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Abstract. This paper aims at giving a unified overview on the various
representations of vectorial Boolean functions, namely the Walsh matrix,
the correlation matrix and the adjacency matrix. A new representation
called polynomial matrix is introduced. It is shown that those different
representations are similar. For a vectorial Boolean function with the
same number of inputs and outputs, an eigenanalysis of those represen-
tations is performed. It is shown how eigenvalues and eigenvectors are
related to the structure of the graph associated to this function.

1 Introduction

Vectorial Boolean functions [1] play an important role in cryptography as non-
linear components of symmetric algorithms [2]. They are also used in control
theory to model discrete dynamical systems [3]. This paper aims at giving a uni-
fied overview on various representations of vectorial Boolean functions. Usual
existing representations are presented such as the Walsh matrix, the correlation
matrix and the adjacency matrix (related to graph representations) [4] often used
in the analysis of cryptographic properties. Besides, we introduce a new repre-
sentation based on algebraic properties. We call this representation polynomial
matrix.
It is shown that the representations describe the same function in different bases
and the bases are given explicitly. Then, the relations between these represen-
tations are proved. For square matrices representing the vectorial Boolean func-
tions, we perform the eigenanalysis. Deep connections are established between
the eigenvalues of those matrices, their related eigenspaces and the structure of
the graphs of the vectorial Boolean functions.
The results are general and could be useful for people concerned with theoretical
aspects regarding vectorial Boolean functions and with practical applications
too. They are interesting in particular for cryptographic purposes.
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The layout is the following: In Section 2, the different expressions of Boolean
functions are recalled. Section 3 is devoted to vectorial Boolean functions and
the corresponding matrix representations. A new representation called the poly-
nomial matrix is introduced. The link between matrix representations and graph
theory is established. Finally, Section 4 is devoted to the eigenanalysis of the
matrix representations of a vectorial Boolean function and the corresponding
properties of its graph representation.

2 Boolean functions representations

This section provides necessary prerequisites. The reader may refer to [1] for
details. New results are also presented here as important complements.
A Boolean function is a function from the vector space Fn2 to the set {0, 1}.
Depending on the context, the set {0, 1} is considered either as the two element
field F2 (1 + 1 = 0) or as a subset of the field C of complex number 1 + 1 = 2.
We call such a function a (n)–function. The various usual representations are
the truthtable, the Fourier and the Walsh transform and the polynomial repre-
sentation. These are recalled below. It is clear that the convenience of a specific
representation depends on the properties it is expected to characterize.

2.1 Truthtable

The truthtable of a Boolean function is the 2n–dimensional vector composed
of all the values of the function. It expresses the function in the basis of the
indicator functions defined for all u ∈ Fn2 by:

δu :

Fn2 −→ {0, 1}

x 7−→ δu(x) =

{
1 if x = u

0 else

(1)

The expression of f in this basis is:

f =
∑
u∈Fn

2

f(u)δu.

2.2 Fourier/Walsh transform

Let f be any complex valued function on Fn2 . We denote by f̂ its Fourier trans-
form, which is by definition the complex-valued mapping Fn2 −→ C defined for
u ∈ Fn2 by:

f̂(u) =
∑
x∈Fn

2

f(x)(−1)x·u, (2)

where x · u = x0u0 + · · ·+ xn−1un−1 is the dot product of the two vectors x and
u. This transform is invertible and the inverse is given by:̂̂

f = 2nf (3)
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The Fourier transform is an expression of f in the orthogonal basis of the so-
called Walsh functions, defined for all u ∈ Fn2 by:

χu :
Fn2 −→ C
x 7−→ 1

2n (−1)u·x.
(4)

The expression of f in this basis is:

f =
∑
u∈Fn

2

f̂(u)χu.

When f is represented by its truthtable vector, the Fourier transform (2) also
admits a matrix expression:

f̂ = Hf, (5)

where H is the so-called Hadamard matrix whose coefficient at row u ∈ Fn2 and
column v ∈ Fn2 is:

Hu,v = (−1)u·v. (6)

The Hadamard matrix H is invertible and its inverse is given by:

H−1 =
1

2n
H. (7)

As a result, it holds that

f =
1

2n
Hf̂

When dealing with Boolean functions, it is better to use the Walsh transform
that has nicer properties than the Fourier transform in most cases. The Walsh
transform of a Boolean function f is the Fourier transform of its sign function

fχ where fχ = (−1)f = 1 − 2f . The Walsh transform of f is the function f̂χ
defined by:

f̂χ :

Fn2 −→ R
u 7−→

∑
x∈Fn

2

(−1)f(x)+x·u (8)

Let us recall the following theorem.

Theorem 1 (Parseval’s equality (see [1])). For any C– valued function f
on Fn2 : ∑

u∈Fn
2

[
f̂(u)

]2
= 2n

∑
x∈Fn

2

[f(x)]
2

(9)

When applied to the sign function of Boolean functions, the equality (9) turns
into ∑

u∈Fn
2

[
f̂χ(u)

]2
=

∑
u∈Fn

2

f̂χ(u)

2

= 22n (10)
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2.3 Polynomial representations

This section is devoted to polynomial representations of (n)–functions. Two rep-
resentations are presented: Algebraic Normal Form (ANF)(see [5]) and Numer-
ical Normal Form (NNF) (see [6]).

Due to the equality, ∀a ∈ {0, 1} , a = a2, distinct polynomials may represent the
same Boolean function. In order to obtain the uniqueness of the representation,
we only consider the polynomials in the ring of multivariate polynomials whose
exponents for each indeterminate are at most one.

Let a and b be two elements of F2, it holds that ab = 1 if b ≤ a and ab = 0
elsewhere.
Polynomial representations are expressions of the function in the so-called basis
of monomials defined, for u ∈ Fn2 , by:

Fn2 −→ {0, 1}
x 7−→ xu

(11)

where

xu = xu0
0 · · ·x

un−1

n−1 (12)

is called a monomial.

For any vector u in Fn2 , the support of u is defined by:

supp(u) =
{
i ∈ {1, . . . , n} | ui 6= 0

}
.

Remark 1. When x and u are two n–dimensional binary vectors, the notation
x � u means that the support of x is included in the support of u. The following
equivalences holds:

x � u⇐⇒ ux = 1⇐⇒ ∀i ∈ {1, . . . , n} , xi ≤ ui. (13)

2.3.1 Algebraic Normal Form (ANF)
Let us recall a multivariate polynomial representation of Boolean functions

called Algebraic Normal Form (ANF for short).

The ANF coefficients of a function f are, by definition, for u ∈ Fn2 ,

au =
∑
x∈Fn

2

f(x)ux, (14)

where the sum is performed in the two element field F2. They express the func-
tion f in the basis of monomials as:

∀x ∈ Fn2 , f(x) =
∑
u∈Fn

2

aux
u. (15)
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2.3.2 Numerical Normal Form (NNF)
Let us recall another multivariate polynomial representation of Boolean functions
called Numerical Normal Form (NNF for short).
Unlike the ANF, the coefficients of the polynomial do not lie in the two element
field F2 but in the field C of complex numbers. Notice that such a polynomial
may not correspond to a {0, 1} valued function.
The NNF coefficients of a complex valued function f are the complex coefficients
of f expressed in the basis of monomial functions. They are defined by:

f̃(u) =
∑
x∈Fn

2

(−1)hw(x)−hw(u)f(x)ux =
∑

x∈Fn
2 |x�u

(−1)hw(x)−hw(u)f(x), u ∈ Fn2

where hw denotes the Hamming weight function and the sum is performed in
the field of complex numbers. The expression of f in the basis of monomials is:

∀x ∈ Fn2 , f(x) =
∑
u∈Fn

2

f̃(u)xu =
∑

u∈Fn
2 |u�x

f̃(u) (16)

Likewise for the Fourier transform, a matrix relation exists between a function f
described by its truthtable and its NNF:

f̃ = Zf, (17)

where Z is a 2n dimensional square matrix whose coefficient at row u ∈ Fn2 and
column v ∈ Fn2 is given by:

Zu,v = (−1)hw(v)−hw(u)uv.

The matrix Z is invertible and the inverse is the so called monomial matrix
defined by:

Z−1 = M (18)

where the coefficient at row x ∈ Fn2 and column u ∈ Fn2 of M is given by
Mx,u = xu. As a result, one has f = Mf̃ .

3 Vectorial Boolean functions representations

A vectorial Boolean function is, by definition, a function from Fn2 to Fm2 . It
can be considered as a vector of m (n)–functions. We call such a function an
(n,m)–function. Vectorial Boolean functions have been extensively discussed
in [7]. For any vectorial Boolean function f , it is possible to define different
matrix representations denoted by Af , Cf ,Wf , andPf . They are respectively
named adjacency, correlation, Walsh and polynomial matrices. For brevity, the
superscript of the matrices is omitted when the corresponding function is clear.
Let fe be the function defined by the truthtable of Table 1. This function is used
throughout the rest of the paper to illustrate the results.
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x 000 001 010 011 100 101 110 111

fe(x) 010 100 001 101 010 101 010 110

Table 1: Truthtable of function fe

3.1 Adjacency matrix

The adjacency matrix of f is denoted by A. It is the expression of f in the basis
of the indicator functions (δu)u∈Fn

2
, defined by equation (1).

Definition 1 (Adjacency matrix). Let f be an (n,m)–function. Its adjacency
matrix A is a 2n×2m dimensional matrix for which each row indexed by x ∈ Fn2
is null except the coefficient at the column y = f(x), which equals 1.

For example, the adjacency matrix of fe is:

Afe =



0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0


The name adjacency matrix is inspired from graph theory [8]. When the number
of inputs equals the number of outputs, the function can also be represented by
a labeled directed graph G as defined below.

Definition 2 (Directed graph (see [8])). A directed graph G is a couple
(V,E) where V is the set of vertices and E is the set of arcs. An arc is an
ordered pair of vertices also called directed edge.

Hereafter, we only consider directed graphs. Thus, for brevity but without any
ambiguity, we merely call them graphs. A graph is naturally associated to a
(n, n)–function, where an arc relates an input of the function to its image as
defined below.

Definition 3 (Graph associated to a function (see [9])). Let f be an
(n, n)–function. The graph associated to f is defined by the set of vertices V = Fn2
and the set of arcs E that are the ordered pairs (x, y) ∈ Fn2 × Fn2 such that
y = f(x).

Now, let us recall some graph theoretic terminology that is necessary in the fur-
ther development. For each definition, the corresponding structure is illustrated
for the function fe in Figure 1.

Definition 4 (Graph related terminology (see [8])).
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– An edge is an unordered pair of distinct vertices of the graph,

– An arc is a directed edge, i.e an ordered pair of distinct vertices. An arrow
shows the direction of the edge,

– A vertex x is said to be incident to a vertex y (or to be a preimage of a
vertex y) if there is an arc from x to y. The vertex 111 is incident to 110,

– The in-degree of a vertex is the number of vertices incident to that vertex.
The in-degree of vertex 000 is 0. The in-degree of vertex 010 is 3,

– The out-degree of a vertex is the number of vertices for which this vertex is
incident to. The out-degree of each vertex is 1, including vertex 101,

– A path is a sequence of vertices (x0, . . . , xk) such that, for each vertex, there
is an arc from xi to xi+1. The length of the path is the number of arcs
involved in the sequence. The sequence (110, 010, 001) is a path of length 2,

– A cycle is a path such that the starting vertex and the ending vertex are the
same. The sequence (010, 001, 100, 010) is a cycle of length 3,

– A junction is a vertex such that the in-degree is at least two. The multiplicity
of the junction is equal to the in-degree minus one. The vertex 101 is a
junction of multiplicity one. The vertex 010 is a junction of multiplicity two,

– The preimage set of a vertex is the set of vertices incident to that vertex.
The preimage set of the junction 010 is {000, 110, 100} and the preimage set
of the junction 101 is {011, 101},

– A sink is a vertex with at least one incident vertex and such that it is not
incident to any other vertex but itself. Any sink defines a cycle of length one.
The vertex 101 is a sink,

– A leaf is a vertex with no incident vertex. The vertices 000, 011 and 111 are
the leaves of the graph,

– A connected component is a set of vertices such that there is always a path
(not necessarily directed) that relates any two vertices of that set. The set
of vertices {111, 110, 000, 010, 100, 001} corresponds to one connected com-
ponent and the set of vertices {011, 101} corresponds to another connected
component.

111 110 010

000
001

100 011

101

Fig. 1: Graph associated to the function fe
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The claims in the following Remarks 2, 3 and 4 are straightforward:

Remark 2.

– the graph associated to an (n, n)–function is such that there is one and only
one arrow starting from any of its vertices,

– the graph associated to a permutation contains neither leaf nor junctions,
– if a graph contains no leaf then it is the graph associated to a permutation

and thus, it contains no junction,
– if a graph contains no junction then it is the graph associated to a permu-

tation and thus, it contains no leaf.

Remark 3. As the set of vertices of the graph of a (n, n)–function is finite, the
graph contains at least one cycle.

Remark 4. If there is no leaf, then the graph is a union of cycles and it contains
no junction. Besides, each new leaf, either adds a new junction or increases the
multiplicity of an existing junction by one. As a consequence, the number of
leaves equals the sum of the multiplicities of the junctions.

3.2 Walsh/correlation matrix

Correlation matrices have been defined in [4]. They are related to Walsh matrices
by a mere normalization coefficient.

Definition 5 (see [7]). The Walsh matrix of an (n,m)–function is the 2m×2n

dimensional matrix W whose coefficients are defined at indexes u ∈ Fm2 and
v ∈ Fn2 by:

Wu,v =
∑
x∈Fn

2

(−1)u·f(x)+v·x. (19)

For all u ∈ Fm2 and all v ∈ Fn2 , the coefficient Wu,v is the number of times the
Boolean function x 7−→ u · f(x) equals the linear Boolean function x 7−→ v · x,
minus the number of times they differ.

For example, the Walsh matrix of the function fe is:

Wfe =



8 0 0 0 0 0 0 0
2 2 2 2 −2 −2 6 −2
0 −4 0 −4 4 0 −4 0
−6 −2 2 −2 2 −2 2 −2

0 8 0 0 0 0 0 0
2 2 2 2 −2 −2 −2 6
−4 0 −4 0 0 4 0 −4
−2 −6 −2 2 −2 2 −2 2


The row u ∈ Fm2 of the matrix W is the Walsh transform of the linear combi-
nations of the coordinates of f defined by x 7−→ u · f(x), x ∈ Fn2 . The list of
the coefficients of the Walsh matrix of a function is called the spectrum of the
function.
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Definition 6 (see [4]). The correlation matrix of a (n,m)–function f is:

Cf = 2−nWf . (20)

Let us recall important results used further and which have been published
in [10].
We are given an (n,m)–function g and a random variable X ∈ Fn2 whose value is
described by the probability law p : Fn2 −→ R that expresses the probability p(x)
that X = x. We are concerned with inferring the probability law q : Fm2 −→ R

that describes the random variable Y ∈ Fm2 defined by Y = g(X), q being defined
by q(y) = Pr[g(X) = y]. Without any ambiguity, the notation p (respectively q)
refers either to the function or to the 2n (respectively 2m) column vectors whose
coordinate index x ∈ Fn2 (respectively y ∈ Fm2 ) has the value p(x) (respectively
q(y)).

Proposition 1 (see [10]). Let g be an (n,m)–function and X be a random
variable described by the probability law p. Then the probability law q of the
random variable Y = g(X) is given by:

q = H−1CgHp. (21)

Remark 5. Let p̂ and q̂ be the respective Fourier transform of p and q as defined
in Proposition 1. It is also shown in [10] that

q̂ = Cgp̂ (22)

3.3 Reduced Walsh/correlation matrix

The reduced Walsh matrix is defined as follows.

Definition 7 (Reduced Walsh matrix). For a Walsh matrix W of dimension
2m × 2n, its reduced matrix W ? of dimension (2m − 1)× (2n − 1) is the matrix
deduced from W , where the first row and the first column have been removed.

W ? =

 W1,1 · · · W1,2n−1
...

...
W2m−1,1 · · · W2m−1,2n−1

 .

Remark 6. The same definition holds for the correlation matrix C.

It is interesting because it yields more homogeneous results. The purpose of the
sequel is to show that no information on f is lost with the reduced matrix, except
for constant functions.

First, let us note that the first row of the correlation matrix always equals the
2n–dimensional vector (2n, 0, . . . , 0). In the sequel, considerations on the first
column are given.
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Lemma 1. Let f be an (n)–function. Then, the quantity
∑

u∈Fn
2 |u6=0

f̂χ(u) is null

if and only if f is a constant function.

Proof. It holds that:∑
u∈Fn

2 |u6=0

f̂χ(u) =
∑
u∈Fn

2

∑
x∈Fn

2

(−1)f(x)+u·x − f̂χ(0)

=
∑
x∈Fn

2

(−1)f(x)
∑
u∈Fn

2

(−1)u·x − f̂χ(0)

=2nfχ(0)− f̂χ(0).

As fχ(0) is ±1, on one hand 2nfχ(0) = ±2n, and on the other hand

f̂χ(0) =
∑
x∈Fn

2
fχ(x) =

∑
x∈Fn

2
(−1)f(x) = ±2n if and only f is constant. �

Lemma 2. An (n)–function f can be uniquely recovered from its last 2n − 1
Walsh coefficients provided that it is not a constant function.

Proof. Recovering f from f̂χ by the inverse Fourier transform formula (3) requires

the knowledge of the 2n Walsh coefficients. The value f̂χ(0) can be found using
Parseval theorem (Theorem 1).

∑
u∈Fn

2

[
f̂χ(u)

]2
=
∑
u∈Fn

2

f̂χ(u) ·
∑
v∈Fn

2

f̂χ(v)

f̂χ(0)
2

+
∑

u∈Fn
2 |u6=0

[
f̂χ(u)

]2
=f̂χ(0)

2
+ 2f̂χ(0)

∑
u∈Fn

2 |u 6=0̂

fχ(u) +
∑

u∈Fn
2 |u6=0

v∈Fn
2 |v 6=0

f̂χ(u)f̂χ(v)

Then, as f is not constant, from Lemma 1,
∑
u∈Fn

2 |u 6=0 f̂χ(u) is not null and

fχ(0) can be recovered by

f̂χ(0) =
1

2

∑
u∈Fn

2 |u6=0

[
f̂χ(u)

]2
−
∑
u∈Fn

2 |u6=0
v∈Fn

2 |v 6=0

f̂χ(v)∑
u∈Fn

2 |u6=0 f̂χ(u)

Being known all the values of f̂χ, function f is recovered by the inverse Fourier
transform (3). �

Finally, we have the following result.

Proposition 2. An (n,m)–function can be uniquely recovered from its reduced
Walsh matrix provided that it is not a constant function.

Proof. Let f be an (n,m)–function. The rows of its matrix W are the Walsh
transforms of all the linear combinations of its coordinate functions. It suffices to
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reconstruct these coordinate functions to retrieve the function f . From Lemma 2,
when f is not a constant (n)– function, it is possible to recover a coordinate of
f from the 2n − 1 Walsh coefficients of this coordinate.
Now, assume that f is not constant. Then there exists a coordinate function f j

which is not constant. If there is a coordinate function f i which is constant, then
there is a row in the matrix W which is the Walsh transform of f i + f j where
the sum is performed modulo 2. The function f i + f j is not constant and so,

Lemma 2 applies. Let g = f i + f j . If f i is x 7−→ 0 then ĝχ = f̂ jχ, and if f i is

x 7−→ 1 then, ĝχ = −f̂ jχ. Therefore, it is always possible to determine whether
f i is the constant function x 7−→ 0 or the constant function x 7−→ 1 provided
that there is at least one non constant coordinate function.
As a conclusion, when an (n,m)–function f is not constant, all its coordinate
functions can be recovered from the reduced Walsh matrix of f (and so the
correlation matrix) and then f can be entirely recovered. �

3.4 Polynomial matrices

The extension of the NNF to an (n,m)–function gives rise to a 2m × 2n dimen-
sional matrix denoted with P . We call it the polynomial matrix of f , and the
entry at row indexed by u ∈ Fm2 and column indexed by v ∈ Fn2 is defined by:

Pu,v =
∑
x∈Fn

2

(−1)hw(x)−hw(v)f(x)uvx.

Note that the rows indexed by u ∈ Fn2 for which hw(u) = 1 correspond to the
NNF of a coordinate function of f . The matrix P expresses f in the basis of
the polynomials, x 7−→ (−1)hw(x)−hw(v)vx, v ∈ Fn2 . For example, the polynomial
matrix of fe is

Pfe =



1 0 0 0 0 0 0 0
0 0 1 0 0 1 −1 −1
1 −1 −1 1 0 0 1 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 −2
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


In the same way as the ANF can be obtained by performing a modulo two
reduction of the NNF, we can define a modulo two reduction of the polynomial
matrix P .

3.5 Reduced Polynomial matrix

Likewise for correlation matrix, we define the reduced form P ∗ of a polynomial
matrix P associated to an (n,m)–function f . Assuming that f is not constant,
we will prove that f can be recovered given the coefficients of P ?.
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Definition 8 (Reduced polynomial matrix). For any polynomial matrix P
of dimension 2m×2n, its reduced matrix P ? of dimension (2m − 1)× (2n − 1) is
the matrix deduced from P , where the first row and column have been removed.

P ? =

 P1,1 · · · P1,2n−1
...

...
P2m−1,1 · · · P2m−1,2n−1


The following lemma is similar to Parseval’s identity, and is based on the fact
that for any {0, 1} valued function f , one has

∑
x∈Fn

2
f(x) =

∑
x∈Fn

2
f2(x).

Lemma 3 (see [11]).
If f is a Boolean (n)–function then,∑

x∈Fn
2

f(x) =
∑
x∈Fn

2

∑
u∈Fn

2

∑
v∈Fn

2

f̃(u)f̃(v)xuxv. (23)

The next lemma expresses orthogonality between monomial functions.

Lemma 4 (see [11]). Let s, u ∈ Fn2 then,∑
x∈Fn

2

(−1)hw(x)xsux =
∑

x∈Fn
2 |s�x�u

(−1)hw(x)

=

{
(−1)hw(u) if s = u

0 else

In particular, for s = 0,
∑
x∈Fn

2

(−1)hw(x)ux =

{
1 if u = 0

0 else.

As a straightforward consequence of Lemma 4 and relation (16), the following
remark holds.

Remark 7. A Boolean function f is constant if and only if, for all nonzero vector
u ∈ Fn2 , f̃(u) = 0.

Remark 8. From Lemma 2, it can be inferred whether a Boolean function is
a constant function or not, given its 2n − 1 Walsh coefficients at the nonzero
vectors.

The following result acts as a counterpart of Lemma 1 for NNF.

Proposition 3. The Boolean function f is non constant if and only if the quan-

tity
∑

u∈Fn
2 |u 6=0

f̃(u)2− hw(u) is non null.
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Proof. The following equalities hold:∑
u∈Fn

2 |u6=0

f̃(u)2− hw(u) =− f̃(0) +
∑
u∈Fn

2

∑
x∈Fn

2 |x�u

(−1)hw(u)−hw(x)f(x)2− hw(u)

=− f̃(0) +
∑
x∈Fn

2

(−1)hw(x)f(x)
∑

u∈Fn
2 |u�x

(
−1

2

)hw(u)

For all vector x ∈ Fn2 , the consideration of terms u whose weight is greater than
hw(x) gives

∑
u∈Fn

2 |u�x

(
−1

2

)hw(u)

=

n−hw(x)∑
j=0

(
n− hw(x)

j

)(
−1

2

)hw(x)+j

=

(
−1

2

)hw(x)(
1

2

)n−hw(x)

=(−1)hw(x)

(
1

2

)n
Then, noting that f̃(0) = f(0), it follows that:

∑
u∈Fn

2 |u 6=0

f̃(u)2− hw(u) = −f(0) +

(
1

2

)n ∑
x∈Fn

2

f(x).

Thus, the following equivalence holds:∑
u∈Fn

2 |u 6=0

f̃(u)2− hw(u) = 0⇐⇒
∑
x∈Fn

2

f(x) = 2nf(0).

It is thereby proved that f is a constant Boolean function if and only if the value∑
u∈Fn

2 |u6=0

f̃(u)2− hw(u) is null. �

Proposition 4. Let f be a non constant Boolean (n)–function such that all the
NNF coefficients are known except f̃(0). Then f can be entirely recovered.

Proof. The proof is constructive. Being known the NNF coefficients, the function
f can be recovered from (16). In the sequel, it is shown how f̃(0) can be expressed
from other NNF coefficients. On one hand, from equality (16), it holds that∑

x∈Fn
2

f(x) =
∑
u∈Fn

2

∑
x∈Fn

2 |x�u

f̃(u) =
∑
u∈Fn

2

f̃(u)
∑

x∈Fn
2 |x�u

1 =
∑
u∈Fn

2

f̃(u) 2n−hw(u)

and then ∑
x∈Fn

2

f(x) = 2nf̃(0) +
∑

u∈Fn
2 |u6=0

2n−hw(u)f̃(u) (24)
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On the other hand, relation (23) leads to:∑
x∈Fn

2

f(x) =
∑
x∈Fn

2

∑
u∈Fn

2

∑
v∈Fn

2

f̃(u)f̃(v)xuxv

=
∑
u∈Fn

2

∑
v∈Fn

2

f̃(u)f̃(v)
∑
x∈Fn

2

xuxv

=
∑
u∈Fn

2

∑
v∈Fn

2

f̃(u)f̃(v)
∑

x∈Fn
2 |x�(u∨v)

1

=
∑

u,v∈Fn
2

f̃(u)f̃(v) 2n−hw(u∨v)

and then

∑
x∈Fn

2

f(x) = 2nf̃(0)+2f̃(0)

 ∑
u∈Fn

2 |u 6=0

f̃(u)2n−hw(u)

+
∑

u∈Fn
2 |u 6=0

v∈Fn
2 |v 6=0

f̃(u)f̃(v)2n−hw(u∨v) (25)

Then, from relations (24) and (25), and in virtue of Proposition 3, it follows
that:

f̃(0) =
1

2n+1

∑
u∈Fn

2 |u 6=0 2n−hw(u)f̃(u)−
∑
u∈Fn

2 |u6=0
v∈Fn

2 |v 6=0

f̃(u)f̃(v)2n−hw(u∨v)

∑
u∈Fn

2 |u 6=0 f̃(u)2− hw(u)
,

which completes the proof. �

We are now able to prove that the reduced matrix P ? is sufficient to get the
whole polynomial matrix P .

Proposition 5. An (n,m)–function can be recovered from its reduced polyno-
mial matrix coefficients, provided that it is not a constant function.

Proof. Recall that the coefficient Pu,v of P is the value at vector v of the NNF
of the function x 7−→ f(x)u. Hence, for all u ∈ Fn2 such that hw(u) = 1, the
coefficients of the row indexed by u of P correspond to the NNF values of the
coordinate function fu of f .
As f is not a constant function, it admits at least one non constant coordinate
function fu, where u is a vector of weight 1. From Remark 7, the non constant

coordinates admit at least one nonzero NNF coefficient f̃u(v) 6= 0 where v is a
nonzero vector in Fn2 . Thus, from Proposition 4, the coordinate function fu can
be entirely recovered. It remains to recover the constant coordinates. They are
characterized by a null row indexed by a vector of weight 1 in the reduced matrix
P ?. Let fw such a constant coordinate of f , where hw(w) = 1, and g = fu · fw.
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The NNF coefficients of g correspond to the row of P ? indexed by u + w, and
one has:

g̃(v) =
∑
x∈Fn

2

(−1)hw(v)−hw(x)fu(x)fw(x)vx

=

{
f̃u(v) if fw ≡ 1

0 if fw ≡ 0

Hence the constant coordinate function of f can be recovered, which completes
the proof. �

3.6 Similarity relations between the matrix representations

We prove in this subsection, for m = n, similarity relations that relate the
polynomial matrix P , the correlation matrix C = 2−nW and the adjacency
matrix A (with complex coefficients). We also show that, when the coefficients
of the adjacency matrix A and of the polynomial matrix P are considered in
F2, there exists a similarity transform that relates them. This relation allows to
simplify the analysis of the eigenstructures of these matrices. This is typically
the case for the issue addressed in Section 4.

The result below allows to relate the correlation matrix (or the Walsh matrix)
of a function to the adjacency matrix of its graph.

Proposition 6. Let f be an (n, n)–function, then its adjacency matrix A and
its correlation matrix C are related by:

A = H−1 tCH, (26)

where the matrix tC is the transpose of C and H is the Hadamard matrix (see
(6)).

Proof. We show that (26) holds when both right and left hand sides are applied
to the vectors of the canonical basis. Let ex be the vector such that its xth

coordinate is 1 and the other components are zero. As a consequence, this vector
can be interpreted as probability distribution. In view of Proposition 1, the vector
q = HCH−1ex is a probability vector and all its components equal zero except
the component y = f(x). This implies that the coefficients of the column x of
HCH−1 are all zero except the one at row y. Therefore, for all x, y ∈ Fn2 , the
coefficient at row y and column x of HCH−1 is 1 if x = f(y) and zero elsewhere.
By definition, this is the transpose of the adjacency matrix. We recall that H is
a symmetric matrix. Therefore, H−1 tCH is the adjacency matrix of f . �

The result below allows to relate the polynomial matrix of a function to the
adjacency matrix of its graph.

Proposition 7. Let f be an (n, n)–function, then, its polynomial matrix P and
its adjacency matrix A are related by :

P = M−1AM. (27)

where M is the monomial matrix defined by (18).



16

Proof. As M = Z−1, it must be shown that PZ = ZA. To this end, we show
that each component of both matrices are equal. On one hand, the coefficient of
ZA at row indexed by u ∈ Fn2 and column indexed by v ∈ Fn2 is:∑

w∈Fn
2

Zu,wAw,v =
∑

w∈Fn
2 |v=f(w)

Zu,w

On the other hand, the coefficient of PZ at row indexed by u ∈ Fn2 and column
indexed by v ∈ Fn2 is:∑

w∈Fn
2

Pu,wZw,v =
∑
w∈Fn

2

∑
x∈Fn

2

Zu,xf(x)wZw,v

=
∑
x∈Fn

2

Zu,x(−1)hw(v)
∑
w∈Fn

2

f(x)w(−1)− hw(w)wv

In view of Lemma 4∑
w∈Fn

2

Pu,wZw,v =
∑
x∈Fn

2

Zu,x(−1)hw(v)
∑

w∈Fn
2 |v�w�f(x)

(−1)− hw(w)

︸ ︷︷ ︸(−1)− hw(v) if v = f(x)

0 else

This shows that all entries of matrices PZ equal those of ZA. �

Remark 9. When they are reduced modulo 2, the entries of the matrices A and
P can also be considered as elements on F2, and then Proposition 7 holds.

Considering Propositions 6 and 7 and taking into account the fact that a ma-
trix and its transpose are similar, we conclude that A, tA,P and C are similar
matrices.

3.7 Matrix representation and composition

It has been noted in [4] that the correlation matrix of the composition of two
functions is the product of the correlation matrices of these functions. From
Propositions 6 and 7, it is clear that this property holds for the adjacency matrix
and for the polynomial matrix. As a result, the following proposition holds.

Proposition 8. If f is a Boolean (n,m)–function and g is a (p, n)–function
then, the matrix representations of the composition f ◦ g, for the adjacency ma-
trix A, correlation matrix C and polynomial matrix P , are given by:

Af◦g = AgAf (28)

Cf◦g = CfCg (29)

Pf◦g = PfPg. (30)
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The following relations between matrix product and function composition also
hold for reduced correlation and polynomial matrices.

Corollary 1. If f is an (n,m)–function and g is a (p, n)–function then:

C?f◦g = C?fC
?
g (31)

P ?f◦g = P ?f P
?
g , (32)

where C?f (resp. P ?f ) denotes the reduced correlation (resp. the reduced polyno-
mial) matrix of f .

Proof. This is a consequence of Proposition 8 and the fact that all the coefficients
of the first row of the correlation and of the polynomial matrices are null except
the coefficient of the first column. �

4 Eigenanalysis of the matrix representation

Let f be an (n, n)–function, the adjacency matrix A, the polynomial matrix P
and the correlation matrix C are square matrices. This section is devoted to the
eigenanalysis of these matrices. Due to the similarity relations, the eigenvalue
analysis can be done on any of them. The study of the eigenvectors depends on
the matrix under consideration. However, as the adjacency matrix has exactly
one nonzero component equal to 1 per row, the study is easier on this matrix. As
explained in Section 3.1, it is possible to associate a graph G to the function f .
This section establishes connections between the eigenanalysis of the matrix
representations of a vectorial Boolean function and its graph representation.
We show that the eigenvalues of the representation matrices are directly related
to the number of cycles, to their length and to the number of leaves in the
graph G. It has been mentioned in Section 3.6 that, the adjacency matrix A
can be considered either as a C-valued matrix or an F2-valued matrix. The
eigenanalysis below is performed in the field C of complex number, and thus,
the eigenvectors are 2n-dimensional complex vectors. Hence, each eigenvector
can be indexed by the vertices of the graph G associated to the function f , since
those vertices are elements of Fn2 .
Section 4.1 is devoted to eigenvalues. In section 4.2, we show how to determine
the corresponding eigenvectors of the adjacency matrix from the graph G of the
function f .

4.1 Eigenvalues

Proposition 9. The eigenvalues of the matrices A,P and C are either zero or
roots of unity.

Proof. Due to the similarity properties, the reasoning is performed for the adja-
cency matrix A, and the result still holds for the others matrices.
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Let α ∈ C be an eigenvalue of A and v ∈ Cn be an associated eigenvector, i.e
Av = αv. Each row of A has only one nonzero coefficient which equals 1.
From (28), for any integer k, Ak is the adjacency matrix of fk. The sequence(
Ak
)
k∈N lies in a finite space and thus is ultimately periodic.

Therefore, there exist two integers i < j such that Aiv = Ajv and then,
αiv−αjv = 0. It follows that αi(1−αj−i)v = 0, which implies that either α = 0
or 1− αj−i = 0, that is α is a root of unity. �
The following proposition makes a connection between the eigenvalue zero and
the leaves of the graph G.

Proposition 10. Let f be an (n, n)–function. Zero is an eigenvalue of the ad-
jacency matrix A of f if and only if there exists a leaf in the graph G of f .

Proof. By definition, if x ∈ {0, 1}n is a leaf in the graph G, then the column x of
the adjacency matrix A is null. Let ex ∈ {0, 1}n be the vector whose components
are all null except the one at row indexed by x which equals one. Thus, Aex = 0
and ex is an eigenvector of the matrix A associated to the eigenvalue zero.
Conversely, let u ∈ Cn be an eigenvector of A associated to the eigenvalue
zero. Since each row of the adjacency matrix has exactly one nonzero coefficient,
Au = 0 if and only if the columns of A whose indexes correspond to the nonzero
components of the vector u are null, and the index of each null column of A
indicates a leaf of the graph. That completes the proof. �

Remark 10. The proof of Proposition 10 gives a construction of eigenvectors
related to the zero eigenvalue. There exists a simpler proof. Assuming that x ∈
{0, 1}n is a leaf, the column x of the adjacency matrix A is null, which implies
that the determinant of A is null too. Since this determinant equals the product
of the eigenvalues, this means that 0 is an eigenvalue of A.
Conversely, if 0 is an eigenvalue of A, the kernel of the endomorphism associated
to A is not reduced to zero. Thus, this endomorphism is not surjective, which
indicates that the graph of f has a leaf.

Remark 11. If f is an (n, n)–function, let E0 be the eigenspace of the eigenvectors
associated to the eigenvalue zero of the adjacency matrix A of f . Then, the
dimension of E0 equals the number of leaves in the graph G of f .
If v is an eigenvector of the eigenvalue 0 for the adjacency matrix A then, Av = 0,
and this is equivalent to vf(x) = 0 for all x ∈ Fn2 . Hence, it follows that the
support of v is included in the set of the leaves of the graph and then E0 is
spanned by the vectors ey as defined in the proof of Proposition 10 where y is a
leaf of the graph.

Remark 12. The eigenvectors defined in the proof of Proposition 10 shows that
eigenvectors can be interpreted as functions. Indeed, let f be an (n, n)–function
and g an (n)–function. If g ◦ f = 0 then the truthtable of g is an eigenvector
for the eigenvalue 0 of Af . Conversely, assume that g is an eigenvector of Af
associated to the eigenvalue 0 such that all its components are either zero or one
then, g ◦ f = 0.
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Note that whenever the eigenvectors of the adjacency matrix of f associated to 0
are obtained as explained in the proof of Proposition 10, we can determine all
the Boolean functions g for which Remark 12 applies. They are the set of all
linear combinations with {0, 1} coefficients of the eigenvectors associated to 0.
There is not any other one. Hence, if there are ` leaves in the graph G, there are
exactly 2` (n)–functions g such that g ◦ f = 0.

We are now interested in nonzero eigenvalues. From Proposition 9, those eigen-
values are roots of unity.

Proposition 11. Let f be an (n, n)–function, α be a nonzero eigenvalue of the
adjacency matrix of f and let v be an eigenvector for the eigenvalue α. Let ` be
the order of α and x ∈ {0, 1}n be a n-dimensional binary vector. If the component
vx of vector v is nonzero, then the length of the ultimate cycle of the connected
component of the graph G that contains x is multiple of `.

Proof. Let x ∈ {0, 1}n. By definition of the adjacency matrix of f and as v is
an eigenvector for the eigenvalue α, one has vf(x) = αvx. By induction, for all
integer k:

vfk(x) = αkvx. (33)

By iterating enough the function f from the vector x, the vertex f i(x) falls into
the ultimate cycle of the connected component of x as illustrated in Figure 2.
Thus, there exists an integer i such that f i(x) belongs to this cycle. Let `′ be
its length. By assumption, f `

′+i(x) = f i(x). From relation (33), α`
′+ivx = αivx.

As vx is assumed to be nonzero, α`
′

= 1 and this proves that `′ is multiple of `.
�

x1

x2

x3

x`′

x f(x) f2(x)

f i(x)

=

f

Fig. 2: The vertex x of the connected component is connected to its ultimate cycle
by a path of length i whose elements are the iteration of the (n, n)–function f
on the vertex x. This path is

(
x, f(x), f2(x), . . . , f i(x) = x1

)
.

Now, let us deal with the dimension of the eigenspaces. Let us denote by Eα
the eigenspace associated to the eigenvalue α of the adjacency matrix of the
(n, n)–function f . As stated at the beginning of Section 4, each eigenvector v
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associated to α can be indexed by the vertices of the graph G. Thus, the support
of v is defined as:

supp(v) = {x ∈ Fn2 | vx 6= 0}

Proposition 12. Let α be a nonzero eigenvalue of the adjacency matrix of the
(n, n)–function f and C be a connected component of the graph G whose ultimate
cycle length is multiple of the order of α. Then, the subspace of Eα of the vectors
whose support is included in C is of dimension 1.

Proof. Let us choose any fixed vertex x1 in C. For all vertices x in C, there exist
two integers i and j such that f i(x) = f j(x1). Let w be the 2n–dimensional
complex vector whose components are defined, for all x ∈ {0, 1}n by:

wx =

{
0 if x /∈ C,
αj−i if x ∈ C, where i and j are defined as above.

By construction, w is a nonzero eigenvector associated to the eigenvalue α whose
support is included in C, and thus, the subspace of Eα whose support is included
in C is of dimension at least 1.
Now, let x and y be two vertices in C, and i and j two integers such that
f i(x) = f j(y). From relation (33), for each eigenvector u for the eigenvalue α
whose support is included in C, one has: ufi(x) = αiux = ufj(y) = αjuy. And
thus

uy = αi−jux.

Hence ux 6= 0 for all x ∈ C, and the support of u is C. Let v be another such
eigenvector for the eigenvalue α and let λ = vx/ux. From the above relation, one
obtains:

vy = αi−jvx = λαi−jux = λuy.

Thus, for all vertices y ∈ C, one has vy/uy = λ. As a consequence, the vectors u
and v are proportional and this shows that the subspace of Eα of vectors whose
support is included in C is of dimension 1. �

The following proposition gives the dimension of the eigenspace Eα.

Proposition 13. Let α be a nonzero eigenvalue of the adjacency matrix of an
(n, n)–function. The dimension of the vectorspace Eα equals the number of cycles
in the graph G whose length are multiple of the order of α.

Proof. Let C1, . . . , Ck be the k connected components that involve a cycle of
length multiple of the order of α. For i ∈ {1, . . . , k}, let Hi be the vector space of
vectors whose support are included in Ci. From Proposition 12, the vector spaces
Eα ∩ Hi are all 1 dimensional. On the other hand, theses spaces are pairwise
complementary as the support of their vectors are disjoint. From Proposition 11,
they span Eα and this achieves the proof. �

According to Remark 3, there always exists a cycle in the graph and thus 1 is
always an eigenvalue of the adjacency matrix.
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Corollary 2. Let f be an (n, n)–function. The function f is an involution if
and only if the eigenvalues of its adjacency matrix are either −1 or 1.

Proof. An involution is an invertible function. Hence, there are no leaf in the
associated graph. Besides, all the vertices belong to a cycle of length one or two.
According to Propositions 10 and 13, the only admissible eigenvalues are −1
and 1. �

4.2 Eigenvectors

In this section, we are interested in identifying the eigenvectors associated to
the eigenvalues for the adjacency matrix A, the polynomial matrix P and the
correlation matrix C. Unlike eigenvalues, eigenvectors are basis-dependent. Due
to Proposition 7, eigenvectors of P and C are easily deduced from eigenvectors
of the adjacency matrix A. For each matrix, there is a natural way to derive a
basis of the eigenspaces from the graph of the function.

4.2.1 Eigenvectors of the adjacency matrix A
The following proposition shows that the eigenvectors of the adjacency ma-
trix A corresponding to the zero eigenvalue are deduced from the junctions of
the graph G of the function f .

Proposition 14. Assume that the vertex y is a junction of the (n, n)–function
f and let x1 and x2 be two incident vertices of this junction. Let ex1 (respec-
tively ex2

) be the 2n-dimensional vector such that all its components are null
except the one at coordinate x1 (respectively x2) which equals 1. Then, the vec-
tor e = ex1

− ex2
is an eigenvector of the matrix tA for the eigenvalue 0.

Proof. By assumption, the equality f(x1) = f(x2) holds. Let y = f(x1) and
ey the 2n-dimensional vector such that all its components equal 0, except the
coordinate y which equals 1. One has ey = tAex1

and ey = tAex2
. Thus,

tA(ex1
− ex2

) = 0 which completes the proof. �

Remark 13. According to Remark 4, from each junction of multiplicity k in G,
it is possible to get k independent eigenvectors of tA for the eigenvalue 0.

Remark 14. Conversely, if v is an eigenvector of tA for the eigenvalue 0, then
the support of v is included in the set of preimages of junctions in the graph G
of f .

Proposition 15. Let L = (x0, . . . , x`−1) be a cycle of length ` of the graph
G associated to an (n, n)–function, and α be a `th root of unity. Then, for i in
{0, . . . , `−1}, the complex number αi is an eigenvalue of the adjacency matrix A.
For every i ∈ {0, 1, . . . , `− 1}, an eigenvector v of αi associated to the transpose
matrix tA of A is given by:

vxj
=

{
αi(`−j) if xj ∈ L
0 elsewhere.

(34)
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Proof. It suffices to show that each vector v = (vx)x∈Fn
2

defined by (34) is an
eigenvector for αi.

Let w be the vector defined by w = tAv. One has wx =
∑
y∈Fn

2

Ay,xvy =
∑

y∈Fn
2 , x=f(y)

vy.

It must be shown that w = αiv. To this end, the two following cases are distin-
guished:

– if x /∈ L, then there is no element y ∈ L such that x = f(y). As a result,∑
y∈Fn

2 , x=f(y)

vy = 0 and then wx = 0. Besides, from (34), one has vx = 0 and

then wx = αivx,
– if x = xj ∈ L, then one has wxj

= vxj−1
that is, wf(xj−1) = vxj−1

. By

assumption, vxj−1 = αi(l−j+1) = αiαi(l−j) = αivxj and then wx = αivx for
all x ∈ L.

As a consequence, the equality w = Av = αiv holds in both cases. �

Proposition 16. The trace of the adjacency matrix of f is the number of cycles
of length one.

Proof. According to Proposition 15, from each cycle of length `, we can derive
an `th root of unity as eigenvalue. The other eigenvalue is 0. The sum of all the
`th roots of the unity equals zero except when ` = 1. In this latter case, it equals
one. �

Remark 15. As the trace is invariant under similarities, Proposition 16 also holds
for polynomial and correlation matrices.

Remark 16. The result of Proposition 16 can be proved by noting that for
x ∈ Fn2 , the coefficient Ax,x belonging to the main diagonal of the adjacency
matrix A equals 1 if and only if the vector f(x) = x. Then the result holds, as
the trace of a matrix is the sum of the main diagonal coefficients.

As an example, we show how to derive the eigenstructures of Afe based on the
graph of Figure 1.
According to Proposition 14, the four eigenvectors associated to 0 are related to:

– the junction 010 with preimage set {000, 100, 110} and thus multiplicity two,
– the junction 101 with preimage set {011, 101} and thus multiplicity one.

The eigenvectors are denoted by a0, a1, a2, a3 and can be derived as follows.

a0 = ex1
− ex5

=



1
0
0
0
−1

0
0
0


, a1 = ex1

− ex7
=



1
0
0
0
0
0
−1

0


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a2 = ex5
− ex7

=



0
0
0
0
1
0
−1

0


, a3 = ex4

− ex6
=



0
0
0
1
0
−1

0
0


According to Proposition 15, due to the cycle (101, 101), the following vectors
are eigenvectors for the eigenvalues 1.

a4 =



0
0
0
0
0
1
0
0


a5 =



0
1
1
0
1
0
0
0


.

These two eigenvectors are obtained from the cycles of length one and three
respectively in the graph.
According to Proposition 15, the following eigenvectors exist and are respectively

associated to the eigenvalues  and 2, where  =
1 + ı

√
3

2
is a primitive cube

root of unity.

a6 =



0

2

0
1
0
0
0


, a7 =



0
2


0
1
0
0
0


.

The eigenvectors of the correlation and polynomial matrices can be respectively
obtained by applying the Hadamard matrix H given by (6) and the monomial
matrix M given by (18) to the vectors a0, a1, a2, a3, a4, a5, a6.
It is shown in the sequel that, from the eigenvectors of the adjacency matrix A,
the change of basis of Proposition 6 and of Proposition 7 can be used to determine
respectively the eigenspaces of the correlation matrix C and the polynomial
matrix P .

4.2.2 Eigenvectors of the correlation matrix C
From (26), the eigenvectors of C can be deduced from those of tA. If v is an
eigenvector for tA, then, due to (5), the Fourier transform of v, denoted by
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v̂ = Hv is an eigenvector of the Walsh matrix W and so of the correlation
matrix C. Therefore:

∀y ∈ Fn2 , v̂y =
∑
x∈Fn

2

vx(−1)x·y. (35)

If v is an eigenvector of tA associated to the eigenvalue 0, then from Remark 14,
the support of v is included in the set of preimages of the junctions in the
graph G.

Due to Equation (20), the eigenvalues of the Walsh matrix W are merely the
eigenvalues of the ones of the correlation matrix C times 2n. Thus, the eigen-
vectors are the same.

4.2.3 Eigenvectors of the polynomial matrix P
The eigenvectors of the polynomial matrix P can also be deduced from those of
the adjacency matrix A by applying (27). If v is an eigenvector of A then ṽ = Zv
is an eigenvector of P . Therefore:

∀y ∈ Fn2 , ṽy =
∑
x∈Fn

2

(−1)hw(x)−hw(y)yxvx.

In the case when v is an eigenvector of A associated to the eigenvalue 0, the
support of v is included in the set of the leaves of the graph G.

5 Conclusion

In this paper, a unified overview on the various representations of vectorial
Boolean functions, namely the Walsh matrix, the correlation matrix and the
adjacency matrix, has been given. A new representation called polynomial ma-
trix has been introduced with an interest when dealing with algebraic properties.
It has been shown that those different representations are similar.
Then, an eigenanalysis of those representations has been performed. It has been
shown that, for all the representations, the eigenvalues are either zero or roots of
unity. For a given vectorial Boolean function with the same number of inputs and
outputs, a link has been made between the eigenvalues of its matrix representa-
tions and the structure of the graph assigned to this function. The distinction
between zero and nonzero eigenvalues plays an important role for that purpose.
Finally, the eigenspace associated to the eigenvalues of the matrix representa-
tions has been studied. For nonzero eigenvalues, the corresponding eigenvectors
can be determined from the cycles of the graph. On the other hand, the eigen-
vector corresponding to the zero and unique eigenvalue can be determined by
the junctions of the graph.
We think that this work can be helpful, not only to people working in the realm
of Boolean function in general, but also to people interested in application of
Boolean functions to cryptography.
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