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Abstract. Real-time simulation of surgery requires fast and realistic modeling
of deformable objects. However today, few models are available, they are still
time costly and limited in number of tetrahedra by algorithm complexity. We
present here a framework to design algorithms adapted to any kind of hypere-
lastic models, which include Saint Venant-Kirchhoff, Neo-Hookean and
Mooney-Rivlin, handling large deformations and large displacements. More-
over, the algorithm complexity is linear in the number of tetrahedra; a compari-
son in number of operations performed with an existing algorithm on a similar
case shows a gain of more than 40 times faster.

1 Introduction

Fast and realistic modeling of deformable objects is an issue for the development of
medical surgery simulators. Good numerical models should handle in real-time de-
formations coming from interactions with the user and its virtual environment, con-
straints, large deformations, large displacements, realism with several material consti-
tutive laws, easy cutting and topological changes. Real-time refers to a computation
time of the discrete differential equations small enough to allow a reasonable re-
freshment rate, e.g. 30 Hz for visual display. Several computational methods and
models have been developed to simulate real-time soft tissue deformations. Many of
these models have addressed the issue of computing the internal elastic force of the
material, related to its intrinsic material properties. Some researchers have been inter-
ested in mass-spring models [1], [2], due to their simplicity of implementation and
their low computation complexity; they also handle naturally large deformations,
large displacements, and cutting. On the other hand they suffer from a lack of realism,
which lead to further research on extensions of the model, or correct tuning of the pa-
rameters for better biomechanical realism: [3], [4], [5]. Other people have preferred to
derive discrete computational algorithms from the equations of Continuum Mechan-
ics, in order to obtain real-time computations: based on the Boundary Element
Method (BEM) [6], the Finite Difference Method (FDM) [7] and the Finite Element
Method (FEM) [8], [9]. However, the heavy complexity of these methods makes
computation time a real challenge; at first, methods have been developed with the
simplifying assumptions of small deformations and displacements (linear elasticity



framework); this has lead e.g. to the mass-tensor model [10]; this model has been de-
veloped further to handle large deformations and large displacements with a “Saint
Venant-Kirchhoff” constitutive law [11], [12], with more realism but also more com-
plexity and operations to perform. As a summary, one can say that, if progresses have
been made, existing models still handle few constitutive laws (linear elasticity -
limited to small deformations-, and Saint VVenant-Kirchhoff for large deformations),
and suffer from a polynomial complexity that makes impossible to compute large
meshes.

For these reasons, in this paper we propose a framework to design fast algorithms
to compute the elastic force field for any hyper-elastic model, handling large deforma-
tions, large displacements, easy cutting and topological changes in the mesh. The al-
gorithms are designed under the P1-finite element approximation in homogeneous
isotropic cases. Hyper-elastic models include the Saint Venant-Kirchhoff constitutive
law (used in mass-tensor), and other important hyper-elastic constitutive laws such as
Neo-Hookean, Mooney-Rivlin, Fung and Demiray, or Ogden, that are not supported
today by real-time algorithms. We have chosen to call this approach “Hyper-Elastic
Mass-Link” (HEML), for the following reasons. “Link”, because forces at a given
node are given as a sum of forces proportional to the links (vectors) to all connected
neighbours; the formulation of the modulus of these incident forces depend only from
the square lengths of the links of adjacent tetrahedra. “Mass”: as in mass-spring or
mass-tensor, masses are affected to the mesh nodes, used in the discrete differential
equations. “Hyper-Elastic”, because the framework presented may be used to design
algorithms for computation of any hyper-elastic material. As a matter of fact, it also
includes the mass-spring model as a special, degenerate (non hyper-elastic) case. We
detail in Section 2 the methodology to obtain Hyper-Elastic Mass-Link models, in
general and for several hyper-elastic constitutive laws. In Section 3, we present an
implementation made in the Saint Venant-Kirchhoff case, and a comparison with the
mass-tensor algorithm which shows an improved performance in number of opera-
tions.

2. “Hyper-Elastic Mass-Links” Models

2.1 Notations

We consider a discrete approximation of the material geometry based on a tetrahedral
mesh, and reasoning is made for each tetrahedron (Figure 1). Without loss of general-
ity, a numbering is chosen for the four vertices of a given tetrahedron, which are de-
noted X; and x; (0 < < 3) in initial and deformed state. The six edge vectors are de-
noted VE; (respectively ve;) (1<i<6). Any three edge vectors out of six are enough
to express the others, we denote ME (resp. me) the matrix: ME :(VEl,VEZ,VE3)

(matrices are denoted in bold typeface). Considering non-degenerate tetrahedra in ini-
tial state, ME is invertible. We denote /; the lengths of edges ve; (resp. L; for VE), I
(resp. L) the vector of the six square lengths, and Al =1— L the vector of differences.
The volume of tetrahedron in deformed (resp. initial) state is denoted v (resp. V). The
deformation function from initial to current state is @, and F the gradient of deforma-



tion: F(X,r)=Vv® =ax/ax . The right Cauchy-Green deformation tensor C and the
Green-Lagrange strain tensor E are: c(x,;)=F’F, E =(C—1)/2. The “three invari-
ants” of tensor C are denoted C,;, Cy;, Cyy.

Initial state Deformed state

VE, VE,

Fig. 1. Tetrahedron in initial and deformed state
2.2 Hyper-Elasticity in P1 Approximation: Energy and Forces

Hyperelasticity [13] means that there exists a volumetric energy function W from
which derives the stress tensor, function of position x and deformation gradient F. We
consider a homogeneous, isotropic, hyper-elastic material. As a homogeneous mate-
rial, the energy function 7 depends only from the deformation gradient F. Addition-
ally, the two principles of “material indifference”, imposed by coherence with physics
laws, and isotropy, lead to the fact that 7 depends only from the tensor C; moreover it
depends only from the three invariants of C: W (x, F)=w(C)=w(C,,C,,C,,).

In the “P1 approximation” of finite elements, mesh elements are tetrahedral; the
approximation states that the deformation gradient tensor F(x) is constant over a
given tetrahedron T _; hence also for tensor C. We can decompose the energy W over
each tetrahedron 74, the total energy of the material being the sum over all tetrahe-
dra. It can be demonstrated (see Appendix) that, under the P1 approximation, the
value of C depends linearly from the vector / (edge square lengths) and from initial
state. Hence the energy W _; of tetrahedron 7, depends only from [ ; and initial state,
or alternatively it depends only from vertices positions and initial state:

Wi=W, (l_k ): W, (xo 1 X1 xz’xs)- (1)

As forces derive from energy, at each node of the mesh the internal elastic force is
the sum of forces derived from the energy of all incident tetrahedra. For each tetrahe-
dron T4, the elastic force at a vertex X; is the derivative of energy W_, over the vertex
position: j,0< j <3,8W, Jox, = (oW, /al)x(01/ax ). It can be demonstrated (see
Appendix) that the derivative of / over the vertices positions is a linear expression of
the matrix me of edge vectors, with constant 6x3 matrices DLM, leading to the fol-
lowing linear formulation of forces for each vertex X; of tetrahedron 7' 4.
ow . oW,
ox, ol

J

(1 )xDLM, xme ," by

Vj0< <3 F =



2.3 Formulation for various hyperelastic materials

We have used this approach (Equations 1, 2) to derive elastic forces for various spe-
cific materials: Saint Venant-Kirchhoff, Neo-Hookean, Mooney-Rivlin, Fung and
Demiray. Saint Venant-Kirchhoff is an hyperelastic material, which is a natural exten-
sion to large deformations of linear elastic constitutive law. The volumetric energy
function is usually formulated with the Green-Lagrange tensor E, and the Lamé coef-
ficients A and x. Neo-Hookean [15] and Mooney-Rivlin [16] are popular non-linear
hyperelastic materials; Fung and Demiray [17], [18] is a model that has already been
used for biomechanical application [19]. For each kind of hyper-elastic material, we
use for constitutive law the formulation of its volumetric density of energy W, ex-
pressed with respect to the tensor C, its three invariants C;, Cy, Cyy, or alternatively
the tensor E, and we express it with respect to the edges square lengths / (Equation 1),
or alternatively 41. Then we derive a formulation of forces with respect to / (Equation
2) or 41, and me (Appendix). We present in Table 1 the energy density and forces de-
rived at the vertices of a given tetrahedron, for each of these materials.

Table 1. Energy and forces for various hyper-elastic materials — for one tetrahedron

Material Energy density W Force at vertex j
General type c,.,Cc,.C,.)=rl .
yp f( ntu 111) f() Z ﬁ(l)xﬂ(l’ me)
ie{l, 11,11} 6Ci aX/’

Saint Venant- A 2
Kirchhoff E(T HE) + ur(E?) AI" (MW,  x DLM, )x me”

- Aﬂ[g VT VTr +% MTrjAl

MWry ¢

Neo-Hookean K, xC, =K,(VTrxl) K,(rTrx DLM, )x me”
(incompressible) :

Mooney-Rivlin | K, xC, +K,xC,
(incompressible) | =K, (VTrxI) K,(V7rx DLM, )x me”
+1<21TB (v v - MTr)}l + K,I"(MW,,_xDLM Jxme”

MWy, _r
Eznmgi Ea;yd % exp(r(C, -3)-1) %(EXD(}/VTr x Al 1)
(incompressible) u ><(VTr>< DLMi)xmeT

= exp(y¥Trx Al 1)
2y

Many bodies in biomechanical applications are mostly composed with water and
should hence be considered as incompressible. In Saint Venant-Kirchhoff case, the
material is compressible: incompressibility is a special, limit case, when the Poisson
coefficient tends towards 0.5, which is in practice not possible for Lamé coefficients
that become infinite. The Saint Venant-Kirchhoff model has also a serious drawback
to be mentioned, which is that it has a wrong limit in compressibility: the force tends




to zero when the material flattens, which is non physical at all! In the case of Neo-
Hookean, Mooney-Rivlin and “Fung and Demiray”, the constitutive laws indicated
are given under the strict constraint of incompressibility. However there is no easy
way to handle such constraint in the numerical solving. On a practical point of view, a
possibility for all cases is to add to the energy function a term depending on the third
invariant of C, which itself depends upon volume variation — which actually means a
modification of the constitutive law.

3. Implementation for Saint Venant-Kirchhoff materials

3.1 Algorithm

In order to compute an elastic force field on a material from the equations presented
above, one has to perform two kinds of operations: an initialization regarding the ini-
tial state of the material (geometry and material parameters); a computation of forces
in deformed state, at each step of the numerical integration process. Concerning ini-
tialization, one has to compute, for each tetrahedron, four characteristic matrices from
its initial state and the two Lamé coefficients A, 1. Concerning the force field in de-

formed state, for each tetrahedron one has to compute the six edge vectors and square
lengths, and then, using the four characteristic matrices, the four forces at each vertex
using the corresponding equation given in Table 1. In the end one has to sum up, for
each node of the mesh, the forces coming from incident tetrahedra.

Ll

LR

Fig. 2. Meshes used for experiments (irregular cube, artificial kidney, uterus)

We have implemented this algorithm on a PC computer, with the Visual C++ devel-
oping environment under Windows XP. The PC was a Pentium 4 at 3.2 Ghz, 1 Go




RAM. For a complete computation of material deformations, we add gravity, viscous
forces (related to the velocities of nodes), and perform numerical integration with
semi-implicit first-order Euler scheme. We present results based on non-optimized
code, obtained on 5 different meshes: three cubes, two with regular and one with ir-
regular tetrahedra, an artificial shape representing a kidney and a uterus model digi-
tized from a plastic uterus used for the training of midwives (Figure 2). Mesh charac-
teristics and average computation times per time step for the elastic force field are
given in Table 2. It is noticeable that, for the uterus model, containing as many as
11 445 tetrahedra, the computation is feasible and can reach an average time of 20 ms.

Table 2. Models characteristics and computation times

Reg. Cubel | Reg.Cube2 | Irreg.Cube | Kidney | Uterus
Nodes 125 1000 151 829 4362
Tetrahedra 320 3645 407 2053 | 11445
Comp. time (ms) 0.25 3.5 0.34 2.1 20.0

3.2 Comparison with the “Mass-Tensors” algorithm

The Hyper-Elastic Mass-Link (HEML) algorithm for Saint Venant-Kirchhoff derives
from the same formula as the Mass-Tensors algorithm adapted to large deformations.
However the formulation is not the same; a noticeable difference is that HEML uses
relative displacements of nodes within the mesh, while Mass-Tensor uses displace-
ments relative to original positions, U, =x, — X, . This may lead to numerical draw-

backs with large displacements, when the numerical values of displacements are or-
ders of magnitude (x100, x1000...) higher than positions. In order to reduce the
number of operations in the expression of the Mass-Tensor algorithm, an arrangement
is made, introducing matrices By;, vectors Cjq and scalars Djq,, and summing up at
each node from all contributors, that is the node itself p and its connected neighbours
N(p), leading to the following expression [12]:

Fr= Y»ByU,+4 > D, UUU,+ Zz(uk xU" )C,.kp +(Uf xU, JC (3)
jelp.N(p)}

j,lf,,le{p‘N(p)}3 _/',ke{p,N(p)}z

The complexity of Mass-Tensors is related to the number of connected edges, up to
a power three as can be seen on the equation above; for HEML, the complexity is lin-
ear in the number of tetrahedra. Analyzing further the equations, we have determined
the exact number of operations -multiplications and additions- needed by both algo-
rithms, to compute the same force field over a mesh from the node positions. To per-
form a comparison we have determined the number of operations in the case of the
five meshes presented above, and the results are presented on Table 3. We observe an
impressive improvement with HEML, going for small meshes from a gain of more
than 40 times, up to more than 100 and 200 with bigger meshes (uterus and kidney). It
is also important to notice that the number of operations for other kinds of hyper-
elastic materials, like Neo-Hookean and Mooney-Rivlin, is of the same order of mag-




nitude as it is for Saint VVenant-Kirchhoff, as one can see from the equations presented

in Table 1.

Table 3. Number of operations (in thousands), and gain ratio, for Mass-Tensor and HEML

Reg. Cubel | Reg. Cube2 | Irreg.Cube | Kidney | Uterus
Mass-Tensor 2999 36 198 3935 | 96292 | 318707
HEML 70 787 89 449 2500
Gain ratio 43,0 46,0 44,3 2143 127,5
4 Conclusion

We have presented the “Hyper-Elastic Mass-Link” framework, a methodology for fast
computation of deformable bodies that handles any kind of hyper-elastic material.
Equations have been presented for four different materials (Saint Venant-Kirchhoff,
Neo-Hookean and Mooney-Rivlin, Fung and Demiray) and the method has been ex-
plained to be extended to additional materials (e.g. Ogden materials [20]). It could
also be extended to non homogeneity, and to anisotropy for e.g. transversally isotropic
materials [12]. The complexity of the algorithms is linear in the number of tetrahedra.
An implementation has been made with the Saint Venant-Kirchhoff constitutive law,
handling the computation of a mesh of more than 10 000 tetrahedra in an average op-
erating time of 20 ms, with non-optimized code. In that case, the algorithm presents
several improvements over the mass-tensor algorithm: computations are made with
respect to relative positions of nodes, and not to initial positions, which is numerically
better for large displacements; the number of operations is much smaller, simulations
on several meshes show improvements of more than 40 times.

Further work could be done on optimisation of implementation, to improve compu-
tation times, with e.g. specific coding for fast computation, or parallelisation; it would
also be helpful to handle incompressibility issue and invertible elements, for example
with signed penalty volumes or other adaptations of constitutive law [21]. Other im-
provements could be to evaluate the quality of P1 approximation -possibly using
adaptive mesh refinements-, to model more precisely viscous terms, and to add plastic
deformations.
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Appendix

C tensor, function of L
The deformation gradient F being constant over 7, (P! approximation), the relation
between the edge vectors in deformed and initial states is: Vil<i<6:ve,=F xVE,.

On a tetrahedron, the six edge vectors can be expressed out of any three of them, e.g.
matrix me. Hence the six square lengths of edges can be written as a bilinear function
of me; using the relation to F and initial state mentioned, these square lengths can be
written as a linear function of F”F , and of the three first edge vectors in initial state
(constant matrix ME). The relation can be turned out to obtain the matrix c =F’F , as
a linear function of the edges square lengths, whose constant parameters (6 (3x3) ma-

6
trices C;)) depend on initial state: ¢ = c(z)= D CixI?
i=1

Derivatives of L

From the relation between the edges square lengths (/) expressed with respect to the
matrix me, one can express their derivatives with respect to the edge vectors, and then
with respect to their four defining vertices. This leads to a formulation of the deriva-
tive of / over each vertex X,_; of the tetrahedron, linear in the matrix me, with 4 (6x3)

constant matrices DLM; that depend on the initial state: g < j <3 _ DLM, x me”
oX

J
Invariants and derivatives with respect to L
We denote V'Tr and MTr the 6-vector and 6x6-matrix of Traces of the matrices C;, de-
fined by the relations on their elements: V'7r, =Tr(C, ), MTr,; = Tr(C,C,). The three

invariants of tensor C (C, =7+(C), ¢, =12|(T+(C)F -1r(c?)], Cyy = det(C)=1?/¥?),
can be expressed with respect to the vector of edge square lengths /, which is also true
for the Trace of E and E” (easily expressed in relation with A7). Their derivatives can
be expressed with respect to / (resp. 47) and the matrix me - for the derivative of in-
variant Cy; there is a simple expression with vectorial products of edges.



