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Abstract

In this paper, we show that the central limit theorem (CLT) satisfied by the data-driven Multidimensional

Increment Ratio (MIR) estimator of the memory parameter d established in Bardet and Dola (2012) for

d ∈ (−0.5, 0.5) can be extended to a semiparametric class of Gaussian fractionally integrated processes with

memory parameter d ∈ (−0.5, 1.25). Since the asymptotic variance of this CLT can be estimated, by data-driven

MIR tests for the two cases of stationarity and non-stationarity, so two tests are constructed distinguishing the

hypothesis d < 0.5 and d ≥ 0.5, as well as a fractional unit roots test distinguishing the case d = 1 from the

case d < 1. Simulations done on numerous kinds of short-memory, long-memory and non-stationary processes,

show both the high accuracy and robustness of this MIR estimator compared to those of usual semiparametric

estimators. They also attest of the reasonable efficiency of MIR tests compared to other usual stationarity tests

or fractional unit roots tests.

Keywords: Gaussian fractionally integrated processes; semiparametric estimators of the memory parameter;

test of long-memory; stationarity test; fractional unit roots test.

1 Introduction

The set I(d) of fractionally integrated stochastic processX = (Xk)k∈Z was defined and used in many articles (see for

instance, Granger and Joyeux, 1980). Here we consider the following spectral version of this set for −0.5 < d < 1.5:

Set I(d): X = (Xt)t∈Z is a stochastic process and there exists a continuous function f∗ : [−π, π] → [0,∞[

satisfying:

1. if −0.5 < d < 0.5, X is a stationary process with a spectral density f satisfying f(λ) = |λ|−2df∗(λ) for all

λ ∈ (−π, 0) ∪ (0, π), with f∗(0) > 0.

2. if 0.5 ≤ d < 1.5, U = (Ut)t∈Z = (Xt −Xt−1)t∈Z is a stationary process with a spectral density f satisfying

f(λ) = |λ|2−2df∗(λ) for all λ ∈ (−π, 0) ∪ (0, π), with f∗(0) > 0.

The case d ∈ (0, 0.5) is the case of long-memory processes, while −0.5 < d ≤ 0 corresponds to short-memory pro-

cesses while 0.5 ≤ d < 1.5 corresponds to non-stationary processes having stationary increments. ARFIMA(p, d, q)
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processes (which are linear processes), as well fractional Gaussian noises (with parameter H = d + 1/2 ∈ (0, 1))

or fractional Brownian motions (with parameter H = d − 1/2 ∈ (0, 1)) are famous examples of processes satisfy-

ing Assumption I(d). The purpose of this paper is twofold: firstly, we establish the consistency of an adaptive

data-driven semiparametric estimator of d for any d ∈ (−0.5, 1.25). Secondly, we use this estimator to build new

stationarity and fractional unit roots semiparametric tests.

Numerous articles have been devoted to the estimation of d in the case d ∈ (−0.5, 0.5) only. The books of

Beran (1994) and Doukhan et al. (2003) provide large surveys of such parametric estimators (as maximum like-

lihood or Whittle estimators) or semiparametric estimators (as local Whittle, log-periodogram or wavelet based

estimators). Here we will focus on the case of semiparametric estimators of processes satisfying Assumption I(d).

Even if first versions of local Whittle, log-periodogram and wavelet based estimators are considered in the case

d < 0.5 only (see for instance Robinson, 1995a and 1995b, Veitch et al., 2003) , new extensions have been provided

to estimate d when d ≥ 0.5 also (see for instance Hurvich and Ray, 1995, Velasco, 1999a, Velasco and Robinson,

2000, Moulines and Soulier, 2003, Shimotsu and Phillips, 2005, Giraitis et al., 2003, 2006, Abadir et al., 2007 or

Moulines et al., 2007). Moreover, adaptive data-driven versions of these estimators have been defined to avoid any

trimming or bandwidth parameters, generally required by these methods (see for instance Giraitis et al., 2000,

Moulines and Soulier, 2003, Veitch et al., 2003, or Bardet and Bibi, 2012). The first objective of this paper is to

propose for the first time an adaptive data-driven estimator of d satisfying a CLT, providing confidence intervals or

tests, that is valid for d < 0.5 but also for d ≥ 0.5. This objective is achieved by using Multidimensional Increment

Ratio (MIR) statistics.

The original version of the Increment Ratio (IR) statistic was defined in Surgailis et al. (2008) from an observed

trajectory (X1, . . . , XN) of a process X satisfying I(d) and for any ℓ ∈ N
∗ as:

IRN (ℓ) :=
1

N − 3ℓ

N−3ℓ−1∑

k=0

∣∣∣
k+ℓ∑

t=k+1

Xt+ℓ −
k+ℓ∑

t=k+1

Xt +
k+2ℓ∑

t=k+ℓ+1

Xt+ℓ −
k+2ℓ∑

t=k+ℓ+1

Xt

∣∣∣

∣∣∣
k+ℓ∑

t=k+1

Xt+ℓ −
k+ℓ∑

t=k+1

Xt

∣∣∣+
∣∣∣

k+2ℓ∑

t=k+ℓ+1

Xt+ℓ −
k+2ℓ∑

t=k+ℓ+1

Xt

∣∣∣
. (1.1)

Under conditions on X , if ℓ→ ∞ and N/ℓ→ ∞, it is proved that the statistics IRN (ℓ) converges to a determin-

istic monotone function Λ0(d) on (−0.5, 1.5) and a CLT is also established for d ∈ (−0.5, 0.5) ∪ (0.5, 1.25) when

ℓ is large enough with respect to N . As a consequence of this CLT and using the Delta-method, the estimator

d̂N (ℓ) = Λ−1
0 (IRN (ℓ)), where d 7→ Λ0(d) is a smooth and increasing function defined in (2.6), is a consistent

estimator of d satisfying also a CLT (see more details below). However this new estimator was not totally sat-

isfying. Firstly, it requires the knowledge of the second order behavior of the spectral density, which is clearly

unknown in practice, to select ℓ. Secondly, its numerical accuracy is reasonable but clearly lower than those of

local Whittle or log-periodogram estimators. As a consequence, in Bardet and Dola (2012), we built a data-driven

Multidimensional IR (MIR) estimator d̃
(MIR)
N computed from

(
d̂N (ℓ1), · · · , d̂N (ℓp)

)
(see its precise definition in

(3.2)) improving both these points but only for −0.5 < d < 0.5. This is an adaptive data-driven semiparametric

estimator of d achieving the minimax convergence rate (up to a multiplicative logarithm factor) and requiring no

regulation of any auxiliary parameter (as bandwidth or trimming parameters). Moreover, its numerical perfor-

mances are comparable to the ones of local Whittle, log-periodogram or wavelet based estimators.

Here we extend this previous work to the case 0.5 ≤ d < 1.25. Hence we obtain a CLT satisfied by d̃
(MIR)
N for

all d ∈ (−0.5, 1.25) with an explicit asymptotic variance depending on d only. This especially allows to obtain

confidence intervals of d using Slutsky Lemma. The case d = 0.5 is now studied and this offers new perspectives:

our data-driven estimator can be used for building a stationarity (or non-stationarity) test since 0.5 is the “border

number” between stationarity and non-stationarity. The case d = 1 is also now studied and it provides another

application of d̃
(MIR)
N to test fractional unit roots, that is to decide between d = 1 and d < 1.
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There exist several famous stationarity (or non-stationarity) tests. We may cite parametric tests defined by Elliott

et al. (1996) or Ng and Perron (1996, 2001). For non parametric stationarity tests we may cite the LMC test (see

Leybourne and McCabe, 2000) and the KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test (see Kwiatkowski et al.,

1992), improved by the V/S test (see Giraitis et al., 2003). For non-stationarity tests we may cite the Augmented

Dickey-Fuller test (see Said and Dickey, 1984) and the Philipps and Perron test (PP test in the sequel, see Philipps

and Perron, 1988). All these tests are unit roots tests (except the V/S test which is also a short-memory test),

which are, roughly speaking, tests based on the model Xt = ρXt−1 + εt with |ρ| ≤ 1. A right-tailed test d ≥ 0.5

for a process satisfying Assumption I(d) is therefore a refinement of a basic unit roots test since the case ρ = 1 is

a particular case of I(1) and the case |ρ| < 1 a particular case of I(0). Thus, a stationarity (or non-stationarity

test) based on the estimator of d provides a useful complementary test to usual unit roots tests.

This principle of stationarity test linked to d has been already investigated in many articles. We can cite Robinson

(1994), Tanaka (1999), Ling and Li (2001), Ling (2003) or Nielsen (2004). It also be used to define fractional unit

roots tests, like the Fractional Dickey-Fuller test defined by Dolado et al. (2002) or the cointegration rank test

defined by Breitung et al. (2002). However, all these papers provide parametric tests, with a specified model (for

instance ARFIMA or ARFIMA-GARCH processes). Extensions proposed by Lobato an Velasco (2007) and Dolado

et al. (2008) allow to extend these tests to I(d) processes with ARMA component but requiring the knowledge

of the order of this component. Several papers have been recently devoted to the construction of semiparametric

tests, see for instance Giraitis et al. (2006), Abadir et al. (2007) or Surgailis et al. (2008). But these semipara-

metric tests require the knowledge of the second-order expansion of the spectral density at the zero frequency for

adjusting a trimming or a bandwidth parameter; an a priori choice of this parameter always implies a bias of the

estimator and therefore of the test when this asymptotic expansion is not smooth enough.

The MIR estimator d̃
(MIR)
N does not present this drawback. It converges to d following a CLT with minimax

convergence rate without any a priori choice of a parameter. This result is established for time series belonging to

the Gaussian semiparametric class IG(d, β) defined below (see the beginning of Section 2) which is a restriction

of the general set I(d). As a consequence, we construct a stationarity test S̃N which accepts the stationarity

assumption when d̃
(MIR)
N ≤ 0.5 + s with s a threshold only depending on the type I error test, d̃

(MIR)
N and N . A

non-stationarity test T̃N accepting the non-stationarity assumption when d̃
(MIR)
N ≥ 0.5 − s is also proposed. By

the same principle, d̃
(MIR)
N also provides a fractional unit roots test F̃N for deciding between d = 1 and d < 1, i.e.

whether F̃N ≥ 1− s′ or not, where s′ is a threshold depending on the type I error test. ˙

In Section 5, numerous simulations are realized on several models of time series (short and long-memory processes).

First, the new MIR estimator d̃
(MIR)
N is compared to the most efficient and famous semiparametric estimators for

several values of d ∈ (−0.5, 1.25). The performances of d̃
(MIR)
N are convincing: this estimator is accurate and ro-

bust for all the considered processes and is globally as efficient as local Whittle, log-periodogram or wavelet based

estimators. Secondly, the new stationarity S̃N and non-stationarity T̃N tests are compared to the most famous

unit roots tests (KPSS, V/S, ADF and PP tests) for numerous I(d) processes. And the results are quite surprising:

even on AR(1) or ARIMA(1, 1, 0) processes, S̃N and T̃N tests provide convincing results which are comparable

to those obtained with ADF and PP tests while those tests are especially built for these specific processes. For

long-memory processes (such as ARFIMA processes), the results are clear: S̃N and T̃N tests are accurate tests

of (non)stationarity while ADF and PP tests are only helpful when d is close to 0 or 1. Concerning the new

MIR fractional unit roots test F̃N , it provides satisfying results for all considered processes, while fractional unit

roots tests such as the fractional Dickey-Fuller test developed by Dolado et al. (2002) or the efficient Wald test

introduced by Lobato and Velasco (2007) are respectively only performing for ARFIMA(0, d, 0) processes or a class

of long-memory processes containing ARFIMA(p, d, 0) processes but not ARFIMA(p, d, q) processes with q ≥ 1.

The forthcoming Section 2 is devoted to the definition and asymptotic behavior of MIR estimators of d and
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Section 3 studies an adaptive MIR estimator. The stationarity and non-stationarity tests are presented in Section

4 while Section 5 deals with the results of simulations, Section 6 provides conclusive remarks and Section 7 contains

all the proofs.

2 The Multidimensional Increment Ratio statistic

Now we consider a semiparametric class IG(d, β) which is a refinement of the general class I(d). For −0.5 < d < 1.5

and β > 0 define:

Assumption IG(d, β): X = (Xt)t∈Z is a Gaussian process such that there exist ǫ > 0, c0 > 0, c′0 > 0 and

c1 ∈ R satisfying:

1. if d < 0.5, X is a stationary process with a spectral density f satisfying for all λ ∈ (−π, 0) ∪ (0, π)

f(λ) = c0|λ|−2d + c1|λ|−2d+β +O
(
|λ|−2d+β+ǫ

)
and |f ′(λ)| ≤ c′0 λ

−2d−1. (2.1)

2. if 0.5 ≤ d < 1.5, U = (Ut)t∈Z = (Xt −Xt−1)t∈Z is a stationary process with a spectral density f satisfying

for all λ ∈ (−π, 0) ∪ (0, π)

f(λ) = c0|λ|2−2d + c1|λ|2−2d+β +O
(
|λ|2−2d+β+ǫ

)
and |f ′(λ)| ≤ c′0 λ

−2d+1. (2.2)

Note that Assumption IG(d, β) is a particular (but still general) case of the set I(d) defined above.

Remark 1. • The extension of the definition from d ∈ (−0.5, 0.5) to d ∈ [0.5, 1.5) is classical since the

conditions on the process is replaced by conditions on the process’ increments.

• The condition on the derivative f ′ is not really usual. However, this is not a very restrictive condition since

it is satisfied by all the classical long-range dependent processes.

• In the literature, all the theoretical results concerning the IR statistic for time series have been obtained under

Gaussian assumptions. In Surgailis et al. (2008) and Bardet and Dola (2012), simulations exhibited that the

obtained limit theorems should be also valid for linear processes. However a theoretical proof of such result

would require limit theorems for functionals of multidimensional linear processes difficult to be established,

even if numerical experiments seem to show that this assumption could be replaced by the assumption that X

is a linear process having a fourth-moment order like it was done in Giraitis and Surgailis (1990).

In this section, under Assumption IG(d, β), we establish central limit theorems which extend to the case d ∈
[0.5, 1.25) those already obtained in Bardet and Dola (2012) for d ∈ (−0.5, 0.5). Let X = (Xk)k∈N be a process

satisfying Assumption IG(d, β) and (X1, · · · , XN ) be a path of X . The statistic IRN (see its definition in (1.1))

was first defined in Surgailis et al. (2008) as a way to estimate the memory parameter. In Bardet and Surgailis

(2011) a simple version of IR-statistic was also introduced to measure the roughness of continuous time processes,

and its connection with level crossing index by geometrical arguments. The main interest of such a statistic is to

be very robust to additional or multiplicative trends.

As in Bardet and Dola (2012), let mj = j m, j = 1, · · · , p with p ∈ N
∗ and m ∈ N

∗, and define the random

vector (IRN (mj))1≤j≤p. In the sequel we naturally extend the results obtained for m ∈ N
∗ to m ∈ (0,∞) by the

convention: (IRN (j m))1≤j≤p = (IRN (j [m]))1≤j≤p (which does not change the asymptotic results).

For H ∈ (0, 1), let BH = (BH(t))t∈R be a standard fractional Brownian motion, i.e. a centered Gaussian process

having stationary increments and such as Cov
(
BH(t) , BH(s)

)
= 1

2

(
|t|2H + |s|2H − |t− s|2H

)
. Now, using obvious
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modifications of Surgailis et al. (2008), for d ∈ (−0.5, 1.25) and p ∈ N
∗, define the stationary multidimensional

centered Gaussian processes
(
Z

(1)
d (τ), · · · , Z(p)

d (τ)
)
such as for τ ∈ R,

Z
(j)
d (τ) :=





√
2d(2d+ 1)√
|4d+0.5 − 4|

∫ 1

0

(
Bd−0.5(τ + s+ j)−Bd−0.5(τ + s)

)
ds if d ∈ (0.5, 1.25)

1√
|4d+0.5 − 4|

(
Bd+0.5(τ + 2j)− 2Bd+0.5(τ + j) +Bd+0.5(τ)

)
if d ∈ (−0.5, 0.5)

. (2.3)

Using a continuous extension when d→ 0.5 of the covariance of Z
(j)
d (τ), we also define the stationary multidimen-

sional centered Gaussian processes
(
Z

(1)
0.5(τ), · · · , Z

(p)
0.5 (τ)

)
with covariance such as:

Cov
(
Z

(i)
0.5(0), Z

(j)
0.5(τ)

)
:=

1

4 log 2

(
− h(τ + i− j) + h(τ + i) + h(τ − j)− h(τ)

)
for τ ∈ R,

where h(x) = 1
2

(
|x− 1|2 log |x− 1|+ |x+1|2 log |x+1|− 2|x|2 log |x|

)
for x ∈ R, using the convention 0× log 0 = 0.

Now, we establish a multidimensional CLT satisfied by (IRN (j m))1≤j≤p for all d ∈ (−0.5, 1.25):

Proposition 1. Assume that Assumption IG(d, β) holds with −0.5 ≤ d < 1.25 and β > 0. Then

√
N

m

(
IRN (j m)− E

[
IRN (j m)

])
1≤j≤p

L−→
[N/m]∧m→∞

N (0,Γp(d)) (2.4)

with Γp(d) = (σi,j(d))1≤i,j≤p where for i, j ∈ {1, . . . , p},

σi,j(d) : =

∫ ∞

−∞

Cov
( |Z(i)

d (0) + Z
(i)
d (i)|

|Z(i)
d (0)|+ |Z(i)

d (i)|
,
|Z(j)

d (τ) + Z
(j)
d (τ + j)|

|Z(j)
d (τ)| + |Z(j)

d (τ + j)|

)
dτ. (2.5)

The proof of this proposition as well as all the other proofs can be found in Section 7.

In the sequel, we will assume that Γp(d) is a positive definite matrix for all d ∈ (−0.5, 1.25). Extensive numerical

experiments seem to give strong evidence of such a property. Now, the CLT (2.4) can be used for estimating d.

To begin with,

Property 2.1. Let X satisfy Assumption IG(d, β) with 0.5 ≤ d < 1.5 and 0 < β ≤ 2. Then, there exists a

non-vanishing constant K(d, β) depending only on d and β such that for m large enough,

E
[
IRN (m)

]
=

{
Λ0(d) +K(d, β)×m−β

(
1 + o(1)

)
if β < 1 + 2d

Λ0(d) +K(0.5, β)×m−2 logm
(
1 + o(1)

)
if β = 2 and d = 0.5

with Λ0(d) := Λ(ρ(d)) where ρ(d) :=





4d+1.5 − 9d+0.5 − 7

2(4− 4d+0.5)
for 0.5 < d < 1.5

9 log(3)

8 log(2)
− 2 for d = 0.5

(2.6)

and Λ(r) :=
2

π
arctan

√
1 + r

1− r
+

1

π

√
1 + r

1− r
log(

2

1 + r
) for |r| ≤ 1. (2.7)

Therefore by choosing m and N such as
(√

N/m
)
m−β logm → 0 when m,N → ∞, the term E

[
IR(jm)

]
can be

replaced by Λ0(d) in Proposition 1. Then, using the Delta-method with the function (xi)1≤i≤p 7→ (Λ−1
0 (xi))1≤i≤p

(the function d ∈ (−0.5, 1.5) → Λ0(d) is a C∞ increasing function), we obtain:

Theorem 1. Let d̂N (j m) := Λ−1
0

(
IRN (j m)

)
for 1 ≤ j ≤ p. Assume that Assumption IG(d, β) holds with

0.5 ≤ d < 1.25 and 0 < β ≤ 2. Then if m ∼ C Nα with C > 0 and (1 + 2β)−1 < α < 1,

√
N

m

(
d̂N (j m)− d

)
1≤j≤p

L−→
N→∞

N
(
0, (Λ′

0(d))
−2 Γp(d)

)
. (2.8)
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This result is an extension to the case 0.5 ≤ d ≤ 1.25 from the case −0.5 < d < 0.5 already obtained in Bardet

and Dola (2012). Note that the consistency of d̂N (j m) is ensured when 1.25 ≤ d < 1.5 but the previous CLT does

not hold (the asymptotic variance of
√

N
m d̂N (j m) diverges to ∞ when d > 1.25, see Surgailis et al., 2008).

Now define

Σ̂N (m) := (Λ′
0(d̂N (m))−2 Γp(d̂N (m)). (2.9)

The function d ∈ (−0.5, 1.5) 7→ σ(d)/Λ′(d) is C∞ and therefore, under assumptions of Theorem 1,

Σ̂N (m)
P−→

N→∞
(Λ′

0(d))
−2 Γp(d).

Thus, a pseudo-generalized least square estimation (PGLSE) of d can be defined by

d̃N (m) :=
(
J⊺

p

(
Σ̂N(m)

)−1
Jp

)−1
J⊺

p

(
Σ̂N (m)

)−1(
d̂N (mi)

)
1≤i≤p

with Jp := (1)1≤j≤p and denoting J⊺

p its transpose. From a Gauss-Markov Theorem type (see again Bardet and

Dola, 2012), the asymptotic variance of d̃N (m) is smaller than the one of any d̂N (jm), j = 1, . . . , p. Hence, we

obtain under the assumptions of Theorem 1:

√
N

m

(
d̃N (m)− d

) L−→
N→∞

N
(
0 , Λ′

0(d)
−2

(
J⊺

p Γ−1
p (d)Jp

)−1
)
. (2.10)

3 The adaptive data-driven version of the estimator

Theorem 1 and CLT (2.10) require the knowledge of β to be applied. But in practice β is unknown. The procedure

defined in Bardet and Bibi (2012) or Bardet and Dola (2012) can be used for obtaining a data-driven selection of

an optimal sequence (m̃N ) derived from an estimation of β. Since the case d ∈ (−0.5, 0.5) was studied in Bardet

and Dola (2012) we consider here d ∈ [0.5, 1.25) and for α ∈ (0, 1), define

QN (α, d) :=
(
d̂N (j Nα)− d̃N (Nα)

)⊺
1≤j≤p

(
Σ̂N (Nα)

)−1(
d̂N (j Nα)− d̃N (Nα)

)
1≤j≤p

, (3.1)

which corresponds to the sum of the pseudo-generalized squared distance between the points (d̂N (j Nα))j and

PGLSE of d. Note that by the previous convention, d̂N (j Nα) = d̂N (j [Nα]) and d̃N (Nα) = d̃N ([Nα]). Then

Q̂N (α) can be minimized on a discretization of (0, 1) and define:

α̂N := Argminα∈AN
Q̂N(α) with AN =

{ 2

logN
,

3

logN
, . . . ,

log[N/p]

logN

}
.

Remark 2. The choice of the set of discretization AN is implied by our proof of convergence of α̂N . If the interval

(0, 1) is stepped in N c points, with c > 0, the used proof cannot attest this convergence. However logN may be

replaced in the previous expression of AN by any negligible function of N compared to functions N c with c > 0

(for instance, (logN)a or a logN with a > 0 ).

From the central limit theorem (2.8) one deduces the following limit theorem:

Proposition 2. Assume that Assumption IG(d, β) holds with 0.5 ≤ d < 1.25 and 0 < β ≤ 2. Then,

α̂N
P−→

N→∞
α∗ =

1

(1 + 2β)
.

Finally define

m̃N := N α̃N with α̃N := α̂N +
6 α̂N

(p− 2)(1− α̂N )
· log logN

logN
.
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and the estimator

d̃
(MIR)
N := d̃N (m̃N ) = d̃N (N α̃N ). (3.2)

(the definition and use of α̃N instead of α̂N are explained just before Theorem 2 in Bardet and Dola, 2012). The

following theorem provides the asymptotic behavior of the estimator d̃
(MIR)
N :

Theorem 2. Under assumptions of Proposition 2,

√
N

N α̃N

(
d̃
(MIR)
N − d

) L−→
N→∞

N
(
0 ; Λ′

0(d)
−2

(
J⊺

p Γ−1
p (d)Jp

)−1
)
. (3.3)

Moreover, ∀ρ > 2(1 + 3β)

(p− 2)β
,

N
β

1+2β

(logN)ρ
·
∣∣d̃(MIR)

N − d
∣∣ P−→

N→∞
0.

The convergence rate of d̃
(MIR)
N is the same (up to a multiplicative logarithm factor) than the one of minimax

estimator of d in this semiparametric framework (see Giraitis et al., 1997). As it was already established in

Surgailis et al. (2008), the use of IR statistics confers a robustness of d̃
(MIR)
N to smooth additive or multiplicative

trends (see also the results of simulations thereafter). The additional advantage of d̃
(MIR)
N with respect to other

adaptive estimators of d (see Moulines and Soulier, 2003, for an overview over frequency domain estimators of d)

is the central limit theorem (3.3) satisfied by d̃
(MIR)
N . This central limit theorem provides asymptotic confidence

intervals on d which are unobtainable for instance with FEXP or local periodogram adaptive estimator (see

respectively Iouditsky et al., 2001, and Giraitis et al., 2000 or Henry, 2007). Moreover d̃
(MIR)
N can be used for

d ∈ (−0.5, 1.25), i.e. as well for stationary and non-stationary processes, without modifications in its definition.

Both these advantages allow to define stationarity and fractional unit roots tests based on d̃
(MIR)
N .

4 Stationarity, non-stationarity and fractional unit roots tests

Assume that (X1, . . . , XN) is an observed trajectory of a process X = (Xk)k∈Z. We define here new stationarity,

non-stationarity and fractional unit roots tests for X based on d̃
(MIR)
N .

4.1 A stationarity test

There exist many stationarity and non-stationarity tests. The most famous stationarity tests are certainly the

following unit roots tests:

• The KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test (see Kwiatkowsli et al., 1992);

• The V/S test (see its presentation in Giraitis et al., 2001) which was first defined for testing the presence of

long-memory versus short-memory. As it was already notified in Giraitis et al. (2003-2006), the V/S test is

also more powerful than the KPSS test for testing the stationarity.

• A test based on unidimensional IR statistic and developed in Surgailis et al. (2008).

More precisely, we consider here the following statistical hypothesis test:

• Hypothesis H0 (stationarity): (Xt)t∈Z is a process satisfying Assumption IG(d, β) with d ∈ (−0.5, 0.5) and

0 < β ≤ 2.

• Hypothesis H1 (non-stationarity): (Xt)t∈Z is a process satisfying Assumption IG(d, β) with d ∈ [0.5, 1.25)

and 0 < β ≤ 2.
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We use a test based on d̃
(MIR)
N for deciding between both these hypothesis. Hence from the previous CLT (3.3)

and with a significance level α, define

S̃N := 1
d̃
(MIR)
N >0.5+σp(0.5) q1−α N(α̃N−1)/2 , (4.1)

where σp(0.5) =
(
Λ′
0(0.5)

−2
(
J⊺

p Γ−1
p (0.5)Jp

)−1
)1/2

(see (3.3)) and q1−α is the (1−α) quantile of a standard Gaus-

sian random variable N (0, 1).

Then we define the following rules of decision:

”H0 (stationarity) is accepted when S̃N = 0 and rejected when S̃N = 1.”

Remark 3. In fact, the previous stationarity test S̃N defined in (4.1) can also be seen as a semiparametric test

d < d0 versus d ≥ d0 with d0 = 0.5. It is obviously possible to extend it to any value d0 ∈ (−0.5, 1.25) by defining

S̃
(d0)
N := 1

d̃
(MIR)
N >d0+σp(d0) q1−α N(α̃N−1)/2 . The particular case d0 = 1 will be considered thereafter as a fractional

unit roots test.

From previous results, it is clear that:

Property 1. Under Hypothesis H0, the asymptotic type I error of the test S̃N is α and under Hypothesis H1, the

test power tends to 1.

Moreover, this test can be used as a unit roots (UR) test. Indeed, define the following typical problem of UR

test. Let Xt = at+ b + εt, with (a, b) ∈ R
2, and εt an ARIMA(p, d, q) with d = 0 or d = 1. Then, a (simplified)

problem of a UR test is to decide between:

• HUR
0 : d = 0 and (εt) is a stationary ARMA(p′, q′) process.

• HUR
1 : d = 1 and (εt − εt−1)t is a stationary ARMA(p′, q′) process.

Then,

Property 2. Under Hypothesis HUR
0 , the type I error of this unit roots test problem using S̃N decreases to 0 when

N → ∞ and under Hypothesis HUR
1 , the test power tends to 1.

4.2 A non-stationarity test

Unit roots tests are also often used as non-stationarity test. Hence, between the most famous non-stationarity

tests and in a nonparametric framework, consider

• The Augmented Dickey-Fuller (ADF) test (see Said and Dickey, 1984);

• The Philipps and Perron (PP) test (see for instance Phillips and Perron 1988).

Using the statistic d̃
(MIR)
N we propose a new non-stationarity test T̃N for deciding between:

• Hypothesis H ′
0 (non-stationarity): (Xt)t∈Z is a process satisfying Assumption IG(d, β) with d ∈ [0.5, 1.25)

and β ∈ (0, 2].

• Hypothesis H ′
1 (stationarity): (Xt)t∈Z is a process satisfying Assumption IG(d, β) with −0.5 < d < 1/2 and

β ∈ (0, 2].

Then, the decision rule of the test under the significance level α is the following:

”Hypothesis H ′
0 is accepted when T̃N = 1 and rejected when T̃N = 0”
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where

T̃N := 1
d̃
(MIR)
N <0.5−σp(0.5) q1−α N(α̃N−1)/2 . (4.2)

Then,

Property 3. Under Hypothesis H ′
0, the asymptotic type I error of the test T̃N is α and under Hypothesis H ′

1 the

test power tends to 1.

As previously, this test can also be used as a unit roots test where Xt = at+ b+ εt, with (a, b) ∈ R
2, and εt an

ARIMA(p, d, q) with d = 0 or d = 1. We consider here a “second” simplified problem of unit roots test which is

to decide between:

• HUR′

0 : d = 1 and (εt − εt−1)t is a stationary ARMA(p′, q′) process.

• HUR′

1 : d = 0 and (εt)t is a stationary ARMA(p′, q′) process.

Then,

Property 4. Under Hypothesis HUR′

0 , the type I error of the unit roots test problem using T̃N decreases to 0 when

N → ∞ and under Hypothesis HUR′

1 the test power tends to 1.

4.3 A fractional unit roots test

Fractional unit roots tests have also been defined for specifying the eventual long-memory property of the process

in a unit roots test. In our Gaussian framework, they consist on testing

• Hypothesis HFUR
0 : (Xt)t∈Z is a ”random walk”-type process such as:

Xt = Xt−1 + ut (4.3)

with (ut)t a process satisfying Assumption IG(0, β) with 0 < β ≤ 2. Therefore (Xt) is a process satisfying

Assumption IG(1, β).

• Hypothesis HFUR
1 : (Xt)t∈Z is a process satisfying the following relation:

Xt = Xt−1 + φ∆d1Xt−1 + ut (4.4)

where (ut)t is a process satisfying Assumption IG(0, β) with 0 < β ≤ 2, φ < 0, and ∆d1 is the fractional

integration operator of order 0 < d1 < 1, i.e. ∆d1Xt−1 =
∑t−1

i=0 πi(d1)Xt−1−i and πi(d1) = Γ(i − d1)
(
Γ(i +

1)Γ(−d1)
)−1

.

After computations, it follows that if X satisfies (4.4), then X satisfies Assumption IG(d1, β). There exist several

fractional unit roots tests (see for example, Robinson, 1994, Tanaka, 1999, Dolado et al., 2002, or more recently,

Kew and Harris, 2009). It is clear that the estimator d̃
(MIR)
N can be used in such a framework for testing fractional

unit roots by comparing d̃
(MIR)
N to 1. Hence, the decision rule of the test under the significance level α is the

following:

”Hypothesis HFUR
0 is accepted when F̃N = 1 and rejected when F̃N = 0”

where

F̃N := 1
d̃
(MIR)
N >1−σp(1) q1−α N(α̃N−1)/2 . (4.5)

Then as previously

Property 5. Under Hypothesis HFUR
0 , the asymptotic type I error of the test F̃N is α and under Hypothesis

HFUR
1 the test power tends to 1.
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5 Results of simulations

5.1 Numerical procedure for computing the estimator and tests

First of all, softwares used in this Section are available on http://samm.univ-paris1.fr/-Jean-Marc-Bardet

with a free access on (in Matlab language).

The concrete procedure for applying the MIR-test of stationarity is the following:

1. using additional simulations (performed on ARMA, ARFIMA, FGN processes and not presented here in

order to avoid overloading the paper), we have observed that the value of the parameter p is not really

important with respect to the accuracy of the test (there are less than 10% of fluctuations on the value of

d̃
(MIR)
N when p varies). However, for optimizing our procedure (in the sense of minimizing from simulation

the mean square error of the d estimation) we chose p as a stepwise function of N :

p = 5× 1{N<120} + 10× 1{120≤N<800} + 15× 1{800≤N<10000} + 20× 1{N≥10000}.

2. as the values of σp(0.5) and σp(1) are essential for computing the thresholds of the tests, we have estimated

them and obtained:

• σ5(0.5) ≃ 0.9082, σ10(0.5) ≃ 0.8289, σ15(0.5) ≃ 0.8016 and σ20(0.5) ≃ 0.7861.

• σ5(1) ≃ 0.8381, σ10(1) ≃ 0.8102, σ15(1) ≃ 0.8082 and σ20(1) ≃ 0.7929.

3. then after computing m̃N presented in Section 3, the adaptive estimator d̃
(MIR)
N defined in (3.2), the test

statistics S̃N defined in (4.1), T̃N defined in (4.2) and F̃N defined in (4.5) are computed.

5.2 Monte-Carlo experiments on several time series

In the sequel the results are obtained from 1000 generated independent trajectories of each process defined below.

The concrete procedures of generation of these processes are obtained from the circulant matrix method, as detailed

in Doukhan et al. (2003). The simulations are realized for different values of d and N and processes which satisfy

Assumption IG(d, β):

1. the usual ARIMA(p′, d, q′) processes with respectively d = 0 or d = 1 and an innovation process which is a

Gaussian white noise. Such processes satisfy Assumption IG(0, 2) or IG(1, 2) (respectively);

2. the ARFIMA(p′, d, q′) processes with parameter d such that d ∈ (−0.5, 1.25) and an innovation process which

is a Gaussian white noise. Such ARFIMA(p′, d, q′) processes satisfy Assumption IG(d, 2) (note that ARIMA

processes are particular cases of ARFIMA processes).

3. the Gaussian stationary processes X(d,c1,d) with the spectral density

f3(λ) =
1

|λ|2d (1 + c1 |λ|β) for λ ∈ [−π, 0) ∪ (0, π], (5.1)

with d ∈ (−0.5, 1.5), c1 > 0 and β ∈ (0,∞). Therefore the spectral density f3 implies that Assumption

IG(d, β) holds. In the sequel we will first use c1 = 1 and β = 0.1, implying that the second order term of

the spectral density is ”less negligible” than in case of ARFIMA processes, and c1 = 0, implying that the

second order term of the spectral density is ”more negligible” than in case of ARFIMA processes.

4. the Gaussian stationary processes X(d,log), such as its spectral density is

f4(λ) =
1

|λ|2d (1 + | log(λ)| |λ|) for λ ∈ [−π, 0) ∪ (0, π], (5.2)
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with d ∈ (−0.5, 1.5). Therefore the spectral density f4 implies that Assumption I(d) holds, but not IG(d, β)

stricto sensu.

5. the Gaussian non-stationary processX(trend) which can be written asX
(trend)
t = an(t)+σn(t)×ARFIMA(0, d, 0),

where the additive and multiplicative trends are respectively an(t) = sin(2πt/n) and σn(t) =
√
2t/n (for us

we chose a non-polynomial but smooth additive trend).

5.2.1 Comparison of d̃
(MIR)
N with other semiparametric estimators of d

Here we first compare the performance of the data-driven MIR estimator d̃
(MIR)
N with other famous semiparametric

estimators of d:

• d̂
(IR)
N is the original version of the IR based estimator defined in Surgailis et al. (2008). As it was recom-

mended in that article, we chose m = 10.

• d̃
(MS)
N is the global log-periodogram estimator introduced by Moulines and Soulier (2003), also called FEXP

estimator, with bias-variance balance parameter κ = 2. Such an estimator was shown to be consistent for

d ∈ (−0.5, 1). This semiparametric estimator is an adaptive data-driven estimator of d.

• d̂
(ADG)
N is the extended local Whittle estimator defined by Abadir, Distaso and Giraitis (2007) which is

consistent for d > −3/2. It is a generalization of the local Whittle estimator introduced by Robinson

(1995b), consistent for d < 0.75, following a first extension proposed by Phillips (1999) and Shimotsu and

Phillips (2005). This estimator avoids the tapering used for instance in Velasco (1999b) or Hurvich and Chen

(2000). The trimming parameter is chosen as m = N0.65 (this is not an adaptive data-driven estimator)

following the numerical recommendations of Abadir et al. (2007).

• d̃
(WAV )
N is an adaptive data-driven wavelet based estimator introduced in Bardet and Bibi (2012) using a

Lemarie-Meyer type wavelet (another similar choice could be the adaptive wavelet estimator introduced in

Veitch et al., 2003, using a Daubechie’s wavelet, but its robustness property are slightly less interesting). The

asymptotic normality of such estimator is established for d > −0.5 (when the number of vanishing moments

of the wavelet function is large enough).

Note that only d̂
(IR)
N and d̂

(ADG)
N are not data-driven adaptive among the 5 estimators. Table 1 provides the results

of simulations for ARIMA(1, d, 0) (N = 500, N = 5000 and N = 50000). For ARFIMA(0, d, 0), ARFIMA(1, d, 1),

X(d,1,1), X(d,0,1), X(d,log) and X(trend) processes and several values of d, the results of simulations are presented

for N = 500 (Table 2), N = 5000 (Table 3) and N = 50000 (Table 4).

Conclusions of simulations: Even if the estimator d̂
(ADG)
N often provides the more accurate estimation of d for

stationary processes, it is not more accurate anymore than d̂
(MIR)
N in case of trended time series. Moreover since

this is not a data-driven estimator, with a bandwidth m fixed to be N0.65, it is not a consistent estimator when β

is small enough: this is such the case for X(d,log) where we observe that the MSE is globally larger for N = 50000

than for N = 5000. The estimator d̂
(MIR)
N is a very good trade-off with always one of the smallest

√
MSE among

the 5 semiparametric estimators and almost never bad results (except perhaps for X(trend), N = 500 and d < 0.5).

Moreover, the larger N the more efficient d̂
(MIR)
N with respect to the other estimators. Note also that the use of a

data-driven multidimensional version of IR statistics (i.e. the estimator d̂
(MIR)
N ) considerably improves the quality
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of the estimation with respect to the original estimator based on unidimensional IR statistics (the estimator d̂
(IR)
N ).

Finally the other data-driven estimators d(MS) and d(WAV ) provide correct results but are often less efficient than

d̂
(MIR)
N .

5.2.2 Comparison of MIR tests S̃N and T̃N with other stationarity or non-stationarity tests

Monte-Carlo experiments were done for evaluating the performances of new tests S̃N and T̃N and for comparing

them to most famous stationarity tests (KPSS and V/S) or non-stationarity (ADF and PP) tests (see more details

on these tests in the previous section).

As it is suggested for the corresponding R-software commands (see also Banerjee et al., 1993), we chose the

following trimming parameters for the classical tests:

• k =
[

3
13

√
n
]
for KPSS test;

• k =
√
N for V/S test;

• k =
[
(N − 1)1/3

]
for ADF test;

• k =
[
4
(

N
100

)1/4]
for PP test;

The results of these simulations with a type I error classically chosen to 0.05 are provided in Tables 5, 6, 7 and 8.

Conclusions of simulations: As it is well known, from their constructions, KPSS , V/S, ADF and PP tests

should asymptotically decide the stationarity hypothesis when d = 0, and the non-stationarity hypothesis when

d > 0. It was exactly what we observe in these simulations. For ARIMA(p, d, 0) processes with d = 0 or d = 1

(i.e. AR(1) process when d = 0), ADF and PP tests are more efficient tests than our adaptive MIR tests when

N = 500. However, note that all stationarity tests do not control the size for φ = −0.9. But when N = 5000 the

tests computed from d̃
(MIR)
N provide comparable and convincing results. Note also that KPSS and V/S provide

reasonable results but less efficient than the other tests. In case of processes with d ∈ (0, 1), the tests computed

from d̃
(MIR)
N obtain clearly better performances than classical non-stationarity tests ADF or PP which accept the

non-stationarity assumption H ′
0 even if the processes are stationary when 0 < d < 0.5 for instance. The case of the

V/S test is different since this test is built for distinguishing between short and long-memory processes. However,

as it was already established in Giraitis et al. (2003), V/S test is slightly more accurate than KPSS for testing

the stationarity. Note also that a renormalized version of this test has been defined in Giraitis et al. (2006) for

taking into account the value of d.

5.2.3 Comparison of MIR Fractional Unit Roots test F̃N and Dolado et al. and Lobato and Velasco

Fractional Unit Roots tests

Monte-Carlo experiments were also done for evaluating the performances of new Fractional Unit Root test F̃N and

for comparing it to the Fractional Unit Roots tests defined in Dolado et al. (2002) and in Lobato and Velasco

(2007).

1. The student-type test statistic defined in Dolado, Gonzalo and Mayoral (2002) is such as:

T̂DGM =

∑N
t=2(Xt −Xt−1)∆

d̂1Xt−1
(∑N

t=2

(
∆d̂1Xt−1

)2 × 1
N

∑N
t=2

(
Xt −Xt−1 − φ̂∆d̂1Xt−1

)2)1/2
, (5.3)
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with φ̂ =
∑N

t=2(Xt−Xt−1)∆
d̂1Xt−1

∑
N
t=2

(
∆d̂1Xt−1

)2 and d̂1 is the minimum between an ordinary least square estimator of d1

and 1− c with c > 0 small enough (typically c = 0.02). This is an extension in a fractional framework of the

Dickey-Fuller test.

2. The efficient Wald test statistic defined in Lobato and Velasco (2007) is based on a two-step student test of

a regression coefficient, i.e. T̂LV is the student test of the (zt)t coefficient for the regression of Xt −Xt−1

onto variables zt − α̂1zt−1 − · · · − α̂pzt−p, Xt−1 −Xt−2, · · · , Xt−p −Xt−p−1 for t = p+ 1, · · · , n, where zt is
defined as

zt =
∆d̂Xt − (Xt −Xt−1)

1− d̂
, (5.4)

and where (α̂1, · · · , α̂p) are obtained as a minimizer of
∑n

k=p

(
∆d̂Xt −α1∆

d̂Xt−1 − · · · −αp∆
d̂Xt−p

)2
and d̂

is a semi-parametric local Whittle type estimator of d. Note that T̂LV is depending on p and in the sequel

we will chose p = 1 and p = 10, defining respectively T̂LV 1 and T̂LV 10.

We applied the fractional unit roots tests F̃N , T̂LV 1 and T̂LV 10 to several fractional processes and displayed the

results in Table 9. As it is a test specially devoted to FARIMA(0, d, 0) processes, we only applied the fractional

unit roots test T̂DGM to those processes. Finally, note that we also consider the additional sample size N = 200

to N = 500 and N = 5000 used in other simulations because this could help to better evaluate the power of the

several tests (since for N = 500 and N = 5000 the test powers are often 1).

Conclusions of simulations: If T̂DGM and T̂LV 1 provide extremely convincing results for ARFIMA(0, d, 0) pro-

cesses, T̂LV 1 is still very accurate for ARFIMA(1, d, 0) processes. From its definition, the fractional unit roots

T̂LV 1 can not be used fruitfully for ARFIMA(1, d, 1) or X(d,0,1) processes but it can clearly be applied to a more

general class of processes than T̂DGM .

The same for T̂LV 10 which can be applied likely to a more general class of processes than T̂LV 1. However, if the re-

sults obtained here for ARFIMA(1, d, 1) or X(d,0,1) are satisfying and indicate that this test could be applied when

N = 500 and N = 5000, this is not the case for N = 200 for all the considered processes because this test requires

the estimation of too many parameters. Moreover, T̂LV 10 can not theoretically be applied to ARFIMA(1, d, 1) or

X(d,0,1) processes and additional simulations realized with N = 500000 indicate a rejection probability ≃ 0.16 for

ARFIMA(1, d, 1) processes when d = 1 (instead of 0.05). However, when N = 500000, a user could probably chose

T̂LV 20 or T̂LV 50 which would provide satisfying results.

The fractional unit roots test F̃N constructed from d̃
(MIR)
N does not have these drawbacks: this is a data-driven

test and it can be applied to a large family of fractional processes. Hence, the results of simulations obtained

with F̃N are satisfying (even if they are less efficient for specific processes than those obtained with T̂LV 10 which

requires the knowledge of the AR component). Even if this is a semiparametric test, the results obtained for

N = 200 are reasonable. However, note that the rejection probability of F̃N for d = 0.9 is much bigger than for

d = 1 when N = 200 and N = 500. Hence one could size adjust this test to get a better performance.

6 Conclusion

The adaptive data-driven memory parameter estimator d̃
(MIR)
N proposed in this paper has a lot of advantages.

Firstly, for any process belonging to the set
(
IG(d, β)

)
−0.5<d<1.25, 0<β≤2

, it follows a CLT with a convergence rate

reaching the minimax convergence rate (up to a multiplicative logarithm term) and this CLT is obtained without

any choice of bandwidth or trimming parameter. Secondly, the numerical performances of this estimator are

often better than those of the most accurate semiparametric memory parameter estimators, especially in case of
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trended processes (the robustness of IR estimator was already established in Surgailis et al., 2008). Finally, data-

driven stationarity and fractional unit roots tests are constructed from this estimator and they provide accurate

competitive results with respect to classical unit roots or fractional unit roots tests. Improving the performance

of those tests could be an interesting task.

An asymptotic study of these new estimator and tests for linear processes could be an interesting extension of

this paper. However, this requires to proof a multidimensional CLT theorem for a non-polynomial function of a

multidimensional linear process which is a difficult result to be established.

7 Proofs

Two technical lemmas are first established:

Lemma 7.1. For all λ > 0

1. For a ∈ (0, 2),
2

|λ|a−1

∫ ∞

0

sin(λx)

xa
dx =

4a

2a|λ|a
∫ ∞

0

sin2(λx)

xa+1
dx =

π

Γ(a) sin(aπ2 )
;

2. For b ∈ (−1, 1),
1

21−b − 1

∫ ∞

0

sin4(λx)

x4−b
dx =

16

−15 + 6 · 23−b − 33−b
×
∫ ∞

0

sin6(λx)

x4−b
dx =

23−b|λ|3−b π

4 Γ(4− b) sin( (1−b)π
2 )

;

3. For b ∈ (1, 3),
1

1− 21−b

∫ ∞

0

sin4(λx)

x4−b
dx =

16

15− 6 · 23−b + 33−b
×
∫ ∞

0

sin6(λx)

x4−b
dx =

23−b|λ|3−b π

4 Γ(4− b) sin( (3−b)π
2 )

.

Proof. These equations are given or deduced (using decompositions of sinj(·) and integration by parts) from (see

Doukhan et al., p. 31).

Lemma 7.2. For j = 4, 6, denote

Jj(a,m) :=

∫ π

0

xa
sinj(mx

2 )

sin4(x2 )
dx. (7.1)

Then, we have the following expansions when m→ ∞:

Jj(a,m) =





Cj1(a)m
3−a +O

(
m1−a

)
if −1 < a < 1

C′
j1(1)m

3−a +O
(
log(m)

)
if a = 1

C′
j1(a)m

3−a +O
(
1
)

if 1 < a < 3

C′
j2(3) log(m) +O

(
1
)

if a = 3

C′′
j1(a) +O

(
m−((a−3)∧2)) if a > 3

(7.2)

with the following real constants (which do not vanish for any a on the corresponding set):

• C41(a) :=
4 π(1 − 23−a

4 )

(3− a)Γ(3− a) sin( (3−a)π
2 )

and C61(a) :=
π(15− 6 · 23−a + 33−a)

4(3− a)Γ(3 − a) sin( (3−a)π
2 )

• C′
41(a) :=

( 6

3− a
1{1≤a<3} + 16

∫ 1

0

sin4(y2 )

y4−a
dy + 2

∫ ∞

1

1

y4−a

(
− 4 cos(y) + cos(2y)

)
dy

)

and C′
61(a) :=

[
16

∫ 1

0

sin6(y2 )

y4−a
dy +

5

3− a
1{1≤a<3} +

1

2

∫ ∞

1

1

y4−a

(
− 15 cos(y) + 6 cos(2y)− cos(3y)

)
dy

]

• C′
42(a) :=

(
6 · 1{a=3} + 1{a=1}

)
and C′

62(a) :=
(
5 · 1{a=3} +

5

6
· 1{a=1}

)

• C′′
41(a) :=

3

8

∫ π

0

xa

sin4(x2 )
dx and C′′

61(a) :=
5

16

∫ π

0

xa

sin4(x2 )
dx.
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Proof. The proof of these expansions follows the steps than those of Lemma 5.1 in Bardet and Dola (2012). Hence

we write for j = 4, 6,

Jj(a,m) = J̃j(a,m) +

∫ π

0

xa sinj(
mx

2
)

1

(x2 )
4
dx+

∫ π

0

xa sinj(
mx

2
)
2

3

1

(x2 )
2
dx (7.3)

with

J̃j(a,m) :=

∫ π

0

xa sinj(
mx

2
)
( 1

sin4(x2 )
− 1

(x2 )
4
− 2

3

1

(x2 )
2

)
dx.

The expansions when m → ∞ of both the right hand sided integrals in (7.3) are obtained from Lemma 7.1. It

remains to obtain the expansion of J̃j(a,m). Then, using classical trigonometric and Taylor expansions:

sin4(
y

2
) =

1

8

(
3− 4 cos(y) + cos(2y)

)
and

1

sin4(y)
− 1

y4
− 2

3

1

y2
∼ 11

45
(y → 0)

sin6(
y

2
) =

1

32

(
10− 15 cos(y) + 6 cos(2y)− cos(3y)

)
and

1

y5
+

1

3

1

y3
− cos(y)

sin5(y)
∼ 31

945
y (y → 0),

the expansions of J̃j(a,m) can be obtained.

Numerical experiments show that C′′
41(a) 6= 0, C′′

61(a) 6= 0, C′′
42(a) 6= 0 and C′′

62(a) 6= 0.

Proof of Proposition 1. This proposition is based on results of Surgailis et al. (2008) and was already proved in

Bardet et Dola (2012) in the case −0.5 < d < 0.5.

Mutatis mutandis, the case 0.5 < d < 1.25 can be treated exactly following the same steps.

The only new proof which has to be established concerns the case d = 0.5 since Surgailis et al. (2008) do not

provide a CLT satisfied by the (unidimensional) statistic IRN (m) in this case. Let Ym(j) the standardized process

defined Surgailis et al. (2008). Then, for d = 0.5,

∀j ≥ 1, |γm(j)| =
∣∣E

(
Ym(j)Ym(0)

)∣∣ = 2

V 2
m

∣∣∣
∫ π

0

cos(jx) x
(
c0 +O(xβ)

) sin4(mx
2 )

sin4(x2 )
dx

∣∣∣.

Denote γm(j) = ρm(j) = 2
V 2
m

(
I1 + I2

)
as in (5.39) of Surgailis et al. (2008). The expansion (2.20) of Surgailis et

al. (2008) remains true for d = 0.5 and therefore V 2
m ∼ c0V (0.5)m2 when m → ∞. The same for the inequality

(5.42) when d = 0.5 and thus |I1| ≤ Cm4j−2. Finally, when d = 0.5, we still have I2 = j−1
∑j/2

q=1 I2(q) with

|I2(q)| ≤ Cm4j−1 when 1 ≤ q ≤ j/m and |I2(q)| ≤ Cq−4j3 when j/m ≤ q ≤ j (see details p. 536-537 of Surgailis

et al., 2008). Then, the inequality (5.41) remains true for d = 0.5 and since we consider here j ≥ m,

|I2| ≤ Cm3j−1 =⇒ |I1 + I2| ≤ Cm3j−1 =⇒ |γm(j)| = |ρm(j)| ≤ 2

V 2
m

(
|I1 + I2|

)
≤ C

m

j
.

Now let ηm(j) := |Ym(j)+Ym(j+m)|
|Ym(j)|+|Ym(j+m)| := ψ

(
Ym(j), Ym(j+m)

)
. The Hermite rank of the function ψ is 2 and therefore

the equation (5.23) of Surgailis et al. (2008) obtained from Lemma 1 of Arcones (1994) remains valid. Hence:

∣∣Cov(ηm(0), ηm(j))
∣∣ ≤ C

m2

j2
,

and then the equations (5.28-5.31) of Surgailis et al. (2008) remain valid for all d ∈ [0.5, 1.25). Then for d = 0.5,
√
N

m

(
IRN (m)− E

[
IRN (m)

]) L−→
[N/m]∧m→∞

N
(
0, σ2(0.5)

)
, (7.4)

with σ2(0.5) ≃ (0.2524)2.

To establish the multidimensional CLT for 0.5 ≤ d ≤ 1.25 from (7.4) and unidimensional CLT of Surgailis et

al (2008) for 0.5 < d ≤ 1.25, we can reproduce exactly the steps 1 and 2 of the proof in Proposition 2.1 of Bardet

and Dola (2012).
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Proof of Property 2.1. As in Surgailis et al (2008), we can write:

E
[
IRN (m)

]
= E

( |Y 0 + Y 1|
|Y 0|+ |Y 1|

)
= Λ(

Rm

V 2
m

) with
Rm

V 2
m

:= 1− 2

∫ π

0
f(x)

sin6(mx
2 )

sin2( x
2 )
dx

∫ π

0
f(x)

sin4(mx
2 )

sin2( x
2 )
dx

.

Therefore an expansion of Rm/V
2
m provides an expansion of E

[
IRN (m)

]
when m→ ∞.

Step 1 Let f satisfy Assumption IG(d, β). Then we are going to establish that there exist positive real numbers

C1, C2 and C3 specified in (7.5), (7.6) and (7.7) such that for 0.5 ≤ d < 1.5 and with ρ(d) defined in (2.6),

1. if β < 2d− 1,
Rm

V 2
m

= ρ(d) + C1(2 − 2d, β)m−β +O
(
m−2 +m−2β

)
;

2. if β = 2d− 1,
Rm

V 2
m

= ρ(d) + C2(2 − 2d, β)m−β +O
(
m−2 +m−2−β log(m) +m−2β

)
;

3. if 2d− 1 < β < 2d+ 1,
Rm

V 2
m

= ρ(d) + C3(2− 2d, β)m−β +O
(
m−β−ǫ +m−2d−1 log(m) +m−2β

)
;

4. if β = 2d+ 1,
Rm

V 2
m

= ρ(d) +O
(
m−2d−1 log(m) +m−2

)
.

Under Assumption IG(d, β) and with Jj(a,m) defined in (7.2) in Lemma 7.2, it is clear that,

Rm

V 2
m

= 1− 2
J6(2− 2d,m) + c1

c0
J6(2− 2d+ β,m) +O(J6(2− 2d+ β + ε))

J4(2− 2d,m) + c1
c0
J4(2− 2d+ β,m) +O(J4(2− 2d+ β + ε))

,

since

∫ π

0

O(x2−2d+β+ε)
sinj(mx

2 )

sin2(x2 )
dx = O(Jj(2 − 2d+ β + ε)). Now using the results of Lemma 7.2 and constants

Cjℓ, C
′
jℓ and C′′

jℓ, j = 4, 6, ℓ = 1, 2 defined in Lemma 7.2,

1. Let 0 < β < 2d− 1 < 2, i.e. −1 < 2− 2d+ β < 1. Then

Rm

V 2
m

=1−2
C61(2− 2d) m1+2d+O

(
m2d−1

)
+c1

c0
C61(2− 2d+ β)m1+2d−β+O

(
m2d−1−β

)

C41(2− 2d)m1+2d+O
(
m2d−1

)
+c1

c0
C41(2− 2d+ β)m1+2d−β+O

(
m2d−1−β

)

=1− 2

C41(2− 2d)

[
C61(2− 2d)+

c1
c0
C61(2− 2d+ β)m−β

][
1−c1
c0

C41(2− 2d+ β)

C41(2− 2d)
m−β

]
+O

(
m−2

)

=1−2C61(2− 2d)

C41(2 − 2d)
+2

c1
c0

[C61(2− 2d)C41(2− 2d+ β)

C41(2 − 2d)C41(2 − 2d)
−C61(2− 2d+ β)

C41(2 − 2d)

]
m−β+O

(
m−2 +m−2β

)
.

As a consequence,,

Rm

V 2
m

= ρ(d) + C1(2− 2d, β) m−β + O
(
m−2 +m−2β

)
(m → ∞), with 0 < β < 2d− 1 < 2 and

C1(2− 2d, β) := 2
c1
c0

1

C2
41(2− 2d)

[
C61(2− 2d)C41(2− 2d+ β)− C61(2− 2d+ β)C41(2− 2d)

]
, (7.5)

and numerical experiments proves that C1(2− 2d, β)/c1 is negative for any d ∈ (0.5, 1.5) and β > 0.

2. Let β = 2d− 1, i.e. 2− 2d+ β = 1. Then,

Rm

V 2
m

=1−2
C61(2 − 2d) m1+2d+O

(
m2d−1

)
+c1

c0
C′

61(1)m
1−2d+O

(
log(m)

)

C41(2− 2d)m1+2d+O
(
m2d−1

)
+c1

c0
C′

41(1)m1−2d+O
(
log(m)

)

=1− 2

C41(2− 2d)

[
C61(2− 2d)+

c1
c0
C′

61(1)m
1−2d

][
1−c1
c0

C′
41(1)

C41(2 − 2d)
m1−2d

]
+O

(
m−2 +m−2d−1 log(m)

)

=1−2C61(2− 2d)

C41(2− 2d)
+2

c1
c0

[ C61(2− 2d)C′
41(1)

C41(2 − 2d)C41(2 − 2d)
− C′

61(1)

C41(2− 2d)

]
m1−2d+O

(
m−2 +m−2d−1 log(m) +m2−4d

)
.
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As a consequence,

Rm

V 2
m

= ρ(d) + C2(2−2d, β) m−β+O
(
m−2+m−2−β log(m)+m−2β

)
(m → ∞), with 0 < β = 2d− 1 < 2 and

C2(2 − 2d, β) := 2
c1
c0

1

C2
41(2− 2d)

[
C61(2− 2d)C′

41(1)− C′
61(1)C41(2− 2d)

]
, (7.6)

and numerical experiments proves that C2(2− 2d, β)/c1 is negative for any d ∈ [0.5, 1.5) and β > 0.

3. Let 2d− 1 < β < 2d+ 1, i.e. 1 < 2− 2d+ β < 3. Then,

Rm

V 2
m

=1−2
C61(2 − 2d)m1+2d+c1

c0
C′

61(2 − 2d+ β)m1+2d−β+O
(
m1+2d−β−ǫ + log(m)

)

C41(2− 2d)m1+2d+c1
c0
C′

41(2− 2d+ β)m1+2d−β+O
(
m1+2d−β−ǫ +m−2d−1 log(m)

)

=1− 2

C41(2 − 2d)

[
C61(2 − 2d)+

c1
c0
C′

61(2− 2d+ β)m−β
][
1−c1
c0

C′
41(2− 2d+ β)

C41(2 − 2d)
m−β

]
+O

(
m−β−ǫ +m−2d−1 log(m)

)

=1−2C61(2− 2d)

C41(2− 2d)
+2

c1
c0

[C61(2− 2d)C′
41(2− 2d+ β)

C41(2− 2d)C41(2− 2d)
−C

′
61(2− 2d+ β)

C41(2− 2d)

]
m−β+O

(
m−β−ǫ +m−2d−1 log(m)

)
.

As a consequence,

Rm

V 2
m

= ρ(d) + C3(2− 2d, β) m−β + O
(
m−β−ǫ +m−2d−1 log(m) +m−2β

)
(m→ ∞), and

C3(2 − 2d, β) := 2
c1
c0

1

C2
41(2− 2d)

[
C61(2− 2d)C′

41(2 − 2d+ β)− C′
61(2− 2d+ β)C41(2− 2d)

]
, (7.7)

and numerical experiments proves that C3(2− 2d, β)/c1 is negative for any d ∈ [0.5, 1.5) and β > 0.

4. Let β = 2d+ 1. Then, Once again with Lemma 7.2:

Rm

V 2
m

=1−2
C61(2− 2d) m1+2d+O

(
m2d−1

)
+c1

c0
C′

62(3) log(m)+O
(
1
)

C41(2− 2d)m1+2d+O
(
m2d−1

)
+c1

c0
C′

42(3) log(m)+O
(
1
)

=1− 2

C41(2− 2d)

[
C61(2− 2d)+

c1
c0
C′

62(3)m
−β log(m)

][
1−c1
c0

C′
42(3)

C41(2 − 2d)
m−β log(m)

]
+O

(
m−2 +m−2d−1

)

=1−2C61(2− 2d)

C41(2 − 2d)
+2

c1
c0

[ C61(2− 2d)C′
42(3)

C41(2− 2d)C41(2− 2d)
− C′

62(3)

C41(2− 2d)

]
m−β log(m)+O

(
m−2

)
.

As a consequence,

Rm

V 2
m

= ρ(d) + O
(
m−2d−1 log(m) +m−2

)
(m → ∞), with 2 < β = 2d+ 1 < 4. (7.8)

Step 2: A Taylor expansion of Λ(·) around ρ(d) provides:

Λ
(Rm

V 2
m

)
≃ Λ

(
ρ(d)

)
+
[∂Λ
∂ρ

]
(ρ(d))

(Rm

V 2
m

− ρ(d)
)
+

1

2

[∂2Λ
∂ρ2

]
(ρ(d))

(Rm

V 2
m

− ρ(d)
)2

.

Note that numerical experiments show that
[∂Λ
∂ρ

]
(ρ) > 0.2 for any ρ ∈ (−1, 1). As a consequence, using the

previous expansions of Rm/V
2
m obtained in Step 1 and since E

[
IRN (m)

]
= Λ

(
Rm/V

2
m

)
, then for all 0 < β ≤ 2:

E
[
IRN (m)

]
= Λ0(d) +





c1 C
′
1(d, β)m

−β +O
(
m−2 +m−2β

)
if β < 2d− 1

c1 C
′
2(d, β)m

−β +O
(
m−2 +m−2−β logm+m−2β

)
if β = 2d− 1

c1 C
′
3(d, β)m

−β +O
(
m−β−ǫ +m−2d−1 logm+m−2β

)
if 2d− 1 < β < 2d+ 1

O
(
m−2d−1 logm+m−2

)
if β = 1 + 2d

with C′
ℓ(d, β) =

[
∂Λ
∂ρ

]
(ρ(d))Cℓ(2 − 2d, β) for ℓ = 1, 2, 3 and Cℓ defined in (7.5), (7.6) and (7.7).
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Proof of Theorem 1. Using Property 2.1, ifm ≃ C Nα with C > 0 and (1+2β)−1 < α < 1 then
√
N/m

(
E
[
IRN (m)

]
−

Λ0(d)
)

−→
N→∞

0 and it implies that the multidimensional CLT (2.4) can be replaced by

√
N

m

(
IRN (mj)− Λ0(d)

)
1≤j≤p

L−→
N→∞

N (0,Γp(d)). (7.9)

It remains to apply the Delta-method with the function Λ−1
0 to CLT (7.9). This is possible since the function

d→ Λ0(d) is an increasing function such that Λ′
0(d) > 0 and

(
Λ−1
0 )′(Λ0(d)) = 1/Λ′

0(d) > 0 for all d ∈ (−0.5, 1.5).

It achieves the proof of Theorem 1.

Proof of Proposition 2. We use the proof of Proposition 2 in Bardet and Dola (2012). Indeed, this proof is only

based on the definitions of d̂N (jNα), d̃N (Nα), Q̂N(α) and α̂N which are exactly the same here, and on the CLT

satisfied by
(
d̂N (jNα)

)
1≤j≤p

The only difference is that we suppose here 0 < β ≤ 2 and 0.5 ≤ d < 1.25 instead

of 0 < β and −0.5 < d < 0.5 in Bardet and Dola (2012). Then we consider only the case where β ≤ 2d+ 1 and

α∗ = 1
(1+2β)∧(4d+3) =

1
(1+2β) in our framework.

Proof of Theorem 2. This proof is exactly the same as the proof of Theorem 2 in Bardet and Dola (2012).
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[14] Giraitis, L., Kokoszka, P., Leipus, R. and TeyssiÃ¨re, G. (2003) Rescaled variance and related tests for

long-memory in volatility and levels. J. Econometrics, 112, 265-294.

[15] Giraitis, L., Leipus, R. and Philippe, A. (2006) A test for stationarity versus trends and unit roots for a wide

class of dependent errors. Econometric Th., 22, 989-1029.

[16] Giraitis, L., Robinson P.M. and Samarov, A. (1997) Rate optimal semi-parametric estimation of the memory

parameter of the Gaussian time series with long range dependence. J. Time Ser. Anal., 18, 49-61.

[17] Giraitis, L., Robinson P.M., and Samarov, A. (2000) Adaptive semiparametric estimation of the memory

parameter. J. Multivariate Anal., 72, 183-207.

[18] Giraitis, L. and Surgailis, D. (1990) A central limit theorem for quadratic forms in strongly dependent linear

variables and its applications to the asymptotic normality of Whittle estimate. Prob. Th. and Rel. Field. 86,

87-104.

[19] Granger, C.W.J. and Joyeux, K. (1980) An Introduction to Long-memory Time Series and Fractional Differ-

encing, J. Time Ser. Anal., 1, 15-29.

[20] Henry, M. and Robinson, P.M. (1996) Bandwidth choice in Gaussian semiparametric estimation of long range

dependence. In: Athens Conference on Applied Probability and Time Series Analysis, Vol. II, 220-232, Springer,

New York.

[21] Henry, M. (2007) Robust automatic bandwidth for long-memory. In: Long Memory in Economics, 157-172,

Springer.

[22] Hurvich, C.M. and Ray, B.K. (1995) Estimation of the Memory Parameter for non-stationary or Noninvertible

Fractionally Integrated Processes. Journal of Time Series Analysis, 16, 17-41.

[23] Hurvich, C.M. and Chen, W.W. (2000) An Efficient Taper for Potentially Over differenced Long-Memory

Time Series. Journal of Time Series Analysis, 21, 155-180.

[24] Iouditsky, A., Moulines, E. and Soulier, P. (2001) Adaptive estimation of the fractional differencing coefficient.

Bernoulli, 7, 699-731.

[25] Kew, H. and Harris, D. (2009) Heteroskedasticity Robust Testing for a Fractional Unit Root. Econometric

Theory, 25, 1734-1753.

[26] Kwiatkowski, D., Phillips, P.C.B., Schmidt, P. and Shin, Y. (1992) Testing the null hypothesis of stationarity

against the alternative of a unit root. J. Econometrics, 54, 159-178.

[27] Ling, S. and Li, W.K. (2001) Asymptotic Inference for non-stationary fractionally integrated autoregressive

moving-average models. Econometric Theory, 17, 738-765.

[28] Ling, S. (2003) Adaptive estimators and tests of stationary and non-stationary short and long memory

ARIMA-GARCH models. J. Amer. Statist. Assoc., 92, 1184-1192.

19



[29] Lobato, I. and Velasco, C. (2007) Efficient Wald tests for fractional unit roots. Econometrica, 75, 575-589.

[30] Moulines, E., Roueff, F. and Taqqu, M.S. (2007) On the spectral density of the wavelet coefficients of long

memory time series with application to the log-regression estimation of the memory parameter. J. Time Ser.

Anal., 28, 155-187.

[31] Moulines, E. and Soulier, P. (2003) Semiparametric spectral estimation for fractional processes. In P. Doukhan,

G. Oppenheim and M.S. Taqqu editors, Theory and applications of long-range dependence, 251-301, Birkhäuser,
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N = 500 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9 φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9
√

MSE d̃
(MIR)
N

0.1022 0.1174 0.1617 0.2507 0.6114 0.1088 0.1133 0.1313 0.1954 0.3625
√

MSE d̂
(IR)
N

0.2169 0.2341 0.2456 0.3061 0.6209 0.1590 0.1589 0.1535 0.1587 0.2859
√

MSE d̃
(MS)
N

0.1424 0.1407 0.1463 0.1539 0.4141 0.1721 0.1699 0.1655 0.1849 0.3298
√

MSE d̂
(ADG)
N

0.0785 0.0847 0.1244 0.2649 0.6755 0.0787 0.0805 0.1205 0.2633 0.4985
√

MSE d̃
(WAV )
N

0.0676 0.1397 0.2408 0.4106 0.7531 0.0717 0.0980 0.1341 0.1785 0.3883

N = 5000 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9 φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9
√

MSE d̃
(MIR)
N

0.0340 0.0553 0.0759 0.1024 0.2893 0.0344 0.0479 0.0614 0.0872 0.2679
√

MSE d̂
(IR)
N

0.0678 0.0804 0.1150 0.2290 0.6041 0.0479 0.0477 0.0524 0.0900 0.2721
√

MSE d̃
(MS)
N

0.0412 0.0440 0.0421 0.0441 0.2223 0.0422 0.0454 0.0470 0.0462 0.1533
√

MSE d̂
(ADG)
N

0.0321 0.0337 0.0372 0.0816 0.3751 0.0318 0.0335 0.0398 0.0817 0.3724
√

MSE d̃
(WAV )
N

0.0376 0.0625 0.0716 0.0970 0.2144 0.0344 0.0496 0.0552 0.0700 0.1245

N = 50000 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9 φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9
√

MSE d̃
(MIR)
N

0.0152 0.0246 0.0303 0.0435 0.0756 0.0109 0.0179 0.0274 0.0348 0.0560
√

MSE d̂
(IR)
N

0.0238 0.0469 0.0945 0.2124 0.5985 0.0170 0.0182 0.0303 0.0827 0.2745
√

MSE d̃
(MS)
N

0.0140 0.0140 0.0137 0.0143 0.1489 0.0130 0.0149 0.0142 0.0158 0.1005
√

MSE d̂
(ADG)
N

0.0152 0.0130 0.0145 0.0220 0.1418 0.0165 0.0159 0.0148 0.0231 0.1396
√

MSE d̃
(WAV )
N

0.0190 0.0171 0.0366 0.0353 0.0568 0.0227 0.0224 0.0291 0.0458 0.0517

N = 500 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9 φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9
√

MSE d̃
(MIR)
N

0.0995 0.1020 0.1115 0.1280 0.1165 0.1065 0.1102 0.1131 0.1161 0.1155
√

MSE d̂
(IR)
N

0.2093 0.2017 0.2069 0.2096 0.1878 0.1632 0.1649 0.1587 0.1611 0.1658
√

MSE d̃
(MS)
N

0.1478 0.1382 0.1430 0.1401 0.1521 0.1649 0.1658 0.1658 0.1827 0.2006
√

MSE d̂
(ADG)
N

0.0809 0.0776 0.0808 0.0820 0.0765 0.0807 0.0809 0.0843 0.0809 0.0825
√

MSE d̃
(WAV )
N

0.0994 0.1214 0.1278 0.1257 0.1247 0.0875 0.1054 0.1058 0.1042 0.1002

N = 5000 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9 φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9
√

MSE d̃
(MIR)
N

0.0354 0.0499 0.0726 0.0950 0.0897 0.0430 0.0437 0.0442 0.0492 0.0546
√

MSE d̂
(IR)
N

0.0669 0.0743 0.0918 0.1271 0.1031 0.0503 0.0490 0.0486 0.0490 0.0522
√

MSE d̃
(MS)
N

0.0435 0.0450 0.0422 0.0423 0.0518 0.0451 0.0450 0.0443 0.0451 0.0566
√

MSE d̂
(ADG)
N

0.0360 0.0350 0.0324 0.0328 0.0337 0.0335 0.0341 0.0334 0.0338 0.0334
√

MSE d̃
(WAV )
N

0.0405 0.0486 0.0469 0.0472 0.0480 0.0369 0.0511 0.0448 0.0484 0.0451

N = 5000 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9 φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9
√

MSE d̃
(MIR)
N

0.0161 0.0280 0.0435 0.0672 0.0727 0.0143 0.0152 0.0163 0.0162 0.0191
√

MSE d̂
(IR)
N

0.0217 0.0407 0.0662 0.1130 0.0880 0.0148 0.0160 0.0189 0.0176 0.0193
√

MSE d̃
(MS)
N

0.0146 0.0150 0.0153 0.0162 0.0261 0.0132 0.0136 0.0137 0.0148 0.0209
√

MSE d̂
(ADG)
N

0.0158 0.0151 0.0144 0.0147 0.0136 0.0133 0.0142 0.0132 0.0140 0.0150
√

MSE d̃
(WAV )
N

0.0114 0.0147 0.0174 0.0213 0.0258 0.0185 0.0260 0.0446 0.0194 0.0260

Table 1: : Comparison between d̃
(MIR)
N and other famous semiparametric estimators of d (d̂

(IR)
N , d̃

(MS)
N , d̂

(ADG)
N and

d̃
(WAV )
N ) applied to ARIMA(1, d, 0) process (defined by Xt +φXt−1 = εt for d = 0 and (Xt −Xt−1)+ φ(Xt−1 −Xt−2) = εt

for d = 1) for several values of φ and N and 1000 independent replications.
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N = 500 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1 d = 1.2

ARFIMA(0,d,0)
√

MSE d̃
(MIR)
N

0.0911 0.0968 0.0988 0.0949 0.1018 0.1022 0.0973 0.1055
√

MSE d̂
(IR)
N

0.1900 0.2156 0.2229 0.2081 0.2008 0.1806 0.1622 0.1432
√

MSE d̃
(MS)
N

0.1405 0.1441 0.1432 0.1523 0.1681 0.1765 0.1703 0.1643
√

MSE d̂
(ADG)
N

0.0764 0.0803 0.0787 0.0838 0.0778 0.0785 0.0800 0.0758
√

MSE d̃
(WAV )
N

0.0716 0.0795 0.0849 0.0865 0.0808 0.0848 0.0701 0.0707

ARFIMA(1,d,1)
√

MSE d̃
(MIR)
N

0.1527 0.1363 0.1315 0.1173 0.1212 0.1099 0.1129 0.1098
√

MSE d̂
(IR)
N

0.2255 0.2328 0.2217 0.2205 0.2080 0.1773 0.1592 0.1353
√

MSE d̃
(MS)
N

0.1393 0.1448 0.1446 0.1521 0.1668 0.1744 0.1688 0.1625
√

MSE d̂
(ADG)
N

0.0939 0.0914 0.0925 0.1012 0.0933 0.0887 0.0897 0.0872
√

MSE d̃
(WAV )
N

0.1728 0.1625 0.1591 0.1424 0.1373 0.1210 0.1026 0.0922

X(d,1,0.1)

√

MSE d̃
(MIR)
N

0.0892 0.1003 0.1010 0.1093 0.1168 0.1126 0.1158 0.1271
√

MSE d̂
(IR)
N

0.1803 0.2081 0.2186 0.2062 0.2043 0.1840 0.1700 0.1569
√

MSE d̃
(MS)
N

0.1418 0.1438 0.1425 0.1472 0.1538 0.1680 0.1677 0.1697
√

MSE d̂
(ADG)
N

0.0808 0.0836 0.0804 0.0864 0.0817 0.0812 0.0842 0.0817
√

MSE d̃
(WAV )
N

0.0954 0.0871 0.0891 0.0856 0.0772 0.0757 0.0798 0.0856

X(d,0,1)

√

MSE d̃
(MIR)
N

0.0915 0.0950 0.0962 0.1018 0.1043 0.1111 0.1104 0.1205
√

MSE d̂
(IR)
N

0.1839 0.2141 0.2094 0.2179 0.2010 0.1827 0.1625 0.1411
√

MSE d̃
(MS)
N

0.1393 0.1437 0.1446 0.1447 0.1524 0.1709 0.1721 0.1708
√

MSE d̂
(ADG)
N

0.0746 0.0790 0.0750 0.0808 0.0778 0.0779 0.0754 0.0780
√

MSE d̃
(WAV )
N

0.0756 0.0786 0.0767 0.0750 0.0667 0.0724 0.0789 0.0846

X(d,log)

√

MSE d̃
(MIR)
N

0.0836 0.1064 0.1089 0.1161 0.1138 0.1197 0.1252 0.1380
√

MSE d̃
(IR)
N

0.1810 0.2100 0.2089 0.2009 0.1853 0.1819 0.1666 0.1542
√

MSE d̃
(MS)
N

0.1500 0.1529 0.1564 0.1677 0.1649 0.1654 0.1660 0.1578
√

MSE d̂
(ADG)
N

0.0822 0.0864 0.0844 0.0901 0.0827 0.0797 0.0852 0.0846
√

MSE d̃
(WAV )
N

0.0974 0.1087 0.0996 0.1068 0.1007 0.1031 0.0967 0.0829

X(trend)

√

MSE d̃
(MIR)
N

0.4684 0.2922 0.1633 0.1051 0.1027 0.1176 0.1176 0.1279
√

MSE d̃
(IR)
N

0.2793 0.2192 0.2048 0.2029 0.1964 0.1824 0.1616 0.1443
√

MSE d̃
(MS)
N

0.9077 0.6067 0.3444 0.2150 0.2024 0.1994 0.1683 0.1471
√

MSE d̂
(ADG)
N

0.5674 0.3564 0.1787 0.1009 0.0845 0.0901 0.0880 0.0878
√

MSE d̃
(WAV )
N

0.0961 0.0908 0.0886 0.0913 0.0917 0.0907 0.0804 0.0896

Table 2: : Comparison between d̃
(MIR)
N and other famous semiparametric estimators of d (d̃

(IR)
N , d̃

(MS)
N , d̂

(ADG)
N and

d̃
(WAV )
N ) applied to fractionally integrated processes for N = 500, several values of d ∈ (−0.5, 1.25) and 1000 independent

replications.
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N = 5000 d = −0.2 d = 0 d = 0.2 d = 0.4 d = .6 d = 0.8 d = 1 d = 1.2

ARFIMA(0,d,0)
√

MSE d̃
(MIR)
N

0.0391 0.0318 0.0329 0.0346 0.0363 0.0381 0.0399 0.0513
√

MSE d̃
(IR)
N

0.0652 0.0637 0.0636 0.0636 0.0591 0.0574 0.0499 0.0477
√

MSE d̃
(MS)
N

0.0428 0.0434 0.0425 0.0447 0.0483 0.0587 0.0447 0.1419
√

MSE d̂
(ADG)
N

0.0326 0.0323 0.0324 0.0341 0.0341 0.0334 0.0333 0.0327
√

MSE d̃
(WAV )
N

0.0313 0.0305 0.0269 0.0308 0.0329 0.0356 0.0340 0.0350

ARFIMA(1,d,1)
√

MSE d̃
(MIR)
N

0.0756 0.0666 0.0605 0.0551 0.0518 0.0514 0.0557 0.0585
√

MSE d̃
(IR)
N

0.1141 0.0901 0.0792 0.0730 0.0612 0.0559 0.0491 0.0423
√

MSE d̃
(MS)
N

0.0425 0.0437 0.0428 0.0449 0.0481 0.0584 0.0444 0.1417
√

MSE d̂
(ADG)
N

0.0333 0.0335 0.0336 0.0364 0.0359 0.0346 0.0338 0.0340
√

MSE d̃
(WAV )
N

0.0566 0.0603 0.0545 0.0560 0.0546 0.0545 0.0493 0.0474

X(d,1,0.1)

√

MSE d̃
(MIR)
N

0.0302 0.0401 0.0412 0.0465 0.0427 0.0444 0.0456 0.0490
√

MSE d̃
(IR)
N

0.0606 0.0678 0.0773 0.0740 0.0652 0.0568 0.0554 0.0472
√

MSE d̃
(MS)
N

0.0429 0.0483 0.0486 0.0502 0.0447 0.0523 0.0458 0.1322
√

MSE d̂
(ADG)
N

0.0390 0.0410 0.0400 0.0395 0.0357 0.0378 0.0404 0.0363
√

MSE d̃
(WAV )
N

0.0363 0.0393 0.0406 0.0375 0.0340 0.0408 0.0406 0.0444

X(d,0,1)

√

MSE d̃
(MIR)
N

0.0330 0.0297 0.0314 0.0320 0.0319 0.0315 0.0339 0.0395
√

MSE d̃
(IR)
N

0.0642 0.0652 0.0693 0.0633 0.0630 0.0560 0.0478 0.0428
√

MSE d̃
(MS)
N

0.0432 0.0422 0.0461 0.0434 0.0489 0.0547 0.0437 0.1263
√

MSE d̂
(ADG)
N

0.0318 0.0318 0.0322 0.0345 0.0361 0.0321 0.0327 0.0326
√

MSE d̃
(WAV )
N

0.0271 0.0298 0.0248 0.0319 0.0348 0.0331 0.0384 0.0402

X(d,log)

√

MSE d̃
(MIR)
N

0.0370 0.0345 0.0383 0.0461 0.0461 0.0519 0.0555 0.0608
√

MSE d̃
(IR)
N

0.0627 0.0683 0.0676 0.0659 0.0587 0.0528 0.0490 0.0501
√

MSE d̃
(MS)
N

0.0582 0.0615 0.0632 0.0640 0.0636 0.0584 0.0552 0.1300
√

MSE d̂
(ADG)
N

0.0417 0.0427 0.0414 0.0411 0.0401 0.0405 0.0415 0.0403
√

MSE d̃
(WAV )
N

0.0604 0.0618 0.0589 0.0609 0.0632 0.0600 0.0609 0.0669

X(trend)

√

MSE d̃
(MIR)
N

0.0720 0.0372 0.0349 0.0363 0.0363 0.0380 0.0450 0.0864
√

MSE d̃
(IR)
N

0.0677 0.0639 0.0690 0.0655 0.0602 0.0545 0.0485 0.0506
√

MSE d̃
(MS)
N

0.7760 0.6067 0.1480 0.0675 0.0680 0.0750 0.0443 0.1512
√

MSE d̂
(ADG)
N

0.6019 0.3613 0.1502 0.0555 0.0387 0.0377 0.0369 0.0364
√

MSE d̃
(WAV )
N

0.4988 0.0623 0.0389 0.0344 0.0362 0.0402 0.0422 0.0444

Table 3: : Comparison between d̃
(MIR)
N and other famous semiparametric estimators of d (d̃

(IR)
N , d̃

(MS)
N , d̂

(ADG)
N and

d̃
(WAV )
N ) applied to fractionally integrated processes for N = 5000, several values of d ∈ (−0.5, 1.25) and 1000 independent

replications.
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N = 50000 d = −0.2 d = 0 d = 0.2 d = 0.4 d = .6 d = 0.8 d = 1 d = 1.2

ARFIMA(0,d,0)
√

MSE d̃
(MIR)
N

0.0201 0.0081 0.0132 0.0141 0.0139 0.0150 0.0128 0.0294
√

MSE d̃
(IR)
N

0.0248 0.0219 0.0218 0.0216 0.0191 0.0203 0.0138 0.0144
√

MSE d̃
(MS)
N

0.0151 0.0161 0.0150 0.0127 0.0178 0.0217 0.0127 0.1595
√

MSE d̂
(ADG)
N

0.0143 0.0150 0.0160 0.0134 0.0159 0.0133 0.0139 0.0149
√

MSE d̃
(WAV )
N

0.0102 0.0079 0.0086 0.0102 0.0107 0.0196 0.0183 0.0253

ARFIMA(1,d,1)
√

MSE d̃
(MIR)
N

0.0440 0.0278 0.0247 0.0232 0.0185 0.0233 0.0198 0.0326
√

MSE d̃
(IR)
N

0.0906 0.0658 0.0479 0.0355 0.0298 0.0230 0.0194 0.0163
√

MSE d̃
(MS)
N

0.0146 0.0125 0.0142 0.0163 0.0179 0.0257 0.0141 0.1564
√

MSE d̂
(ADG)
N

0.0160 0.0137 0.0144 0.0160 0.0156 0.0158 0.0154 0.0138
√

MSE d̃
(WAV )
N

0.0233 0.0252 0.0268 0.0210 0.0179 0.0257 0.0254 0.0319

X(d,1,0.1)

√

MSE d̃
(MIR)
N

0.0093 0.0243 0.0268 0.0273 0.0280 0.0265 0.0249 0.0224
√

MSE d̃
(IR)
N

0.0182 0.0330 0.0349 0.0342 0.0335 0.0316 0.0258 0.0267
√

MSE d̃
(MS)
N

0.0244 0.0293 0.0267 0.0276 0.0251 0.0216 0.0216 0.1375
√

MSE d̂
(ADG)
N

0.0243 0.0283 0.0257 0.0265 0.0230 0.0248 0.0244 0.0253
√

MSE d̃
(WAV )
N

0.0232 0.0290 0.0273 0.0397 0.0290 0.0281 0.0228 0.0318

X(d,0,1)

√

MSE d̃
(MIR)
N

0.0181 0.089 0.0107 0.0110 0.0108 0.0125 0.0115 0.0121
√

MSE d̃
(IR)
N

0.0273 0.0205 0.0236 0.0215 0.0221 0.0159 0.0147 0.0131
√

MSE d̃
(MS)
N

0.0140 0.0154 0.0151 0.0166 0.0167 0.0227 0.0159 0.1337
√

MSE d̂
(ADG)
N

0.0148 0.0165 0.0167 0.0177 0.0146 0.0145 0.0161 0.0154
√

MSE d̃
(WAV )
N

0.0099 0.0167 0.0135 0.0156 0.0189 0.0148 0.0283 0.0268

X(d,log)

√

MSE d̃
(MIR)
N

0.0193 0.0240 0.0287 0.0312 0.0382 0.0390 0.0419 0.0472
√

MSE d̃
(IR)
N

0.0300 0.0256 0.0282 0.0294 0.0210 0.0191 0.0244 0.0305
√

MSE d̃
(MS)
N

0.0463 0.0498 0.0480 0.0504 0.0478 0.0408 0.0418 0.1480
√

MSE d̂
(ADG)
N

0.0456 0.0475 0.0464 0.0464 0.0438 0.0456 0.0468 0.0453
√

MSE d̃
(WAV )
N

0.0529 0.0515 0.0509 0.0524 0.0465 0.0468 0.0544 0.0498

X(trend)

√

MSE d̃
(MIR)
N

0.0271 0.0097 0.0127 0.0130 0.0132 0.0132 0.0126 0.0562
√

MSE d̃
(IR)
N

0.0282 0.0228 0.0226 0.0211 0.0199 0.0160 0.0165 0.0194
√

MSE d̃
(MS)
N

0.9840 0.6253 0.1134 0.0194 0.0224 0.0395 0.0117 0.1655
√

MSE d̂
(ADG)
N

0.6190 0.3616 0.1356 0.0209 0.0158 0.0156 0.0153 0.0155
√

MSE d̃
(WAV )
N

1.0023 0.5575 0.0386 0.0182 0.0181 0.0253 0.0474 0.0275

Table 4: : Comparison between d̃
(MIR)
N and other famous semiparametric estimators of d (d̃

(IR)
N , d̃

(MS)
N , d̂

(ADG)
N and

d̃
(WAV )
N ) applied to fractionally integrated processes for N = 50000, several values of d ∈ (−0.5, 1.25) and 1000 independent

replications.
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N = 500 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9 φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9

S̃N : Rejected H0 0 0 0 0 0.508 0.992 0.992 0.993 0.995 1.000

KPSS: Rejected H0 0.058 0.091 0.125 0.228 0.679 0.998 0.998 0.999 1.000 1.000

V/S : Rejected H0 0.057 0.071 0.105 0.207 0.680 0.997 0.998 0.999 1.000 1.000

T̃N : Rejected H′

0 0.998 0.995 0.990 0.845 0.074 0 0 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.048 0.043 0.043 0.041 0.049

PP : Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.040 0.032 0.017 0.012 0

N = 5000 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9 φ=-0.1 φ=-0.3 φ=-0.5 φ=-0.7 φ=-0.9

S̃N : Rejected H0 0 0 0 0 0.118 1.000 1.000 1.000 1.000 1.000

KPSS: Rejected H0 0. 044 0.045 0.084 0.078 0.306 1.000 1.000 1.000 1.000 1.000

V/S : Rejected H0 0.053 0.053 0.063 0.088 0.295 1.000 1.000 1.000 1.000 1.000

T̃N : Rejected H′

0 1.000 1.000 1.000 1.000 0.870 0 0 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.034 0.051 0.042 0.044 0.068

PP : Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.029 0.058 0.031 0.024 0.008

N = 500 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9 φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9

S̃N : Rejected H0 0 0 0 0 0 0.990 0.995 0.994 0.995 0.995

KPSS: Rejected H0 0.040 0.029 0.025 0.010 0.007 0.998 0.998 0.997 0.998 0.999

V/S : Rejected H0 0.043 0.030 0.018 0.012 0.006 1.000 0.999 1.000 1.000 0.999

T̃N : Rejected H′

0 0.998 1.000 0.999 1.000 1.000 0 0 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.040 0.048 0.038 0.040 0.055

PP : Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.041 0.074 0.108 0.226 0.534

N = 5000 d = 0 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9 φ=0.1 φ=0.3 φ=0.5 φ=0.7 φ=0.9

S̃N : Rejected H0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000

KPSS: Rejected H0 0.087 0.044 0.041 0.016 0.008 1.000 1.000 1.000 1.000 1.000

V/S : Rejected H0 0.068 0.035 0.044 0.019 0.003 1.000 1.000 1.000 1.000 1.000

T̃N : Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0 0 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.025 0.049 0.030 0.074 0.041

PP : Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.033 0.057 0.052 0.144 0.352

Table 5: Comparisons of stationarity and non-stationarity tests from 1000 independent Monte Carlo experiment replications

of ARIMA(1, d, 0) processes (defined by Xt + φXt−1 = εt for d = 0 and (Xt −Xt−1) + φ(Xt−1 −Xt−2) = εt for d = 1) for

several values of φ and N . The accuracy of tests is measured by the rejection probabilities.
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N = 500

ARFIMA(0, d, 0) d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1 d = 1.2

S̃N : Rejected H0 0 0 0 0.003 0.276 0.917 0.998 0.999

KPSS: Rejected H0 0 0.059 0.395 0.771 0.946 0.989 0.999 0.999

V/S : Rejected H0 0 0.052 0.446 0.847 0.970 0.993 0.998 1.000

T̃N : Rejected H′

0 1.000 1.000 0.965 0.421 0.017 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 0.977 0.615 0.233 0.065 0.005

PP : Rejected H′

0 1.000 1.000 1.000 1.000 0.919 0.447 0.065 0.002

N = 5000

ARFIMA(0, d, 0) d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1 d = 1.2

S̃N : Rejected H0 0 0 0 0 0.912 1.000 1.000 1.000

KPSS: Rejected H0 0 0.042 0.674 0.996 1.000 1.000 1.000 1.000

V/S : Rejected H0 0 0.038 0.694 0.992 1.000 1.000 1.000 1.000

T̃N : Rejected H′

0 1.000 1.000 1.000 0.946 0 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 1.000 0.946 0.448 0.050 0.004

PP : Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.705 0.042 0

Table 6: Comparisons of stationarity and non-stationarity tests from 1000 independent Monte Carlo experiment replications

of ARFIMA(0, d, 0) processes for several values of d and N . The accuracy of tests is measured by the rejection probabilities.

N = 500

ARFIMA(1, d, 1) d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1 d = 1.2

φ = −0.3 ; θ = 0.7

S̃N : Rejected H0 0 0 0 0.015 0.442 0.898 0.987 0.999

KPSS: Rejected H0 0 0.079 0.454 0.836 0.959 0.995 0.997 0.999

V/S : Rejected H0 0.001 0.077 0.481 0.876 0.974 0.993 1.000 1.000

T̃N : Rejected H′

0 0.999 0.990 0.823 0.212 0.009 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 0.961 0.623 0.230 0.056 0.010

PP : Rejected H′

0 1.000 1.000 1.000 0.999 0.781 0.270 0.036 0

N = 5000

ARFIMA(1, d, 1) d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1 d = 1.2

φ = −0.3 ; θ = 0.7

S̃N : Rejected H0 0 0 0 0.004 0.846 1.000 1.000 1.000

KPSS: Rejected H0 0 0.060 0.689 0.963 0.996 1.000 1.000 1.000

V/S : Rejected H0 0 0.060 0.697 0.989 1.000 1.000 1.000 1.000

T̃N : Rejected H′

0 1.000 1.000 1.000 0.700 0.008 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 1.000 0.951 0.371 0.052 0.004

PP : Rejected H′

0 1.000 1.000 1.000 1.000 0.996 0.584 0.038 0

Table 7: Comparisons of stationarity and non-stationarity tests from 1000 independent Monte Carlo experiment replications

of ARFIMA(1, d, 1) processes with φ = −0.3 and θ = 0.7 for several values of d and N . The accuracy of tests is measured

by the rejection probabilities.
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N = 500

X(d,0,1) d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1 d = 1.2

S̃N : Rejected H0 0 0 0 0.001 0.294 0.883 0.990 0.999

KPSS: Rejected H0 0 0.052 0.433 0.801 0.939 0.988 0.999 1.000

V/S : Rejected H0 0 0.035 0.464 0.844 0.963 0.995 0.999 1.000

T̃N : Rejected H′

0 1.000 1.000 0.953 0.405 0.022 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 1.000 0.976 0.561 0.188 0.073

PP : Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.803 0.184 0.049

N = 5000

X(d,0,1) d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1 d = 1.2

S̃N : Rejected H0 0 0 0 0 0.933 1.000 1.000 1.000

KPSS: Rejected H0 0 0.082 0.689 0.970 1.000 1.000 1.000 1.000

V/S : Rejected H0 0 0.075 0.723 0.970 0.996 1.000 1.000 1.000

T̃N : Rejected H′

0 1.000 1.000 1.000 0.940 0 0 0 0

ADF: Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.753 0.124 0.086

PP : Rejected H′

0 1.000 1.000 1.000 1.000 1.000 0.918 0.109 0.139

Table 8: Comparisons of stationarity and non-stationarity tests from 1000 independent Monte Carlo experiment replica-

tions of X(d,0,1) processes for several values of d and N . The accuracy of tests is measured by the rejection probabilities.
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N = 200

ARFIMA(0, d, 0) d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 1

F̃N : Rejected HFUR
0 0.995 0.960 0.819 0.577 0.292 0.132

T̂DGM : Rejected HFUR
0 0.991 0.982 0.956 0.734 0.277 0.058

T̂LV 1: Rejected HFUR
0 0.999 0.998 0.932 0.604 0.185 0.059

T̂LV 10: Rejected HFUR
0 0.414 0.276 0.206 0.128 0.069 0.044

ARFIMA(1, d, 0)

F̃N : Rejected HFUR
0 0.998 0.975 0.881 0.653 0.388 0.136

T̂LV 1: Rejected HFUR
0 1.000 1.000 1.000 0.992 0.851 0.056

T̂LV 10: Rejected HFUR
0 0.433 0.308 0.205 0.118 0.062 0.043

ARFIMA(1, d, 1)

F̃N : Rejected HFUR
0 0.961 0.870 0.654 0.416 0.183 0.076

T̂LV 1: Rejected HFUR
0 0.996 0.942 0.520 0.087 0.099 0.571

T̂LV 10: Rejected HFUR
0 0.353 0.277 0.144 0.095 0.067 0.044

X(d,0,1)

F̃N : Rejected HFUR
0 0.993 0.956 0.825 0.569 0.318 0.125

T̂LV 1: Rejected HFUR
0 1.000 0.999 0.965 0.716 0.358 0.106

T̂LV 10: Rejected HFUR
0 0.682 0.504 0.294 0.173 0.110 0.057

N = 500

ARFIMA(0, d, 0) d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 1

F̃N : Rejected HFUR
0 0.998 0.991 0.968 0.816 0.416 0.101

T̂DGM : Rejected HFUR
0 0.998 0.998 0.999 0.984 0.607 0.049

T̂LV 1: Rejected HFUR
0 1.000 1.000 1.000 0.960 0.441 0.052

T̂LV 10: Rejected HFUR
0 0.912 0.783 0.527 0.243 0.095 0.048

ARFIMA(1, d, 0)

F̃N : Rejected HFUR
0 0.998 0.994 0.952 0.814 0.510 0.145

T̂LV 1: Rejected HFUR
0 1.000 1.000 1.000 1.000 0.669 0.053

T̂LV 10: Rejected HFUR
0 0.900 0.787 0.509 0.270 0.115 0.048

ARFIMA(1, d, 1)

F̃N : Rejected HFUR
0 0.999 0.988 0.904 0.619 0.241 0.088

T̂LV 1: Rejected HFUR
0 1.000 0.998 0.927 0.150 0.135 0.919

T̂LV 10: Rejected HFUR
0 0.891 0.699 0.416 0.220 0.101 0.040

X(d,0,1)

F̃N : Rejected HFUR
0 0.999 0.990 0.937 0.800 0.421 0.109

T̂LV 1: Rejected HFUR
0 1.000 1.000 1.000 0.987 0.638 0.132

T̂LV 10: Rejected HFUR
0 0.981 0.902 0.635 0.358 0.170 0.072

N = 5000

ARFIMA(0, d, 0) d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 1

F̃N : Rejected HFUR
0 1.000 1.000 1.000 0.996 0.941 0.145

T̂DGM : Rejected HFUR
0 1.000 1.000 1.000 1.000 1.000 0.059

T̂LV 1: Rejected HFUR
0 1.000 1.000 1.000 1.000 1.000 0.055

T̂LV 10: Rejected HFUR
0 1.000 1.000 1.000 0.997 0.576 0.049

ARFIMA(1, d, 0)

F̃N : Rejected HFUR
0 1.000 1.000 0.998 0.994 0.904 0.105

T̂LV 1: Rejected HFUR
0 1.000 1.000 1.000 1.000 1.000 0.054

T̂LV 10: Rejected HFUR
0 1.000 1.000 1.000 0.999 0.652 0.056

ARFIMA(1, d, 1)

F̃N : Rejected HFUR
0 1.000 1.000 0.998 0.989 0.808 0.072

T̂LV 1: Rejected HFUR
0 1.000 1.000 1.000 0.884 0.965 1.000

T̂LV 10: Rejected HFUR
0 1.000 1.000 1.000 0.988 0.488 0.051

X(d,0,1)

F̃N : Rejected HFUR
0 1.000 1.000 1.000 0.998 0.941 0.122

T̂LV 1: Rejected HFUR
0 1.000 1.000 1.000 1.000 0.999 0.269

T̂LV 10: Rejected HFUR
0 1.000 1.000 1.000 0.983 0.493 0.058

Table 9: Comparisons of Fractional Unit Roots tests, as 1000 independent Monte Carlo experiment replications, of

processes for several values of d and N . Note that the AR parameter of the ARFIMA(1, d, 0) is 0.5 and the AR and

MA parameters of ARFIMA(1, d, 1) are respectively −0.3 and 0.7. The accuracy of tests is measured by the rejection

probabilities.
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