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Abstract

In this paper, we show that the central limit theorem (CLT) satisfied by the data-driven Multidimensional
Increment Ratio (MIR) estimator of the memory parameter d established in Bardet and Dola (2012) for
d € (—0.5,0.5) can be extended to a semiparametric class of Gaussian fractionally integrated processes with
memory parameter d € (—0.5,1.25). Since the asymptotic variance of this CLT can be estimated, by data-driven
MIR tests for the two cases of stationarity and non-stationarity, so two tests are constructed distinguishing the
hypothesis d < 0.5 and d > 0.5, as well as a fractional unit roots test distinguishing the case d = 1 from the
case d < 1. Simulations done on numerous kinds of short-memory, long-memory and non-stationary processes,
show both the high accuracy and robustness of this MIR estimator compared to those of usual semiparametric
estimators. They also attest of the reasonable efficiency of MIR tests compared to other usual stationarity tests

or fractional unit roots tests.

Keywords: Gaussian fractionally integrated processes; semiparametric estimators of the memory parameter;

test of long-memory; stationarity test; fractional unit roots test.

1 Introduction

The set I(d) of fractionally integrated stochastic process X = (Xj)rez was defined and used in many articles (see for

instance, Granger and Joyeux, 1980). Here we consider the following spectral version of this set for —0.5 < d < 1.5:

Set I(d): X = (Xi)iez is a stochastic process and there exists a continuous function f* : [—m,m] — [0,00]

satisfying:

1. if 0.5 < d < 0.5, X is a stationary process with a spectral density f satisfying f(A) = |\ 72Lf*(\) for all
A€ (—m,0)U (0,7), with f*(0) > 0.

2. if05<d< 15, U= (U)tez = (Xt — Xi—1)tez is a stationary process with a spectral density f satisfying
FO) = [A2724f*(N) for all X € (—m,0) U (0,7), with f*(0) > 0.

The case d € (0,0.5) is the case of long-memory processes, while —0.5 < d < 0 corresponds to short-memory pro-

cesses while 0.5 < d < 1.5 corresponds to non-stationary processes having stationary increments. ARFIMA(p, d, q)



processes (which are linear processes), as well fractional Gaussian noises (with parameter H = d+ 1/2 € (0,1))
or fractional Brownian motions (with parameter H = d — 1/2 € (0,1)) are famous examples of processes satisfy-
ing Assumption I(d). The purpose of this paper is twofold: firstly, we establish the consistency of an adaptive
data-driven semiparametric estimator of d for any d € (—0.5,1.25). Secondly, we use this estimator to build new

stationarity and fractional unit roots semiparametric tests.

Numerous articles have been devoted to the estimation of d in the case d € (—0.5,0.5) only. The books of
Beran (1994) and Doukhan et al. (2003) provide large surveys of such parametric estimators (as maximum like-
lihood or Whittle estimators) or semiparametric estimators (as local Whittle, log-periodogram or wavelet based
estimators). Here we will focus on the case of semiparametric estimators of processes satisfying Assumption I(d).
Even if first versions of local Whittle, log-periodogram and wavelet based estimators are considered in the case
d < 0.5 only (see for instance Robinson, 1995a and 1995b, Veitch et al., 2003) , new extensions have been provided
to estimate d when d > 0.5 also (see for instance Hurvich and Ray, 1995, Velasco, 1999a, Velasco and Robinson,
2000, Moulines and Soulier, 2003, Shimotsu and Phillips, 2005, Giraitis et al., 2003, 2006, Abadir et al., 2007 or
Moulines et al., 2007). Moreover, adaptive data-driven versions of these estimators have been defined to avoid any
trimming or bandwidth parameters, generally required by these methods (see for instance Giraitis et al., 2000,
Moulines and Soulier, 2003, Veitch et al., 2003, or Bardet and Bibi, 2012). The first objective of this paper is to
propose for the first time an adaptive data-driven estimator of d satisfying a CLT, providing confidence intervals or
tests, that is valid for d < 0.5 but also for d > 0.5. This objective is achieved by using Multidimensional Increment
Ratio (MIR) statistics.

The original version of the Increment Ratio (IR) statistic was defined in Surgailis et al. (2008) from an observed

trajectory (Xi,...,Xn) of a process X satisfying I(d) and for any ¢ € N* as:

k40 k+¢ k+2¢ k+2¢
s | Do X 20 Xk 3D X 3 X
1 t=k+1 t=k+1 t=k+04+1 t=k+04+1
IRn(f) = N _3¢ Z kit fte fot20 fot+20 : (1.1)
SHD SRR SETRID S S0
t=k+1 t=k+1 t=k+0+1 t=k+0+1

Under conditions on X, if £ — oo and N/¢ — oo, it is proved that the statistics IRy (¢) converges to a determin-
istic monotone function Ag(d) on (—0.5,1.5) and a CLT is also established for d € (—0.5,0.5) U (0.5,1.25) when
¢ is large enough with respect to N. As a consequence of this CLT and using the Delta-method, the estimator
dy(0) = Ay (IRN(€)), where d +— Ag(d) is a smooth and increasing function defined in (2.6), is a consistent
estimator of d satisfying also a CLT (see more details below). However this new estimator was not totally sat-
isfying. Firstly, it requires the knowledge of the second order behavior of the spectral density, which is clearly
unknown in practice, to select £. Secondly, its numerical accuracy is reasonable but clearly lower than those of
local Whittle or log-periodogram estimators. As a consequence, in Bardet and Dola (2012), we built a data-driven
Multidimensional IR (MIR) estimator J;HR) computed from (EN (£1),--- Ly (¢p)) (see its precise definition in
(3.2)) improving both these points but only for —0.5 < d < 0.5. This is an adaptive data-driven semiparametric
estimator of d achieving the minimax convergence rate (up to a multiplicative logarithm factor) and requiring no
regulation of any auxiliary parameter (as bandwidth or trimming parameters). Moreover, its numerical perfor-
mances are comparable to the ones of local Whittle, log-periodogram or wavelet based estimators.

Here we extend this previous work to the case 0.5 < d < 1.25. Hence we obtain a CLT satisfied by [iT]\],WR) for
all d € (—0.5,1.25) with an explicit asymptotic variance depending on d only. This especially allows to obtain
confidence intervals of d using Slutsky Lemma. The case d = 0.5 is now studied and this offers new perspectives:
our data-driven estimator can be used for building a stationarity (or non-stationarity) test since 0.5 is the “border
number” between stationarity and non-stationarity. The case d = 1 is also now studied and it provides another

application of &T]\],WR) to test fractional unit roots, that is to decide between d =1 and d < 1.



There exist several famous stationarity (or non-stationarity) tests. We may cite parametric tests defined by Elliott
et al. (1996) or Ng and Perron (1996, 2001). For non parametric stationarity tests we may cite the LMC test (see
Leybourne and McCabe, 2000) and the KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test (see Kwiatkowski et al.,
1992), improved by the V/S test (see Giraitis et al., 2003). For non-stationarity tests we may cite the Augmented
Dickey-Fuller test (see Said and Dickey, 1984) and the Philipps and Perron test (PP test in the sequel, see Philipps
and Perron, 1988). All these tests are unit roots tests (except the V/S test which is also a short-memory test),
which are, roughly speaking, tests based on the model X; = p X;_1 + ¢; with |p| < 1. A right-tailed test d > 0.5
for a process satisfying Assumption I(d) is therefore a refinement of a basic unit roots test since the case p =1 is
a particular case of (1) and the case |p| < 1 a particular case of I(0). Thus, a stationarity (or non-stationarity
test) based on the estimator of d provides a useful complementary test to usual unit roots tests.

This principle of stationarity test linked to d has been already investigated in many articles. We can cite Robinson
(1994), Tanaka (1999), Ling and Li (2001), Ling (2003) or Nielsen (2004). It also be used to define fractional unit
roots tests, like the Fractional Dickey-Fuller test defined by Dolado et al. (2002) or the cointegration rank test
defined by Breitung et al. (2002). However, all these papers provide parametric tests, with a specified model (for
instance ARFIMA or ARFIMA-GARCH processes). Extensions proposed by Lobato an Velasco (2007) and Dolado
et al. (2008) allow to extend these tests to I(d) processes with ARMA component but requiring the knowledge
of the order of this component. Several papers have been recently devoted to the construction of semiparametric
tests, see for instance Giraitis et al. (2006), Abadir et al. (2007) or Surgailis et al. (2008). But these semipara-
metric tests require the knowledge of the second-order expansion of the spectral density at the zero frequency for
adjusting a trimming or a bandwidth parameter; an a priori choice of this parameter always implies a bias of the
estimator and therefore of the test when this asymptotic expansion is not smooth enough.

The MIR estimator CAZ(]\I,LHR) does not present this drawback. It converges to d following a CLT with minimax
convergence rate without any a priori choice of a parameter. This result is established for time series belonging to
the Gaussian semiparametric class IG(d, 8) defined below (see the beginning of Section 2) which is a restriction
of the general set I(d). As a consequence, we construct a stationarity test S ~ which accepts the stationarity
assumption when &(]\I,WIR) < 0.5+ s with s a threshold only depending on the type I error test, tfi\(]\I,LHR) and N. A

non-stationarity test TVN accepting the non-stationarity assumption when cAl(J\],w IR)

CAl(J\JIWIR)

> 0.5 — s is also proposed. By
the same principle, also provides a fractional unit roots test Fy for deciding between d =1 and d < 1, i.e.
whether Fy > 1 — s or not, where s’ is a threshold depending on the type I error test. -

In Section 5, numerous simulations are realized on several models of time series (short and long-memory processes).
First, the new MIR estimator &(MIR)

several values of d € (—0.5,1.25). The performances of

is compared to the most efficient and famous semiparametric estimators for
cAlw IR) are convincing: this estimator is accurate and ro-
bust for all the considered processes and is globally as efficient as local Whittle, log-periodogram or wavelet based
estimators. Secondly, the new stationarity S ~ and non-stationarity TN tests are compared to the most famous
unit roots tests (KPSS, V/S, ADF and PP tests) for numerous I(d) processes. And the results are quite surprising:
even on AR(1) or ARIMA(1,1,0) processes, Sy and T tests provide convincing results which are comparable
to those obtained with ADF and PP tests while those tests are especially built for these specific processes. For
long-memory processes (such as ARFIMA processes), the results are clear: S '~ and TN tests are accurate tests
of (non)stationarity while ADF and PP tests are only helpful when d is close to 0 or 1. Concerning the new
MIR fractional unit roots test F 'V, it provides satisfying results for all considered processes, while fractional unit
roots tests such as the fractional Dickey-Fuller test developed by Dolado et al. (2002) or the efficient Wald test
introduced by Lobato and Velasco (2007) are respectively only performing for ARFIMA(0, d, 0) processes or a class
of long-memory processes containing ARFIMA (p, d, 0) processes but not ARFIMA(p, d, q) processes with ¢ > 1.

The forthcoming Section 2 is devoted to the definition and asymptotic behavior of MIR estimators of d and



Section 3 studies an adaptive MIR estimator. The stationarity and non-stationarity tests are presented in Section
4 while Section 5 deals with the results of simulations, Section 6 provides conclusive remarks and Section 7 contains

all the proofs.

2 The Multidimensional Increment Ratio statistic

Now we consider a semiparametric class IG(d, 8) which is a refinement of the general class I(d). For —0.5 < d < 1.5
and 8 > 0 define:

Assumption IG(d,8): X = (Xi)iez is a Gaussian process such that there exist € > 0, ¢co > 0, ¢ > 0 and
c1 € R satisfying:

1. if d < 0.5, X is a stationary process with a spectral density f satisfying for all X € (—m,0) U (0,7)

FO) = o\ 72 + e [A T2 L O(IA|72HPHE) and  [f/(A)] < cp AL (2.1)

2. if 0.5 <d< 1.5, U= U)tez = (Xt — Xi—1)tez 18 a stationary process with a spectral density f satisfying
for all A € (—m,0) U (0,7)

FO) = o AP+ [ APT2H - O(IAP2HPHE) and [ f/(A)] < ¢y A2 (2.2)

Note that Assumption IG(d, 8) is a particular (but still general) case of the set I(d) defined above.

Remark 1. e The extension of the definition from d € (—0.5,0.5) to d € [0.5,1.5) is classical since the

conditions on the process is replaced by conditions on the process’ increments.

e The condition on the deriwative f' is not really usual. However, this is not a very restrictive condition since

it is satisfied by all the classical long-range dependent processes.

o [In the literature, all the theoretical results concerning the IR statistic for time series have been obtained under
Gaussian assumptions. In Surgailis et al. (2008) and Bardet and Dola (2012), simulations exhibited that the
obtained limit theorems should be also valid for linear processes. However a theoretical proof of such result
would require limit theorems for functionals of multidimensional linear processes difficult to be established,
even if numerical experiments seem to show that this assumption could be replaced by the assumption that X

is a linear process having a fourth-moment order like it was done in Giraitis and Surgailis (1990).

In this section, under Assumption IG(d,3), we establish central limit theorems which extend to the case d €
[0.5,1.25) those already obtained in Bardet and Dola (2012) for d € (—0.5,0.5). Let X = (Xj)ren be a process
satisfying Assumption IG(d, 8) and (X1, -+, Xn) be a path of X. The statistic IRy (see its definition in (1.1))
was first defined in Surgailis et al. (2008) as a way to estimate the memory parameter. In Bardet and Surgailis
(2011) a simple version of IR-statistic was also introduced to measure the roughness of continuous time processes,
and its connection with level crossing index by geometrical arguments. The main interest of such a statistic is to

be very robust to additional or multiplicative trends.

As in Bardet and Dola (2012), let m; = jm, j = 1,---,p with p € N* and m € N*, and define the random
vector (IRn(m;j))i1<j<p- In the sequel we naturally extend the results obtained for m € N* to m € (0, 00) by the
convention: (IRn(jm))1<j<p = (IRn(j[m]))1<j<p (which does not change the asymptotic results).

For H € (0,1), let By = (Bu(t))ier be a standard fractional Brownian motion, i.e. a centered Gaussian process

having stationary increments and such as Cov(Bpg(t), Bp(s)) = 3 (|t]* +[s[* — |t — s|*!). Now, using obvious



modifications of Surgailis et al. (2008), for d € (—0.5,1.25) and p € N*, define the stationary multidimensional
centered Gaussian processes (Zc(ll)(T), . ,Zc(lp) (7)) such as for 7 € R,

2d(2d + 1
< d(+o 5+ ) (Bd70.5(7 +543j) — Bios(1 +5))ds if d € (0.5,1.25)
Z;J)(T) = \/|47 . (2.3)
|4d+0 54 (Ba+0.5(T 4 2§) = 2 Bago.5(1 4 j) + Bato.s(r)) if d € (—0.5,0.5)

Using a continuous extension when d — 0.5 of the covariance of Zc(lj ) (1), we also define the stationary multidimen-

sional centered Gaussian processes (Z(()lg (1), -, Z(()I_) g (7)) with covariance such as:
() 1 _ . o
Cov( (0) Zgs(1)) = TTog2 (—h(r+i—j)+h(r+i)+h(r —j)—h(r)) forT€R,

where h(z) = 1 (Jz —1|?log |z — 1|+ |z + 1|? log |2 + 1| — 2|z|* log |z|) for = € R, using the convention 0 x log0 = 0.
Now, we establish a multidimensional CLT satisfied by (IRn(jm))i<j<p for all d € (—0.5,1.25):

Proposition 1. Assume that Assumption IG(d, 3) holds with —0.5 < d < 1.25 and 8 > 0. Then

N . .
Vo (FBNGm) = BIRNGm)]) 5 N(O.Ty(d) (24)
with T'p(d) = (04,;(d))1<4,j<p where fori,je{1,...,p},
() = /°° cox 12O + 200 12 () + 20 (7 + J)] )ir 25)
©J T i YN i i . : :
—xo MZP O+ 1290129 ()] + 129 (7 + )]

The proof of this proposition as well as all the other proofs can be found in Section 7.

In the sequel, we will assume that I',(d) is a positive definite matrix for all d € (—0.5,1.25). Extensive numerical
experiments seem to give strong evidence of such a property. Now, the CLT (2.4) can be used for estimating d.

To begin with,

Property 2.1. Let X satisfy Assumption IG(d, ) with 0.5 < d < 1.5 and 0 < § < 2. Then, there exists a
non-vanishing constant K(d, ) depending only on d and B such that for m large enough,

] Ao(d) + K(d, B) x m™P (1 +0(1)) if B<1+2d
B[R (m)] = { Ao(d) + K(0.5,8) x m™2logm (1+0(1)) if =2 and d=0.5

4d+1.5 _ 9d+0.5 -7

for 05<d< 15

. — 4d105
with  Ao(d) = A(p(d)) where p(d):= 9102'(;((%) 4 ) (2.6)
8Tog(2) for d=10.5
2 14 7’ 1 /14 T
N - = < :
and A(r) - arctan — 7T T T 1 e for |r| < 1. (2.7)

Therefore by choosing m and N such as (\/N m) m~Plogm — 0 when m, N — oo, the term E[IR(jm)} can be
replaced by Ag(d) in Proposition 1. Then, using the Delta-method with the function (;)1<i<p — (A ' (2:))1<i<p
(the function d € (—0.5,1.5) — Ag(d) is a C* increasing function), we obtain:

Theorem 1. Let EN(j m) = Aal(IRN(j m)) for 1 < j < p. Assume that Assumption IG(d,3) holds with
0.5<d<1.25and0< B <2. Then if m ~C N with C >0 and (1+28)"! <a <1,

\/g(JN(jm)d)KM = N (0,(A5(@) 7 Ty(d) ). (2.8)



This result is an extension to the case 0.5 < d < 1.25 from the case —0.5 < d < 0.5 already obtained in Bardet
and Dola (2012). Note that the consistency of C/Z\N (jm) is ensured when 1.25 < d < 1.5 but the previous CLT does

not hold (the asymptotic variance of 1/% dy (jm) diverges to oo when d > 1.25, see Surgailis et al., 2008).

Now define R R
S (m) = (Ay(dn (m)) 2 Tp(dn (m)). (2.9)

The function d € (—0.5,1.5) — o(d)/A’(d) is C* and therefore, under assumptions of Theorem 1,

Sn(m) 25 (Ap(d)"2Tp(d).

N—o0

Thus, a pseudo-generalized least square estimation (PGLSE) of d can be defined by

~ a —1 . \—1 a —1,5
dy(m) = (JF(En(m)) Jp) 7 (En(m)  (dv(mi)), e,

with J, := (1)1<j<p, and denoting JZI its transpose. From a Gauss-Markov Theorem type (see again Bardet and

Dola, 2012), the asymptotic variance of d(m) is smaller than the one of any dy(jm), j = 1,...,p. Hence, we

obtain under the assumptions of Theorem 1:

\/;(JN(m) —d) = /\/(0, Ay(d)=2 (J7 r;l(d)Jp)*l). (2.10)

N —oc0

3 The adaptive data-driven version of the estimator

Theorem 1 and CLT (2.10) require the knowledge of 8 to be applied. But in practice 8 is unknown. The procedure
defined in Bardet and Bibi (2012) or Bardet and Dola (2012) can be used for obtaining a data-driven selection of
an optimal sequence (my) derived from an estimation of 5. Since the case d € (—0.5,0.5) was studied in Bardet
and Dola (2012) we consider here d € [0.5,1.25) and for a € (0, 1), define

QN(O(, d) = (gl\N(.j Na) - JN(NO‘))ISJ‘SP (iN(Na))_l (gl\N(J Na) - JN(NO‘))lgjgp’ (31)

which corresponds to the sum of the pseudo-generalized squared distance between the points (C/Z\N ( N*)),; and
PGLSE of d. Note that by the previous convention, dy(j N®) = dy(j [N®]) and dy(N®) = dy(I[N®]). Then

Qn(a) can be minimized on a discretization of (0,1) and define:

2 3 1og[N/p]}
logN "logN’ "7 logN I

ay = ArgminaeAN@N(a) with Ay = {

Remark 2. The choice of the set of discretization Ay is implied by our proof of convergence of an. If the interval
(0,1) is stepped in N°¢ points, with ¢ > 0, the used proof cannot attest this convergence. However log N may be
replaced in the previous expression of An by any negligible function of N compared to functions N°¢ with ¢ > 0
(for instance, (log N)® or alog N with a >0 ).

From the central limit theorem (2.8) one deduces the following limit theorem:

Proposition 2. Assume that Assumption IG(d, B) holds with 0.5 < d < 1.25 and 0 < 8 < 2. Then,

Finally define

6 an log log N

My = NON ith ay:=a —
mN W ON = ON TN —an) | log N



and the estimator
AR = dy () = dy (NOY). (3.2)

(the definition and use of ay instead of &y are explained just before Theorem 2 in Bardet and Dola, 2012). The

following theorem provides the asymptotic behavior of the estimator cZ(J\J,W IR,

Theorem 2. Under assumptions of Proposition 2,

N =R c AT O—2 (7T el -1
(VT =) S N (05 857 (I T ) ) (3.3)
5
2(1+3p) N8 ~MIR) P
M . —d .
oreover, Yp > w—253" (ogN) | N | N:; 0

CAZE\I,VHR) is the same (up to a multiplicative logarithm factor) than the one of minimax

The convergence rate of
estimator of d in this semiparametric framework (see Giraitis et al., 1997). As it was already established in
Surgailis et al. (2008), the use of IR statistics confers a robustness of J;HR) to smooth additive or multiplicative

tfi\(]\I,VHR) with respect to other

trends (see also the results of simulations thereafter). The additional advantage of
adaptive estimators of d (see Moulines and Soulier, 2003, for an overview over frequency domain estimators of d)
is the central limit theorem (3.3) satisfied by cAl(]\]y IR) " This central limit theorem provides asymptotic confidence
intervals on d which are unobtainable for instance with FEXP or local periodogram adaptive estimator (see
respectively Iouditsky et al., 2001, and Giraitis et al., 2000 or Henry, 2007). Moreover &(J\J,w '®) can be used for
d € (—0.5,1.25), i.e. as well for stationary and non-stationary processes, without modifications in its definition.

Both these advantages allow to define stationarity and fractional unit roots tests based on CAZ(AI,VHR).

4 Stationarity, non-stationarity and fractional unit roots tests

Assume that (X3,..., Xy) is an observed trajectory of a process X = (Xj)rez. We define here new stationarity,

non-stationarity and fractional unit roots tests for X based on CAZ(]\],WR).

4.1 A stationarity test

There exist many stationarity and non-stationarity tests. The most famous stationarity tests are certainly the

following unit roots tests:
e The KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test (see Kwiatkowsli et al., 1992);

o The V/S test (see its presentation in Giraitis et al., 2001) which was first defined for testing the presence of
long-memory versus short-memory. As it was already notified in Giraitis et al. (2003-2006), the V/S test is
also more powerful than the KPSS test for testing the stationarity.

e A test based on unidimensional IR statistic and developed in Surgailis et al. (2008).
More precisely, we consider here the following statistical hypothesis test:

e Hypothesis Hy (stationarity): (X;):ecz is a process satisfying Assumption IG(d, 3) with d € (—0.5,0.5) and
0<pB<2.

e Hypothesis H; (non-stationarity): (Xi)iez is a process satisfying Assumption IG(d, 8) with d € [0.5,1.25)
and 0 < 8 < 2.



We use a test based on cAl(]\]y IR) for deciding between both these hypothesis. Hence from the previous CLT (3.3)

and with a significance level «, define

SN = 1$J\§VIIR)>O.5+UP(O.5) di-a N(aNfl)/z’ (41)

—1\1/2
where 0,(0.5) = (/\’0(0.5)*2 (JTT,1(0.5)J,) 1) (see (3.3)) and q1_4 is the (1 — ) quantile of a standard Gaus-
sian random variable N(0,1).

Then we define the following rules of decision:

” Hy (stationarity) is accepted when Sy =0 and rejected when Sy =17

Remark 3. In fact, the previous stationarity test Sy defined in (4.1) can also be seen as a semiparametric test
d < dy versus d > doy with dg = 0.5. It is obviously possible to extend it to any value dy € (—0.5,1.25) by defining

o(d

S](VO) = 1‘(A41R) (Gy—1)/2"
dy >do+op(do) g1—a NEN

unit roots test.

The particular case dg = 1 will be considered thereafter as a fractional

From previous results, it is clear that:

Property 1. Under Hypothesis Hy, the asymptotic type I error of the test §N is a and under Hypothesis Hy, the
test power tends to 1.

Moreover, this test can be used as a unit roots (UR) test. Indeed, define the following typical problem of UR
test. Let X; = at + b+ &, with (a,b) € R?, and g; an ARIMA(p, d, q) with d = 0 or d = 1. Then, a (simplified)
problem of a UR test is to decide between:

o HYE: d =0 and (&) is a stationary ARMA(p',q’) process.
o HVE: d =1 and (e; — &,_1); is a stationary ARMA(p', ¢') process.
Then,
Property 2. Under Hypothesis HY R, the type I error of this unit roots test problem using Sy decreases to 0 when
N — oo and under Hypothesis H{'T, the test power tends to 1.
4.2 A non-stationarity test

Unit roots tests are also often used as non-stationarity test. Hence, between the most famous non-stationarity

tests and in a nonparametric framework, consider
e The Augmented Dickey-Fuller (ADF) test (see Said and Dickey, 1984);
e The Philipps and Perron (PP) test (see for instance Phillips and Perron 1988).
S(MIR)

Using the statistic dy we propose a new non-stationarity test Ty for deciding between:

e Hypothesis Hj (non-stationarity): (X;)icz is a process satisfying Assumption IG(d, 8) with d € [0.5,1.25)
and § € (0,2].

e Hypothesis H| (stationarity): (X¢):ez is a process satisfying Assumption IG(d, 8) with —0.5 < d < 1/2 and
B € (0,2].

Then, the decision rule of the test under the significance level « is the following:

"Hypothesis H|, is accepted when TN = 1 and rejected when TN =0



where

TN = 1&(]\1{\41R)<0.570_p(0v5) 0o NGy -D/2" (4.2)
Then,

Property 3. Under Hypothesis H{, the asymptotic type I error of the test fN is « and under Hypothesis Hy the

test power tends to 1.

As previously, this test can also be used as a unit roots test where X; = at + b+ &, with (a,b) € R?, and &; an
ARIMA(p,d, q) with d = 0 or d = 1. We consider here a “second” simplified problem of unit roots test which is
to decide between:

o HUR: d=1and (g — &, 1), is a stationary ARMA(p/, ¢) process.
o HUR': =0 and (g); is a stationary ARMA(p/, ¢') process.
Then,
Property 4. Under Hypothesis Hé]R/, the type I error of the unit roots test problem using Ty decreases to 0 when
N — 0o and under Hypothesis HlUR/ the test power tends to 1.
4.3 A fractional unit roots test

Fractional unit roots tests have also been defined for specifying the eventual long-memory property of the process

in a unit roots test. In our Gaussian framework, they consist on testing

e Hypothesis HI'V: (X;)iez is a "random walk”-type process such as:

Xt = Xt—l + Uy (43)

with (ut): a process satisfying Assumption IG(0, 5) with 0 < 8 < 2. Therefore (X;) is a process satisfying
Assumption IG(1, B).

e Hypothesis Hf'UR : (X;);ez is a process satisfying the following relation:

X; =X 14+ oA X, | +uy (4.4)

where (u;); is a process satisfying Assumption IG(0,3) with 0 < 3 < 2, ¢ < 0, and A% is the fractional

integration operator of order 0 < d; < 1, i.e. ANX, | = S mi(dy)Xs—1—i and m;(dy) = (i — di)(T(i +
-1

DP(—dy) "

After computations, it follows that if X satisfies (4.4), then X satisfies Assumption IG(dy, 3). There exist several
fractional unit roots tests (see for example, Robinson, 1994, Tanaka, 1999, Dolado et al., 2002, or more recently,
Kew and Harris, 2009). It is clear that the estimator CAZ%VHR) can be used in such a framework for testing fractional
unit roots by comparing CAZE\I,VHR) to 1. Hence, the decision rule of the test under the significance level « is the

following:
"Hypothesis HI'UR is accepted when F v = 1 and rejected when F N =107

where

FN = ]_dﬁjévUR)>1_Up(1) o N@EN-1)/2" (45)

Then as previously

Property 5. Under Hypothesis HYVE, the asymptotic type I error of the test Fy is a and under Hypothesis
HEUR the test power tends to 1.



5 Results of simulations

5.1 Numerical procedure for computing the estimator and tests

First of all, softwares used in this Section are available on http://samm.univ-parisl.fr/-Jean-Marc-Bardet

with a free access on (in Matlab language).

The concrete procedure for applying the MIR-test of stationarity is the following;:

1. using additional simulations (performed on ARMA, ARFIMA, FGN processes and not presented here in
order to avoid overloading the paper), we have observed that the value of the parameter p is not really
important with respect to the accuracy of the test (there are less than 10% of fluctuations on the value of
cAl(J\],w IR) yhen p varies). However, for optimizing our procedure (in the sense of minimizing from simulation

the mean square error of the d estimation) we chose p as a stepwise function of N:
P =5 X1gn<120; + 10 X Li190<n<g00y + 15 X Ligoo<n<10000} + 20 X 1{nN>10000}-

2. as the values of 0,,(0.5) and o,(1) are essential for computing the thresholds of the tests, we have estimated

them and obtained:
e 05(0.5) ~ 0.9082, 010(0.5) ~ 0.8289, 015(0.5) ~ 0.8016 and 04(0.5) ~ 0.7861.
° 0'5(1) =~ 08381, 0'10(1) =~ 08102, 0'15(1) ~ (0.8082 and 0'20(1) ~ (.7929.

3. then after computing my presented in Section 3, the adaptive estimator CAZ%LHR) defined in (3.2), the test
statistics Sy defined in (4.1), T defined in (4.2) and Fiv defined in (4.5) are computed.

5.2 Monte-Carlo experiments on several time series

In the sequel the results are obtained from 1000 generated independent trajectories of each process defined below.
The concrete procedures of generation of these processes are obtained from the circulant matrix method, as detailed
in Doukhan et al. (2003). The simulations are realized for different values of d and N and processes which satisfy
Assumption IG(d, 5):

1. the usual ARIMA(p’,d, q') processes with respectively d = 0 or d = 1 and an innovation process which is a

Gaussian white noise. Such processes satisfy Assumption 1G(0,2) or IG(1,2) (respectively);

2. the ARFIMA(p', d, ¢') processes with parameter d such that d € (—0.5,1.25) and an innovation process which
is a Gaussian white noise. Such ARFIMA(p', d, ¢') processes satisfy Assumption IG(d,2) (note that ARIMA

processes are particular cases of ARFIMA processes).

3. the Gaussian stationary processes X (4:¢1.9) with the spectral density

1
IA24

fa(A) = (1+ci|NP) for A e [-m,0)U (0,7, (5.1)

with d € (—=0.5,1.5), ¢; > 0 and 8 € (0,00). Therefore the spectral density f3 implies that Assumption
IG(d, B) holds. In the sequel we will first use ¢; = 1 and 8 = 0.1, implying that the second order term of
the spectral density is ”less negligible” than in case of ARFIMA processes, and ¢; = 0, implying that the

second order term of the spectral density is ”more negligible” than in case of ARFIMA processes.

4. the Gaussian stationary processes X (41°8) such as its spectral density is

fa(N) = ﬁ(l + |log(A)]|A])  for A € [—m, 0)U (0, 7], (5.2)
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with d € (—0.5,1.5). Therefore the spectral density f4 implies that Assumption I(d) holds, but not IG(d, )

stricto sensu.

5. the Gaussian non-stationary process X ("*"4) which can be written as Xt(trend) = ap(t)+o,(t)xARFIM A(0,d, 0),
where the additive and multiplicative trends are respectively a, (t) = sin(27t/n) and o, (t) = 1/2t/n (for us

we chose a non-polynomial but smooth additive trend).

5.2.1 Comparison of JJyIR) with other semiparametric estimators of d

Here we first compare the performance of the data-driven MIR estimator cAl(]\]y ') with other famous semiparametric

estimators of d:

. J%R) is the original version of the IR based estimator defined in Surgailis et al. (2008). As it was recom-

mended in that article, we chose m = 10.

&(J\J,w ) is the global log-periodogram estimator introduced by Moulines and Soulier (2003), also called FEXP
estimator, with bias-variance balance parameter k = 2. Such an estimator was shown to be consistent for

d € (—0.5,1). This semiparametric estimator is an adaptive data-driven estimator of d.

° J(]\? P s the extended local Whittle estimator defined by Abadir, Distaso and Giraitis (2007) which is
consistent for d > —3/2. It is a generalization of the local Whittle estimator introduced by Robinson
(1995b), counsistent for d < 0.75, following a first extension proposed by Phillips (1999) and Shimotsu and
Phillips (2005). This estimator avoids the tapering used for instance in Velasco (1999b) or Hurvich and Chen
(2000). The trimming parameter is chosen as m = N%5% (this is not an adaptive data-driven estimator)

following the numerical recommendations of Abadir et al. (2007).

gl(]\yv AV) g an adaptive data-driven wavelet based estimator introduced in Bardet and Bibi (2012) using a

Lemarie-Meyer type wavelet (another similar choice could be the adaptive wavelet estimator introduced in
Veitch et al., 2003, using a Daubechie’s wavelet, but its robustness property are slightly less interesting). The
asymptotic normality of such estimator is established for d > —0.5 (when the number of vanishing moments

of the wavelet function is large enough).

Note that only J%R) and C/l\(J\? DE) are not data-driven adaptive among the 5 estimators. Table 1 provides the results
of simulations for ARIMA(1,d,0) (N =500, N = 5000 and N = 50000). For ARFIMA(0, d,0), ARFIMA(1,d, 1),
X (1Y) x(d.0.1)  x(dlog) anq X (trend) processes and several values of d, the results of simulations are presented
for N =500 (Table 2), N = 5000 (Table 3) and N = 50000 (Table 4).

) often provides the more accurate estimation of d for

. . MIR
stationary processes, it is not more accurate anymore than C/l\(N )

Conclusions of simulations: Even if the estimator J(J\’;‘ ba
in case of trended time series. Moreover since
this is not a data-driven estimator, with a bandwidth m fixed to be N9 it is not a consistent estimator when 3
is small enough: this is such the case for X (%1°8) where we observe that the MSE is globally larger for N = 50000
than for N = 5000. The estimator &(1\11\4 TR) s a very good trade-off with always one of the smallest v/AM SE among
the 5 semiparametric estimators and almost never bad results (except perhaps for X (trend) "N — 500 and d < 0.5).

g(}\]fw ) with respect to the other estimators. Note also that the use of a

MIR
')

Moreover, the larger IV the more efficient

data-driven multidimensional version of I R statistics (i.e. the estimator considerably improves the quality
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of the estimation with respect to the original estimator based on unidimensional IR statistics (the estimator C/Z\%R)).

Finally the other data-driven estimators d*%) and d("4V) provide correct results but are often less efficient than
F)
5.2.2 Comparison of MIR tests §N and TVN with other stationarity or non-stationarity tests

Monte-Carlo experiments were done for evaluating the performances of new tests S ~ and TN and for comparing
them to most famous stationarity tests (KPSS and V/S) or non-stationarity (ADF and PP) tests (see more details
on these tests in the previous section).

As it is suggested for the corresponding R-software commands (see also Banerjee et al., 1993), we chose the

following trimming parameters for the classical tests:
o k= [% \/ﬁ} for KPSS test;
e k=+/N for V/S test;

o k= [(N - 1)1/3} for ADF test;

o k= {4 (1%)1/4} for PP test;

The results of these simulations with a type I error classically chosen to 0.05 are provided in Tables 5, 6, 7 and 8.

Conclusions of simulations: As it is well known, from their constructions, KPSS , V/S, ADF and PP tests

should asymptotically decide the stationarity hypothesis when d = 0, and the non-stationarity hypothesis when
d > 0. It was exactly what we observe in these simulations. For ARIMA(p, d,0) processes with d = 0 or d = 1
(i.e. AR(1) process when d = 0), ADF and PP tests are more efficient tests than our adaptive MIR tests when
N = 500. However, note that all stationarity tests do not control the size for ¢ = —0.9. But when N = 5000 the

IR)

tests computed from [1%” provide comparable and convincing results. Note also that KPSS and V/S provide

reasonable results but less efficient than the other tests. In case of processes with d € (0,1), the tests computed

cZ%VHR) obtain clearly better performances than classical non-stationarity tests ADF or PP which accept the

from
non-stationarity assumption H{) even if the processes are stationary when 0 < d < 0.5 for instance. The case of the
V/S test is different since this test is built for distinguishing between short and long-memory processes. However,
as it was already established in Giraitis et al. (2003), V/S test is slightly more accurate than KPSS for testing
the stationarity. Note also that a renormalized version of this test has been defined in Giraitis et al. (2006) for

taking into account the value of d.
5.2.3 Comparison of MIR Fractional Unit Roots test ﬁN and Dolado et al. and Lobato and Velasco
Fractional Unit Roots tests

Monte-Carlo experiments were also done for evaluating the performances of new Fractional Unit Root test Fy and
for comparing it to the Fractional Unit Roots tests defined in Dolado et al.  (2002) and in Lobato and Velasco
(2007).

1. The student-type test statistic defined in Dolado, Gonzalo and Mayoral (2002) is such as:
S (Xe — X )AN X,

~ - 12
(Zi\[:Q (Aletfl)Q X % 2115\7:2 (Xt - X1 - ‘bAlet*l)Z)

Tpom =
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with ¢ SN L (Xe—Xi— 1)A IX4—1

Et 2 (A TX¢— 1)2
and 1 — ¢ with ¢ > 0 small enough (typically ¢ = 0.02). This is an extension in a fractional framework of the

Dickey-Fuller test.

and c?l is the minimum between an ordinary least square estimator of d

2. The efficient Wald test statistic defined in Lobato and Velasco (2007) is based on a two-step student test of

a regression coefficient, i.e. fLV is the student test of the (z:); coefficient for the regression of X; — X; 1

onto variables zz — Q12i—1 — -+ — Qp2t—p, Xp—1 — Xp—9,- -+ , X4—p — Xy—p_1 fort =p+1,--- ,n, where z is
defined as R
AKX, — (X, — Xy
.= t— ( LA 1)7 (5.4)
1—-d
and where (@1, -+, @) are obtained as a minimizer of Zzzp (AEXt — alAgXt_l — = apA‘?Xt_p)2 and d

is a semi-parametric local Whittle type estimator of d. Note that fLV is depending on p and in the sequel
we will chose p =1 and p = 10, defining respectively T\LV1 and T\LVIO-

We applied the fractional unit roots tests F N, T\LV1 and fLVlO to several fractional processes and displayed the
results in Table 9. As it is a test specially devoted to FARIMA(0, d,0) processes, we only applied the fractional
unit roots test fDG M to those processes. Finally, note that we also consider the additional sample size N = 200
to N = 500 and N = 5000 used in other simulations because this could help to better evaluate the power of the
several tests (since for N = 500 and N = 5000 the test powers are often 1).

Conclusions of simulations: If fDG » and T\LV1 provide extremely convincing results for ARFIMA(0, d,0) pro-

cesses, fLVl is still very accurate for ARFIMA(1,d,0) processes. From its definition, the fractional unit roots
fLVl can not be used fruitfully for ARFIMA(1,d, 1) or X (%1 processes but it can clearly be applied to a more
general class of processes than fDG M-

The same for fLVlO which can be applied likely to a more general class of processes than fLVl. However, if the re-
sults obtained here for ARFIMA(1,d, 1) or X (%91 are satisfying and indicate that this test could be applied when
N =500 and N = 5000, this is not the case for N = 200 for all the considered processes because this test requires
the estimation of too many parameters. Moreover, fLVlO can not theoretically be applied to ARFIMA(1,d, 1) or
X (@0.1) processes and additional simulations realized with N = 500000 indicate a rejection probability ~ 0.16 for
ARFIMA(I d, 1) processes when d = 1 (instead of 0.05). However, when N = 500000, a user could probably chose
Tngo or TLV50 which would prov1de satisfying results.

The fractional unit roots test F 'v constructed from c?MIR) does not have these drawbacks: this is a data-driven
test and it can be applied to a large family of fractional processes. Hence, the results of simulations obtained
with ﬁN are satisfying (even if they are less efficient for specific processes than those obtained with fLVlO which
requires the knowledge of the AR component). Even if this is a semiparametric test, the results obtained for
N = 200 are reasonable. However, note that the rejection probability of Fy for d = 0.9 is much bigger than for
d =1 when N = 200 and N = 500. Hence one could size adjust this test to get a better performance.

6 Conclusion

The adaptive data-driven memory parameter estimator cAl(]\y IR) proposed in this paper has a lot of advantages.

Firstly, for any process belonging to the set (IG(d, ﬂ)) it follows a CLT with a convergence rate

—0.5<d<1.25,0<8<2’
reaching the minimax convergence rate (up to a multiplicative logarithm term) and this CLT is obtained without
any choice of bandwidth or trimming parameter. Secondly, the numerical performances of this estimator are

often better than those of the most accurate semiparametric memory parameter estimators, especially in case of
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trended processes (the robustness of IR estimator was already established in Surgailis et al., 2008). Finally, data-
driven stationarity and fractional unit roots tests are constructed from this estimator and they provide accurate
competitive results with respect to classical unit roots or fractional unit roots tests. Improving the performance
of those tests could be an interesting task.

An asymptotic study of these new estimator and tests for linear processes could be an interesting extension of
this paper. However, this requires to proof a multidimensional CLT theorem for a non-polynomial function of a

multidimensional linear process which is a difficult result to be established.

7 Proofs

Two technical lemmas are first established:

Lemma 7.1. For all X\ >0

2 °° sin(Ax) 4a > sin?(\x) v
1. F 0,2 dr = dx = ;
or a € (0.2), |>\|a*1/0 o 2a|>\|a/ 7o "7 T(a)sin(%)’
1 0o i 4 A 1 0o :..6 A 23711)\371)
2. Forbe (—1,1), / sin’( x)d:c: 0 X/ sin’( z)d:c: A T ;
21-b _ 1 xd—b —15+6 - 23—b _ 33-b o r4—b 4 F(4 o b) Sin((l—Qb)ﬂ')
1 > sint(\x) 16 * sinf(\x) 270N 7
3. Forb 1,3 dr = ———dx = .
orbe (1,3), 7= / Ab T I5 6. 25 b 350 " /0 e T4 — b)sin(C227)

Proof. These equations are given or deduced (using decompositions of sin’(-) and integration by parts) from (see
Doukhan et al., p. 31).

O
Lemma 7.2. For j = 4,6, denote _
™ it (ma
Ji(a,m) == / xawdﬁ (7.1)
0 sin*(§)
Then, we have the following expansions when m — oco:
Cii(a)m?**+0(m'™*) if-1<a<l1
(1)m37“+0(10g ) ifa=1
Jila,m) = ¢ Cfi(a)m>=*+0(1) ifl<a<3 (7.2)
032(3) og(m) 4+ O(1) ifa=3

I
C"j1(a) +O(m=((a=3)"2) ifq >3

with the following real constants (which do not vanish for any a on the corresponding set):

4 1-— 23 ‘ 15 —6 - 23—a 3—a
¢ C41(a) = ( 23—11)# and 061(0’) = ﬂ.( s '+ ?3—11))#
(3 —a)l'(3 — a)sin(~~—5—) 43 - a)l'(3 — a) sin(~—5~)
, /6 sin®(¥) * 1
e Cj(a):= (—3 — 1{1<a<sy + 16/O Ji-a dy + 2 e ( 4 cos(y) + cos(2y))dy)

sin®(¥) ) 1 [/ 1
! R 2
and  Cgy(a) := [16/0 r=n dy + Ty Iii<a<3y + 5 /1 i ( 15 cos(y) + 6 cos(2y) cos(3y))dy}

o Cila):= (6 Tia=3y + 1{a= 1}) and Cly(a

) =
o CYi(a):= §/O — L _dr and C¢\(a) := i/O A

8 sin?(%)




Proof. The proof of these expansions follows the steps than those of Lemma 5.1 in Bardet and Dola (2012). Hence

we write for j = 4,6,

Ji(a,m) = jj(a,m)Jr/ :Easinj(@) I14d:c+/ :Easinj(@)2 Tz dT (7.3)
0 2 (%) 0 2 73(3)
with
~ T . mx 1 1 2 1
Ji(a,m) = /zasinj(—) - — = — -5 ) d.
J o 2 (51114(%) ($)* 3(5)2)

The expansions when m — oo of both the right hand sided integrals in (7.3) are obtained from Lemma 7.1. It

remains to obtain the expansion of jj(a, m). Then, using classical trigonometric and Taylor expansions:

1 1 1 21 11
sin4(%) = §(3 —4cos(y) +cos(2y)) and —p— — — — =— ~— (y—0)

. 6/Yy 1 1 11  cos(y) 31
sin (5) = 3—2(10 — 15cos(y) + 6 cos(2y) — cos(3y)) and " + 35 S (y) ~ o Y (y — 0),

the expansions of jj(a, m) can be obtained.
Numerical experiments show that CY; (a) # 0, C§; (a) # 0, Cl5(a) # 0 and Cf,(a) # 0. O

Proof of Proposition 1. This proposition is based on results of Surgailis et al. (2008) and was already proved in
Bardet et Dola (2012) in the case —0.5 < d < 0.5.

Mutatis mutandis, the case 0.5 < d < 1.25 can be treated exactly following the same steps.

The only new proof which has to be established concerns the case d = 0.5 since Surgailis et al. (2008) do not
provide a CLT satisfied by the (unidimensional) statistic IRy (m) in this case. Let Y;,,(j) the standardized process
defined Surgailis et al. (2008). Then, for d = 0.5,

sin(mz)
1

W21 )] = [EQnGYa(O)] = | [ costio) (o + 0(?) 5 2.

m ' Jo sin”(5)
Denote v (j) = pm(j) = = (I1 + I2) as in (5.39) of Surgailis et al. (2008). The expansion (2.20) of Surgailis et
al. (2008) remains true for d = 0.5 and therefore V2 ~ coV(0.5)m? when m — oo. The same for the inequality
(5.42) when d = 0.5 and thus |[;] < Cm?*j~2. Finally, when d = 0.5, we still have Iy = j~! 25/221 Ir(q) with
|I2(q)] < Cm*j~1 when 1 < ¢ < j/m and |I2(q)| < Cq=*j® when j/m < ¢ < j (see details p. 536-537 of Surgailis

et al., 2008). Then, the inequality (5.41) remains true for d = 0.5 and since we counsider here j > m,
L] < Cm’ji™" = L+ DL <Cm’iTt = 0] = len()] <

Now let 1, (j) := % = (Ym (1), Ym (j+m)). The Hermite rank of the function v is 2 and therefore
the equation (5.23) of Surgailis et al. (2008) obtained from Lemma 1 of Arcones (1994) remains valid. Hence:

’COV(nm(O)5 nm(j))‘ < CT_Z’

and then the equations (5.28-5.31) of Surgailis et al. (2008) remain valid for all d € [0.5,1.25). Then for d = 0.5,

N (IRN(m) - E[IRN(m)D £ N(0,0%(0.5)), (7.4)

m [N/m]Am— oo
with 02(0.5) ~ (0.2524)%.
To establish the multidimensional CLT for 0.5 < d < 1.25 from (7.4) and unidimensional CLT of Surgailis et
al (2008) for 0.5 < d < 1.25, we can reproduce exactly the steps 1 and 2 of the proof in Proposition 2.1 of Bardet
and Dola (2012). O
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Proof of Property 2.1. As in Surgailis et al (2008), we can write:

™ siHG(%)
YO+ Y1 R, ) R, o f(x) sm?(e) 4%
YO + Y| Vi Vi Jo @) i de

Therefore an expansion of R,,/V,2 provides an expansion of E[IRy(m)] when m — co.

Step 1 Let f satisfy Assumption IG(d, ). Then we are going to establish that there exist positive real numbers
(4, Cy and Cj specified in (7.5), (7.6) and (7.7) such that for 0.5 < d < 1.5 and with p(d) defined in (2.6),

1. if p<2d—1, ‘]i—gl = p(d) + C1(2 — 2d, B)ym™P + O(m‘Q + m—QB);
2 ip=2d-1, T2 = pld) + Co(2— 24, Hhm~ +O(m 2+ m=> P log(m) +m*?);

R, _ 5 _oq_ _
3. if2d-1<f<2+1, T3 =p(d)+Cs(2-2dBm Mo(m B¢ L m=24"Llog(m) + m 21’);

m

. Ry, —2d— _
4. iff=2d+1, W:p(d)+o(m 241 1og(m) + m 2)'
Under Assumption IG(d, 8) and with J;(a,m) defined in (7.2) in Lemma 7.2, it is clear that,

R J6(2 —2d,m) + 2 Js(2 — 2d + B,m) + O(J6(2 — 2d + B + ¢€))

—— =1 )
V2 J1(2 = 2d,m) + 2 J4(2 = 2d + B,m) + O(J4(2 — 2d + B + ¢€))
4 d sin/ (72%)
since / O(x*~2 +ﬁ+€)f(z)dz = 0(J;(2—2d+ B +¢)). Now using the results of Lemma 7.2 and constants
0 S 3

Cis, Cg/'e and C’]’-’e, j=4,6,¢=1,2 defined in Lemma 7.2,

1.Let 0<B<2d—1<2, e —1<2—2d+ < 1. Then

Rm 061 (2 — 2d) m1+2d+O(m2d’1) +2_[1)061 (2 —2d + ﬂ)m1+2d7ﬁ+0(m2diliﬁ)
V2T Cn(2— 2d)ymi 240 (m24-1) +8Cy (2 — 2d + B)m!T24=0+0 (m2d-1-F)
2 c1 _ 1 Cn(2—-2d+p8) _ _
=l 2 — 2d)4+—Cg1(2 — 2 lll——=—2 2 = Py s 2
Cii(2 - 2d) [Can A2, Cor (2 = 2d + B)m Il 0 Cn(2—2d) J+0(m~?)
2061(2 — 2d) c1 1Ce1 (2 — 2d)041 (2 —2d+ ﬂ) 061(2 —2d+ ﬂ) "y _9 —28
=l 12— - 10, .
Cu2—2d) ‘e [ Cn@—2d)Cn2—2d)  Cu(2—2d) [P0 (m2 + m=27)

As a consequence,,

f;—’g:p(d) + C1(2—2d,8) m?+ o(m*2+m*2ﬁ) (m — o0), with0<f<2d—1<2and
C1 1

2-2d,8) =22 —
Gi(2-2d,6) co C2,(2 — 2d)

[C61(2 — 2d)Ca1(2 — 2d + B) — Cs1(2 — 2d + B)Cu1 (2 — 2d)], (7.5)

and numerical experiments proves that C1(2 — 2d, 8)/c; is negative for any d € (0.5,1.5) and 8 > 0.

2. Let =2d—1,i.e. 2—2d+ 8 =1. Then,

R, ) C1(2 — 2d) m' 2940 (m?4-1) —i—i—;C’sl(l)ml_Qd—i—O(log(m))
V2T Cu(2 = 2d)ym 240 (m2d-L) +2C7 4 (1)m!-24+0 (log(m))

2 C1 1-2d caa C'u(l)
-1l 2 — 2d)+— 1 -
Cu1(2 — 2d) [C‘ﬂ( d)+co Cor(1)m } [ co Cu1(2 — 2d)

:172061(2 — 2d) |201 [ 061(2 — 2d)C/41(1) 0/61(1)

l - 1-2d 2 ~2d-1] 2-4dy
Cu (2 —2d) Cn(2—2d)0n(2—2d) Cu(2— 2d)}m FO(m™ +m og(m) +m”*)

m172d}+0(m72 +m~2"log(m))

Co
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As a consequence,

f;—’; = p(d) + Ca(2—-2d, B) m™P+ o(m*2+m*2*f’ 1og(m)+m*2ﬁ) (m — 00), with0<f=2d—1<2and
C1 1

2-2d,8) =22 ——
Caf B) co C2,(2 — 2d)

[C61(2 — 2d)C"41(1) — C'61(1)Cr (2 — 2d)],  (7.6)
and numerical experiments proves that Cy(2 — 2d, 3)/c; is negative for any d € [0.5,1.5) and 3 > 0.

3. Let 2d—1< B <2d+1,4e 1<2—2d+p3<3. Then,

Ry Ce1(2 — 2d)m1+2d+2—30’61(2 —2d + ﬁ)mH‘Qd_'ﬁ—i—O(mH‘Qd_ﬂ_€ + log(m))
VZ T On(2 = 2d)m S g (2 — 2d + B)mA 2 B0 (m 24P 4 m 20 log(m))
2 C1 ) c1 0/41(2—2d+6) ) —B—c —2d—1
1= [ - 20+ (2 - 2 -4 1
oz 20 [Cﬁl( d)—l—COC 61( d+ B)m } { o Cn(@_2d) m }+O(m +m og(m))

_2C61(2 — 2d)
041 (2 — 2d) I Co

aCan(2-2d)C"n(2-2d+f) Clai(2-2d+B)] g Bee . —2d-1
| Cu1(2 = 2d)Cn (2 = 2d) Cin (2 — 2d) [m =20 (m=7=¢ M= log(m)).

As a consequence,

f;—rg =p(d) + C5(2—2d,8) m™ P+ O(mfﬁ*6 +m ™2 og(m) + mfw) (m — 00), and
C1 1

2-2d,8) =22 ———
Cs(2—2d,8) =2 C2,(2 - 2d)

[C61(2 —2d)C"41(2 = 2d + B) — C'61(2 — 2d + B)Cn (2 — 2d)|, (7.7)
and numerical experiments proves that C5(2 — 2d, 3)/c; is negative for any d € [0.5,1.5) and 3 > 0.

4. Let B = 2d+ 1. Then, Once again with Lemma 7.2:
R, Lo Co1(2 — 2d) m' 2940 (m?4-1) +1C62(3) log(m)+O(1)

V2T Can(2— 2d)ym 240 (m20-1) +2C7 45(3) log(m)+O(1)
2 Cl 1y -8 c_Cla(3)

=1 2 — 2d)+— 1 I 1S

Cu(2—2d) [C‘“( Dt CeB)m Og(m)] [ co Ca1(2 — 2d)

-1 2061(2 — 2d) | 201 [ 061 (2 — 2d)0/42(3) 0/62(3)

T Cn(2-24) Ci1(2—2d)Cy1 (2 —2d) Cur(2 —2d)

m=P log(m)} +O(m™2 +m—2471)

o ]m*ﬁ log(m)+0(m™?).
As a consequence,
Ry —2d— - :
7z = p(d) + O(m™2 log(m) +m™2) (m —o00), with2<p=2d+1<4. (7.8)

Step 2: A Taylor expansion of A(:) around p(d) provides:

M) = Al + [52 ) pi@n (52 - @) + 5 [S3] @) (B2 - (@)’

oA
Note that numerical experiments show that [a—} (p) > 0.2 for any p € (—1,1). As a consequence, using the
P

previous expansions of Ry, /V,2 obtained in Step 1 and since E[IRy(m)] = A(Ry,/V;2), then for all 0 < 8 < 2:

c1 C'y(d, B)m=" +O(m_2+m_2ﬂ) if B<2d-1
c1 C'5(d, B)ym=P + O(WF2 +m=2"Plogm + m’w) if B=2d-1
c1 C’g(d,ﬂ)mfﬁ+O(mfﬁ’eer*Qd*lloganm’w) if 2d—1<pg<2d+1
O(m=24=1logm + m=2) if B=1+2d

E[IRy(m)] = Ao(d) +

with CY(d, ) = [%} (p(d)) Co(2 — 2d, B) for € = 1,2,3 and Cy defined in (7.5), (7.6) and (7.7). O
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Proof of Theorem 1. Using Property 2.1, if m ~ C' N® with C > 0 and (1+28)~! < a < 1 then \/N/m (E[IRy(m)] -
Ao(d)) — 0 and it implies that the multidimensional CLT (2.4) can be replaced by
N—oc0

N L
Vo (IR (m)) =8o(d)) - 55 NO.Ty(d)) (79)
It remains to apply the Delta-method with the function Ay ! to CLT (7.9). This is possible since the function
d — Ao(d) is an increasing function such that Aj(d) > 0 and (Ag"')'(Ao(d)) = 1/A)(d) > 0 for all d € (—0.5, 1.5).
It achieves the proof of Theorem 1. O

Proof of Proposition 2. We use the proof of Proposition 2 in Bardet and Dola (2012). Indeed, this proof is only
based on the definitions of dy(jN®), dy(N®), Qn(c) and @y which are exactly the same here, and on the CLT
satisfied by (JN(jNO‘))lngp The only difference is that we suppose here 0 < 8 < 2 and 0.5 < d < 1.25 instead
of 0 < f and —0.5 < d < 0.5 in Bardet and Dola (2012). Then we consider only the case where 8 < 2d + 1 and

ot = in our framework. O

1 _ 1
(I128)A(4d13) — (1128)

Proof of Theorem 2. This proof is exactly the same as the proof of Theorem 2 in Bardet and Dola (2012). O
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N =500 d=0 [ d=0 [ d=0 | d=0 [ d=0 || d=1 | d=1 | d=1 | d=1 | d=1
ARIMA(1,d,0) | ¢=-0.1 | $=-0.3 | $=-05 | $=-0.7 | $=-0.9 || ¢=-0.1 | $=-0.3 | $=-05 | $=-0.7 | $=-0.9
VMSE 4" | 01022 | o.1174 | 01617 | 0.2507 | 0.6114 || 0.1088 | 0.1133 | 0.1313 | 0.1954 | 0.3625
VMSE d{™ | 02169 | 0.2341 | 0.2456 | 0.3061 | 0.6209 || 0.1590 | 0.1580 | 0.1535 | 0.1587 | 0.2859
VMSE d\"® | 01424 | 0.1407 | 0.1463 | 0.1539 | 04141 || 0.1721 | 0.1699 | 0.1655 | 0.1849 | 0.3208
VMSE dGP9 | 0.0785 | 0.0847 | 0.1244 | 0.2649 | 0.6755 || 0.0787 | 0.0805 | 0.1205 | 0.2633 | 0.4985
VMSE dy'*") | 00676 | 0.1397 | 0.2408 | 0.4106 | 0.7531 || 0.0717 | 0.0980 | 0.1341 | 0.1785 | 0.3883
N = 5000 d=0 [ d=0 [ d=0 | d=0 [ d=0 [ d=1 | d=1 | d=1 | d=1 | d=1
ARIMA(1,d,0) | ¢=-0.1 | $=-0.3 | $=-05 | ¢=-0.7 | $=-0.9 || ¢=-0.1 | $=-0.3 | $=-05 | ¢=-0.7 | ¢=-0.9
VMSE 4" ] 00340 | 0.0553 | 0.0759 | 0.1024 | 0.2893 || 0.0344 | 0.0479 | 0.0614 | 0.0872 | 0.2679
VMSE dy" | 0.0678 | 0.0804 | 0.1150 | 0.2200 | 0.6041 || 0.0479 | 0.0477 | 0.0524 | 0.0900 | 0.2721
VMSE d\"® | 00412 | 0.0440 | 0.0421 | 0.0441 | 0.2223 || 0.0422 | 0.0454 | 0.0470 | 0.0462 | 0.1533
VMSE dyP9 | 0.0321 | 0.0337 | 0.0372 | 0.0816 | 0.3751 || 0.0318 | 0.0335 | 0.0308 | 0.0817 | 0.3724
VMSE dy'*") | 00376 | 0.0625 | 0.0716 | 0.0970 | 0.2144 || 0.0344 | 0.0496 | 0.0552 | 0.0700 | 0.1245
N = 50000 d=0 [ d=0 [ d=0 | d=0 [ d=0 || d=1 | d=1 | d=1 | d=1 | d=1
ARIMA(1,d,0) | ¢=-0.1 | $=-0.3 | $=-05 | ¢=-0.7 | $=-0.9 || ¢=-0.1 | $=-0.3 | $=-05 | ¢=-0.7 | ¢=-0.9
VMSE dy''™ ] 0.0152 | 0.0246 | 0.0303 | 0.0435 | 0.0756 || 0.0109 | 0.0179 | 0.0274 | 0.0348 | 0.0560
VMSE dy"” | 0.0238 | 0.0469 | 0.0945 | 0.2124 | 0.5985 || 0.0170 | 0.0182 | 0.0303 | 0.0827 | 0.2745
VMSE d\"® | 0.0140 | 0.0140 | 0.0137 | 0.0143 | 0.1480 || 0.0130 | 0.0149 | 0.0142 | 0.0158 | 0.1005
VMSE dP% | 0.0152 | 0.0130 | 0.0145 | 0.0220 | 0.1418 || 0.0165 | 0.0159 | 0.0148 | 0.0231 | 0.1396
VMSE dy'*Y) | 0.0190 | 0.0171 | 0.0366 | 0.0353 | 0.0568 || 0.0227 | 0.0224 | 0.0201 | 0.0458 | 0.0517

N =500 d=0 | d=0 | d=0 | d=0 [ d=0 [ d=1 | d=1 | d=1 | d=1 | d=1
ARIMA(1,d,0) | ¢=0.1 | ¢=0.3 | $=0.5 | ¢=0.7 | $=0.9 || ¢=0.1 | ¢=03 | ¢=05 | $=0.7 | ¢$=0.9
VMSE dWT 1 0.0995 | 0.1020 | 0.1115 | 0.1280 | 0.1165 || 0.1065 | 0.1102 | 0.1131 | 0.1161 | 0.1155
VMSE d{™ | 02093 | 0.2017 | 0.2069 | 0.2006 | 0.1878 || 0.1632 | 0.1649 | 0.1587 | 0.1611 | 0.1658
VMSE dW®) | 01478 | 0.1382 | 0.1430 | 0.1401 | 0.1521 || 0.1649 | 0.1658 | 0.1658 | 0.1827 | 0.2006
VMSE dy'”9 | 0.0809 | 0.0776 | 0.0808 | 0.0820 | 0.0765 || 0.0807 | 0.0809 | 0.0843 | 0.0809 | 0.0825
VMSE dy ") | 0.0994 | 0.1214 | 0.1278 | 0.1257 | 0.1247 || 0.0875 | 0.1054 | 0.1058 | 0.1042 | 0.1002
N = 5000 d=0 | d=0 | d=0 | d=0 [ d=0 [ d=1 | d=1 | d=1 | d=1 | d=1
ARIMA(1,d,0) | ¢=0.1 | ¢=03 | ¢=0.5 | ¢$=0.7 | ¢=0.9 || ¢=0.1 | ¢=03 | ¢=05 | ¢=0.7 | ¢=0.9
VMSE d{" | 0.0354 | 0.0499 | 0.0726 | 0.0950 | 0.0897 || 0.0430 | 0.0437 | 0.0442 | 0.0492 | 0.0546
VMSE dy™ | 0.0669 | 0.0743 | 0.0918 | 0.1271 | 0.1031 || 0.0503 | 0.0490 | 0.0486 | 0.0490 | 0.0522
VMSE 4" | 00435 | 0.0450 | 0.0422 | 0.0423 | 0.0518 || 0.0451 | 0.0450 | 0.0443 | 0.0451 | 0.0566
VMSE d'P | 0.0360 | 0.0350 | 0.0324 | 0.0328 | 0.0337 || 0.0335 | 0.0341 | 0.0334 | 0.0338 | 0.0334
VMSE dy ") | 0.0405 | 0.0486 | 0.0469 | 0.0472 | 0.0480 || 0.0369 | 0.0511 | 0.0448 | 0.0484 | 0.0451
N = 5000 d= d= d= d= d= d= d= d= d= d=

ARIMA(1,d,0) | ¢=0.1 | ¢=03 | ¢=0.5 | $=0.7 | ¢=0.9 || ¢=0.1 | ¢=03 | ¢=05 | ¢=0.7 | $=0.9
VMSE dy"" | 0.0161 | 0.0280 | 0.0435 | 0.0672 | 0.0727 || 0.0143 | 0.0152 | 0.0163 | 0.0162 | 0.0191
VMSE dy™ | 0.0217 | 0.0407 | 0.0662 | 0.1130 | 0.0880 || 0.0148 | 0.0160 | 0.0180 | 0.0176 | 0.0193
VMSE 4" | 0.0146 | 0.0150 | 0.0153 | 0.0162 | 0.0261 || 0.0132 | 0.0136 | 0.0137 | 0.0148 | 0.0209
VMSE d'P) | 0.0158 | 0.0151 | 0.0144 | 0.0147 | 0.0136 || 0.0133 | 0.0142 | 0.0132 | 0.0140 | 0.0150
VMSE dy "V | 0.0114 | 0.0147 | 0.0174 | 0.0213 | 0.0258 || 0.0185 | 0.0260 | 0.0446 | 0.0194 | 0.0260

FMIR) JUR)  J(Ms)

Table 1: : Comparison between djy and other famous semiparametric estimators of d (dj AP and

d
) N ) N
d\Y ")) applied to ARIMA(1,d, 0) process (defined by X; + ¢X¢—1 = e for d = 0 and (X¢ — Xo—1) + ¢(Xem1 — Xe—2) = &

for d = 1) for several values of ¢ and N and 1000 independent replications.
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Table 2:

)

replications.

| N=500 |d=-02]d=0]d=02]d=04[]d=06[d=08]d=1[d=12]
[ ARFIMA(0.d0) | | | | | | | | |
VMSE dJT' | 00911 | 0.0968 | 0.0988 | 0.0949 || 0.1018 | 0.1022 | 0.0973 | 0.1055
VMSE d\" 0.1900 | 0.2156 | 0.2229 | 0.2081 || 0.2008 | 0.1806 | 0.1622 | 0.1432
VMSE dQ" | 01405 | 01441 | 01432 | 01523 || 01681 | 0.1765 | 0.1703 | 0.1643
VMSE dP9 | 00764 | 0.0803 | 0.0787 | 0.0838 || 0.0778 | 0.0785 | 0.0800 | 0.0758
VMSE 4y ") | 00716 | 0.0795 | 0.0849 | 0.0865 | 0.0808 | 0.0848 | 0.0701 | 0.0707
| ARFIMA(1,d,1) | I
VMSE dW | 01527 | 01363 | 01315 | 01173 || 0.1212 | 0.1099 | 0.1129 | 0.1098
VMSE dy | 02255 | 0.2328 | 0.2217 | 0.2205 || 0.2080 | 0.1773 | 0.1592 | 0.1353
VMSE dQ"® | 0.1393 [ 0.1448 | 0.1446 | 0.1521 | 0.1668 | 0.1744 | 0.1688 | 0.1625
VMSE d{P9 | 0.0939 [ 00914 | 0.0925 | 0.1012 || 0.0933 | 0.0887 | 0.0897 | 0.0872
VMSE &) | oares | 01625 | 01591 | 01424 || 01373 | 0.1210 | 0.1026 | 0.0922
| x(d,1,0.1) | ||
VMSE dJ"" | 00892 | 0.1003 | 0.1010 | 0.1093 || 0.1168 | 0.1126 | 0.1158 | 0.1271
VMSE dU™ | 01803 | 0.2081 | 0.2186 | 0.2062 || 0.2043 | 0.1840 | 0.1700 | 0.1569
VMSE dW'® | 01418 | 0.1438 | 0.1425 | 0.1472 || 0.1538 | 0.1680 | 0.1677 | 0.1697
VMSE d{'P% | 0.0808 | 00836 | 0.0804 | 0.0864 || 0.0817 | 0.0812 | 0.0842 | 0.0817
VMSE &YV | 0.0954 | 0.0871 | 0.0891 | 0.0856 | 0.0772 | 0.0757 | 0.0798 | 0.0856
[ x@oD ] |
VMSE 4" | 0.0915 | 0.0950 | 0.0962 | 0.1018 || 0.1043 | 0.1111 | 0.1104 | 0.1205
VMSE d\™ 0.1839 | 0.2141 | 0.2094 | 0.2179 || 0.2010 | 0.1827 | 0.1625 | 0.1411
VMSE dQ" | 0.1393 [ 01437 | 0.1446 | 0.1447 || 0.1524 | 0.1709 | 0.1721 | 0.1708
VMSE d{'P% | 0.0746 | 0.0790 | 0.0750 | 0.0808 || 0.0778 | 0.0779 | 0.0754 | 0.0780
VMSE &) | 00756 | 0.0786 | 0.0767 | 0.0750 || 0.0667 | 0.0724 | 0.0789 | 0.0846
[ x| |
VMSE AU | 00836 | 0.1064 | 0.1089 | 01161 || 01138 | 0.1197 | 0.1252 | 0.1380
VMSE &\ | 01810 | 0.2100 | 0.2089 | 0.2009 || 0.1853 | 0.1819 | 0.1666 | 0.1542
VMSE dy'® | 01500 [ 01529 | 0.1564 | 0.1677 || 0.1649 | 0.1654 | 0.1660 | 0.1578
VMSE d{P9 | 0.0822 [ 00864 | 0.0844 | 0.0001 || 0.0827 | 0.0797 | 0.0852 | 0.0846
VMSE dV' V) | 0.0974 | 01087 | 0.0996 | 0.1068 | 0.1007 | 0.1031 | 0.0967 | 0.0829
[ ] ||
VMSE dQ"™ | 04684 | 02922 | 0.1633 | 0.1051 || 0.1027 | 0.1176 | 0.1176 | 0.1279
VMSE & 02793 | 0.2192 | 0.2048 | 0.2020 || 0.1964 | 0.1824 | 0.1616 | 0.1443
VMSE AU | 0.9077 | 0.6067 | 03444 | 02150 [| 0.2024 | 0.1994 | 0.1683 | 0.1471
VMSE d'"%) | 05674 | 03564 | 0.1787 | 0.1009 || 0.0845 | 0.0901 | 0.0880 | 0.0878
VMSE 4y ") | 0.0961 | 0.0908 | 0.0886 | 0.0913 || 0.0917 | 0.0907 | 0.0804 | 0.0896
Comparison between cAl(A],\“R) and other famous semiparametric estimators of d (&T]\{R)7 &(1\1]\45)7 &g\f‘ P9 and

22

applied to fractionally integrated processes for N = 500, several values of d € (—0.5,1.25) and 1000 independent



| N=5000 |d=-02]d=0 ] |d=04 ] d=6]d=08] d=1 |
[ ARFIMA(0.d0) | | | | | | | |
VMSE d@"™ | 0.0391 | 0.0318 | 0.0329 | 0.0346 || 0.0363 | 0.0381 | 0.0399 | 0.0513
VMSE dU™ | 00652 | 0.0637 | 0.0636 | 0.0636 || 0.0591 | 0.0574 [ 0.0499 | 0.0477
VMSE dW'® | 00428 | 0.0434 | 0.0425 | 0.0447 || 0.0483 | 0.0587 | 0.0447 | 0.1419
VMSE dyP9 | 00326 | 00323 | 0.0324 | 00341 || 0.0341 | 0.0334 | 0.0333 | 0.0327
VMSE 4y ") | 00313 | 0.0305 | 0.0269 | 0.0308 | 0.0329 | 0.0356 | 0.0340 | 0.0350
| ARFIMA(1,d,1) | I
VMSE dy | 0.0756 | 0.0666 | 0.0605 | 0.0551 || 0.0518 | 0.0514 | 0.0557 | 0.0585
VMSE dy"” | 01141 | 0.0901 | 00792 | 0.0730 || 0.0612 | 0.0559 | 0.0491 | 0.0423
VMSE AW | 00425 | 0.0437 | 0.0428 | 00449 || 0.0481 | 0.0584 | 0.0444 | 0.1417
VMSE dJP9 | 00333 | 00335 | 0.0336 | 0.0364 || 0.0359 | 0.0346 | 0.0338 | 0.0340
VMSE d\' ") | 0.0566 | 0.0603 | 0.0545 | 0.0560 || 0.0546 | 0.0545 | 0.0493 | 0.0474
| x(d,1,0.1) | ||

VMSE dQ"™ | 0.0302 | 0.0401 | 0.0412 | 0.0465 || 0.0427 | 0.0444 | 0.0456 | 0.0490
VMSE 4\ | 0.0606 | 0.0678 | 0.0773 | 0.0740 || 0.0652 | 0.0568 | 0.0554 | 0.0472
VMSE dy'® | 00429 | 0.0483 | 0.0486 | 00502 || 0.0447 | 0.0523 | 0.0458 | 0.1322

VMSE d{'P9 | 0.0390 [ 0.0410 | 0.0400 | 00395 | 0.0357 | 0.0378 | 0.0404 | 0.0363

VMSE dV' V) | 0.0363 | 0.0393 | 0.0406 | 0.0375 | 0.0340 | 0.0408 | 0.0406 | 0.0444

oo ||

VMSE d3"™ | 0.0330 | 0.0297 | 0.0314 | 00320 || 0.0319 | 0.0315 | 0.0339 | 0.0395
VMSE dU™ | 00642 | 0.0652 | 0.0693 | 0.0633 || 0.0630 | 0.0560 | 0.0478 | 0.0428
VMSE dQ"® | 0.0432 | 00422 | 0.0461 | 00434 | 0.0489 | 0.0547 | 0.0437 | 0.1263

VMSE d{'"% | 0.0318 | 0.0318 | 0.0322 | 0.0345 | 0.0361 | 0.0321 | 0.0327 | 0.0326

VMSE dy 2V | 0.0271 | 0.0208 | 0.0248 | 0.0319 || 0.0348 | 0.0331 | 0.0384 | 0.0402

[ xtes ] |

VMSE dW | 00370 | 0.0345 | 0.0383 | 0.0461 || 0.0461 | 0.0519 | 0.0555 | 0.0608
VMSE d\"” | 0.0627 | 0.0683 | 0.0676 | 0.0659 || 0.0587 | 0.0528 | 0.0490 | 0.0501
VMSE dy'® | 0.0582 | 00615 | 0.0632 | 0.0640 | 0.0636 | 0.0584 | 0.0552 | 0.1300

VMSE d{P9 | 00417 [ 00427 | 0.0414 | 0.0411 | 0.0401 | 0.0405 | 0.0415 | 0.0403

VMSE &) | 0.0604 | 0.0618 | 0.0589 | 0.0609 || 0.0632 | 0.0600 | 0.0609 | 0.0669

[ x| ||

VMSE d{"™ | 0.0720 | 0.0372 | 00349 | 0.0363 || 0.0363 | 0.0380 | 0.0450 | 0.0864
VMSE dU™ | 00677 | 0.0639 | 0.0690 | 0.0655 | 0.0602 | 0.0545 | 0.0485 | 0.0506
VMSE dW'® | 07760 | 0.6067 | 0.1480 | 0.0675 || 0.0680 | 0.0750 | 0.0443 | 0.1512

VMSE dyP9 | 06019 | 03613 | 0.1502 | 0.0555 || 0.0387 | 0.0377 | 0.0369 | 0.0364

VMSE dy ") | 04988 | 0.0623 | 0.0389 | 00344 | 0.0362 | 0.0402 | 0.0422 | 0.0444

Table 3: : Comparison between J(AJ,VHR) and other famous semiparametric estimators of d (g(]\{R), cAl(AJ,WS), c/i\(]\’,4 P and
gNWAV)) applied to fractionally integrated processes for N = 5000, several values of d € (—0.5,1.25) and 1000 independent
replications.
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| N=50000 [|d=-02]d=0] |d=04 ] d=6]d=08] d=1 |
[ ARFIMA(04,0) | | | | I | | |
VMSE dQ"™ | 0.0201 | 0.0081 | 00132 | 0.0141 || 0.0139 | 0.0150 | 0.0128 | 0.0204
VMSE dy" 0.0248 [ 0.0219 | 0.0218 | 0.0216 | 0.0191 | 0.0203 | 0.0138 | 0.0144
VMSE dy'® | 00151 | 00161 | 0.0150 | 0.0127 | 0.0178 | 0.0217 | 0.0127 | 0.1595
VMSE dyP9 | 00143 | 00150 | 0.0160 | 0.0134 || 0.0159 | 0.0133 | 0.0139 | 0.0149
VMSE 4y ") | 0.0102 | 0.0079 | 0.0086 | 0.0102 | 0.0107 | 0.0196 | 0.0183 | 0.0253
| ARFIMA(1,d,1) | I
VMSE dy ] 0.0440 | 0.0278 | 0.0247 | 0.0232 || 0.0185 | 0.0233 | 0.0198 | 0.0326
VMSE d\ 0.0906 | 0.0658 | 0.0479 | 0.0355 || 0.0208 | 0.0230 | 0.0194 | 0.0163
VMSE d{"® | 0.0146 | 0.0125 | 0.0142 | 0.0163 | 0.0179 | 0.0257 | 0.0141 | 0.1564
VMSE &GP | 00160 | 00137 | 0.0144 | 0.0160 || 0.0156 | 0.0158 | 0.0154 | 0.0138
VMSE """ | 0.0233 | 0.0252 | 0.0268 | 0.0210 | 0.0179 | 0.0257 | 0.0254 | 0.0319
| x(d,1,0.1) | ||

VMSE dQ"™ | 0.0093 | 0.0243 | 0.0268 | 0.0273 || 0.0280 | 0.0265 | 0.0249 | 0.0224
VMSE d\"™ | 00182 | 0.0330 | 0.0349 | 0.0342 || 0.0335 | 0.0316 | 0.0258 | 0.0267
VMSE dy"® | 0.0244 | 0.0293 | 0.0267 | 0.0276 | 0.0251 | 0.0216 | 0.0216 | 0.1375

VMSE d{'P9 | 0.0243 [ 0.0283 | 0.0257 | 0.0265 | 0.0230 | 0.0248 | 0.0244 | 0.0253

VMSE dV V) | 00232 | 00290 | 0.0273 | 0.0397 || 0.0200 | 0.0281 | 0.0228 | 0.0318

[ x@oy | I

VMSE d3"™ | 00181 | 0.089 | 00107 | 00110 || 0.0108 | 0.0125 | 0.0115 | 0.0121
VMSE dU™ | 00273 | 0.0205 | 0.0236 | 0.0215 || 0.0221 | 0.0159 | 0.0147 | 0.0131
VMSE U™ | 0.0140 | 00154 | 0.0151 | 0.0166 || 0.0167 | 0.0227 | 0.0159 | 0.1337

VMSE d3P9 | 00148 | 0.0165 | 0.0167 | 0.0177 || 0.0146 | 0.0145 | 0.0161 | 0.0154

VMSE 4y ") | 0.0099 | 0.0167 | 0.0135 | 0.0156 | 0.0189 | 0.0148 | 0.0283 | 0.0268

I ||

VMSE dW | 00193 | 0.0240 | 0.0287 | 0.0312 || 0.0382 | 0.0390 | 0.0419 | 0.0472
VMSE 4y | 0.0300 | 0.0256 | 0.0282 | 0.0294 [| 0.0210 | 0.0191 | 0.0244 | 0.0305
VMSE dy'® | 0.0463 | 0.0498 | 0.0480 | 0.0504 | 0.0478 | 0.0408 | 0.0418 | 0.1480

VMSE d{P9 | 0.0456 | 0.0475 | 0.0464 | 0.0464 | 0.0438 | 0.0456 | 0.0468 | 0.0453

VMSE &) | 0.0529 | 0.0515 | 0.0509 | 0.0524 || 0.0465 | 0.0468 | 0.0544 | 0.0498

[ ] ||

VMSE dQ"™ | 0.0271 | 0.0097 | 0.0127 | 0.0130 || 0.0132 | 0.0132 | 0.0126 | 0.0562
VMSE 4™ | 00282 [ 0.0228 [ 0.0226 | 0.0211 || 0.0199 [ 0.0160 | 0.0165 | 0.0194
VMSE d" | 09810 | 0.6253 | 0.1134 | 0.0194 || 0.0224 | 0.0395 | 0.0117 | 0.1655

VMSE &P | 06190 | 0.3616 | 0.1356 | 0.0209 || 0.0158 | 0.0156 | 0.0153 | 0.0155

VMSE 4y ") | 10023 | 05575 | 0.0386 | 0.0182 | 0.0181 | 0.0253 | 0.0474 | 0.0275

Table 4: : Comparison between J(AJ,VHR) and other famous semiparametric estimators of d (g(]\{R), cAl(AJ,VIS), c/i\(]\’,4 P and
gNWAV)) applied to fractionally integrated processes for N = 50000, several values of d € (—0.5,1.25) and 1000 independent
replications.
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N = 500 d=0 | d=0 | d=0 | d=0 | d=0 || d=1 | d=1 | d=1 | d=1 d=1
ARIMA(1, d, 0) $=-0.1 | ¢$=-0.3 | ¢=-05 | $=-0.7 | $=-0.9 || $=-0.1 | $=-0.3 | ¢=-0.5 | $=-0.7 | $=-0.9
Sn: Rejected Ho 0 0 0 0 0.508 0.992 | 0.992 | 0.993 | 0.995 1.000
KPSS: Rejected Ho | 0.058 | 0.091 | 0125 | 0228 | 0.679 0.998 | 0.998 | 0.999 | 1.000 1.000
V/S : Rejected Hy | 0.057 | 0.071 | 0.105 | 0.207 | 0.680 0.997 | 0.998 | 0.999 | 1.000 1.000

Tn: Rejected H}, 0.998 | 0.995 | 0.990 | 0.845 | 0.074 0 0 0 0 0
ADF: Rejected H) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 0.048 | 0.043 | 0.043 | 0.041 0.049

PP : Rejected H}) 1.000 | 1.000 | 1.000 | 1.000 | 1.000 0.040 | 0.032 | 0.017 | 0.012 0
N = 5000 d=0 | d=0 | d=0 | d=0 | d=0 || d=1 | d=1 | d=1 | d=1 d=1
ARIMA(1,d, 0) ¢=-0.1 | $=-0.3 | ¢=-05 | ¢=-0.7 | $=-09 || $=-0.1 | $=-03 | $=-0.5 | $=-0.7 | ¢=-0.9
Sn: Rejected Ho 0 0 0 0 0.118 1.000 | 1.000 | 1.000 | 1.000 1.000

KPSS: Rejected Hg | 0. 044 0.045 0.084 0.078 0.306 1.000 1.000 1.000 1.000 1.000
V/S : Rejected Ho 0.053 0.053 0.063 0.088 0.295 1.000 1.000 1.000 1.000 1.000

Tn: Rejected H), 1.000 | 1.000 | 1.000 | 1.000 | 0.870 0 0 0 0 0
ADF: Rejected H}, 1.000 | 1.000 | 1.000 | 1.000 | 1.000 0.034 | 0.051 | 0.042 | 0.044 0.068
PP : Rejected H, 1.000 | 1.000 | 1.000 | 1.000 | 1.000 0.029 | 0.058 | 0.031 | 0.024 0.008
N = 500 d=0 | d=0 | d=0 | d=0 | d=0 || d=1 | d=1 | d=1 | d=1 | d=1
ARIMA(1, d, 0) $=0.1 | =03 | ¢=05 | ¢=0.7 | $=0.9 | $=0.1 | ¢=0.3 | ¢=0.5 | ¢$=0.7 | $=0.9
Sn: Rejected Ho 0 0 0 0 0 0.090 | 0.995 | 0.994 | 0.995 | 0.995

KPSS: Rejected Hg 0.040 0.029 0.025 0.010 0.007 0.998 0.998 0.997 0.998 0.999
V/S : Rejected Hy 0.043 0.030 0.018 0.012 0.006 1.000 0.999 1.000 1.000 0.999

Tn: Rejected H}, 0.998 | 1.000 | 0.999 | 1.000 | 1.000 0 0 0 0 0
ADF: Rejected H}) 1.000 | 1.000 | 1.000 | 1.000 | 1.000 0.040 | 0.048 | 0.038 | 0.040 | 0.055
PP : Rejected H)) 1.000 | 1.000 | 1.000 | 1.000 | 1.000 0.041 | 0.074 | 0.108 | 0.226 | 0.534
N = 5000 d=0 | d=0 | d=0 | d=0 | d=0 || d=1 | d=1 | d=1 | d=1 | d=1
ARIMA(1, d, 0) $=0.1 | $=0.3 | ¢=05 | ¢=0.7 | $=0.9 | $=0.1 | ¢=0.3 | ¢=0.5 | ¢$=0.7 | $=0.9
Sn: Rejected Ho 0 0 0 0 0 1.000 | 1.000 | 1.000 | 1.000 1.000

KPSS: Rejected Hg 0.087 0.044 0.041 0.016 0.008 1.000 1.000 1.000 1.000 1.000
V/S : Rejected Hy 0.068 0.035 0.044 0.019 0.003 1.000 1.000 1.000 1.000 1.000

Tn: Rejected H| 1.000 1.000 1.000 1.000 1.000 0 0 0 0 0
ADF: Rejected H|| 1.000 1.000 1.000 1.000 1.000 0.025 0.049 0.030 0.074 0.041
PP : Rejected H| 1.000 1.000 1.000 1.000 1.000 0.033 0.057 0.052 0.144 0.352

Table 5: Comparisons of stationarity and non-stationarity tests from 1000 independent Monte Carlo experiment replications
of ARIMA(1,d,0) processes (defined by X: + ¢X¢—1 =& for d =0 and (Xt — X¢—1) + ¢(Xe—1 — X¢—2) =& for d =1) for

several values of ¢ and N. The accuracy of tests is measured by the rejection probabilities.
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N =500
ARFIMA(0, d, 0) d=-02|d=0|d=02|d=04|d=06 |d=08|d=1|d=12
Sn: Rejected Hg 0 0 0 0.003 0.276 0.917 0.998 0.999
KPSS: Rejected Hg 0 0.059 0.395 0.771 0.946 0.989 0.999 0.999
V/S : Rejected Hp 0 0.052 0.446 0.847 0.970 0.993 0.998 1.000
Tn: Rejected H) 1.000 1.000 0.965 0.421 0.017 0 0 0
ADF': Rejected H|) 1.000 1.000 1.000 0.977 0.615 0.233 0.065 0.005
PP : Rejected H|| 1.000 1.000 1.000 1.000 0.919 0.447 0.065 0.002
N = 5000
ARFIMA(0, d, 0) d=-02|d=0|d=02|d=04|d=06 |d=08|d=1|d=12
Sn: Rejected Hog 0 0 0 0 0.912 1.000 1.000 1.000
KPSS: Rejected Hg 0 0.042 0.674 0.996 1.000 1.000 1.000 1.000
V/S : Rejected Ho 0 0.038 0.694 0.992 1.000 1.000 1.000 1.000
Tn: Rejected H|) 1.000 1.000 1.000 0.946 0 0 0 0
ADF': Rejected H) 1.000 1.000 1.000 1.000 0.946 0.448 0.050 0.004
PP : Rejected H| 1.000 1.000 1.000 1.000 1.000 0.705 0.042 0

Table 6: Comparisons of stationarity and non-stationarity tests from 1000 independent Monte Carlo experiment replications

of ARFIMA(0, d, 0) processes for several values of d and N. The accuracy of tests is measured by the rejection probabilities.

N = 500
ARFIMA(L, d, 1) d=-02|d=0|d=02|d=041| d=06|d=08|d=1|d=12
$=-03:0=07

Sy Rejected Hog 0 0 0 0.015 0.442 0.898 0.987 0.999
KPSS: Rejected Hg 0 0.079 0.454 0.836 0.959 0.995 0.997 0.999
V/S : Rejected Hp 0.001 0.077 0.481 0.876 0.974 0.993 1.000 1.000
Tn: Rejected H|, 0.999 0.990 0.823 0.212 0.009 0 0 0
ADF: Rejected H) 1.000 1.000 1.000 0.961 0.623 0.230 0.056 0.010
PP : Rejected H|| 1.000 1.000 1.000 0.999 0.781 0.270 0.036 0

N = 5000

ARFIMA(1,d, 1) d=-02|d=0|d=02|d=04|d=06 |d=08|d=1|d=12
¢=-03;0=0.7

Sn: Rejected Hog 0 0 0 0.004 0.846 1.000 1.000 1.000
KPSS: Rejected Hy 0 0.060 0.689 0.963 0.996 1.000 1.000 1.000
V/S : Rejected Ho 0 0.060 0.697 0.989 1.000 1.000 1.000 1.000
Tn: Rejected H|| 1.000 1.000 1.000 0.700 0.008 0 0 0
ADF': Rejected H) 1.000 1.000 1.000 1.000 0.951 0.371 0.052 0.004
PP : Rejected H|, 1.000 1.000 1.000 1.000 0.996 0.584 0.038 0

Table 7: Comparisons of stationarity and non-stationarity tests from 1000 independent Monte Carlo experiment replications
of ARFIMA(1,d, 1) processes with ¢ = —0.3 and 6 = 0.7 for several values of d and N. The accuracy of tests is measured
by the rejection probabilities.
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N =500
X (d,0,1) d=-02|d=0|d=02|d=04 || d=06 | d=08 | d=1 | d=1.2
Sn: Rejected Ho 0 0 0 0.001 0.294 0.883 | 0.990 | 0.999
KPSS: Rejected Hy 0 0.052 | 0.433 0.801 0.939 0.988 | 0.999 | 1.000
V/S : Rejected Hy 0 0.035 | 0.464 0.844 0.963 0.995 | 0.999 | 1.000
Tn: Rejected H) 1.000 1.000 | 0.953 0.405 0.022 0 0 0
ADF: Rejected H}, 1.000 1.000 | 1.000 1.000 0.976 0.561 | 0.188 | 0.073
PP : Rejected H 1.000 1.000 | 1.000 1.000 1.000 0.803 | 0.184 | 0.049
N = 5000
X (d,0,1) d=-02|d=0|d=02|d=04]| d=06|d=08|d=1]|d=12
Sn: Rejected Hy 0 0 0 0 0.933 1.000 | 1.000 | 1.000
KPSS: Rejected Hy 0 0.082 | 0.689 0.970 1.000 1.000 | 1.000 | 1.000
V/S : Rejected Hy 0 0.075 | 0.723 0.970 0.996 1.000 | 1.000 | 1.000
Tn: Rejected H}) 1.000 1.000 | 1.000 0.940 0 0 0 0
ADF: Rejected H}, 1.000 1.000 | 1.000 1.000 1.000 0.753 | 0.124 | 0.086
PP : Rejected H 1.000 1.000 | 1.000 1.000 1.000 0.918 | 0.109 | 0.139

Table 8: Comparisons of stationarity and non-stationarity tests from 1000 independent Monte Carlo experiment replica-

tions of X (4% processes for several values of d and N. The accuracy of tests is measured by the rejection probabilities.

27



N =200
ARFIMA(0, d,0) d=05|d=06 | d=07|d=08 | d=09 | d=1
Fn: Rejected HEUR 0.995 0.960 0.819 0.577 0.292 | 0.132
Tpau: Rejected HEUR | 0.991 0.982 0.956 0.734 0.277 | 0.058
Trvi: Rejected HEUR | 0999 | 0.998 | 0.932 0.604 0.185 | 0.059
Trvio: Rejected HEUR 0.414 0.276 0.206 0.128 0.069 | 0.044
ARFIMA(L, d,0)
Fn: Rejected HYVE 0.998 0.975 0.881 0.653 0.388 | 0.136
Trvi: Rejected HEUR | 1.000 1.000 1.000 | 0.992 0.851 | 0.056
Trvio: Rejected HFUR | 0.433 0.308 0.205 0.118 0.062 | 0.043
ARFIMA(1,d, 1)
Fn: Rejected HYUE 0.961 0.870 0.654 0.416 0.183 | 0.076
Trvi: Rejected HEUR | 0,996 | 0.942 0.520 | 0.087 | 0.099 | 0.571

Trvio: Rejected HIUR 0.353 0.277 0.144 0.095 0.067 | 0.044
x(d,0,1)

Fn: Rejected HY'UVE 0.993 0.956 0.825 0.569 0.318 | 0.125
Trvi: Rejected HEUR 1.000 0.999 0.965 0.716 0.358 | 0.106
Trvio: Rejected HFUR | 0.682 0.504 0.294 0.173 0.110 | 0.057

N = 500
ARFIMA(0, d,0) d=05|d=06|d=07|d=08|d=09|d=1
Fn: Rejected HYVE 0.998 0.991 0.968 0.816 0.416 | 0.101

Tpeu: Rejected HYUE | 0.998 | 0.998 | 0.999 | 0.984 0.607 | 0.049
Trv1: Rejected HEUR 1.000 1.000 1.000 0.960 0.441 | 0.052
Trvio: Rejected HEUR | 0.912 0.783 0.527 0.243 0.095 | 0.048
ARFIMA(1, d,0)
Fn: Rejected HL'UR 0.998 | 0.994 | 0.952 0.814 0.510 | 0.145
Trvi: Rejected HEUR 1.000 1.000 1.000 1.000 0.669 | 0.053
Trvio: Rejected HEUR | 0.900 0.787 0.509 0.270 0.115 | 0.048
ARFIMA(L,d, 1)
Fn: Rejected HL'UR 0.999 | 0.988 | 0.904 | 0.619 0.241 | 0.088
Trvi: Rejected HEUR 1.000 0.998 0.927 0.150 0.135 | 0.919

Trvio: Rejected HEUR 0.891 0.699 0.416 0.220 0.101 | 0.040
X (d,0,1)

Fyn: Rejected HI'UR 0.999 0.990 0.937 0.800 0.421 | 0.109
Trvi: Rejected HEUR 1.000 1.000 1.000 0.987 0.638 | 0.132
Trvio: Rejected HIUR 0.981 0.902 0.635 0.358 0.170 | 0.072

N = 5000
ARFIMA(0, d,0) d=05|d=06 | d=07|d=08|d=09|d=1
Fn: Rejected HL'UR 1.000 1.000 1.000 | 0.996 0.941 | 0.145

Tpea: Rejected HEUVE | 1.000 1.000 1.000 1.000 1.000 | 0.059
Trvi: Rejected HFUR 1.000 1.000 1.000 1.000 1.000 | 0.055
Trvio: Rejected HEUE | 1.000 1.000 1.000 | 0.997 | 0.576 | 0.049
ARFIMA(1, d,0)
Fn: Rejected HEUR 1.000 1.000 0.998 0.994 0.904 | 0.105
Trvi: Rejected HIUR 1.000 1.000 1.000 1.000 1.000 | 0.054
Trvio: Rejected HEUE | 1.000 1.000 1.000 | 0.999 0.652 | 0.056
ARFIMA(1,d, 1)
Fn: Rejected HEUR 1.000 1.000 0.998 0.989 0.808 | 0.072
Trvi: Rejected HEUR 1.000 1.000 1.000 0.884 0.965 | 1.000

Trvio: Rejected HEUR | 1.000 1.000 1.000 0.988 0.488 | 0.051
x(d,0,1)

Fn: Rejected HEUR 1.000 1.000 1.000 | 0.998 0.941 | 0.122
Trvi: Rejected HEUR 1.000 1.000 1.000 1.000 0.999 | 0.269
Trvio: Rejected HEUE | 1.000 1.000 1.000 0.983 0.493 | 0.058
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Table 9:  Comparisons of Fractional Unit Roots tests, as 1000 independent Monte Carlo experiment replications, of
processes for several values of d and N. Note that the AR parameter of the ARFIMA(1,d,0) is 0.5 and the AR and
MA parameters of ARFIMA(1,d, 1) are respectively —0.3 and 0.7. The accuracy of tests is measured by the rejection
probabilities.



