ∞
−∞

∫ ∞
−∞

dxD dyD

∫ π/2

0
dω f(xD, yD, ω) g(xD, yD, ω), (27)

R† may be defined by [RCf, g] =
〈
f,R†Cg

〉
for all g ∈ L2(E) and all f ∈ L2(R2 × R+).

Proof.

[RCf, g] =

∫
R2

dxD dyD

∫ π/2

0
dω (RCf(xD, yD, ω)) g(xD, yD, ω),

=

∫
R2

dxD dyD

∫ π/2

0
dω sinω∫ 2π

0
dψ

∫ ∞
0

dr

r
f(xD + r sinω cosψ, yD + r sinω sinψ, r cosω)g(xD, yD, ω)

=

∫ ∞
0

∫
R

∫
R
dx dy

dz

z
f(x, y, z)

∫ π/2

0
dω sinω∫ 2π

0
dψ g(x− z tanω cosψ, y − z tanω sinψ, ω)

=
〈
f,R†Cg

〉
,

12
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where we have performed the change of variables
x = xD + r sinω cosψ

y = yD + r sinω sinψ

z = r cosω.

(28)

So the action of the adjoint R†C on g has the following expression

R†Cg(x, y, z) =
1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψ g(x− z tanω cosψ, y − z tanω sinψ, ω). (29)

Remark 3.3 It can be checked that the adjoint operator of the conical Radon transform
has the kernel given in proposition 2.1.

Proof. From equation (29), for an arbitrary function g(xD, yD, ω), we have

R†C g(x, y, z) =
1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψ g(x− z tanω cosψ, y − z tanω sinψ, ω).

For a point source at (x0, y0) with ω0, we have g(xD, yD, ω) = δ(xD − x0) δ(yD −
y0) 1

2π δ(ω − ω0). Thus R†Cg(x, y, z) is

=
1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψ δ(x− z tanω cosψ − x0)δ(y − z tanω sinψ − y0)

1

2π
δ(ω − ω0),

=
sinω0

2πz

∫ 2π

0
dψ δ(x− x0 − z tanω0 cosψ) δ(y − y0 − z tanω0 sinψ),

=
sinω0

2πz

∫ 2π

0
dψ

∫ ∞
−∞

du e2iπu(x−x0−z tanω0 cosψ)

∫ ∞
−∞

dv e2iπv(y−y0−z tanω0 sinψ),

=
sinω0

2πz

∫ 2π

0
dψ

∫ ∞
0

q dq

∫ 2π

0
dβ e2iπq cosβ(σ cos γ−z tanω0 cosψ) e2iπq sinβ(σ sin γ−z tanω0 sinψ),

=
sinω0

2πz

∫ 2π

0
dβ

∫ ∞
0

q dq e2iπ(q cosβ σ cos γ+q sinβ σ sin γ) 2π J0(2πqz tanω0),

=
sinω0

2πz
2π

∫ ∞
0

q dq 2π J0(2πqσ) J0(2πqz tanω0),

=
sinω0

z

δ(σ − z tanω0)

z tanω0
,

=
cosω0

z2
δ(
√

(x− x0)2 + (y − y0)2 − z tanω0).

The integration steps are shortened here.

4. Filters arising from exact inversion formulas

As noticed, reconstruction by simple back-projection does not lead to ‘clean’ images. To
eliminate imperfections filters are used. When exact analytic inversion formulas exists,

13
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one can show that some operations which precede the back-projection can actually be
interpreted as natural filters in the reconstruction process. We shall discuss successively
the cases of the classical Radon transform and the conical Radon transform. In general
in the absence of exact inversion formulas, the filtering operation is of importance for
numerical inversion, in particular in practical cases, see [21]. The question is how to
design the proper filters for a given reconstruction problem.

4.1. Case of the classical Radon transform R

As pointed out earlier, the exact inversion formula for the classical Radon transform,
appears as the back-projection not on the Radon dataRf(s, φ) but a particular transform
of the Radon data, i.e. ∫ ∞

0
ds

1

(x cosφ+ y sinφ)− s
∂

∂s
Rf(s, φ). (30)

This operation (Hilbert transform composed with s-derivative) may be viewed as a ‘filter-
ing’ process, which removes the imperfections inherent to the back-projection procedure.

4.2. Case of the conical Radon transform RC

Remark 4.1 Comparing the equations (15) and (21), expressing the back-projection
operation and the adjoint operation, we observe a slight difference: in the adjoint conical
Radon transform the integration on ω has a measure sinω/z. One may already say that
the adjoint action is a filtered back-projection with the filter sinω/z.

Proposition 4.2 The action of the conical Radon transform adjoint R†C on the conical
Radon transform data RCf(xD, yD, ω) is given by

R†CRCf(x, y, z) =

2π

z

∫ π/2

0
dω sinω

∫
R2

du dv e2iπ(ux+vy) J0(2π z tanω
√
u2 + v2) R̂Cf(u, v, ω).

(31)

Proof. Equation (21) allows to write

R†CRCf(x, y, z) =
1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψRCf(x− z tanω cosψ, y − z tanω sinψ, ω).

(32)
We now insert the Fourier representation of RCf(xD, yD, ω) with respect to the two first
variables in the previous equation

RCf(xD, yD, ω) =

∫
R2

du dv e2iπ(uxD+vyD) R̂Cf(u, v, ω). (33)

Performing the ψ-integration, we obtain the Bessel function J0(2π z tanω
√
u2 + v2) and

the expected result.

We are now in a position to write the exact inversion formula (5) under the form of the
action of the conical Radon transform adjoint on modified - or ‘filtered’ - conical Radon
transform data RCf(xD, yD, ω).

14
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Proposition 4.3 The exact inversion formula (5) may be rewritten as the conical
Radon transform adjoint of a filtered conical Radon transform data in Fourier space with
respect to the two first variables

z

sinω
z2 u

2 + v2

cos3 ω
R̂Cf(u, v, ω). (34)

The first filter is due to the structure of R†C and the second and third filter arise from the
exact inversion procedure.

Proof. Just take formula (5) and rearrange it in the form of equation (32) and collect
the remaining terms as filtered conical Radon transform data in the Fourier space of the
two first variables. As the adjoint form is related to the back-projection form, we have
obtained the filtered back-projection of the inversion formula.

5. Numerical Simulation Results

In this section we describe the numerical implementation of the forward CRT and the
inversion of the CRT using the filtered back-projection algorithm. Basically, the problem
consists in generating the data (i.e. projections of an object) and then applying the
proposed inversion algorithm in order to obtain reconstructions of the original object.
A 3D version of the Shepp-Logan brain phantom intended for medical imaging study
is used as the function to be reconstructed. Voxels in the phantom range values in the
interval [0, 1]. Figure 5 illustrates representative slices of the phantom, for the sake of
clarity only planes labeled by z = 6, 9, 12, 15, 18, 20, 23, 26, 29, 32, 35, 38, 41, 44, 46, 49, 52
and 55 out of 64 planes are shown. Additionally, an error analysis is carried out in order
to assess the quality of the results.

5.1. Discretization description

A three-dimensional medium of size N×N×N is discretized as follows: N = 64 (arbitrary
length unit), ∆x = ∆y = ∆z = 1, −32 ≤ x ≤ 31, −32 ≤ y ≤ 31 and 0 ≤ z ≤ 63. The
original object function is f(x, y, z). The detector array of size Nd ×Nd was discretized
using Nd = 160, ∆xD = ∆yD = 1, −80 ≤ xD ≤ 79, −80 ≤ yD ≤ 79. In this scheme
the central point in the detector plane (xD, yD) = (0, 0) coincides with the origin of
coordinates of the medium (x, y, z) = (0, 0, 0).

Both, the direct and inverse problems involve integrals (equations (1) and (21)) that
must be computed numerically. Summations corresponding to numerical integration are
carried out using the following steps: ∆r = 1.2 and ∆ψ = 0.01 rad (∼= 0.57◦, Nψ = 628).
When points in the summation grid do not fit those of the discrete medium, a linear
interpolation method is used to calculate the values of the function at the new positions.
Considering that the quality of reconstructions relies heavily on the data, care must be
taken in order to provide an adequate basis for the inverse operation. The dimensions
of the plane detector are important parameters. The support of the CRT defined by
equation (1) is not bounded, but this property is obviously lost when discretizing. In
the discrete version of the CRT, the far most point with non-zero value depends on
both the discretization of the projection angle and the size of the object under study.
In the scheme used, given that upper central points project to the external areas of the
projection plane, a truncation at the borders of the plane would reduce dramatically the
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Figure 5. Original 3D Shepp-Logan phantom used for simulations. From top to bottom and from left to right
planes with z = 6, 9, 12, 15, 18, 20, 23, 26, 29, 32, 35, 38, 41, 44, 46, 49, 52 and 55.

16



April 13, 2018 Inverse Problems in Science and Engineering IPSE˙Cebeiro˙Morvidone˙Nguyen

quality of the upper planes of the reconstructions. In practice, this problem is addressed
by using a square detector plane whose side is approximately three times larger than the
support of the medium (Nd

∼= 3N).
In order to reconstruct successfully a function of N3 values, there is one requirement

that must be fulfilled by the data. If there are N3 voxels for which the value has to be
determined, and since projections for a determined angle provide N2

d samples (detector

array of Nd ×Nd), at least N3

N2
d

angles will be needed to acquire enough data to solve for

the N3 unknowns. In numerical inversions of the classical Radon transform, the reduced
sampling density at the peripheral area of the plane is balanced by, at least, doubling
this number [22]. Sixty four angles (Nω = 64) were considered in the range [0, π2 ) leading
to an angular resolution of ∆ω = 0.0242 rad (∼= 2.21◦).

5.2. Projections

Projections are calculated using equation (1) that describes the signal measured in a
planar detector when it is exposed to scattered radiation under the hypothesis stated
in Section 2.1. The discrete implementation of the direct CRT is straightforward and
discretization parameters are discussed in Section 5.1. Figure 6 shows some images
of the conical projections of the Shepp-Logan phantom labeled by its corresponding
scattering angle. It can be seen that, for large angles, photons arrive at the borders of
the projection plane leaving the central area deserted.

5.3. Reconstruction algorithm by filtered back-projection

In the proposed method, filtering is performed in the Fourier domain according to the
formulas developed in Section 4.2. However, this process is not as straightforward as

the direct problem is. Even though R†C applied to the inverse Fourier transform of (34)
gives rise to an exact inversion formula of the CRT, its discrete implementation produces
an artefactual result as a consequence of the divergence by the numerator of the third
filter u2+v2

cos3 ω . This behaviour, also known in the case of the ramp filter of the classical
Radon transform, can be compensated by a convolution with a smoothing window using
a technique known as apodization. This extra smoothing filter, intended exclusively for
discrete reconstruction, is represented by W (u, v) in the Fourier domain and operates
together with the ones in equation (34). The global action of the four filters on the data
is described by:

z

sinω
z2u

2 + v2

cos3 ω
W (u, v)R̂Cf(u, v, ω) (35)

Figure 7 shows this implementation. The two-dimensional Fourier transform is applied to
every slice of the projection RCf(xD, yD, ω) labeled by the scattering angle ω. The result-

ing planes, R̂Cf(u, v, ω), are multiplied by the corresponding four filters in equation (35).
Finally the inverse Fourier transform is computed. The result is numerically integrated
twice in order to obtain the reconstruction of f(x, y, z): first in ψ (back-projection) and
then in ω (summation of back-projections). The integration step ∆ψ = 0.01 rad is chosen
as small as possible in order to reduce the artifacts produced by the discrete summation
when the algorithm of back-projection is applied.
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(a) w = 5◦ (b) w = 10◦

(c) w = 25◦ (d) w = 48◦

Figure 6. Conical projections of Shepp-Logan phantom at four different scattering angles ω.

Figure 7. Scheme of reconstruction.
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5.4. Smoothing windows

There are several one-dimensional windows widely used for filtering in the context of the
classical Radon transform: Shepp-Logan, Hamming, von Hann, cosine filters, etc. Here,
we define three windows to act as 2D filters in a 3D reconstruction according to formula
(35). These windows are defined as follows:

WH(u, v) =

{
0.54 + 0.46 cos(2π

√
u2 + v2),

√
u2 + v2 ≤ 0.5

0.54,
√
u2 + v2 > 0.5

(36)

WSL(u, v) =

{
sin(2π

√
u2+v2)

2π
√
u2+v2

,
√
u2 + v2 ≤ 0.5

0,
√
u2 + v2 > 0.5

(37)

Wcos(u, v) =

{
0.5
(

cos(2π
√
u2 + v2) + 1

)
,
√
u2 + v2 ≤ 0.5

0,
√
u2 + v2 > 0.5

(38)

where u and v are the variables of the 2D Fourier domain, (u, v) ∈ [−0.5, 0.5]×[−0.5, 0.5].

Figure 8 shows the product between the filter u2+v2

cos3 ω , with ω fixed to 0, and each of the
smoothing windows. Given that they can be rewritten as functions of the radial variable
ρ =

√
u2 + v2, all of them exhibit circular symmetry. While Shepp-Logan and cosine

windows reach zero values at high frequencies, Hamming window is never zero and, as
a consequence, the harmonic content of the functions filtered using it is expected to be
higher than the others.

5.5. Image reconstruction quality

In order to evaluate the quality of simulations we define two measures of the error NMSE
(Normalised Mean Square Error) and NASE (Normalised Mean Absolute Error) [23].

NMSE =
100

N3

∑N3

i=0

(
fi − f̃i

)2

maxi {fi}
(39)

NASE =
100

N3

∑N3

i=0 |fi − f̃i|
maxi {fi}

(40)

where f̃ and f are the reconstructed and reference functions respectively.

5.6. Image reconstruction results

Figure 9 shows the result of reconstructions using a cosine smoothing window. As in the
case of the original phantom, only planes z = 6, 9, 12, 15, 18, 20, 23, 26, 29, 32, 35, 38, 41,
44, 46, 49, 52 and 55 are exhibited. Table 1 shows NMSE and NASE for the smoothing
windows proposed in Section 5.4. Even though the errors are slightly bigger in the case
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(d) Smoothing with Shepp-Logan window.

Figure 8. The filter u2+v2

cos3 ω
(ω = 0) and its different smoothings.

Table 1. NMSE and NASE [%] for different re-

constructions from noiseless data.

SNR Shepp-Logan Hamming Cosine

NMSE 1.23 1.29 1.33
NASE 5.05 5.09 5.11

of the cosine window, visually the reconstructions are similar with the three windows.
Thus, we only show the results of the worst case which look already acceptable.

5.7. Reconstructions from noisy projections

The same procedure was applied to projections corrupted with additive gaussian noise
with Signal to Noise Ratios SNR = 30.4 dB and SNR = 40.3 dB. Measures of recon-
struction errors were NMSE = 1.36% and NASE = 6.39% for SNR = 30.4 dB and
NMSE = 1.34% and NASE = 5.36% for SNR = 40.3 dB. Figures 10 and 11 illustrate the
results.

6. Discussion

The inversion of the CRT transform by the filtered back-projection algorithm involves
the action of the filter u2+v2

cos3 ω . For fixed ω, this filter boosts high frequencies in the re-
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Figure 9. Reconstruction with cosine smoothing window (NMSE = 1.33% and NASE = 5.11%). The same layout
as in Figure 5.

21



April 13, 2018 Inverse Problems in Science and Engineering IPSE˙Cebeiro˙Morvidone˙Nguyen

Figure 10. Reconstruction with cosine smoothing window and white gaussian noise SNR = 40 dB (NMSE = 1.34%
and NASE = 5.36%). The same layout as in Figure 5.
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Figure 11. Reconstruction with cosine smoothing window and white gaussian noise SNR = 30 dB (NMSE = 1.46%
and NASE = 6.39%). The same layout as in Figure 5.

23



April 13, 2018 Inverse Problems in Science and Engineering IPSE˙Cebeiro˙Morvidone˙Nguyen

construction, so a convolution with different smoothing windows (cosine, Shepp Logan
or Hamming) is performed. Reconstructions from noiseless projections with apodization
exhibit a general good quality. The bounds of the object are well defined, the small struc-
tures inside are properly recovered and the contrast between different zones is conserved.
In what concerns figures of merit, Table 1 suggests that there is no significant difference
among the smoothing windows. Figure 10 indicates that the results are acceptable for
very low levels of noise. Nevertheless, for higher levels of noise (Figure 11), a denoising
technique should be applied beforehand in order to obtain appropriate data for recon-
struction. Regarding the reconstruction of the different slices of the phantom, the error
in upper planes tends to be larger. This effect is explained by the fact that, for a given
angle, photons emitted in the upper part of the medium arrive at the external parts of
the detector that were not considered in the discretization (see the explanation of the
truncation in Section 5.1). This problem could be addressed by expanding the planar
detector.

7. Conclusion and perspectives

In this work we have shown that the concept of back-projection which has emerged from
the study of the classical Radon transform can be applied to Radon transforms on a
special class of circular cone surfaces. By means of appropriate filtering, this procedure
leads to an inversion formula which is identical to the one derived analytically. We have
illustrated this fact by constructing efficient reconstruction algorithms dictated by this
approach and have shown its image quality on numerical simulations. This result suggests
to test this procedure on other emission imaging such as [23], for which both exact and
numerical results are known and propose further extensions in more complicated imaging
conical Radon transforms which do not have exact analytic inverses.
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