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Abstract

This paper presents an extension of a Model Predictive Control (MPC) approach for
microgrid energy management which takes into account electricity costs, power con-
sumption, generation profiles, power and energy constraints as well as uncertainty
due to variations in the environment. The approach is based on a coherent frame-
work of control tools, like mixed-integer programming and soft constrained MPC,
for describing the microgrid components dynamics and the overall system control
architecture. Fault tolerant strategies are inserted in order to ensure the proper
amount of energy in the storage devices such that (together with the utility grid)
the essential consumer demand is always covered. Simulation results on a particular
microgrid architecture validate the proposed approach.
Keywords: Microgrid energy management, Uncertainty, Model Predictive Control
(MPC), Mixed-Integer Linear Programming (MILP), Fault Tolerant Control
(FTC), Soft constraints.

1. Introduction

Microgrids are increasingly considered for system solutions including distributed
energy resources Liang and Zhuang (2014), Lund (2007), Foley et al. (2010), Johans-
son (2013). This is also because they can help both prepare for, and prevent the
threat of climate change. Combating climate change necessarily involves a critical
shift away from fossil fuels and towards clean energy, efficiency, and renewable en-
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ergy. For this, energy resources are inherently distributed and resilient, which makes
them naturally compatible with a microgrid system solution.

The flexible configuration and operation of microgrids helps avoid cascading fail-
ures and, thus, blackouts and losses of stability. Microgrids can be attached to the
utility (grid-connected) and isolated (islanded) easily in case of faults or instability
in the external grid. Once the disturbance in the main grid has cleared, microgrids
can be connected again and system reliability is improved Lo Prete et al. (2012),
Bracco et al. (2014).

Realistic modeling and optimization for efficient, reliable and economic planning,
operation and control of microgrids are very important and still open issues. Various
techniques for the minimization of microgrid operating costs include robust opti-
mization Rahimiyan et al. (2014), heuristics Sanseverino et al. (2011), mathematical
programming Hawkes et al. (2009) and priority rules Tsikalakis and Hatziargyriou
(2011). Only recently Model Predictive Control (MPC) has started to have a grow-
ing interest between researcher in energy filed, in particular in microgrids applica-
tions (see, for instance Rawlings and Mayne (2009) for detailed notions on MPC).
A method based on the combination of empirical mean, dynamic programming and
MPC has been used in Hooshmand et al. (2012) for solving a power management
problem within a microgrid in islanded mode operation. In Parisio and Glielmo
(2011), a preliminary study has addressed the application of a receding horizon ap-
proach for optimizing microgrid operations while satisfying time-varying demands
and operational constraints. In Pérez et al. (2013), an approach based on MPC has
been designed to manage in real-time the power production of a grid-tied photovoltaic
plus energy storage power plant with a reduced energy storage system capacity. It
is important to mention that all these papers do not consider explicitly the detailed
modeling of the microgrid components, the constraints description and the interac-
tion between the independent components of the micrigrid system. Instead, abstract
mathematical models are used to embody the practical and functional behavior of
the components and the focus is on the formulation of the optimization problem
for minimizing costs. In Negenborn et al. (2009) a model predictive controller is
applied for controlling the energy flows inside a household system equipped with a
“micro” combined heat and power unit. In addition, the household can buy and sell
electricity from/to the energy supplier; heat and electricity can be stored in specific
storage devices. In Zervas et al. (2008), MPC is used for energy scheduling on a
hydrogen-based microgrid without batteries. In Qi et al. (2012), predictive control
is applied for renewable energy power management with battery storage in a water
desalination plant. In Khalid and Savkin (2010), MPC is performed for a plug-in
renewable energy source with battery storage. The electrical power transferred to
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the network and that stored in the battery are the control variables considered. Fi-
nally, del Real et al. (2007) presents the application of hybrid modeling control for
a photovoltaic-fuel cell power plant.

In this paper a microgrid is considered for exemplification, connected to the
utility grid via a distribution transformer and containing local consumers, renewable
generators (wind turbines or photovoltaic panels) and electrical storage facilities
(denoted as batteries). These latter represent the key control components in the
microgrid energy management. The overall objective of the microgrid system is
to generate suitable decisions for all the source and electrical storage components
in such a way to fulfill load demands. Figure 1 illustrates a typical smart energy
management system. Based on the output of the forecasting unit, the optimization
unit computes a control action such that an operation cost is minimized. Once an
optimal controller is obtained, then it is sent to all the storages and sources which
need to be controlled. We must precise that forecasting is out of the scope of the
present paper, rather we consider real numerical data for the reference profiles as
given in (Grigg et al., 1999).

[Figure 1 about here.]

The overall goal of this paper is to implement a realistic and flexible control
scheme where:
• costs, constraints, profiles are taken into account into a centralized constrained

optimization problem (i.e., via a model predictive control design);

• depending on external events and energy costs the user may receive only its
essential demand or up to the entire desired demand;

• faults at the generator output level are explicitly accounted in both robust
(by managing the minimal storage requirements) and adaptive fashion (change
of constraints and costs, as a function of system state – healthy, under fault,
under recovery).

In particular, the present work extends the optimization-based control approach
developed in Prodan and Zio (2014a,b). More specifically, the original contributions
are the following:
• A more realistic and complex benchmark problem replaces the one presented

in Prodan and Zio (2014a,b). That is, we consider more realistic dynamics for
the components of the microgrid (especially the key storage component, i.e.,
the battery) and also we consider that the operative profiles can be affected by
noise and perturbations, thus requiring a robust control design.
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• The battery charge/discharge cycles are penalized in the cost function, in order
to account for the battery wear and tear.

• The user load is partitioned into two components:

– essential loads, that is, demands of power related to essential processes
(e.g., electricity in an operating room, fail-safe modules in critical systems)
and that one must always try to meet;

– non-essential loads, that can be reduced or shed during supply constraints
or emergency situations (e.g., standby devices, day-time lighting and the
like).

• Reliable functioning of the microgrid is maintained under parameter variations,
noises and fault events (e.g., generator output outages). Especially for the
latter case, we provide an adaptive control which can handle fault events via
subsequent control reconfiguration.

• Extensive simulation results are provided through different scenarios which
validate the proposed fault tolerant predictive control scheme.

The microgrid energy control in this paper is done via a centralized scheme which
assumes global state, inputs and outputs which appear in the description of the
dynamics, constraints and costs. We proceed by defining and illustrating in the rest
of the paper these signals and associated matrices, as needed.

The paper is organized as follows. Section 2 describes in detail the considered
microgrid system. Section 3 presents the optimization-based control problem for effi-
cient energy management and the considered strategies for fault tolerant control and
battery wear and tear. Simulation results are provided in Section 4 and conclusions
are drawn in Section 5.

[Figure 2 about here.]

2. Microgrid system description

Any microgrid, regardless on the particular constructive details, will contain sev-
eral types of components as illustrated in Figure 2: power generators (e.g., hydro,
wind turbine, photovoltaic panels and the like) denoted as

{Gi}i=1···Ng , where Ng represents the number of generators, (1)
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storage elements (e.g., batteries)

{Sj}j = 1 · · ·Ns, where Ns represents the number of electrical storages, (2)

consumers (e.g., large cooling houses),

{Dk}k=1,··· ,Nd
, where Nd represents the number of consumers, (3)

internal interconnections between these elements and (if not in islanded mode) ex-
ternal connections to the utility power grid denoted as E.

With reference to Figure 2, let us define in Table 1 the generic interconnection
signals which appear in a typical microgrid system.

[Table 1 about here.]

Formally, the microgrid system is topologically characterized by a directed graph,
as illustrated in Figure 2. The nodes are the previously described components and
the edges are the links between these components. For the sake of keeping compact
the system equations, let us introduce the adjacency matrices of Table 2 to charac-
terize the links between components, e.g., Mgs(i, j) = 1 means that there exists a
connection between the generator Gi and the storage unit Sj (i.e., the link uijgs) and
Mgs(i, j) = 0 denotes the absence of the connection.

[Table 2 about here.]

For future use, let us also define the number of non-zero entries in an adjacency
matrix1:

Ngs =
∑

Mgs(i,j) 6=0
Mgs(i, j), Ngd =

∑
Mgd(i,k) 6=0

Mgd(i, k), (4)

Nge =
∑

Mge(i) 6=0
Mge(i), Nsd =

∑
Msd(j,k)6=0

Msd(j, k), (5)

Nse =
∑

Mse(j)6=0
Mse(j), Ned =

∑
Med(k) 6=0

Med(k), (6)

for all i = 1, . . . , Ng, j = 1, . . . , Ns, k = 1, . . . , Nd.

1For example, Ngs ∈ R denotes the number of non-zero entries in Mgs. In other words, Ngs

represents the number of interconnections between the components Gi and Sj of the microgrid.
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In the following, we detail the elements introduced from the point of view of
control optimization: dynamics governing the internal functioning, profiles to be
followed, constraints and costs affecting the components. Note that, since each of
the components of a given type behaves similarly, we describe as much as possible
generic rules of functioning and discuss particularities if and when it is the case.

2.1. Electrical storage units
Storage dynamics

In the proposed microgrid setting of Figure 2, the components that we assume
to be directly controllable are the storage units (through the rates of charge and
discharge). To model the operation in the charge and discharge modes, we introduce
the following Linear-Time Invariant (LTI) dynamics2:

xj(t+1) = (1−σj)xj(t)+
∑

Mgs(i,j)6=0
uijgs(t)−

∑
Msd(i,j)6=0

ujksd(t)−
∑

Mse(j,k)6=0
ujse(t)+wj(t), (7)

with the mixed-integer conditions:
0 ≤ uijgs(t) ≤Mαj(t), ∀i with Mgs(i, j) 6= 0,
0 ≤ ujksd(t) ≤M(1− αj(t)), ∀k with Msd(j, k) 6= 0,
0 ≤ ujse(t) ≤M(1− αj(t)), if ∃j with Mse(j) 6= 0,

(8)

where xj(t) ∈ R represents the amount of energy stored in Sj at time step t, uijgs(t) ∈
R and ujksd(t) ∈ R, ujse(t) ∈ R denote the charging and respectively the discharging
components, σj denotes the hourly self-discharge decay and the additive noise wj(t)
accounts for the various sources of variation appearing in the storage dynamics (e.g.,
temperature influences, inverter performances and the like).

While presumably for certain storage units both charge and discharge opera-
tions are possible simultaneously, here we consider batteries which have a switched
behavior (they function either in charge or discharge mode). This is modeled in
the supplementary mixed-integer conditions (8): αj(t) ∈ {0, 1} is an auxiliary bi-
nary variable which switches between the modes of functioning. Specifically, when
αj(t) = 1 the battery is in discharge mode (since the input uijgs(t) is forced into
zero) whereas, for αj(t) = 0 the battery is in charge mode (since the outputs ujksd(t),

2Note that while xj(t) denotes the energy stored at time step t the variables uij
gs(t), ujk

sd(t),
uj

se(t) and w(t) are electrical powers which are multiplied by the sampling time ∆t = 1 hour. For
a streamlined presentation, ∆t is hidden in (7) and in the following equations.
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ujse(t) are forced into zero). The scalar M is an appropriately chosen constant (i.e.,
significantly larger than the rest of the variables and playing the role of a relaxation
constant).

Storage constraints
Each storage unit has bounds on the quantity of stored energy

Bj
min ≤ xj(t) ≤ Bj

max, (9)

where Bj
min, B

j
max ∈ R and on the rate of charge/discharge at time t

V j
min ≤ ∆xj(t) ≤ V j

max, (10)

where V j
min, V

j
max ∈ R and ∆xj(t) = xj(t)−xj(t−1) represents the charge/discharge

variation.
Batteries have additional particularities, which stem from their physical charac-

teristics. In particular, the minimum capacity, Bj
min, is determined from the Depth of

Discharge (DoD), which is used to describe how deeply the battery can be discharged
Diaf et al. (2007):

Bj
min = (1−DoD)Bj

max. (11)

In addition, the battery capacity Bmax decreases as a function of time, usage and
conditions of work, as defined by the relation:

Bj
max = βj(t)B̄j

max, (12)

where B̄j
max represents the nominal capacity of the battery and parameter βj(t) ∈

(0, 1) models the capacity decay and its value is generally empiric.

Storage cost
Depending on the type of storage unit, we may need to take into account wear

and tear issues. While in the short-medium time point of view it makes sense to
exploit completely the storage unit (i.e., the energy should flow to and from the
storage unit at all times, to ensure that energy costs are minimized) in the longer
time view it is counter-productive to over-use a component if the price of replacing
it is bigger than the actual gains from its use. To account for this, depending on
the nature of the energy storage component, different terms can be considered as
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penalties in the cost function:

Cs(t) = γs,d
Ns∑
j=1

αj(t) + γs,c
Ns∑
j=1

(1− αj(t)) + γs,s
Ns∑
j=1

(1− αj(t)), (13)

where the first term penalizes repeated discharges, the second term penalizes repeated
charges and the third penalizes the switch between charge/discharge. Depending on
the numeric values given to the weights γs,d, γs,c, γs,s ∈ R we may penalize one or a
combination of the criteria, i.e., charge, discharge, switch. For example, for a hidro
pumping storage unit it would make sense to penalize the charging mode (as it takes
power to operate the pump uphill); on the other hand, for a battery we may wish to
minimize repeated cycles of charge/discharge3.

2.2. Power generators
Generator dynamics

Consider the generator system Gi in Figure 2, whose dynamics can be described
by:

gi(t+ 1) = f(gi(t), vi(t)), i = 1, . . . , Ng (14)

where f(·, ·) : R → R represents the possibly nonlinear dynamics of the generator,
gi(t) ∈ R is the electrical power given by the generator and vi(t) ∈ R denotes the
internal and external parameters which influence the generator output.

In our control scheme we consider renewable generators and as such we may ignore
the control aspects, the generator is assimilated to an external source of power which
provides as much as possible given the external environment, e.g., wind velocity will
decide the actual power output for a wind turbine generator.

The addition of photovoltaic dynamic systems, electrical vehicles (EV) and the
like would entail some modifications in the constraints formulation, the optimization
problem and the related simulation validation, with no conceptual changes from the
methodological viewpoint.

3The battery cycle life is defined as the number of complete charge - discharge cycles a battery
can perform before its nominal capacity falls below 80% of its initial rated capacity Divya and
Østergaard (2009). Key factors affecting cycle life are time t and the number of charge-discharge
cycles completed. It is also important to mention that the cycle life depends on the Depth of
Discharge (DoD) (11) and that it is assumed that the battery is fully charged and discharged each
cycle. If the battery is only partially discharged each cycle, then, the cycle life can be larger: it is,
therefore, important that DoD be clearly defined when specifying the cycle life.
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Generator constraints
The generator output can be sent to other various microgrid components: to the

storage unit for further use, directly to the users or even to the external grid for
selling. Since the electrical power sent to these components cannot be larger than
the actual output, the following constraint is imposed:

0 ≤
∑

Mgs(i,j) 6=0
uijgs(t) +

∑
Mgd(i,k)6=0

uikgd(t) +
∑

Mge(i)6=0
uige(t) ≤ gi(t), (15)

with ∑
Mgs(i,j)6=0

uijgs(t) ≥ 0, ∑
Mgd(i,k)6=0

uikgd(t) ≥ 0 and ∑
Mge(i)6=0

uige(t) ≥ 0.

Generator profile
As stated earlier, the wind turbine generator output mainly depends on external

factors (in particular, the wind velocity). In order to have a good estimation of the
output, we make use of wind profiles, as the ones obtained from real numerical data
of a reliability test system Grigg et al. (1999).

For a wind turbine generator, f(·, ·) in (14) is nonlinear, that is, the output of
the generator depends nonlinearly on the wind speed.

Note that the wind profile is sampled at one hour interval which from the point
of view of wind variation is quite large. For this reason and due to measurement
uncertainties we have considered along the nominal wind profile a band of distur-
bances as illustrated in Figure 3a. Passing these values through the dynamics (14)
of the generator we obtain a band of possible power output values, as illustrated in
Figure 3b.

[Figure 3 about here.]

2.3. Consumers
Consumer constraints

A user Dk in Figure 2 can consume electricity from three sources, i.e., the elec-
trical storage, the power generator and the external grid. It is important to mention
that the user demand of electricity, denoted as dk(t), need not be inelastic: that is,
we may partition the consumer demand dk(t) into essential, dkes(t) ∈ R and non-
essential demand, dknes(t) ∈ R, respectively4. Therefore, for a reliable management
of the energy system it is necessary to ensure that at time t the electricity purchased

4Note that when and if a power shortcoming occurs, we want to be able to safely cut from the
non-essential part while still covering the essential part.
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by the consumers from the three sources will satisfy at least the essential demands.
This translates into the following constraint:

dkes(t) <
∑

Mgd(i,k)6=0
uikgd(t) +

∑
Msd(j,k)6=0

ujksd(t) +
∑

Med(k) 6=0
uked(t) ≤ dkes(t) + dknes(t). (16)

Consumer demand profile
The consumer demand profile usually exhibits periodicity (both daily, weekly and

seasonal) and can therefore be predicted with a good degree of accuracy as presented
in detail in Prodan and Zio (2014a).

Note that the real profiles may differ from the nominal values due to external
factors, uncertainty and so forth. Illustrations are given in Figure 4 where both the
nominal profiles and the bands in which the real reference profiles lie are depicted.

[Figure 4 about here.]

Consumer cost
In the cost function, we penalize for the difference between actual and required

demand:

Cd(t) =
Nd∑
k=1

dkes(t) + dknes(t)−
 ∑
Msd(j,k)6=0

ujksd(t) +
∑

Mgd(i,k)6=0
uikgd(t) +

∑
Med(k)6=0

uked(t)
 .
(17)

2.4. External grid
Electricity price profile

If the microgrid is not functioning in islanded mode, the price of electricity in the
external grid, denoted as e(t) ∈ R, is relevant in taking sell and buy decisions (sell
when expensive and buy when cheap). Depending on the differing country rules, the
electricity price might be pre-scheduled by an external authority or be decided by
market pressures. In any case, we may make use of price profiles in order to optimize
the energy usage. Such a profile, taken from Grigg et al. (1999) is illustrated in
Figure 4b.

External grid cost
The electricity price will be used to penalize buying and encourage selling with

the cost described by the following relation:

Ce(t) = e(t) ·
 ∑
Med(k)6=0

uked(t)−
∑

Mge(i)6=0
uige(t)−

∑
Mse(j)6=0

ujse(t)
 , (18)
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where we make the simplifying assumption that both sell and buy prices are equal,
without loss of generality.

3. Optimization-based control for electrical storage scheduling

The underlying goal of this paper is to provide a realistic control strategy for the
microgrid system, and the storage scheduling in particular. Taking into account the
dynamics, constraints, costs and profiles discussed in the previous section, we can
now write a constrained optimization problem for the global microgrid system.

To do so let us define first the global state x(t) =
[
x1(t)T , . . . , xNs(t)T

]T
∈

RNs , which concatenates the states of the storage units5, the additive disturbance
w(t) =

[
w1(t), . . . wNs(t)

]T
∈ RNs and the input

u(t) =
[
uijgs(t) uikgd(t) uige(t) ujksd(t) ujse(t) uked(t) αj(t)

]T
∈ RNu×{0, 1}Ns , which

concatenates in lexicographical order all the control inputs appearing throughout the
microgrid system6, with Nu = Ngs +Ngd +Nge +Nsd +Nse +Ned denoting the num-
ber of real valued control variables and Ngs, Ngd, Nge, Nsd, Nse, Ned ∈ R as defined in
(4)–(6).

Hence, with the above notation and the dynamic model of the storage unit de-
tailed in (7), (8) we formulate the centralized system:

x(t+ 1) =


1− τ1

. . .
1− τNs


︸ ︷︷ ︸

A

x(t) +
[
δbgs 0

]
︸ ︷︷ ︸

Bch

u(t) +
[
0 δbsd δbse 0

]
︸ ︷︷ ︸

Bdisch

u(t) + w(t),

(19)
with matrices A ∈ RNs×Ns Bch ∈ RNs×(Nu+Ns), Bdisch ∈ RNs×(Nu+Ns) decomposed in
δbgs ∈ RNs×Ngs , δbsd ∈ RNs×Nsd , δbse ∈ RNs×Nse denoting hereafter the corresponding
inputs from u(t) (such that (19) is equivalent with (7)) and the matrices 0 chosen
with appropriate dimensions.

The dynamics (19) are subject to charge/discharge mixed-integer conditions (as
in (8)), magnitude constraints (as in (9)), power variation (as in (10)), generator
constraints (as in (15)), bounds on the energy transfer7, user demand validation (as

5Since these are the only microgrid units with internal dynamics.
6Note that the auxiliary binary variables αj(t) appear as control inputs, since they model the

charge and discharge operations of the storage units (see also Section 2.1).
7The constraints in (26) stand from physical limits on the energy transfer for each control signal,
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in (16)):

0 ≤ Bchu(t) ≤M
[
0 INs

]
u(t), (20)

0 ≤ Bdischu(t) ≤M
[
0 INs

]
(1− u(t)), (21)

Bmin ≤ x(t) ≤ Bmax, (22)
Vmin ≤ ∆x(t) ≤ Vmax, (23)

0 ≤ Gu(t) ≤ g(t), (24)
des(t) ≤ Du(t) ≤ des(t) + dnes(t), (25)

0 ≤ u(t) ≤ ū(t). (26)

More to the point, (20)–(21) describe in a compact form the battery charge/discharge
conditions and (22)–(23) describe the battery magnitude and variation constraints
withBmin =

[
. . . Bj

min . . .
]T
,Bmax =

[
. . . Bj

max . . .
]T
,Vmin =

[
. . . V j

min . . .
]T
,

Vmax =
[
. . . V j

max . . .
]T
, for all j = 1, . . . , Ns. Next, condition (24) describes

the power distribution of the generator towards different sources with matrix G =[
δggs δggd δgge 0

]
∈ RNs×(Nu+Ns) decomposed in δggs ∈ RNs×Ngs , δggd ∈ RNs×Ngd , δgge ∈

RNs×Nge and g(t) =
[
. . . gi(t)T . . .

]T
, for all i = 1, . . . , Ng, (25) describes the nec-

essary power distribution to the users with matrixD =
[
0 δdgd 0 δdsd 0 δded 0

]
∈

RNs×(Nu+Ns), δdgd ∈ RNs×Ngd , δdsd ∈ RNs×Nsd , δded ∈ RNs×Ned , des(t) =
[
. . . dkes(t)T . . .

]T
,

dnes(t) =
[
. . . dkes(t)T . . .

]T
, for all k = 1, . . . , Nd. Finally, condition (26) describes

the physical limitations on the energy transfer between the different microgrid com-
ponents with ū(t) =

[
ūijgs ūikgd ūige ūjksd ūjse ūked 1

]T
.

The goal is to control the storage units such that the electricity taken from the
external grid is minimized, the users demand is fulfilled, the electrical storages uti-
lization is minimized and the generators utilization is maximized. For a reliable
microgrid energy management we consider the recursive construction of an optimal
open-loop control sequence u = {u(t),u(t+ 1), · · · ,u(t+Np − 1)} over a finite con-
strained receding horizon Np, which leads to a feedback control policy by the effective

with ūij
gs, ū

ik
gd, ū

i
ge, ū

jk
sd, ū

j
se, ū

k
ed ∈ R.
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application of the first control action as system input:

u∗ = arg min
u(t),u(t+1),··· ,u(t+Np−1)

Np−1∑
l=0

γl · C(t+ l), (27)

subject to the set of constraints defined in (20)–(26) for t = 0, . . . , Np − 1.
In (27) the length of the prediction horizon is denoted by Np, γ ∈ (0, 1) represents

a weighting parameter and the cost function is the sum of the previously formulated
cost functions in (18), (17) and (13):

C(t) = γeCe(t) + γdCd(t) + γsCs(t), (28)

with γe, γd, γs ∈ R some constant parameters whose values reflect the importance
given to the different terms of the cost. Using the above notations, the cost function
can be written in a general form as:

C(t) = (e(t)F−D)u(t) + 1T (des(t) + dnes(t)) + H∆u(t), (29)

with F =
[
0 −δfge 0 δfse δfed 0

]T
∈ R1×(Nu+Ns) decomposed in δfge ∈ RNg×Nge ,

δfse ∈ RNs×Nse , δfed ∈ R1×Ned denoting the corresponding inputs from u(t) as previ-
ously mentioned, H =

[
0 0 . . . 0 1

]T
and ∆u(t) = u(t) − u(t − 1). The last

term in (29) is chosen such that we penalize the charge/discharge cycle and assume
there are no penalties for the actual charge and discharge operations (i.e., in (13)
the weights become γs,d = γs,c = 0 and γs,s = 1).

Note that it remains a matter of choice on how to adjust the weights in order to
decide the optimum usage of the storages. For example, a large γs can lead to the
battery being never used and hence its role being insignificant. On the other hand,
too small a value leads to a premature capacity loss for the battery.

The profiles introduced in Section 2 appear as parameters here (e.g., the consumer
load d(t), the energy cost e(t), etc.). The cost is variable in the sense that the weight
matrix may change with time due to the variation in energy price8, but otherwise is
linear in the input values. Therefore, we may denote this problem as one of Mixed-
Integer Linear Programming (MILP). For this type of problems, efficient solvers exist
and a reasonably large prediction horizon can be used Prodan et al. (2012).

Note also that the increase of the prediction horizon length in (27) means that the

8Note that we consider the same price for electricity selling and buying.

13



optimization problem minimizes the cost along this entire horizon. The cost function,
in turn, may be affected by uncertainties such that cost values further away along the
prediction horizon are less reliable than the ones closer to the present. A solution
is to assign in the optimization problem less importance to the cost values which
are further in the future. This can be done by varying the weight γ ∈ (0, 1) in
(27) associated to each cost value over the prediction horizon. The weight value
decreases exponentially, with speed depending on the value taken by the rate γ (see,
for example Hovd and Braatz (2001)).

Up to this point, a nominal constrained optimization problem was considered.
However, it is important to underline the fact that in real-life applications this is not
sufficient as various issues can affect the system functioning (e.g., component mal-
function and/or external perturbations). Therefore, in the following we discuss fault
events and the subsequent redesign of the control scheme which allows to mitigate
them. Several reasonable assumptions are made: the fault model is known; the fault
is detected and isolated; the duration until repair and the duration between consec-
utive faults are known. The control scheme proposed hereafter has both robust and
adaptive features:

• the fault duration is used to derive safe minimal capacity values for the storage
units (such that they cover power failures during the fault event), i.e., a robust
behavior;

• the constraints and costs appearing in the optimization problem are changed to
guarantee acceptable performance (to the detriment of optimal performance),
i.e., adaptive behavior.

3.1. Fault tolerant control strategies
Hereinafter, we consider external fault events affecting the renewable generators’

power output. This means that they may fail to provide power to the battery, user
and external grid (i.e., total output failure, gi(t)→ 0). This can be modeled through
the modification of the generator constraint (24) into:

0 ≤ Gu(t) ≤ Bfg(t), (30)

where matrix Bf = diag({0, 1}Ng) characterizes the functioning of the generators. If
all elements on the diagonal are ‘1’ it means that all the generators are healthy and
provide the expected power output. Whenever a fault occurs, one or more of the
diagonal elements becomes ‘0’.
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Since the fault detection and isolation reduces to inspecting the generators’ out-
puts (and it is hence evident), what remains is to design the control reconfiguration
strategies of the fault tolerant scheme. We aim at ensuring that the necessary quan-
tity of energy is always stored in the electrical storage units such that, together with
the external grid, the essential user demand for the k-th user is covered during the
fault:

∑
Msd(j,k)6=0

Bj
min(t) ≥

t+MTTRi−1∑
τ=t

max
0, dkes(τ)− uked −

∑
Mgd(i,k)6=0,Bf (i,i)6=0

uikgd(τ)
 ,
(31)

with MTTRi (Mean Time to Repair) representing the expected fault duration for
the i-th generator9. Relation (31) constraints the storage units’ energy level to a
minimum safe level. That is, assuming a certain fault, the remaining power sources
(external grid, remaining generators, storage units) have to cover the essential de-
mand of the users. In this sense, we have that the storage units need to store enough
energy to compensate for the fallen generator for the duration of the fault.

In fact, during this time we may consider that the remaining healthy generators
send all their power to the users:

Nd∑
k=1

uikgd(τ) = gi(τ), ∀i = 1, . . . , Ng,∀τ = t, . . . , t+MTTRi − 1, (32)

and Mgd(i, k) 6= 0,Bf (i, i) 6= 0 in (30).
Using (31) and (32) and considering the capacity bounds specific to the storage

units we have an optimization problem whose output are the profiles of minimum
storage which ensures essential demand coverage:

B1
h,min(t) . . . BNs

h,min(t) = min
B1

min(t)...BNs
min(t)

Ns∑
j=1

Bj
min(t)

such that (31) and (32) are verified and
(1−DOD)Bj

max ≤ Bj
min(t) ≤ Bj

max, ∀j = 1, . . . , Ns.

(33)

Furthermore, denoting Bh,min(t) =
[
B1
h,min(t) . . . BNs

h,min(t)
]
the optimization problem

9If condition (31) can be interpreted as a passive (robust) approach, then satisfying only the
user essential demands as in (16) can be considered as an active (adaptive) measure.
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(33) can be rewritten in a compact form:

Bh,min(t) = min
Bh,min(t)

Bmin(t)1T

such that (31) and (32) are verified and
(1−DOD)Bj

max ≤ Bj
min(t) ≤ Bj

max, ∀j = 1, . . . , Ns.

(34)

Remark 1. Note that in the above equations we made a series of simplifying as-
sumptions. Firstly, we assume that there is a single generator under fault and that
the fault is persistent. Secondly, we assume that the energy to be stored will never
surpass the actual storage capacity (i.e., Bj

min(t) ≤ Bj
max). Since ensuring that the

storage units are large enough is a design choice, we assume that their capacity is
large enough to accommodate (34). Conversely, we may use this information to see
how long can the microgrid function in a safe mode (without unacceptable perfor-
mance degradation, i.e., how long the storage units can guarantee essential demand
satisfaction).

[Figure 5 about here.]

Condition x(t) > Bmin(t) = Bh,min(t) is the capacity bound we aim to ensure at
all times but it cannot be respected when under fault or immediately after. Hence,
three modes of functioning are identified: i) nominal functioning after a previous
fault, ii) steady state nominal functioning and iii) under fault. In the following, for
thoroughly analyzing the microgrid modes of functioning under generator failures, we
make use of the proof of concept illustration in Figure 5 where a typical functioning
scenario is depicted: at t0 the microgrid enters into faulty functioning due to the
i-th generator having an outage. This continues up to time t1 when the fault is
solved and the microgrid regains its healthy functioning. The next time instants t2
and t3 retrace the same scenario (fault and subsequent recovery). Therefore, the
three modes of functioning which provide the solution of safe stopping the microgrid
system are:

• Nominal functioning after a previous fault: the battery is empty or close to
empty due to its usage during the recovery phase (ended at t1 as in Figure 5);
the goal is, then, to charge it as fast as possible in order to reach the safe
storage capacity obtained in (33). This cannot be done instantaneously due to
practical limitations (charge variation bounds for example). Hence, we need
first to determine a feasible recharging interval denoted as Nfill ∈ R. This can
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be done e.g., by solving a minimal time problem:

Nfill = min τ

such that x(t1 + τ) ≥ Bh,min(t1 + τ), and
equations (19)− (26) are verified for t = t1, . . . , t1 + τ.

(35)

We can now either provide condition x(t1 + Nfill) ≥ Bh,min(t1 + Nfill) as a
terminal constraint (which is not obvious since t1+Nfill will probably be beyond
the prediction horizon) or with a suboptimal approach, by forcing Bmin(t) to
increase towards the expected safe value Bh,min(t) in the filling time Nfill along
a linear mapping:

Br,min(τ) = Bmin(t1) + τ − t1
Nfill

(Bh,min(t1 +Nfill)−Bmin(t1)), (36)

for all τ = t1, . . . , t1 +Nfill.
Thus, in the transitional period we will increase the minimum storage require-
ment step by step10:

x(t) > Bmin(t) = Br,min(t), ∀t = t1, . . . , t1 +Nfill. (37)

• Steady state nominal functioning: sufficient time has passed since the last fault.
The battery already verifies (31) at the current instant and has to verify it for
all future instances of the prediction horizon:

x(t) > Bmin(t) = Bh,min(t), ∀t > t1 +Nfill (38)

• Under fault: we enforce only the physical minimal storage requirements (11)
for the interval t = t0, . . . , t1.

x(t) = Bmin(t) = Bf,min(t). (39)

The above remarks and constructions can be synthesized in algorithm Algorithm 1
which is to be followed by a supervisor unit.

Since we wish that in general the load demands are respected, we can transform

10If Nfill < minMTTFi we have leeway to choose a larger Nfill. This will soften the storage
requirements.
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Algorithm 1: Fault tolerant scheme
Input: tstop

1 mode=‘healthy’;
2 while t ≤ tstop do
3 if checkFault=true & mode=‘healthy’ then
4 construct signature fault matrix Bf ;
5 update constraint (30);
6 mode=‘faulty’;
7 end
8 if checkFault=false & mode=‘faulty’ then
9 update constraint (30);

10 compute Nfill as in (35);
11 lastFault = t;
12 mode=‘healthy’;
13 end
14 if mode=‘healthy’ then
15 if t < lastFault+Nfill then
16 Bmin = Br,min(t) given as in (36);
17 else
18 Bmin = Bh,min(t) given as in (38);
19 end
20 end
21 if mode=‘faulty’ then
22 give Bmin as in (11);
23 end
24 solve the optimization problem (27);
25 end
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constraint (16) into a “soft constraint” through the addition of a slack variable. In
the following subsection this issue is discussed in detail.

3.2. Soft constraints
The primordial requirement of the microgrid scheme is to fulfill the user demands

as best as the microgrid components allow. To this end, we made use of constraint
(18) to force at all times the coverage of the essential demand and of the cost (25)
to tilt the control towards providing complete user coverage (both essential and non-
essential). The issue in this approach is that choosing the weight γd associated to the
cost in (28) makes the difference between covering only the essential demand or both
essential and non-essential demand (i.e., if too low relatively to the other weights,
the optimization problem chooses to provide only essential demand, if it is too large,
numerical issues may appear).

To correctly characterize the weight γd, we make use of the “hard/soft con-
straints” notion. Basically, we consider that the original “hard constrained” problem
forces the validation at all times of equality

Du(t) = des(t) + dnes(t). (40)

In this case, there may be initial conditions such that there exists no input sequence
for which the problem is feasible ((40) cannot be validated). In such a situation the
optimization solver will find no solution and consequently will not provide any input
for the microgrid. This is in general considered unacceptable and practical MPC
implementations therefore include some way of relaxing the constraints to ensure
that the optimization problem is always feasible. We proceed here by adding slack
variables εk(t) ≥ 0, which make the constraints (40) “soft”:

des(t) + dnes(t) ≤ Du(t), (41)
Du(t) + ε(t) = des(t) + dnes(t), ε(t) ≥ 0. (42)

When using soft constraints, the MPC formulation adds the variables ε(t) in the con-
straint equations which allow relaxing some of the constraints, while the optimization
cost function includes terms which penalize the constraint violation:

Cd(t) = γd||ε(t)||1 (43)

The conditions of exact correspondence between “hard” and “soft” constraints follow
classic optimization results Fletcher (1987) and express conditions on the Lagrangian
multipliers of the original optimization problem (due to the fact that we have “soft-
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ened” only constraints (40) we consider only the associated Lagrangians):

γd ≥ max
µd

||DTµd||∞. (44)

Finding the minimum for problem (44) can be done by solving a bi-level optimization
problem, e.g., via a MILP formulation as in Hovd and Stoican (2013).

4. Simulation results

In this section, we introduce an example of a microgrid and the simulation results
for its operation and control. The forthcoming simulations use the numerical data of
a test system (IEEE RTS–96) developed for bulk power system reliability evaluation
studies Grigg et al. (1999).

[Figure 6 about here.]

Consider the microgrid of Figure 6 which contains Ng = 2 generators, Ns = 2
electrical storage units and Nd = 2 consumers. All components are characterized by
the dynamic models, profiles, constraints and costs presented in detail in Section 2.
The microgrid system is connected to the main utility grid through a transformer.
Here, the transformer provides electrical power from the external grid as well as
information about the electrical market price, which plays an important role as the
storage units may decide to keep or use the stored energy depending on the external
price. The consumers have also the possibility to take electrical power from the
external grid when the renewable resources are not available (or sufficient).

The interactions between the independent components of the microgrid are most
important for accomplishing the consumers objectives. As shown in Figure 6 there
are various links between the components of the microgrid, which determine the
energy flow. The adjacency matrices characterizing the links between the microgrid
components (see also Section 2) are:

Mgs =
[
1 1
0 1

]
; Mgd =

[
0 0
1 1

]
; Mge =

[
1
0

]
; (45)

Msd =
[
1 0
0 1

]
; Mse =

[
0
0

]
; Med =

[
1 1

]
;

with the corresponding number of non-zero entries Ngs = 3, Ngd = 2, Nge = 1,
Nsd = 2, Nse = 0, Ned = 2 as defined in (4) – (6).
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The global state of the microgrid system x(t) =
[
x1(t)T , x2(t)T

]T
∈ R2 concate-

nates the states of the two storage units and the input
u(t) = [u11

gs(t) u12
gs(t) u22

gs(t) u21
gd(t) u22

gd(t) u1
ge(t) u11

sd(t) u22
sd(t) u2

ed(t) α1(t) α2(t)]T ∈
RNu × {0, 1}Ns , with Nu = 10, Ns = 2 concatenates all the control inputs of the mi-
crogrid system.

Using the general relation in (19) we obtain the following matrices which charac-
terize the centralized system:

A =
[
1− σ1 0

0 1− σ2

]
∈ R2×2; Bch =

[
δbgs 0

]
∈ R2×12; (46)

Bdisch =
[
0 δbsd 0

]
∈ R2×12 with δbgs =

[
1 0 0
0 1 1

]
, δbsd = −I2.

The constraints (24), (25) are described by:

G =
[
δggs δggd δgge 0

]
∈ R2×12, D =

[
0 δdgd 0 δdsd 0 δded 0

]
∈ R2×12, (47)

with δggs =
[
1 1 0
0 0 1

]
, δggd =

[
0 0
1 1

]
, δgge =

[
1
0

]
, δdgd = δdsd = δded = I2.

The cost function (29) is described by:

F =
[
0 −δfge 0 δfed 0

]T
∈ R1×12, (48)

H =
[
0 0 0 0 0 0 0 0 0 0 0 1

]T
∈ R1×12, (49)

with δfge =
[
−1

]
, δfed =

[
1 1

]
.

Considering the discretization step ∆t = 1 hour and the reference profiles de-
scribed in Section 2 we provide in Table 3 the rest of the numerical values of the
parameters used for the simulation results.

[Table 3 about here.]

Hereinafter, we consider a simulation horizon of 150 hours and depict in the
following figures the profiles, states and control signals over the interval [50, 150].
Any of the plotted signals is depicted through markers which show its value at
each sampling time and the lines linking these markers characterize the value of
the signal along the sampling interval. Depending on the control decisions taken,
constructive details and assumptions made in the simulation, the plotted line can
have a “stairwise” or “piecewise linear” shape. For example, the storage unit does
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not change the level of charge/discharge inside of a sampling interval and hence the
value of the charge variation has a stairwise behavior. Accordingly, and since the
storage unit has an affine dynamic, the storage level varies linearly along a sampling
interval.

Figure 7 illustrates the charge level x1(t) and the charge variation ∆x1(t) along
the simulation horizon for the first storage unit (top and bottom figure respectively).
To better underline the charge/discharge switching we also depict α1(t), the binary
signal which models the switching behavior. To have an uncluttered figure we scale
and offset this signal (dotted blue line in the bottom figure). These three signals are
linked as follows: if for the current sampling interval, the storage unit is in charge
mode (α1(t) = 1) then there is a positive storage variation which reflects into an
accompanying raise in the storage level. The converse holds for the discharge mode.

Not in the least, the bounds depicted in the top and bottom sub-figures (dashed
black lines) represent the magnitude and variation constraints respectively, and it
can be seen that they are respected.

Similarly, Figure 8 illustrates the charge stored in battery x2(t) along the same
simulation horizon (i.e., 100 hours) as well as the charge variation ∆x2(t), corre-
spondingly to the binary variable codification α2(t) and the constraints satisfaction.

[Figure 7 about here.]

[Figure 8 about here.]

Recall that the power flow through the microgrid is decided by the supervisor
as a solution to the optimization problem (27). Therefore, the power flow can have
unexpected characteristics and it is worthwhile to illustrate them.

In particular, it is interesting to illustrate the power produced by the generators
and consumed by the storage units and the users; how a generator partitions its
power output between users, storage units and external grid.

Figures 9–13 illustrate the various control signals of the microgrid. It can be
seen that there is a complex interplay between the storage devices and the rest of
the microgrid components. Particularly, at some instants, it appears that it is more
efficient to give and take energy from the external grid rather than send it directly
to the users.

Figure 9 illustrates the electrical power sent by the generators to the storage
units. Note that the first generator sends to both storage units whereas the second
sends only to the second storage unit.

[Figure 9 about here.]
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[Figure 10 about here.]

In Figure 10 we illustrate the same behavior but this time for the electrical power
sent from the generators to the users and the external grid.

In Figures 9 and 10 we have shown different types of power flow between gener-
ators and the other microgrid components. In Figure 11 we now show which is the
partitioning of the power flow of the first generator between all the other components
in order to make clear that a generator may decide (depending on cost, constraints
and its interconnections) to partition its power accordingly.

[Figure 11 about here.]

[Figure 12 about here.]

In Figure 12 we depict the power flows sent from the storage units to the users.
As it can be seen, due to the optimization problem, the behavior appears to be
“on-off”: either the batteries are discharging to the maximum or they are in charge
mode (there are relatively few charging values when the power sent is not close to
maximal).

[Figure 13 about here.]

Figure 13 depicts the power received by both users from the external grid.
To better characterize the fulfillment of the demands of the users we depict in

Figure 14 the demand profile (essential and total) of the first user against the actual
received power. In the case of user 1 this means that the power flows from the second
generator, first storage unit and the external grid. As it can be seen the essential
demand is ensured at all times and, conditions permitting, the total demand is also
covered.

[Figure 14 about here.]

Furthermore, to clarify the usage of the generators we illustrate in Figure 15 the
power flows of interest for the first generator. The generator profile is depicted as a
tube around the real power output (g1(t) in solid black) and the actual power used
in the migrogrid is shown as a dashed blue line (in the case of the first generator, the
power output is partitioned between both storage units and the external grid). As it
can be seen, due to constraints and cost imperatives at some time instants generator
power is unused.
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[Figure 15 about here.]

In Figure 16 we show the minimal capacity of the storage units, Bmin values
computed as in Section 3.1 for a MTTR value of 5 hours and a total loss of power
output in the second generator, G2 (g2(t)→ 0). As it can be seen in the figure, the
second storage unit requires a large Bmin value to cope with this fault scenario (it is
getting in fact close to the Bmax = 6000 W value) whereas the first electrical storage
requires no extra charge (B1

min = 0). These values are justified by the structure of
the microgrid and by the fault’s nature: a fault in the second generator cuts all the
sources of charge for the first storage unit whereas the second unit can still draw
power from the second generator which continues to function correctly.

[Figure 16 about here.]

Furthermore, to illustrate the microgrid behavior under fault we consider a total
output fault affecting the second generator, G2 during the time interval [60, 65] hours
and a fault duration MTTF = 5 hours. That is, during this interval no power is
sent by the second generator to any of the grid components.

As discussed earlier, the fault event influences the control response and the min-
imal capacity bounds of the storage units. We differentiate between three cases:
healthy (before the fault, the time interval [50, 59]; after the fault and the recov-
ery period, the interval [86, 150]); faulty (time interval [60, 65]) and recovery (time
interval [66, 85] hours).

In Figure 17 we depict the relevant signals and explain their behavior (for clarity
we illustrate them only during the time interval [55, 95] hours containing the fault
event). The top-most figure illustrates the second generator output, and as expected,
we observe that it drops to zero during the fault interval.

The second figure illustrates the behavior of the second storage unit, S2 (we do
not illustrate the same signals for the first storage unit due to space constraints and
because the second is more relevant to the discussion). In this figure we illustrate
B2
h,min(t), B2

min(t) and x2(t). Recall that the stored energy x2(t) should stay above
the robust safe minimal value Bh,min(t). This is indeed the case in the healthy time
intervals [50, 59] and [86, 150]. This is no longer the case while under fault or under
recovery. This fact is illustrated by Bmin which is the “actual minimal capacity” and
which follows Bh,min when possible but goes to zero during the fault interval and then
gradually increases during the recovery interval (we have chosen Nfill = MTTR = 20
hours).

The two bottom-most figures illustrate the power received by the two users and
their profile bounds (essential versus total power demanded). We point two elements:
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i) even under fault the essential demand is fulfilled at all times; ii) during the fault
the users receive only the essential demand (such that the demands on the external
grid, remaining generator and storage units are minimized).

[Figure 17 about here.]

5. Conclusions

This paper presented a reliable model predictive control approach for efficient
energy storage and distribution in a microgrid system. Electricity costs, power con-
sumption, generation profiles and power and energy constraints were taken into con-
sideration in a Mixed-Integer Linear Programming optimization problem. Uncer-
tainty due to variations in the environment (wind speed, load and electricity market
price), failures and subsequent repairs of the generators as well as battery lifespan
limitations are efficiently treated. Simulation results validate the proposed approach.

The original contributions are:

• by minimizing the charge/discharge cycles the battery life is increased: this
is achieved through the analysis of the expected battery life/versus electricity
prices to find the optimum balance between battery usage and profit gained
from electricity management;

• by using mixed-integer techniques, we can model different situations and be-
haviors of the microgrid components (switching between functioning modes of
the storage elements and the microgrid in general, connected and islanded);

• fault tolerant strategies are proposed in order to ensure the necessary amount
of energy in the storage devices such that (together with the utility grid) the
essential consumer demand is always covered;

• by applying these improvements, we obtain a Mixed-Integer Linear Program-
ming (MILP) optimization problem, which is difficult to solve but still with
acceptable computational efforts.

For future work, we envision to analyze interconnected microgrid systems and discuss
the combination between multi-agent approaches, mixed-integer programming and
centralized/distributed/decentralized algorithms for scheduling control.
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Figure 3: Reference profiles. (a) Wind speed profile and uncertainty band (b) Generator power
profile and uncertainty band.
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Figure 4: Reference profiles. (a) Consumer load profile and uncertainty band. (b) Electricity
market price profile and uncertainty band.
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Figure 8: Battery 2 charge level and variation.
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Figure 9: Electrical power transmitted by the generators to electrical storage components.
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Figure 10: Electrical power transmitted by the generators to users.
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Figure 11: Electrical power transmitted by the generator 1 to external grid and the two storage
units.
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Figure 12: Electrical power transmitted by the storage units to users.
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Figure 13: Electrical power transmitted by the external grid to users.
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Figure 14: Electrical power transmitted by three sources to user 1.
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Figure 15: Electrical power consumed by user 1.
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Figure 16: Minimal capacity of the battery storage units.
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Figure 17: Microgrid system behavior under a fault event affecting generator G2.
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Notation Description
uijgs(t) [W ] electrical power transmitted by the generator Gi to the electrical

storage Sj at time step t.
uikgd(t) [W ] electrical power transmitted by the generator Gi to the consumer

Dk at time step t.
uige(t) [W ] electrical power transmitted by the generator Gi to the external

grid E at time step t.
ujksd(t) [W ] electrical power transmitted by the electrical storage Sj to the

consumer Dk at time step t.
ujse(t) [W ] electrical power transmitted by the electrical storage Sj to the

external grid E at time step t.
uked(t) [W ] electrical power transmitted by the external grid E to the consumer

Dk at time step t.

Table 1: General interconnection signals in a typical microgrid.

Notation Description
Mgs ∈ {0, 1}Ng×Ns characterizes the existence of a link from the generator Gi

to the electrical storage Sj.
Mgd ∈ {0, 1}Ng×Nd characterizes the existence of a link from the generator Gi

to the consumer Dk.
Mge ∈ {0, 1}Ng×1 characterizes the existence of a link from the generator Gi

to the external grid E.
Msd ∈ {0, 1}Ns×Nd characterizes the existence of a link from the electrical

storage Sj to the consumer Dk.
Mse ∈ {0, 1}Ns×1 characterizes the existence of a link from the electrical

storage Sj to the external grid E.
Med ∈ {0, 1}1×Nd characterizes the existence of a link from the external grid E

to the consumer Dk.

Table 2: Adjacency matrices specifying the links between the microgrid components.
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Storage units parameters

σ1 = σ2 = 13 · 10−4 M = 9 · 103 B1
min = B2

min = 12 · 102 [Wh] B1
max = B2

max = 6 · 103 [Wh]

V 1
min = V 2

min = −1.5 · 103 [W ] V 1
max = V 2

max = 1.5 · 103 [W ]

Prediction horizon
Np = 7

Control input constraints

ū = [1.2 1.5 1.2 1.5 1.5 1.2 1.7 2 1.5 1.5 10−3 10−3]T · 103 [W ]

Weight parameters in (13), (27) and (28)
γs,c = 0 γs,d = 0 γs,s = 1 γb = 1 γd = 0.5 γe = 1 γ = 1

Table 3: Numerical data for the microgrid components.
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