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Abstract

This paper presents a new method for extracting
cylinders from an unorganized set of 3D points. The
originality of this approach is to separate the ex-
traction problem into two distinct steps. The first
step consists in extracting a constrained plane in the
Gaussian image. This yields a subset of 3D points
along with a direction. In the second step, cylinders
of known direction are extracted in the correspond-
ing subset of points. Robustness is achieved by the
use of a random sampling method in both steps.

Experimental results showing the extraction of
pipes in digitized industrial environments are pre-
sented.

1 Introduction

The main principle of as-built CAD modeling and
reverse engineering is to find a set of geometric
primitives properly describing 3D data correspond-
ing to a real scene. The 3D scene is typically pro-
vided by a range scanner. Since several views are
usually needed, the data often consist of a set of
registered and merged range images. In the worst
case, the structure of each range image has been
lost and the 3D data therefore consist of an unor-
ganized set of 3D points. Obviously, for real data,

the scanning process also introduces noise on the
points. Moreover, when dealing with large digitized
industrial scenes, the density of data points is not
uniform [7, 5]. However, the geometric primitives
present in the scene are usually surfaces or curves
of simple types, such as planes, cylinders, cones,
spheres or tori.

Geometric primitive extraction is an important
problem of model-based vision. An interesting
general framework for geometric primitive extrac-
tion was described in [13, 14], generalizing the
RANSAC method [2]. In their approach, the ex-
traction of a primitive is performed using random
sampling over the set of points. Each sample con-
tains exactly the minimum number of points neces-
sary to define an instance of the primitive — e.g.,
three points for a plane, four points for a sphere.
The extraction is then performed using an general
optimization process, i.e. by iteratively consider-
ing the primitive defined by a random sample and
choosing the primitive maximizing a merit function.
This process therefore requires a method for defin-
ing the primitive instance from every minimum set
of points. It is straightforward for algebraic surfaces
of order � given � �

�
points, since it amounts to the

computation of a determinant (see the ’exact fit’ in
[11]). In 3D, this includes the cases of the plane, the
sphere and the quadric — using three, four and nine
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points respectively. However, the smallest class of
algebraic surfaces including the class of the cylin-
ders is the class of the quadrics. Hence, it is not
possible to use the exact fit method of [11] for find-
ing cylinders specifically. Moreover, the attempts
of treating the case of the cylinders using elimi-
nation theory in [13] proved impractical. The use
of surface normals and curvatures was then sug-
gested to yield simpler problems. Similarly, the
extraction of cylinders given in [6] first computes
the unit normals and then uses the Hough transform
on the Gaussian image. As any Hough transform,
this method requires a discretization of the parame-
ter space. This is an issue regarding both accuracy
and memory requirements. In contrast, we propose
to extract cylinders without discretization of the pa-
rameter space, using a random sampling algorithm,
as for the plane and the sphere in [13].

In [2] and [8], the extraction of cylinders in a
range image is performed, but this method is spe-
cific to the 2.5D case since ellipses were extracted
in cross sections. It is also possible to find a cylin-
der from a larger set of 3D points by surface fit-
ting [9, 4, 10, 12] . One can fit a cylinder using
common nonlinear estimation techniques , e.g. the
Levenberg-Marquardt algorithm. Initial estimates
are required for this algorithm, and the final re-
sults highly depend on the quality of these esti-
mates. More precisely, the initial estimates may be
computed from normal or curvature estimates [9]
or from an initial quadric fitting [4]. The quality
of these estimates depends on the noise on the data
points and on the estimation process. Hence noisy
input data may yield bad results, even if the cost
function is robust. The choice of the cost func-
tion — least-squares, M-estimators, etc.—, usually
based on an approximation of the Euclidean dis-
tance, is also of importance. Indeed, the final pa-
rameters may be different depending on the func-
tion used.

These problems do not occur when constructing
a primitive from a minimal subset of points. That
is why we chose to investigate the construction of
cylinders directly from minimal sets of points and
normals.

In this paper, we present a new method to ex-
tract cylinders in an unorganized set of 3D points.
This approach has two main particularities: the first
one is to separate the extraction into two distinct
steps, the second is to use a random sampling algo-

rithm both on the normal estimates and on the set
of points. The first step solves the problem of find-
ing the direction of the cylinder. The second step
finds its position and size. This leads to a two-stage
method that is robust not only with respect to the
noise on the data points but also with respect to the
unit normal estimates. This method is applied to
finding pipes in parts of large digitized industrial
environments, consisting of unorganized sets of 3D
points with a non-uniform density.

This paper is structured as follows. Section 2
describes the underlying principle of the approach
developed. Section 3 deals with the extraction al-
gorithm itself. The main algorithm is presented in
section 3.3, while sections 3.3.2 and 3.3.3 give a
more detailed description on each of the two steps.
Finally, section 4 presents experimental results, on
the extraction of pipes in real industrial scenes.

2 The main idea behind the approach

2.1 Parameters for the right circular
cylinder

r

u

p

Figure 1: Parameters for a right circular cylinder

The most intuitive way of defining a right circular
cylinder is to give a point � on the axis, a unit vector

	 for the direction of the axis, and a radius 
 (see
figure 1). Note that we are not concerned here with
the bounds or the height of the cylinder, which we
may consider infinite along its axis.

Obviously, there are other possible sets of param-
eters for defining a cylinder. See for instance [9] for
other geometric parameters, and [15] for a set of
five free parameters.
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2.2 The Gaussian image of a cylinder

u

0

Figure 2: The Gaussian image of a cylinder

The mapping from a point on a surface to the
unit normal of the surface at this point is called the
Gauss map [3]. The Gaussian image is simply the
result of the Gauss map when applied to the whole
set of surface points.

Special properties have been shown for ruled sur-
faces in [3]. In a simpler way, it is straightfor-
ward to see that the Gaussian image of a cylinder
— even not necessarily circular — is a great cir-
cle on the Gaussian sphere (see figure 2). Equiv-
alently, one can say that the Gaussian image of a
cylinder is the intersection of the Gaussian sphere
with a plane joining the origin. Our method is es-
sentially based on this remark, which is illustrated
in figure 2, where the Gaussian image of the cylin-
der of figure 1 is shown.

In our context, the scene consists of a set of 3D
points, not of ideal surfaces. Consequently, the
Gaussian image of a scene will denote the set of
unit normals estimated on the set of points. We as-
sume that a unit normal is estimated at each point
of the scene, and that an index gives access both to
the point and to the corresponding normal. More-
over, Gaussian images of scenes containing several
surfaces will be estimated (see figure 4). However,
the remark made on the Gaussian image of a cylin-
der still holds for our case: the Gaussian image of
a set of points lying on a cylinder is a set of points
on the Gaussian sphere that approximately lie on a
plane that goes through the origin. The points on the
Gaussian sphere belong to the plane up to a noise,
which is created during the estimation of the unit
normals on the set of 3D points.

Moreover, an important feature of the Gaussian
image of a cylinder is that it is symmetrical with
respect to the origin. This means that the exact ori-
entation of each unit normal is not needed. This
fact is interesting when one estimates unit normals

on an unorganized set of points, since the usual es-
timation procedure — which computes a local in-
ertial plane — does not yield an orientation. Note
that this property does no longer hold for Gaussian
images of surfaces like the cone.

3 The extraction method

The main extraction algorithm follows the idea of
[13], in that the primitives are extracted using ran-
dom samples of minimal size. As shown in [13], the
question of defining a cylinder through five points is
not simple, and is not analytic. Intuitively, it is the
direction vector that causes most of the trouble.

In contrast, the method we present here uses a
much simpler means to estimate the direction pa-
rameters. As described in section 2.2, the direction
of a cylinder may be estimated directly by a plane
on its Gaussian image. Hence, the first step of our
method consists in extracting such a plane on the
Gaussian image of a whole scene. The second step
deals with the estimation of the other parameters
of the cylinder, once the direction has been found.
Both steps use a random sampling algorithm and
minimal subsets of points.

3.1 Defining a plane through the origin by
two points

Let us first consider the problem of defining an
unconstrained plane from a minimal subset of 3D
points. In this case, a minimal subset is a set of three
non-collinear points. Indeed, any set of three non-
collinear points � � , � � , � � in � �

defines a unique
plane, whose parameters may be given as follows: a
point on the plane, say � � , and a unit normal vector� :

� �
� � � � � � � � � � � � � � �" � � � � � � � � � � � � � � � "

where # � % denotes the cross-product between #
and % in � �

.
In our case, we are more specifically interested in

extracting a plane joining the origin, since the Gaus-
sian image of a cylinder is a great circle. The plane
is then constrained, but can nonetheless be defined
in the same way as in the unconstrained case: one
merely needs to replace the point � � by the origin ' .
A set of two other points that are not collinear with
the origin are then enough to define such a plane.
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For our problem, introducing this constrained
plane is interesting for two reasons. First, one al-
ways gets a plane that goes through the origin, thus
avoiding cases where the plane might be nearly tan-
gent to the Gaussian sphere. Secondly, reducing the
minimal subset from three to two points speeds up
the extraction since less random samples are needed
(see [13] for a detailed discussion on the number of
random samples).

Note that since the Gauss map is not bijective,
extracting a plane on the Gaussian image will not
be enough to extract a cylinder directly. Indeed,
the plane on the Gaussian image may correspond
to points on several parallel cylinders, or on other
primitives such as planes that are parallel to the
cylinder.

3.2 Defining a cylinder of known direction
from three points

We assume that the unit direction vector 	 of the
axis of the cylinder is known here. Let us define an
orthonormal coordinate frame

� ' ( 	 ) + ) - � from the
known direction 	 . Any point in the plane ' . 	 0
— i.e., the plane perpendicular to 	 passing through
the origin ' — may be expressed as a linear combi-
nation of vectors + and - .

Given that 	 is known, the only parameters that
remain to be defined are a point � on the axis and
the radius 
 . It is clear that these parameters are the
ones of the circle obtained by a perpendicular cross
section of the cylinder. Finding these parameters
thus amounts to finding the parameters of a circle in
2D.

Furthermore, any set of three non-collinear
points in 2D define a unique circle, whose param-
eters — namely the 2D center 2 and the radius 3
—, may be derived analytically (see appendix A).
Then, once the parameters of the circular section
have been found, the parameters of the cylinder are
deduced: 
 � 3 , and � � 2 4 + . 2 6 - if 2 4 and

2 6 are the coordinates of the 2D center expressed
in the 2D coordinate frame

� ' ( + ) - � .

Hence, any set of three 3D points whose projec-
tions onto the plane ' . 	 0 are not collinear (and a
fortiori not equal) provide a value for the remaining
parameters of the cylinder.

3.3 The main algorithm

Our main algorithm uses the previous ideas in the
following way. First, the unit normal at each point
is estimated (off-line), classically by estimating the
inertial plane on a neighborhood of 9 nearest neigh-
bors. Note that the quality of the normal estimates
is sensitive to this size. If the size is small, the re-
sult might be noisy because of the noise on the data
points. If the size is large, normals estimated on
neighbor points may be very similar (smoothing ef-
fect). For our application, we chose to avoid the
smoothing effect arising with large sizes, by con-
sidering 10 nearest neighbors.

3.3.1 Overall description

We proceed as follows:
1. Extraction of a constrained plane in the Gaus-

sian image. A subset of points is obtained.
2. Extraction of cylinders on the extracted subset

of points.
The extraction of the plane in the Gaussian image

and the extraction of cylinders in the actual scene
follow the same general principle. Random sam-
ples of minimum size are iteratively chosen among
the set of points and a primitive through these points
is constructed. Then, for each relevant sample, a
merit function corresponding to the current primi-
tive is evaluated. In our implementation, the merit
function is the number of inliers, i.e. the number of
points that are located at a distance smaller than a
threshold from the primitive. This corresponds to
a binary merit function in the description given in
[13].

A related method, for the extraction of planes
with a width, has been investigated in [1].

3.3.2 Details on the constrained plane extrac-
tion in the Gaussian image

The main parameters for this routine are: the num-
ber of iterations, : N,max, the width for defining
the inliers, ; < , and the minimal number of inliers
for a plane to be accepted as a candidate, > N,min
(subscript N stands for ’Normals’). In this man-
ner, the number of iterations denotes the number of
planes that are likely to be the optimal plane, rather
than the whole set of tested planes. The whole step
may be outlined as follows:

Step 1
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While ( 9 ? : N,max) do
Choose 2 points at random in the Gaussian

image
If the 2 points and ' are not collinear, com-

pute the plane through these 3 points
Estimate the number of inliers for this plane
If this number is optimal, then update the op-

timal plane
Mark each point whose corresponding unit normal

lies on the extracted plane
Return the set of inliers and the direction 	 (as the

normal vector to the plane)

3.3.3 Details on the constrained cylinder ex-
traction

The main parameters for this routine are: the num-
ber of iterations, : B � max, the width for defining the
inliers ; B , the minimal number of inliers > P,min
for a cylinder to be accepted as a candidate, the
size of the neighborhood (subscript P stands for
’Points’).

With no control on the quality or relevance of the
cylinders found, one may get some cylinders that
do not exist in the scene. This is all the more true
when primitives of different types are present in the
scene. In order to tackle this problem, an extra crite-
rion has been added for a cylinder to be considered
as ’optimal’. This criterion is based on the heuris-
tics that whenever the cylinder found is wrong — in
the sense that there should be no cylinder at this lo-
cation —, the distribution of the points on the cylin-
der should be very sparse. The criterion currently
used consists in examining the angular distribution
of the points projected onto a perpendicular cross-
section. The whole range (2D ) is discretized into
NbAngularCells angular cells. A boolean se-
quence is then created, assigning a value — true
or false — to each cell according to whether the
number of points that fall in is larger than a given
threshold. Finally, the longest run of consecutive
’true’s in the sequence is measured. This represents
a measure of the angular range of the inliers for the
cylinder considered. If this range is smaller than
a threshold AngularThreshold (expressed as a
number of angular cells), the cylinder, being likely
to be a false fit, may not be considered as ’optimal’
in the algorithm.

At the end, if an optimal cylinder has been found,
the set of true inliers is computed. More precisely,
a few points of other primitives might actually lie

on the unbounded cylinder. In order to eliminate
these sparse points and compute the real bounds of
the cylinder, the distribution of the inliers along the
axis is examined. In a most similar way as for the
angular criterion, we compute a boolean sequence
of cells along the axis, and search the longest run
of consecutive cells for which the number of points
is larger than a threshold DensityThreshold.
This yields a filtering method, which might be com-
pared to region growing procedures.

Step 2

While ( 9 ? : N,max) do
Choose 3 points at random (in a neighbor-

hood)
If the set is not degenerate, compute the

cylinder whose direction is 	 (computed
in step 1) through these 3 points

Estimate the number of inliers for this cylin-
der

If this number is optimal and the angular cri-
terion is valid, then update the optimal
cylinder

Apply the filtering along the axis to get the actual
bounds

Mark the corresponding inliers and remove them
from the set of points for further processing

For extracting several cylinders, this method is
simply iterated, the number of iterations being spec-
ified by the user.

4 Results

Results are shown on three example scenes (fig-
ures 3, 6 and 8). These scenes are small parts of
complete environments, digitized by the SOISIC
range scanner, of company MENSI. They contain
mostly cylinders (scene 2), but also a small amount
of other surfaces (scene 3) and small unidentified
parts (scene 1). The number of points in the scenes
is approximately 5000 for scene 1, 25000 points in
scene 2, 6500 points for scene 3.

The main features of these scenes used are:
1. a non-uniform density of points (depending on

the distance of the object to the scanner, occlu-
sion)

2. a non-uniform noise (typically varying with
the distance to the scanner, with the angle of
scanning, etc.).
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However, by selecting constant widths ; B and ; <
over the whole scene, we implicitly assume that
the noise is approximately uniform on the selected
zone. This can be justified in the present experi-
ments, since small parts of the initial scene were
selected.

The parameters described in section 3 have
been set to the following values throughout
the experiments: : N,max

� 500, ; < � 0.1
(which corresponds roughly to a 6 de-
gree angle), > N,min

� 300 for the first step;
: B � max � 500, ; B � 5.0 mm, > P,min

� 100 for the
second step; also NbAngularCells � 50,
AngularThreshold � 10 (which cor-
responds to a G D I J angular threshold),
DensityThreshold � 10. The size of the
neighborhood (i.e. the number of nearest neigh-
bors) in step 2 has been set to 200.

Figures 5, 7 and 9 show that the cylinders are
effectively extracted from the point clouds, even
when other primitives or outliers are present, which
shows the inherent robustness of the approach. The
number of random samples in each step, namely

: N,max and : P,max, has been intentionally set to
a high value in order to minimize the effects of in-
dividual random samples. Results have shown to be
sensitive to the angular threshold, which was pre-
dictable, since the angular criterion is directly in-
volved in the choice of the optimal cylinder.

Figure 3: Scene 1. Input points

5 Conclusion and future work

In this paper a new method for extracting cylinders
in full 3D data has been presented. Its originality is
to separate the problem into two steps: an extraction

Figure 4: Scene 1. Gaussian image

Figure 5: Scene 1. Results

step on the Gaussian image to compute the direction
of a possible cylinder, and an extraction step on the
set of points to compute its size and location. Each
step uses a random sampling algorithm on minimal
subsets and is therefore inherently robust.

Further work will be done on the empirical com-
parison of the robustness of this approach with other
cylinder-specific extraction or fitting methods.

Another subject currently under investigation is
how cylinders may be extracted using a random
sampling algorithm from the mere set of 3D points.

Finally, future work will also include the study of
similar approaches for the extraction of other types
of primitives, such as the cone or the torus — cor-
responding to pipe bents and reducers in industrial
scenes. The final purpose is to integrate these ap-
proaches into a global extraction algorithm, where
primitives of different types would be simultane-
ously extracted.
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Figure 6: Scene 2. Input points
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A Parameters of the circle from three
points in 2D

Any set of three non-collinear points
� K M ) N M �

(1 P Q P 3) in � �
define a unique circle, whose pa-

rameters may be derived as follows. There holds:SSSSSSSS
� K � N � K � � . N � �� K � N � K � � . N � �� K � N � K � � . N � �� K N K � . N �

SSSSSSSS � T
(see the exact fit method [11] referred to in sec-
tion 1). Expanding this determinant through its bot-
tom row, one gets the equation:

� V � . K V X � N V Y . � K � . N � � V X [ ] Y [ � T
where the V ’s are the corresponding minor deter-
minants. Thus the center of the circle is given by:

2 � �G V X [ ] Y [ b � V XV Y c

Figure 7: Scene 2. Results

and the radius:

3 � d V �X . V �Y . f V � V X [ ] Y [G i V X [ ] Y [ i
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