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Challenges and opportunities of multimodality and
data fusion in remote sensing

M. Dalla Mura, Member, IEEE, S. Prasad, Senior Member, IEEE, F. Pacifici, Senior Member, IEEE,
P. Gamba, Fellow, IEEE, J. Chanussot, Fellow, IEEE, J. A. Benediktsson, Fellow, IEEE

Abstract—Remote sensing is one of the most common ways
to extract relevant information about the Earth and our en-
vironment. Remote sensing acquisitions can be done by both
active (synthetic aperture radar, LiDAR) and passive (optical
and thermal range, multispectral and hyperspectral) devices.
According to the sensor, a variety of information about the
Earth’s surface can be obtained.

The data acquired by these sensors can provide information
about the structure (optical, synthetic aperture radar), elevation
(LiDAR) and material content (multi and hyperspectral) of the
objects in the image. Once considered together their comple-
mentarity can be helpful for characterizing land use (urban
analysis, precision agriculture), damage detection (e.g., in natural
disasters such as floods, hurricanes, earthquakes, oil-spills in
seas), and give insights to potential exploitation of resources
(oil fields, minerals). In addition, repeated acquisitions of a
scene at different times allows one to monitor natural resources
and environmental variables (vegetation phenology, snow cover),
anthropological effects (urban sprawl, deforestation), climate
changes (desertification, coastal erosion) among others. In this
paper, we sketch the current opportunities and challenges related
to the exploitation of multimodal data for Earth observation. This
is done by leveraging the outcomes of the Data Fusion contests,
organized by the IEEE Geoscience and Remote Sensing Society
since 2006. We will report on the outcomes of these contests,
presenting the multimodal sets of data made available to the
community each year, the targeted applications and an analysis
of the submitted methods and results: How was multimodality
considered and integrated in the processing chain? What were
the improvements/new opportunities offered by the fusion? What
were the objectives to be addressed and the reported solutions?
And from this, what will be the next challenges?

Index Terms—Data fusion, remote sensing, classification, pan-
sharpening, change detection.

I. INTRODUCTION

REMOTE sensing technologies can be used for observing
different aspects of the Earth’s surface, such as the spatial

organization of objects in a particular region, their height,
identification of the constituent materials, characteristics of
the material surfaces, composition of the underground, etc.
Typically, a remote sensing acquisition can just observe one (or
few, at the most) of the aforementioned characteristics. Thus,
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the observations derived by different acquisition sources can be
coupled and jointly analyzed by data fusion (DF) practices to
achieve a richer description of the scene. The joint exploitation
of different remote sensing sources is therefore a key aspect
towards a detailed and precise characterization of the Earth.
Fusion of multi-source information is nowadays considered to
be a typical scenario in the exploitation of remote sensing data.
Passive optical sensors have been widely used to map horizon-
tal structures like land cover types at large scales, whereas
Synthetic Aperture Radar (SAR) systems complement the
optical imaging capabilities because of the constraints on time-
of-day and atmospheric conditions and because of the unique
responses of terrain and man-made targets to radar frequencies.
Lately, Light Detection And Ranging (LiDAR) technology has
proven to be uniquely positioned to provide highly accurate
sample measurements of vertical height of structures (measure
correlated to the delay in the reception of the echoes of the
transmitted pulse) and along with information on the materials’
reflective property (considering the intensity of the reflected
signal). However, it is still limited by the high running costs.
Hence, the complementarity of optical/SAR/LiDAR measures
can lead to a more comprehensive description of a surveyed
scene if considering these data jointly. The differences among
these three modalities can be seen at a glance by looking at
Figure 1, in which a composition of the three acquisitions is
presented.

The importance of fusing different modalities was already
pointed out in many early works [1], [2] such as for the
recognition of man-made objects by fusing LiDAR data and
thermal images [3] or for scene interpretation [4] and image
classification [5] when jointly considering optical and SAR
images. Since the advent of remote sensing satellites, data
fusion has been a very active field of research due to the
increasing amounts of data available generated by the periodic
acquisitions. So far, data fusion practices are currently widely
employed in many applicative remote sensing tasks such as
urban mapping [6], forest-related studies [7], [8], [9], oil slick
detection and characterization [10], [11], disaster manage-
ment [1], [12], and digital surface model (DSM) and digital
elevation model (DEM) generation [13], to cite a few. Due to
the ever increasing number of sensors operating with different
characteristics and acquisition modalities, the potentialities and
outcomes of data fusion are increasing. As a result, the interest
of the remote sensing community around this topic keeps
increasing. See for example the presence of active groups
in professional societies dedicated to this topic (such as the
IEEE Data Fusion Technical Committee and the Working
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Fig. 1. From left to right, composition of an optical (true color composition with sub-meter spatial resolution [3 bands image]), SAR (amplitude of backscattering
[scalar image]) and LiDAR elevation data [scalar image obtained by rasterizing the 3d point cloud] acquired over the city of San Francisco, U.S.A.. This set
of data was used in the Contest of 2012. Source [16].

Group VII/6: Remote Sensing Data Fusion of the International
Society of Photogrammetry and Remote Sensing), the constant
presence of special sessions devoted to DF in almost all remote
sensing conferences and workshops, or even entire conferences
devoted to DF (such as the International Symposium Remote
Sensing and Data Fusion over Urban Areas), and of special
issues in remote sensing journals (e.g., the “Special issue on
data fusion” of the IEEE Transaction and Geoscience Remote
Sensing in 2008 [14] and the upcoming one of the IEEE
Geoscience and Remote Sensing Magazine [15]).

Data fusion is a common paradigm related to the processing
of data observed by different sensors and finds its place in a
large variety of domains. Since a survey of the problem of DF
in general terms is outside the scope of this paper, for reference
we refer the interested reader to [17], [18], [19], [20]. If we
focus on remote sensing, the approaches to data fusion are
usually divided into three groups according to the level of the
processing chain in which the fusion takes place [21], [22]. In
general fusion can be performed at three different processing
levels:

• Raw data level (also denoted as Pixel level). In some
scenarios, the fusion of different modalities is performed
at the level in which the data are acquired. The aim is
in this case to combine the different sources in order to
synthetize a new modality, which, afterwards, could be
used for different applications. Image sharpening, super
resolution and 3D model reconstruction from 2D views
are examples of applications that share this aim.

• Feature level. The objective of DF at the feature level
refers to the generation of an augmented set of obser-
vations considering data belonging to different sources.
The result of the fusion can be taken jointly as input
to a subsequent decision step. Focusing on land cover
classification, perhaps the most straightforward way to
perform this fusion is to stack one type of data on the
other and to feed the classifier with this new data set. In
other cases, different sets of features (e.g., image primi-
tives such as linear features [23] or spatial features [24])
can be extracted from one or multiple data sources and
combined together in order to reduce the uncertainty or
achieve a richer description, respectively.

• Decision level. In this third case, the combination of the
information coming from the different sources is per-
formed on the results obtained considering each modality
separately. If the data provide complementary information
for the application considered, one can expect to increase
the robustness of the decision through the fusion of the
results obtained from each modality independently. This
is achieved because in the result of the fusion the single
decisions that are in agreement are confirmed due to their
consensus, whereas the decisions that are in discordance
are combined (e.g., via majority voting) in the attempt of
decreasing the errors. The same concept can be found
implemented by ensemble learning in pattern recogni-
tion [25].

This paper aims to present the current trends, opportunities
and challenges of multimodal data fusion in remote sensing in
the light of the outcomes of the IEEE Data Fusion Contests
(DFCs) which have been taking place yearly since 2006.

The paper is organized as follows. A brief introduction of
the nine contests issued from 2006 to 2014 are presented in
Section II. Section III is devoted to present the applicative
tasks of remote sensing in which data fusion approaches
can be employed. Section IV proposes a discussion of the
opportunities and challenges of data fusion in remote sensing
and Section VI concludes this paper.

II. IEEE DATA FUSION CONTESTS

In order to foster the research on the important topic of data
fusion, the Data Fusion Technical Committee (DFTC)1 of the
IEEE Geoscience and Remote Sensing Society (GRSS) has
been annually proposing a Data Fusion Contest since 2006.
The DFTC serves as a global, multi-disciplinary, network for
geospatial data fusion, with the aim of connecting people and
resources, educating students and professionals, and promoting
the best practices in data fusion applications. The contests have
been issued with the aim of evaluating existing methodologies
at the research or operational level, in order to solve remote
sensing problems using multisensoral data. The contests have
provided a benchmark to the researchers interested in a class

1http://www.grss-ieee.org/community/technical-committees/data-fusion/
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of data fusion problems, starting with a contest and then
allowing the data and results to be used as reference for the
widest community, inside and outside the DFTC. Each contest
addressed different aspects of data fusion within the context
of remote sensing applications. The contests proposed so far
are briefly introduced in the following.
The focus of the 2006 Contest was on the fusion of images
with different spatial and spectral characteristics [26] (see
Sec. III-A for details on this application). Six simulated
Pleiades images were provided by the French National Space
Agency (CNES). Each data set included a very high spatial
resolution monochromatic image (0.80 m resolution) and its
corresponding multi-spectral image (3.2 m resolution). A high
spatial resolution multi-spectral image was available as ground
reference, which was used by the organizing committee for
evaluation but not distributed to the participants.
In 2007, the Contest theme was urban mapping using SAR
and optical data, and 9 ERS amplitude data sets and 2 Landsat
multi-spectral images were made available [27]. The task was
to obtain a classification map as accurate as possible with
respect to the unknown (to the participants) ground reference,
depicting land cover and land use patterns for the urban area
under study.
The 2008 Contest was dedicated to the classification of very
high spatial resolution (1.3 m) hyperspectral imagery [28].
The task was again to obtain a classification map as accurate
as possible with respect to the unreleased ground reference.
The data set was collected by the Reflective Optics System
Imaging Spectrometer (ROSIS-03) optical sensor with 115
bands covering the 0.43-0.86 µm spectral range. Each set of
results was tested and ranked a first time using the Kappa
coefficient. The best five results were used to perform decision
fusion with majority voting. Then, re-ranking was carried out
after evaluating the level of improvement with respect to the
fusion results.
In 2009-2010, the aim of the Contest was to perform change
detection using multi-temporal and multi-modal data [29]. Two
pairs of data sets were available over Gloucester, UK, before
and after a flood event. The data set contained SPOT and ERS
images (before and after the disaster). The optical and SAR
images were provided by CNES. Similar to previous years’
Contests, the ground truth used to assess the results was not
provided to the participants.
A set of WorldView-2 multi-angular images was provided by
DigitalGlobe for the 2011 Contest [30], [31]. This unique set
was composed of five Ortho Ready Standard multi-angular
acquisitions, including both 16 bit panchromatic and multi-
spectral 8-band images. The data were collected over Rio
de Janeiro (Brazil) in January 2010 within a three minute
time frame with satellite elevation angles of 44.7◦, 56.0◦, and
81.4◦in the forward direction, and 59.8◦and 44.6◦in the back-
ward direction. Since there were a large variety of possible
applications, each participant was allowed to decide a research
topic to work on, exploring the most creative use of optical
multi-angular information. At the end of the Contest, each
participant was required to submit a paper describing in detail
the problem addressed, the method used, and the final result
generated.

The 2012 Contest was designed to investigate the potential
of multi-modal/multi-temporal fusion of very high spatial
resolution imagery in various remote sensing applications [16].
Three different types of data sets (optical, SAR, and LiDAR)
over downtown San Francisco were made available by Digi-
talGlobe, Astrium Services, and the United States Geological
Survey (USGS). The image scenes covered a number of large
buildings, skyscrapers, commercial and industrial structures,
a mixture of community parks and private housing, and
highways and bridges. Following the success of the multi-
angular Data Fusion Contest in 2011, each participant was
again required to submit a paper describing in detail the
problem addressed, method used, and final results generated
for review.
The 2013 Contest aimed at investigating the synergistic use of
hyperspectral and LiDAR data (in the form of LiDAR-derived
digital surface model) that were acquired by the NSF-funded
Center for Airborne Laser Mapping over the University of
Houston campus and its neighboring area in the summer of
2012 [32], [33]. The 2013 Contest consisted of two parallel
competitions: i) the best classification challenge and ii) the best
paper challenge. The former was issued to promote innovation
in classification algorithms, and to provide objective and fair
performance comparisons among state-of-the-art algorithms.
For this task, users were asked to submit a classification map
of the data using the training samples generated by the DFTC
via photo-interpretation. The validation set was kept unknown
to the participants and used for the quantitative evaluation.
The best paper challenge had the objective of promoting novel
synergistic use of hyperspectral and LiDAR data. The deliv-
erable was a 4-page manuscript that addressed the problem,
methodology, and results. Participants were encouraged to
consider various open problems on multi-sensor data fusion,
and to use the provided data set to demonstrate novel and
effective approaches to solve these problems.
The 2014 edition of the Data Fusion Contest proposed the
fusion between images acquired at different spectral ranges
and spatial resolutions [34]. Specifically, the data at disposal
were a coarser-resolution long-wave infrared (LWIR) hyper-
spectral image (84-channels covering the wavelengths in the
thermal domain between 7.8 and 11.5 nm with a 1m of spatial
resolution) and a high spatial resolution data acquired in the
visible (VIS) spectrum (RGB channels with a 20-cm spatial
resolution) acquired over the same area. As for the Contest in
2013, two different challenges were proposed. One related to
land cover classification and the other to a best paper challenge
(i.e., leaving the application open).

III. DATA FUSION PROBLEMS IN REMOTE SENSING

This section aims at presenting the tasks pertaining to
remote sensing treated by the Contests in which data fusion
is employed.

A. Pansharpening

The so called Very High Resolution (VHR) satellites such
as IKONOS, QuickBird and the more recent WorldView-2
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and WorldView-3 are able to image a scene with panchro-
matic (PAN) and multispectral (MS) bands. The former is
a monochromatic sensor acquiring the radiance of the scene
in the Visible and Near InfraRed (VNIR) spectrum (typi-
cally in the interval 450-800 nm) with a sub-meter spatial
resolution. The spatial resolution is measured in terms of
Ground Sampling Interval (GSI) which is the distance on the
ground between the centers of two adjacent pixels [35] and
informally can be associated to the “pixel’s size”. Currently,
the highest spatial resolution for commercial satellites is given
by WorldView-3 with 0.31 m GSI at Nadir (i.e., direction
perpendicular to the sensor) and 0.34 m at 20◦ Off-Nadir.
The multispectral sensor acquires in different intervals of the
electromagnetic spectrum thus providing an image composed
of several spectral channels. The term spectral resolution is
used in general for denoting the capability of the sensor in
sensing the spectrum (number of spectral bands and width of
the acquisition intervals in the spectral domain). The most
typical configuration is four bands, (three in the visible,
corresponding to the wavelengths of the red, green and blue
colors and one in the near infrared domain) even if most
recent sensors have expanded the number of channels. As an
example, Figure 2 depicts the relative spectral responses of the
sensors mounted on the Worldview-2 satellite. For comparison,

Fig. 2. Relative spectral responses of the sensors mounted on the Worldview-2
satellite.

the recent WorldView-3 acquires a 16-band product with 8
acquisitions in the VNIR and 8 in the Short Wave InfraRed
(SWIR) spectrum. The GSI of the multispectral images is
lower than the one of the panchromatic. This is due to
a physical constraint that couples the spatial and spectral
resolution and that prevents the arbitrarily reduction of the
GSI simultaneously with the width of the spectral windows,
(and the acquisition time) in order to guarantee a sufficient
amount of energy reaching the sensor [35]. In general, the GSI
of a multispectral band is a multiple of 4 with respect to the
resolution of the panchromatic. For example for WorldView-3
the eight acquisitions in the VNIR spectrum have a GSI of
1.24 m at Nadir, 1.38 m at 20◦ Off-Nadir and in the SWIR
Nadir of 3.72 m at Nadir and 4.10 m at 20◦ Off-Nadir.

Due to the above-mentioned physical limit in the acquisi-
tion, the PAN image shows a higher spatial resolution (i.e., a

better capability in imaging the scene details) but a reduced
spectral resolution (i.e., there is no chromatic information)
with respect to the MS image. Since the common acquisition
modality senses the scene both through the panchromatic and
multispectral sensors simultaneously2, a same scene is imaged
in two products featuring complementary spatial and spectral
resolutions. In the remote sensing community, the procedure
aiming at synthesizing a new image with the spatial resolution
of the panchromatic image, and the spectral resolution of the
multispectral one is referred to as Pansharpening (i.e., the
spatial sharpening of the multispectral channels through the
use of the panchromatic image). This is clearly an instance of
data fusion.
There is a constantly increasing demand for pansharpening
products due to their use in many applications such as Earth
visualization systems (e.g., Google Earth and Microsoft Virtual
Earth) or as starting products in remote sensing applications
such as change detection [36], object recognition [37] and
visual image interpretation and classification [38]. Pansharpen-
ing presents some difficulties related to the fact that the details
that are present in the panchromatic image appear blurred in
the multispectral channels. Furthermore, such details would
appear with variable intensity in the different spectral channels
according to their spectral signature. This makes the retrieval
of the single spectral contributions difficult due to the absent
spectral information in the panchromatic image.

Many algorithms have been proposed in the literature of
the last two decades, for detailed surveys the reader can
refer to [39], [40], [41], [42]. The classical approach to
pansharpening relies on the extraction of those spatial details
from the panchromatic image that are not resolved in the
multispectral one and their injection (appropriately modulated)
into this latter one. This can be formulated as:

M̂Sk = M̃Sk + gkPD, (1)

in which M̂S, M̃S and PD are the result of pansharpening,
with the MS image upscaled to meet the spatial resolution
of the PAN and the spatial details of the PAN, respec-
tively; k denotes the k-th spectral channel over N bands
and g = [g1, . . . , gk, . . . , gN ] and gk the injections gains.
The way the operations of detail extraction and injection are
performed determines the nature of the pansharpening algo-
rithm. It is common practice to divide classical pansharpening
algorithms into two families according to the technique used
for estimating PD: the Component Substitution (CS) and the
MultiResolution Analysis (MRA). The former extracts the
details as:

PD = P− IL (2)

being P the PAN image and IL a monochromatic image
obtained by the weighted linear composition of the MS up-
sampled bands:

IL =

N∑
k=1

wkM̃Sk. (3)

2The delay between the two acquisitions can be considered negligible for
typical remote sensing applications.
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This approach can be equivalently implemented as a spectral
transformation of the multispectral image into another feature
space and on the subsequent substitution of one or more com-
ponents in the transformed space with the PAN image followed
by reverse transformation to produce the sharpened MS bands
(hence the name CS). Some widely used algorithms based on
this family are based on transformations such as Intensity-
Hue-Saturation [43], [44], Principal Component Analysis and
Gram-Schmidt orthogonalization [45].
The techniques belonging to the MRA class are based on the
extraction of the spatial details present in the panchromatic
image (and not fully resolved in the multispectral one) and
their subsequent addition to the MS bands. Thus PD here is
computed as:

PD = P−PL, (4)

with PL a low pass version of the PAN image obtained
by spatially filtering P. The spatial details can be extracted
by several approaches as using an average filter [44], [35]
or multiresolution decompositions of the image based on
Laplacian [46] pyramids, or wavelet/contourlet operators [47],
[48].
For both families, the injection of spatial details into the
interpolated MS bands are weighted by gains (gk) different
for each band and either considering them constant for each
channel of varying locally (i.e., leading to “global” or “local”
approaches, respectively). Pansharpening techniques based on
the paradigm in Eq. 1 differ according to the way they compute
IL for CS techniques (i.e., how are the weights wk in Eq. 3
obtained), PL for MRA ones and the injection gains gk.

The validation of the results in the context of pansharpening
cannot be performed directly since there is no reference data.
For this reason several attempts have been made for assessing
quantitatively the results of pansharpening. Two validation
strategies are mostly used. The first is based on the reduction
of the spatial resolution of both the original MS and PAN
images and then the original MS image is used as reference for
the evaluation of the results [26]. The underlying assumption
in this strategy is that the tested algorithms are invariant
among resolutions [49]. However, this hypothesis is not always
verified in the practice, especially for very high resolution
images acquired on urban areas [50]. The full scale validation
employs indexes that do not require the availability of a
reference image since they evaluate the relationships, such
as the spectral coherence, among the original images and the
pansharpened product [50], [51]. In this case the evaluation is
done at the native scale of the images but clearly the results
depend on the definition of such indexes.

We leverage the results of the DF Contest issued in
2006 [26] for bringing about a discussion on the performances
of different pansharpening algorithms. In this contest, the
participants were asked to perform pansharpening on a set
of simulated images from the Pleiades sensor and a spatially
downsampled image acquired by QuickBird. Each data set
included VHR panchromatic image and its corresponding
multispectral image. A high spatial resolution multispectral
image was available as ground reference, which was used by
the organizing committee for evaluation but not distributed

to the participants. This reference image was simulated in
the Pleiades data set and it was the original multispectral
image in the QuickBird one. The results of the algorithms
submitted by the different research groups were compared
with a standardized evaluation procedure, including both visual
and quantitative analysis. The former aimed at comparing the
results in terms of general appearance of the images as well
as by means of a local analysis focusing on the rendering
of objects of interest such as linear features, punctual objects,
surfaces, edges of buildings, roads, or bridges. The quantitative
evaluation was performed using quality indexes for measuring
the similarity of the fused results with respect to the reference
image.
Examples of pansharpening results submitted to the contest
are shown in Figure 3.

As it is possible to notice by looking at the figure, the
products of the fusion present differences in terms of both
radiometry (e.g., color) and geometry (i.e., rendering of the
spatial details). Relying on their evaluation (reported in [26]),
it is possible to draw some concluding remarks. CS techniques
yield in general fused products with accurate spatial details
since no spatial filtering is performed (the low resolution PAN
is estimated from the MS image according to Eqs. 2,3), but
can often produce spectral distortions which can be seen in the
fused images as a too high or low saturation of a certain color
component. The results obtained by MRA methods typically
better preserve the spectral content, but at the detriment of
the spatial fidelity of the details. Indeed the spatial filtering
for extracting the details to inject can in some cases produce
spatial artifacts or blurred areas according to [50]. Among the
algorithms considered in the contest, the best results (both in
terms of visual and quantitative analysis) were obtained by
two algorithms from the MRA family: GLP-CBD and AWLP
in Figure 3. These two pansharpening techniques extract the
spatial details with a multiresolution decomposition of the
PAN (Eq. 4) with a Gaussian pyramid for the former and
wavelet filters for the latter. It is worth emphasizing that even
if the two filters are different, their frequency response is
very similar and it can be seen as an approximation of the
Modulation Transfer Function of the sensor (i.e., the transfer
function of the optical system [35]). This is a fundamental
aspect since selecting a filter that models as closely as possible
the blur that relates the MS and the PAN sensor, it is possible
to obtain an accurate extraction of the spatial details and
consequent consistent pansharpening result.

For a more comprehensive comparison among several pan-
sharpening algorithms the reader is referred to [42].

B. Change detection

Change Detection (CD) refers to the task of analyzing two
or more images acquired over the same area at different times
(i.e., multitemporal images) in order to detect zones in which
the land cover type changed between the acquisitions [52],
[53], [54], [55], [56]. There is a wide range of applications
in which change detection methods can be used, such as
urban and environmental monitoring, agricultural and forest
surveys, and disaster management. In general CD techniques
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(a) WSIS (b) GIHS-TP (c) GLP-CBD

(d) FSRF (e) Original (f) AWLP

(g) UNP-PanSharp (h) GIHS-GA (i) Panchromatic

Fig. 3. Results of the 2006 Data Fusion contest on pansharpening (pansharpening family reported in parenthesis): (a) Weighted Sum Image Sharpening, WSIS
(CS); (b) Generalized Intensity Hue Saturation With Tradeoff Parameter, GIHS-TP (CS); (c) Generalized Laplacian Pyramid With Context-Based Decision,
GLP-CBD (MRA); (d) Fast Spectral Response Function, FSRF (CS); (e) Original image used as reference in the validation; (f) Additive Wavelet Luminance
Proportional, AWLP (MRA); (g) University of New Brunswick (UNB)-Pansharp (CS); (h) Generalized Intensity Hue Saturation With Genetic Algorithm,
GIHS-GA (CS); (i) Panchromatic image. Source [26].

assume multitemporal images to be captured from the same
sensor and possibly with same acquisition modality (e.g., angle
of view) in order to reduce the problems of co-registration
between images and minimize the presence of differences in
the images that are not due to a real change in land cover. In
the case of natural disasters and search and rescue operations,
where time is a constraint and the data available is usually

fragmented, not complete, or not exhaustive the analysis has
to be performed using images acquired from different sensors.
Thus, CD encounters greater challenges and its accuracy relies
on the way the different modalities are handled.

In the following, we will briefly introduce the main ap-
proaches that have appeared in the literature for performing
CD and we will focus on CD based on different modalities. CD
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can be seen as a particular instance of thematic classification
of the land cover, in which the classes are change and no-
change.

The methods proposed in the literature can be divided
into two main approaches: i) supervised and ii) unsupervised
CD. The first relies on the presence of a priori information
on the scene such as examples of changed and unchanged
areas. This information could be derived from field surveys
or defined by the user through photo-interpretation. The
availability of labeled information allows one to perform the
detection of land cover transition employing conventional
supervised classification techniques. Two main approaches are
presented in the literature according to the stage of the CD
process in which the classification step is performed: post-
classification comparison [53], in which classification is done
independently at each acquisition, and the changes are then
detected from a comparison of classification maps; and multi-
date classification [52], where multi-temporal information is
considered simultaneously for classification. Semi-supervised
approaches also exist and have recently gained interest from
the community since they handle the lack of labeled informa-
tion for some dates, which might be a frequent operational
scenario. These techniques are in general based on transfer
learning and domain adaptation methods (such as [57]). The
advantage of supervised technique lies in the fact that the
analysis is built on the definition of change. Moreover, if
the labeled information comprises information on different
land cover types, the analysis can also determine the type
of change according to the type of land cover transition
that occurred. However, these approaches also have some
drawbacks due to the classification step, for example CD
results can be affected by misclassification errors (especially
for techniques based on post-classification comparison) [29].
In addition, these techniques are limited by the availability
of labeled samples. Unsupervised approaches to CD do not
require any ground reference and will detect changes as (in
general sudden) variations in the evolution of land covers.
In general, these techniques detect only the presence of
changes [56]. Recently, in specific cases some techniques have
been proposed for discrimination among different types of
changes [58], [59]. However, the detected change cannot be
associated with thematic information (e.g., on the type of land-
cover transition) since no reference on the ground is available.
Unsupervised techniques attempt to detect variations in land
covers based on some dissimilarity measures (e.g., multivariate
differences [56]) computed among the images acquired at
different dates or statistical tests (e.g., [60]). With a focus
on CD performed on optical images, the change is related
to a variation in the radiometry of the scene, which refers
to the values of radiance captured by the sensor. Changes of
interest are usually related to variations in radiance that are
related to a change in the reflectance of the land cover rather
than to variations due to differences in the acquisition settings
such as illumination changes, different data normalization
and calibration settings [56]. In order to cope with these
latter sources of radiometric variations and detect the relevant
changes, the multivariate alteration detection (MAD) tech-
nique with iterative reweighted (IR-MAD) scheme [61], [62]

was proposed. When considering data acquired by different
modalities, capabilities in providing a fast response can greatly
improve. However, using different data belonging to sources
that might be significantly different can be a severe issue to
handle. Comparison between modalities can be meaningless if
not done appropriately, differences in acquisitions can become
prohibitive for the generation of consistent results. In 2009-
2010, the contest was issued to address the task of CD using
multi-temporal and multi-modal data [29]. See Figure 4 for
the dataset used in the contest.

The two pairs of data sets made available to the participants
were acquired before and after a flood event. The class
“change” was the area flooded by the river and the class
“no change” was the ground that had not been concerned by
the flooding. The optical and SAR images were provided by
CNES. The participants were allowed to use supervised or an
unsupervised method with all the data, the optical data only, or
the SAR data only. A variety of supervised and unsupervised
approaches were proposed by the participants. Interestingly,
a simple unsupervised change detection method resulted in
similar classification accuracies compared with supervised
approaches. As expected, the approaches that utilized both
SAR and optical data outperformed other approaches, although
the contribution of SAR data alone was minimal to the overall
change detection accuracy (due to the high discrimination
capability of the optical data for this task). The overall best
results were obtained by fusing the five best individual results
via majority voting. Remarkably, considering both SAR and
optical data jointly in an unsupervised scheme led to slightly
degraded performances with respect to the use of only optical
data. In regard to this result, we remark that the analysis
was performed with an unsupervised approach, preventing
the analysis to target closely the objective of the task as
for a supervised approach, in which the available a priori
information is exploited.

C. Classification

Various past contests have focused on the fusion of data
in order to provide superior classification accuracy (compared
to considering the single modalities only) for remote sensing
applications. Previous contests have provided other multi-
modality fusion scenarios — both in terms of sensors and
challenges (e.g. use of optical imagery, LiDAR data, SAR data
etc.) for various image classification scenarios [27], [28]. We
take the most recent one — the 2013 contest involving multi-
sensor (hyperspectral and LiDAR) for urban classification, as
an example to highlight emerging trends. This contest saw
a very wide range of submissions — utilizing hyperspectral
only, or using hyperspectral fused with LiDAR in the original
measurement domain or in feature spaces resulting from
spatial and other related features extracted from the dataset.
Submissions that provided high classification performance of-
ten utilized LiDAR data in conjunction with the hyperspectral
image, particularly to alleviate confusions in areas where the
spectral information was not well-posed to provide a good
solution (e.g., classes that had similar material compositions
but different elevation profiles), and vice-versa.
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(a) (b) (c)

Fig. 4. Dataset of the 2009-2010 Contest. Color composition of the SPOT optical image (a) and ERS single amplitude SAR data (b), collected before (left)
and after (right) the flood event, provided as input to the change detection problem. The reference map used for the evaluation of the submitted algorithms
is shown in (c). Source [29].

(a) (b)

(c) (d)

Fig. 5. Dataset of the 2007 Contest. City of Pavia imaged by (a) SAR
(backscattering amplitude) and (b) optical (bands RGB-431) sensors. In (c)
and (d), the final classification map and the ground reference data are shown.
Source [27].

Another focus area of emerging and promising contribu-
tions to the range of submissions, involved post-processing
of classification results to mitigate salt-and-pepper errors in
classification. We note that this classification contest was
designed to pose some unique challenges — specifically,
the training mask and test masks were spatially disjointed,
and had substantial variability. Some classes existed under a
cloud shadow in the testing masks, testing algorithms while
other were submitted for their capability to adapt to such

variations. Most submissions did not fare well under cloud
shadows, but submissions where contestants utilized spatial
contextual information fared much better in general, even
under cloud shadows. The winning algorithm was based on
spectral unmixing, and utilized abundance maps derived from
hyperspectral imagery as features, in conjunction with raw
hyperspectral and LiDAR data, using Markov Random Fields
and ensemble classification. As a general trend, we have seen a
great degree of variability between classification performance
of various methods submitted for data fusion and classification
— be they feature level fusion or decision level fusion. It
is difficult to identify any one method that performs well in
general — to a great degree, this depends on the underlying
problem and the nature of the datasets.

With that background, we next summarize some emerging
trends in the general area of classification for multi-modality
data fusion for remote sensing. We recognize that as in
many application domains, “classification” implementations
take the following flow — (1) Preprocessing and feature
extraction followed by classification. Pre-processing steps refer
to operations undertaken to better condition the data prior to
analysis. These include spectral-reflectance estimation from at-
sensor radiance for hyperspectral measurements (e.g. using
atmospheric compensation techniques that rely on physics
based models [63] or statistical models [64]); geo-registration
of multiple modalities, spectral radiance/reflectance denoising
etc. Reflectance estimation is crucial when utilizing prior
libraries that have been constructed outside of the current
scene being analyzed, accurate geo-registration is critical in
multi-modality frameworks, denoising is helpful when uti-
lizing spectral imagery at longer wavelengths etc. Feature
extraction is often a critical preprocessing technique for the
classification of single and multi-modality image analysis.
With modern imagers (e.g. hyperspectral), the resulting di-
mensionality of feature spaces is intractably high. This has
ramifications wherein classification algorithms struggle to es-
timate statistics (or overfit) when using raw data. A variety
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of linear and nonlinear feature extraction algorithms exist to
alleviate this problem, with the end goal of transforming this
data to a lower dimensional subspace better conditioned for
classification. These can be categorized into feature selection
approaches [65], [66], feature projection approaches [67],
linear and nonlinear approaches, and supervised, unsupervised,
or semi-supervised approaches. An emerging area within the
feature extraction category is nonlinear manifold learning that
recognizes that high dimensional remote sensing data often
resides in a lower dimensional manifold — techniques that
characterize and learn the manifold structure from training data
have been shown to yield superior features for classification,
pixel unmixing and data fusion tasks [68].

While nonlinear support vector machine classifiers and
their many variants have gained popularity in the remote
sensing community, a variety of classification approaches are
now prevalent. Among these include approaches that rely on
statistical models [69], sparse representation models [70] etc.
We note that among these methods, statistical classifiers (e.g.
the Gaussian mixture model) are extremely sensitive to the
dimensionality of the data, and hence a feature reduction
scheme is often employed as a preprocessing technique for
such classifiers. Within the realm of supervised classification
for remote sensing, active learning is a potentially useful
paradigm — with ground data being expensive (and in many
cases difficult) to acquire, a strategic sampling scheme is
desirable. Active learning provides a closed-loop (annotator-
in-the-loop) framework whereby the classifier guides collec-
tion of strategic field samples that add the most value to the
underlying classification task. These approaches have been
developed and optimized for various classifiers for remote
sensing image analysis [71].

We note that several of these approaches have been recently
extended to multi-modality or multi-source image analysis
frameworks. For instance, in [72] a composite kernel SVM was
implemented for multi-source data fusion; in [73] a composite
kernel local Fisher’s discriminant analysis was implemented
(CK-LFDA) for multi-source feature extraction in a kernel
induced space wherein a composite kernel feature space was
constructed that optimally represented (in the sense of the local
Fisher’s ratio) multi-source data; [74] provides a framework
for multi-source active learning using multi-kernel learning,
etc. Likewise, statistical classifiers have been used for effective
data fusion for remote sensing image analysis [75].

The emerging paradigms of deep learning provide an ap-
proach to systematically and hierarchically learn the underly-
ing structure in datasets via deep neural networks [76], [77].
In recent years, deep hierarchical neural models have been
proposed to learn a feature hierarchy — from input images
to the back-end classifier. Typically in such architectures,
image patches are convolved with filters, responses repeatedly
subsampled, and refiltered — when passed through sufficient
layers of convolution, subsampling (and nonlinear mapping
through activation functions), it is expected and observed
with real data that the resulting feed forward network is very
effective for image analysis. Although deep learning has been
successfully applied to many computer vision applications, its
utility for single and multi-sensor remote sensing data has been

very limited, although the potential benefits to multi-sensor
data fusion are enormous.

D. Miscellaneous applications
As mentioned in Sec. II, the most recent Contests accepted

submissions in which the objective of the fusion was not
imposed in order to encourage new applications. This was
done for exploring the capabilities in using the data provided
in the framework of the contests in unforeseen problems.
Besides the “regular” data fusion tasks discussed previously,
a number of interesting research topics were proposed and
addressed demonstrating numerous possibilities and a variety
of applications that multi-modal remote sensing images can
offer.
For instance, hyperspectral and LiDAR data, and depth images
at different locations are used in [78] to quantify phys-
ical features, such as land-cover properties and openness,
to learn a human perception model that predicts the land-
scape visual quality at any viewpoint. Techniques to track
moving objects (such as vehicles) in WorldView-2 images
are illustrated in [79] and [80]. The main idea is based on
the time gap between different banks of filters. Radiosity
methods are discussed in [16] to improve surface reflectance
retrievals in complex illumination environments such as urban
areas, whereas [33] presents a methodology for the fusion of
spectral, spatial, and elevation information by a graph-based
approach. Other contributions include methods to derive an
urban surface material map to parameterize a 3-dimensional
numerical microclimate model, to retrieve building height [81],
to applications such as visual quality assessment and modeling
of thermal characteristics in urban environments. Likewise,
another proposed work was a new method that focused on
removing artifacts due to cloud shadows that were affecting a
small part of the image [32].

Fig. 6. The WorldView-2 scene provided for the 2011 Data Fusion Contest
with three details from the three most nadir-pointing images. Source [27].

IV. DISCUSSION

In this section we want to highlight some relevant aspects
of data fusion in remote sensing by leveraging the outcomes
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of the contests. As introduced in Sec. I and seen as in practice
from the challenges proposed, data fusion can take place at
different levels in the generic scheme aiming at extracting
information from data.

• Raw data level. Examples of applications considered
in the contests in which fusion was performed at this
level are pansharpening (Sec. III-A) and DSM generation
from multiangular images (e.g., Figure 6). Usually in
these specific tasks there are some constraints that bound
the analysis. Particularly, it is possible to rely on some
similitudes among the data to fuse. For example when
considering the analysis of multiangular data the sensor
used in the acquisitions is the same. In the specific case
of the scenario of the contest of 2011, the images were
acquired in a single pass of the satellite; hence limiting
the variations in the images due to different illumination
condition (as it would be the case for acquisitions done
at different dates). Analogously, for pansharpening, the
panchromatic and multispectral sensors are mounted on
the same platform (this makes the spatial registration
between images not necessary) and with a negligible
time lag. This applies also to other tasks that were not
presented in this paper such as in hyperspectral imaging
for combining spectral channels (for generating a new
image with a different configuration of the spectra),
spectral and spatial features (hyperspectral images) [82].

• Feature level. Fusion at the feature level took place in
several proposed techniques addressing tasks such as clas-
sification and change detection. Features were extracted
by one or more modalities and subsequently fused in
order to compose a new enriched set of characteristics.
Demonstrations of fusion on a single modality are are
given for example, when combining spectral with spatial
features. In this case, in order to properly perform such
fusion, the differences between the modes should be taken
into account in order to be able to properly exploit them.
For example, in the context of classification with LiDAR
and optical images, if one wants to use both sources as
input to a classifier, then registration problems should be
solved (e.g., by rasterizing the LiDAR data to the same
spatial resolution of the optical image).

• Decision level. Fusion of decisions occurs at the highest
semantic level. Among the contests, we recall that the
one of 2008 [28] was based on such DF paradigm (i.e.,
ranking the submitted classification maps on the basis of
their amount of relative contribution in the final decision
obtained by majority voting on them). Decision fusion
took place also in other contests both performed by the
contests’ organizers (such as in 2009-10 [29]) as by in
some of the techniques proposed by the participants.
According to the results, DF at this level proved to be
very effective even with a simple fusion strategy such as
the majority voting.

By looking at the results of this review it is possible to make
some general remarks:

• For certain applications, the exploitation of multiple
modalities through a DF paradigm is the sole way for

performing the analysis. This is the case when the fusion
takes place at the raw level. For example, it would not
be possible to derive a 3D model of any scene only
with a single acquisition. Moreover, it is only through
the joint consideration of multisensoral data that it is
possible to observe some phenomena (e.g., for the re-
trieval of biophysical parameters which cannot be sensed
by using the acquisitions of a single sensor or single
modality [83]). Likewise, this more complete description
of the observed world can make certain operations pos-
sible. In classification the discrimination between several
classes might only be possible if multimodal data is
considered. For instance, LiDAR gives information on the
elevation of the objects in a scene, while a multispectral
sensor captures the spectral properties of the materials
on their surfaces. Clearly, land cover types differing in
both of these characteristics could not be discriminated
by considering only one of these modalities.

• It is necessary to consider the sensors and data character-
istics. Especially when the data show extremely different
resolutions or significantly different geometries in the
acquisition. For example, by considering a fusion between
a SAR and an optical image, the position in a SAR
image of the contributions of the objects in a scene is
dependent on their distance to the sensor, whereas an
optical image reflects their position on the ground. In
addition, the SAR image can show patterns (such as those
due to double bounce, layover and shadowing effects) that
find no correspondents in the optical image. In this case,
a trivial pixelwise combination of a VHR optical and
SAR image might lead to meaningless results. The joint
exploitation of the two modalities can only take place
if one properly accounts for the model describing the
way the acquisitions are done and if a 3D model of the
scene is available [16]. Analogously, the more knowledge
of the sensors is included in the analysis, the better the
accuracy of the fusion results. As shown for pansharpen-
ing (Sec. III-A), the more precise and meaningful results
where obtained by taking into consideration the blur that
models the difference in terms of spatial resolution be-
tween the panchromatic and the multispectral acquisition.
In addition, DF should considered cum grano salis since
the data characteristics are not properly accounted for if
the a priori information (e.g., given by the application)
is not included. Related to this latter aspect, we remark
how fusing different data can even prevent the correctness
of the results (e.g., as reported in Sec. III-B for change
detection in a completely unsupervised mode). Thus,
considering data that are not relevant for the application
could even harm the analysis. So this last aspect opens
some questions on the motivation of the fusion, since
considering a fusion of different modes further increases
the complexity of the system and the computational
burden. So the use of different modes should be supported
by its actual need. In order to address this last aspect, a
priori information on the application and a knowledge of
the characteristics of the different modalities should be
considered in advance.
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• Despite the clear benefits that data fusion can bring, it
can lead to some important challenges. Data acquired
from different sources might come in completely different
formats. For example, imaging sensors provide data over
a lattice, whereas LiDAR generates a set of sparse and
non-uniformly spaced acquisitions. In addition, pixels in
optical images and data in LiDAR are multivariate real
values whilst radar images have complex values. Having
to convert the data into common formats for processing
them jointly can generate additional uncertainty in the
measure (e.g., greater errors due to operations such as
quantification and interpolation) in the data with respect
to the one inherent to each single modality. When the
correspondence among multisensoral data cannot be es-
tablished, the result of the fusion might present missing
information (for some modalities). This creates theoreti-
cal and algorithmic challenges related to the way missing
data are handled.

V. PERSPECTIVES

From the current status resumed in the previous section, here
we will account for still open challenges and new perspectives
of DF in remote sensing.

• The number of new satellites that are planned to be
launched in the near future is constantly increasing,
and companies such as Planet Labs and SkyBox are
building Earth observation constellations of hundreds of
satellites. In addition to this increasing trend, satellite
platforms are getting more and more diversified in terms
of characteristics. For example, the recently launched
WorldView-3 by DigitalGlobe includes 29 bands in the
VNIR-SWIR region of the spectra, ranging from 30 cm
to 30 m resolution. These two aspects are leading to the
generation of data acquired by a plethora of different
sensors, that will consequently produce an increasing
need of DF analysis in order to fully exploit such data. In
this perspective, we can think of DF approaches that are
less sensor dependent have an advantage, due to a larger
application scope.

• Another current trend we are witnessing is the improve-
ment of the sensors’ resolution (geometric, spectral or
radiometric). This is surely a very favorable feature, but
it induces an increasing effort in the analysis [84]. Higher
resolution data are able to sense more finely a scene
(i.e., provide more geometric/spectral/radiometric details)
increasing the amount of information, meaningful for a
given task, that can be extracted but making the process
of processing it from data more complex. This applies
to each single modality, so when fusing multiple infor-
mation sources the potentialities and difficulty in mining
the relevant information scale accordingly. Furthermore,
due to the increasing presence of satellite constellations
providing larger coverage on the Earth’s surface with
smaller revisit times and the availability of archive data,
a potentially massive amount of data could be processed.
The need of efficient algorithms able to cope with such
large amount of data will increasingly be a demand for

new DF approaches that should be used in operational
scenarios.

• In the last years, the remote sensing market has not
only been exclusively considering data acquired by large
satellites launched by governmental space organizations
or large EO companies. Technological advancements
have permitted to produce miniaturized satellite plat-
forms [85] such as micro (10-100 kg), nano (1-10 kg),
pico (0.1-1 kg) and even femto satellites (< 0.1 kg) [86].
Since smaller platforms have costs that are dramatically
lower (about 103 [85]) with respect to those required
by large ones (> 500 kg), launching satellite EO instru-
ments has become an affordable business even accessible
to universities [87]. Furthermore, terrestrial Unmanned
Aerial Vehicles (UAVs) have largely spread, becoming
undoubtedly an asset also for EO applications [88].
The low cost of off-the-shelf flying platforms and the
possibility to equip them with consumer-level instruments
(e.g., compact cameras) have made EO accessible to a
larger amatorial public. Such increasing presence of small
satellites and terrestrial EO platforms, is going to provide
a consequently large amount of diversified data further
broadening the scenario in which DF can take place.
Clearly the instruments of the payload (e.g., sensors, GPS
receivers and inertial systems) are significantly poorer in
terms of performances with respect to those mounted
on large satellites or professional airborne acquisition
systems. The lower quality of these data can directly
affect DF results if not properly accounted for in the
analysis.

• In a larger perspective, we also envisage that additional
information sources will be exploited for fusion in the
near future. So far DF for EO has been almost exclu-
sively based on remote sensing data (e.g., active and
passive imagery). For example, the information available
from Geographic Information Systems (GISs), such as
road networks, building footprints from cadastral layers,
land cover maps etc. can be of fundamental importance
for EO applications. Some examples of fusion between
remote sensing data and GIS layers have been made
(e.g., [2]) but it has not taken off extensively in the remote
sensing research community, even if, coupling the two
information sources has been proven to be successful,
being a standard technology in many EO visualization
systems such as Google Earth. Perhaps a reason for
the lack of established DF techniques for fusing GIS
layers and remote sensing data can be attributed to the
inherently different features of the two sources. In many
cases, GIS layers can not be fused straightforwardly with
remote sensing data, since they come in vectorial format,
they might contain descriptive data (i.e., geo-localized
textual information), they deal natively with semantic
objects instead of pixels and coregistration with remote
sensing images can be a severe issue. However, GIS data
are largely available thanks to local information systems
held by municipalities or by worldwide databases such
as OpenStreetMap. In addition, some information issued
from GIS can cover periods before the first acquisitions
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available in remote sensing archives, hence becoming the
only information available for some applications. Due to
their large availability and features complementary with
conventional remote sensing imagery, we believe there
will be an increasing push in fusing GIS and remote
sensing data.
In the same research direction, we also think that less
conventional sensors could be beneficial for some ap-
plications. For example, the use of ground information
(e.g., images from mobile phones, street views, height
values from GPS sensors), opportunistic sensors (e.g.,
as passive sensors based on GPS signals [89]) or even
geographically distributed sources that are not strictly
remote sensing data, such as geo-tagged tweets, locations
extracted from news, track points, etc. Considering these
heterogeneous data together will definitely be a new
challenge for DF.

• The ever increasing heterogeneity (in terms of resolution,
characteristics, sources and consistency) of the data avail-
able for fusion will greatly influence the methodological
development of DF algorithms, which in our opinion,
will be increasingly application-driven. In fact, it will
be unlikely that general purpose DF strategies will be
able to deal with the different characteristics of data
and be sufficiently valid for several tasks. The specific
applications will define which sources are relevant for
the fusion and how to combine them. As an example, in
the framework of urban remote sensing, the model of the
urban area (e.g., building, district or town level) or the
phenomenon under study (e.g., detection of urban heat
islands, or air pollution) will be constrained implicitly
or explicitly which data to use and at which spatial and
temporal scale.

• With a particular regard to the way to handle imperfect,
missing and conflicting data, it is evident from the re-
marks in Sec. IV, that there is a lack of a universally
recognized framework in which to perform the fusion
properly taking into account these different characteris-
tics [20]. This problem has been partially addressed by
probability theory, fuzzy set theory, possibility theory,
rough set theory, and Dempster-Shafer evidence theory
but none of these approaches have been used extensively
in DF problems [20], making this a still open challenge.
This aspect will surely increase in importance since, as
mentioned previously in this section, due to the emerging
trends in EO there will large amounts of data available
with heterogeneous characteristics and qualities.

• Another fundamental challenge is related to the vali-
dation of the results. This is an perennial problem for
tasks in which there is no reference available (e.g.,
pansharpening) [82], [90]. However, the availability of
commonly recognized validation paradigms is essential
for evaluating newly proposed algorithms in a quantitative
way.

VI. CONCLUSION

By reviewing the outcomes of the contests issued by the
DFTC, it is possible to remark their main contributions such

as i) fostering the methodological development on the topics
defined by each contest; ii) making datasets available to
the community — sometimes such datasets were valuable
because it might be unusual in real operational scenarios to
have so many data acquired from different sensors with such
high spatial resolution, such as for the contests 2012 (VHR
SAR, VHR optical from different sensors and LiDAR) and
2011 (images VHR multiangular) and iii) encouraging the
emergence of new applications or research directions based
the data of the contests. From the analysis of the different
aspects of data fusion in remote sensing through the lens of
the contests, one can clearly state that data fusion is indeed
the way to extract information. Indeed, for some tasks and
applications it is the sole mean to perform the analysis.

By taking as an example classification, which perhaps is
one of the most active tasks that can be impacted by data
fusion: with respect to one goal (partition of the data into a
number of classes of interest), data fusion can lead to improved
classification performances by providing complementary in-
formation, by reinforcing our belief in a result, or by solving
ambiguities/conflicting situations. This is especially useful for
the problem of land-cover/land-use mapping in a variety of
applications. Multimodality can also be beneficial in a number
of other situations, trying to provide a better description of the
physical real-world. Each modality provides one projection of
the complex physical world. Using multimodality is a way to
access this complexity in a refined way, but combining these
projections in an efficient and reliable way is a challenge.
Specifically, as we saw in the preceding discussion, data fusion
also presents several unique challenges both from the technical
and methodological points of views, necessitating continued
investigation from the research community.
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