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Abstract
We revisit coinductive proof principles from a lattice theoretic
point of view. By associating to any monotone function a function
which we call the companion, we give a new presentation of both
Knaster-Tarski’s seminal result, and of the more recent theory of
enhancements of the coinductive proof method (up-to techniques).

The resulting theory encompasses parametrised coinduction,
as recently proposed by Hur et al., and second-order reasoning,
i.e., the ability to reason coinductively about the enhancements
themselves. It moreover resolves an historical peculiarity about up-
to context techniques.

Based on these results, we present an open-ended proof system
allowing one to perform proofs on-the-fly and to neatly separate
inductive and coinductive phases.

Keywords Coinduction, Enhancements, Complete lattices, GSOS,
Parametrised coinduction

1. Introduction
Coinduction is a simple mathematical tool that follows from
Knaster-Tarski’s fixpoint theorem about complete lattices [14, 32].
It was first used implicitly, for instance in finite automata algo-
rithms [9, 10], until Milner popularised it by proposing bisimilarity
as a natural way to compare concurrent programs [19]. It was then
widely used, for instance to analyse other process-calculi [20], the
lambda-calculus [2], cryptographic protocols [1], distributed im-
plementations [8], concurrent ML [13], analytic differential equa-
tions [26], or C compilers [17, 29].

The reason for such a success is that like induction, coinduc-
tion provides a powerful proof technique: to prove some property
by coinduction, it suffices to exhibit an invariant. Typically, in pro-
gram semantics, one can prove the equivalence of two programs
by exhibiting a bisimulation relation that contains those two pro-
grams. The point there is that while program equivalence is a global
property (for instance, because equivalent programs should remain
equivalent under arbitrary contexts), the conditions for a relation
to be a bisimulation are local. By using coinduction one can thus
ensure a global property by checking only local properties. Very
much like induction allows one to reduce a proof about arbitrary
natural numbers to a proof about zero and successor.

From the beginning [19], Milner introduced enhancements of
the bisimulation proof method. They make it possible to work with
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relations that are much smaller than actual bisimulations and yet
ensure program equivalence: they are always contained in a bisim-
ulation. Those relations are usually called bisimulations up to. The
benefits of these enhancements can be spectacular; a bisimulation
up to can be finite whereas any enclosing bisimulation is infinite.
Sometimes it may be hard even to define an enclosing bisimulation,
let alone carrying out the whole proof. There are many possible en-
hancements, and they proved useful, if not essential, in proofs about
name-passing languages [6, 12, 28], languages with information
hiding mechanisms (e.g., existential types, encryption and decryp-
tion constructs [1, 30, 31]), and higher-order languages [15, 16].

Sangiorgi developed a first theory of those enhancements [27,
28], which the present author further refined [22–24]. In this line of
work, the emphasis was put on compositionality: given the wide va-
riety of enhancements, it is crucial to have tools to analyse each of
them separately, and then to combine them when needed in a con-
crete proof. Since enhancements do not compose in general, San-
giorgi proposed a notion of respectful enhancement. These form a
subclass of the valid enhancements, and they enjoy nice composi-
tional properties: they are closed under union and composition. One
can thus establish a dictionary of respectful enhancements, and then
use any combination of those in concrete proofs. In the author’s re-
finement of this framework, respectfulness was modified into com-
patibility, a slightly more natural notion which essentially plays the
same role but leads to a smoother theory.

Recently, Hur et al. proposed parametric coinduction [11], an
extremely neat variation on Knaster-Tarski theorem which allows
one to present coinductive proofs incrementally, without having to
exhibit the invariant (or bisimulation relation) from the beginning.
Such a possibility is especially useful in the context of mechanised
formal proofs: the process of discovering the appropriate invariant
becomes interactive and amenable to automation.

They also show in this paper how to exploit respectful enhance-
ments with parametric coinduction. When doing so, they define the
greatest respectful enhancement and they remark in passing that it
is so powerful that there is no point in using a different one.

In the present work, we start from this simple remark and we
push it to the limit. Rather than studying respectful or compatible
enhancements, we focus on the greatest one from the very begin-
ning. Unexpectedly, doing so leads us to a greatly simplified ab-
stract theory of enhanced coinduction, which encompasses respect-
fullness, compatibility, parametrised coinduction, and second-order
reasoning. More precisely:

• We obtain an alternative proof of Knaster-Tarski’s theorem,
where compatible enhancements play a central role. Conse-
quently, it becomes straightforward that compatible enhance-
ments can safely be used (Section 3).

• We characterise the greatest compatible enhancement as a
greatest fixpoint in the complete lattice of monotone functions.
This allows us to reuse our theory of enhanced coinduction at
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the second-order level, and to obtain powerful proof techniques
for establishing the validity of enhancements. While we already
used this approach before [22], focusing on the greatest com-
patible enhancement brings considerable simplifications and a
much cleaner presentation (Section 6).

• Similarly, the formal development of symmetry arguments,
which was rather painful to obtain before, gets greatly sim-
plified (Section 7).

• The distinction between respectful and compatible enhance-
ments vanishes in the new theory (Section 9).

• Parametric coinduction, as proposed by Hur et al. becomes
a byproduct of the theory. In particular, we derive a simple
proof system for parametric enhanced coinduction, where the
coinductive phases neatly alternate with the inductive phases
corresponding to the enhancements (Section 10).

We illustrate the first-order theory by considering bisimulation
proofs in CCS (Section 4) and in Rutten’s stream calculus (Sec-
tion 5). We moreover use the second-order theory to recover up-to-
context and congruence results in a compositional and elementary
way, for both CCS and the π-calculus (Section 8).

The presented theory and some of the examples have been
formalised as a Coq library, which is available from the following
webpage: http://perso.ens-lyon.fr/damien.pous/cawu

2. Notation and preliminary material
A complete lattice is a triple 〈X,6,

∨
〉 where 〈X,6〉 is a partial

order (reflexive, transitive, and antisymmetric) such that any subset
Y of X has a least upper bound

∨
Y : for all z ∈ X ,∨

Y 6 z iff ∀y ∈ Y, y 6 z

A complete lattice always has a bottom element, written ⊥, and a
binary join operation, written with infix symbol ∨:

⊥ ,
∨
∅ x ∨ y ,

∨
{x, y}

Arbitrary greatest lower bounds can be derived from the least upper
bounds. We shall only use binary ones (meets), which we denote
with the infix symbol ∧.

Standard examples of complete lattices include: subsets (of a
given set) ordered with inclusion; binary relations (on a given set)
ordered with inclusion again, and functions into a complete lattice,
ordered pointwise. A fourth example, used thoroughly in this paper,
is the set of monotone functions on a complete lattice.

More precisely, given a complete lattice 〈X,6,
∨
〉, a function

f : X → X is monotone if it preserves the partial order:

∀x, y ∈ X, x 6 y ⇒ f(x) 6 f(y)

We write [X → X] for the set of monotone functions on X .
When ordered pointwise, this set forms a complete lattice: for all
f, g : [X → X] and F ⊆ [X → X],

f 6 g , ∀x ∈ X, f(x) 6 g(x)∨
F , x 7→

∨
f∈F

f(x)

A post-fixpoint of a function f : [X → X] is an element x such
that x 6 f(x); a fixpoint is an element x such that x = f(x).

In the abstract developments of this paper, we mostly work
within a generic complete lattice X , the corresponding lattice of
monotone functions [X → X], and that of monotone functions on
[X → X]: [[X → X] → [X → X]]. To avoid confusion, we
use the following convention: letters x, y, z range over elements
of X , letters f, g, b, c, t range over functions in [X → X], and

uppercase letters F,B, S, T are reserved for functions in [[X →
X] → [X → X]]. We follow the same convention in concrete
examples, except that we use bold fonts.

This discipline allows us to overload most symbols in the se-
quel: for instance, depending on the context, ⊥ can denote the
empty set, the bottom element of an abstract complete lattice X ,
or the everywhere-bottom function in [X → X].

To further alleviate notation, we denote the identity function
by 1, and both function composition and function application by
juxtaposition:

• fx denotes the application of a function f to an element x,
usually written f(x);

• fg denotes the composition of two functions f and g, usually
written f ◦ g.

(Similarly for Fg and FB.) We associate juxtapositions to the
right when there is no ambiguity. For instance, we write fgx for
f(gx) = (fg)x, fgb for f(gb) = (fg)b, and TTf for T (Tf) =
(TT )f . In contrast, we keep parentheses in expressions such that
(Bf)g and B(fg) which are not equal in general.

3. Knaster-Tarski and Compatibility
Fix a complete lattice 〈X,6,

∨
〉 and pick a function b : [X → X].

Knaster-Tarski’s theorem characterises the greatest fixpoint νb of b
as the least upper bound of all its post-fixpoints:

νb =
∨
x6 bx

x
x 6 y 6 by

x 6 νb
(1)

The corresponding coinduction principle is given on the right-hand
side. In words, to prove that x is below in the greatest fixpoint,
find a post-fixpoint y above x. The idea of enhancements is to use
an additional function f and to look for post-fixpoints of bf rather
than b: we switch to the following principle of coinduction up to f

x 6 y 6 bfy

x 6 νb
(2)

The function f typically enlarges its argument, and the post-
fixpoints of bf can be much smaller than those of b; these are the
bisimulations up to we alluded to in the Introduction. The function
f corresponds to a valid enhancement when the above rule holds,
or, equivalently, when νbf 6 νb. Our primary goal is to obtain
such functions.

A monotone function f : [X → X] is compatible (for b) if
fb 6 bf . It is straightforward to check that 1 and b are compatible,
that the composition of two compatible functions is compatible,
and that the least upper bound of a family of compatible functions
is compatible.

Definition 3.1. We call companion of b the monotone function
obtained as the least upper bound of all compatible functions:

t ,
∨

fb6 bf

f

Lemma 3.2. The companion is compatible:

tb 6 bt (3)

Thus this is the greatest compatible function. It moreover satisfies

b 6 t (4)
1 6 t (5)
tt 6 t (6)

The last two inequalities entail idempotence, i.e., tt = t.
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Proof. Inequality (3) follows from the fact that supremum of a
family of compatible functions is compatible. That it contains b
and the identity (4,5) follows from the fact that those functions are
compatible. For (6), it suffices to notice that tt is compatible, by (3)
and the fact that composition preserves compatibility.

Our first result is the following alternative definition of the
greatest (post-)fixpoint, using the companion:

Theorem 3.3. The greatest fixpoint of b is the value of the com-
panion on the bottom element.

νb = t⊥ (7)

Proof. We first show that t⊥ is the greatest post-fixpoint:

1. t⊥ is a post-fixpoint:

t⊥ 6 tb⊥ (monotonicity of t)
6 bt⊥ (compatibility of t)

2. it is the largest: if x 6 bx, then the constant-to-x function x̂ is
compatible and thus smaller than t, so that x = x̂⊥ 6 t⊥.

We conclude that t⊥ is a fixpoint as in Knaster-Tarski’s proof: from
monotonicity of b and the first point, bt⊥ is also a post-fixpoint, and
thus bt⊥ 6 t⊥ by the second point.

Using idempotence of the companion, we also get

Corollary 3.4. The companion preserves the greatest fixpoint:

tνb = νb (8)

Typically, when b is the function defining bisimilarity on some
process calculus, we recover the fact that if contextual closure is
compatible (and thus below t) then bisimilarity is closed under
contexts.

Definition 3.5. We call enhancement of b the function b† , bt

This function is an improved version of b, with more post-
fixpoints (we have b 6 b†) but the same greatest fixpoint:

Theorem 3.6. The companion is a valid enhancement, we have

νb† = νb (9)

Proof. From (5) we deduce b 6 b†, and thus νb 6 νb†. The
interesting result is the other inequality. Since νb† is the greatest
post-fixpoint of b†, it suffices to show that any post-fixpoint x of b†

is smaller than νb. We have

tx 6 tb†x = tbtx (assumption on x and monotonicity of t)
6 bttx (t is compatible (3))

6 btx = b†x (by (6) and monotonicity of b)

Thus tx is a post-fixpoint of b, and tx 6 νb. We conclude with (5):
we have x 6 tx 6 νb.

Remark 3.7. In earlier work by Sangiorgi [27] and then by the
author [22], where the emphasis was on compatible functions rather
that on the greatest one (the companion), the corresponding result
is “if f is compatible, and x 6 bfx then x 6 νb”. Such a
result requires a convoluted proof. Indeed, when f is an arbitrary
compatible function, one does not have 1 6 f and ff 6 f ,
and the above proof breaks. Instead, one constructs the sequence
f0x , x, f i+1x , ff ix and one shows by recurrence that
f ix 6 bf i+1x. One deduces that fωx ,

∨
i f

ix is a post-fixpoint,
so that x 6 fωx 6 νb. Focusing on the companion makes it
possible to avoid this use of natural numbers.

A , P P
α−→ P ′

A
α−→ P ′ α.P

α−→ P

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′
P

α−→ P ′

P |Q α−→ P ′|Q

Figure 1. Labelled transition system of a fragment of CCS.

Remark 3.8. One might hope to enhance the function b further by
using the companion of b†. However we stagnate when doing so:
let t? be the companion of b†, we have

t? = t (10)

b†
†

= b† (11)

(The proof is given in appendix; note that Equation (10) actually
generalises Theorem 3.6: we have νb† = t?⊥ = t⊥ = νb.)

4. Modularity through the companion
We consider a first example in a fragment of Milner’s CCS [19]. Let
us recall this process calculus first. We fix a set of names a, b . . . ,
and a set of process constants A,B, . . . . CCS processes and labels
are defined by the following grammar:

P,Q ::= A | 0 | α.P | P |P
α, β ::= a | a | τ

We letR,S range over binary relations on processes.
The corresponding labelled transition system (LTS) is given in

Figure 1. The first rule accounts for recursion: it assumes that each
process constant is associated to a process in some global table. The
two symmetrical rule for parallel composition are omitted.

Let b be the following monotone function on the lattice of
binary relations on processes:

b : R 7→ {〈P,Q〉 | ∀α,
∀P ′, P α−→ P ′ entails ∃Q′, Q α−→ Q′ and P ′ R Q′

∀Q′, Q α−→ Q′ entails ∃P ′, P α−→ P ′ and P ′ R Q′ }
The so-called bisimulations are the post-fixpoints of b, and bisimi-
larity (∼) is its greatest-fixpoint.

An enhanced coinductive proof. Consider the following process
definitions, and let us try to prove that A ∼ B.

A , a.b.D B , a.b.C

C , a.(A|C) D , a.(B|D)

Any bisimulation containing the pair 〈A,B〉 must be infinite. In-
stead, the companion of b allows us work with the finite relation
S , {〈A,B〉, 〈C,D〉}: we have S 6 b†S.

Indeed, we have A a−→ b.D and B a−→ b.C. While the pair
〈b.D, b.C〉 does not belong to S, we can use the following func-
tions to cancel the b prefixes and to transpose C and D:

c. :R 7→ {〈α.P, α.Q〉 | α a label, P R Q}
i :R 7→ {〈Q, P 〉 | P R Q}

We thus have 〈A,B〉 ∈ bic.S. The function i is trivially com-
patible for b, and we shall see in Section 8.1 that c. is below the
companion of b, written t in the sequel. Whence ic. 6 tt 6 t, and
thus 〈A,B〉 ∈ b†S.

Similarly, we have C a−→ A|C and D a−→ B|D, and we use the
following function to cancel parallel composition and recover the
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two pairs from S:

c| :R 7→
{
〈P |P ′, Q|Q′〉 | P R Q,P ′ R Q′

}
This function is below t (see Section 8.1 again), so that we get
〈C,D〉 ∈ bc|S 6 b†S.

Note that thanks to companion, we only had to study transi-
tions along labels a and a, even though the processes at hand
also perform transitions labelled b and τ . (For instance, we have
A

abaτ−−−→ b.C|B|D). The fact that the starting processes cannot di-
verge one from the other using those actions is somehow factored
out once and for all, in the proofs that c. and c| are valid enhance-
ments.

Modularity. In this example, working with the companion rather
than with specific compatible functions is quite convenient: it does
not require us to announce a global up-to technique up-front. (Here,
something like ic. ∨ c|.) In each sub-case of the proof, we can
just extract from the companion whatever is needed for that case.
This approach is much more robust, especially in the context of
computer-assisted proofs. Suppose for instance that one slightly
changes the definition of D into b.(D|B). One can still conclude
by reasoning up to commutativity of parallel composition, and this
additional technique is already available in the companion: there is
no need to update the declared up-to technique, one just needs to
adjust the proof locally. (Of course one needs to prove that this new
kind of enhancement is available in the companion, but this can be
done separately, and once and for all.)

Code reuse. Although this was not needed in the previous exam-
ple, one can also show that the following function is compatible:

j : R 7→ {〈P, R〉 | ∃Q, P R Q, Q R R}
Thus j 6 t, and together with (6), jt 6 t. In other words, tR is
transitive for any relation R. More generally, from c., c|, i, j 6 t
and tt 6 t, we deduce that for any relationR, tR is a congruence
containing bothR and ∼.

In the context of proof assistants, this simple realisation makes
it possible to reuse standard technology for automating equational
reasoning (e.g., in the Coq proof assistant, setoid rewriting).

Also note that since ∼ = t⊥, we obtain as a special case that
bisimilarity is a congruence. In particular, once the aforementioned
technology has been settled for tR for an arbitrary R, tools for
equational reasoning about bisimilarity come for free.

5. Streams
As a second example, we consider the stream calculus, as devel-
oped by Rutten [26]. Let us denote by Rω the set of streams, i.e.,
infinite sequences σ, τ . . . of real numbers.

Together with the following function associating to each stream
its first element and its tail, Rω is a final coalgebra for the functor
FX = R×X

Rω → R× Rω

σ 7→ 〈σ0, σ
′〉

One can thus define streams by behavioural differential equations
(i.e., F -coalgebras). For instance, the everywhere-0 stream 0̂ can
be defined by the following equations:

0̂0 = 0 0̂′ = 0̂

Similarly, pointwise addition of streams can be defined by

(σ + τ)0 = σ0 + τ0 (σ + τ)′ = σ′ + τ ′

Shuffle product. Things become more interesting for more com-
plex operations. Take for instance the shuffle product of streams,

usually defined by the following formula:

(σ ⊗ τ)n =

n∑
k=0

(
n

k

)
× σk × τn−k

This operation can alternatively be defined using the following dif-
ferential equations, which no longer involve binomial coefficients:

(σ ⊗ τ)0 = σ0 × τ0 (σ ⊗ τ)′ = σ′ ⊗ τ + σ ⊗ τ ′

As noticed by Rutten, proving a simple property like associativity
can be difficult with the former definition, as it would involve
double summations of terms with several binomial coefficients. In
contrast, one can give a straightforward coinductive proof.

Let b be the following (monotone) function on binary relations
on streams:

b : R 7→
{
〈σ, τ〉 | σ0 = τ0 and σ′ R τ ′

}
One easily checks that its greatest fixpoint is just the identity rela-
tion: 〈σ, τ〉 ∈ νb iff σ = τ . One can thus prove stream equalities
by coinduction.

As a trivial example consider commutativity of stream addition:
it is immediate to see that the relation {〈σ + τ, τ + σ〉 | σ, τ ∈ Rω}
is a post-fixpoint of b; this relation is thus contained in the identity,
and stream addition is commutative.

Coming back to associativity of the shuffle product, we might
accordingly try to use the following relation:

S , {〈(σ ⊗ τ)⊗ ρ, σ ⊗ (τ ⊗ ρ)〉 | σ, τ, ρ ∈ Rω}

Unfortunately, this relation is not a post-fixpoint of b: assuming
distributivity has already been proved, we have

((σ ⊗ τ)⊗ ρ)′ = (σ′ ⊗ τ)⊗ ρ + (σ ⊗ τ ′)⊗ ρ + (σ ⊗ τ)⊗ ρ′

(σ ⊗ (τ ⊗ ρ))′ = σ′ ⊗ (τ ⊗ ρ) + σ ⊗ (τ ′ ⊗ ρ) + σ ⊗ (τ ⊗ ρ′)

and those two streams are not related by S. Like in the previous
example in CCS, we would like to cancel the two sums on both
sides, in order to recover three pairs in S. This is possible using
the companion of b: the following function is easily shown to be
compatible for b, so that S 6 b†S.

c+ :R 7→ {〈σ + ρ, τ + ω〉 | σ R τ, ρ R ω}

We have thus obtained a straightforward proof of associativity of
the shuffle product.

Exponentiation. Let us finally consider a third natural operation
on streams: exponentiation, defined by the following differential
equation:

eσ0 = eσ0 eσ ′ = σ′ ⊗ eσ

As expected, we have eσ+τ = eσ ⊗ eτ . To prove it by following
the same path as above, one is leaded to cancel a shuffle product,
thus calling for the following function:

c⊗ :R 7→ {〈σ ⊗ ρ, τ ⊗ ω〉 | σ R τ, ρ R ω}

While this function is indeed below the companion of b, it is not
compatible for b.

To understand why, let us try to prove compatibility of this
function, i.e., c⊗b 6 bc⊗. LetR be a relation. We have

c⊗bR = {〈σ ⊗ ρ, τ ⊗ ω〉 | σ bR τ, ρ bR ω}

So assuming σ bR τ and ρ bR ω, we have to show that
〈σ ⊗ ρ, τ ⊗ ω〉 ∈ bc⊗R. That (σ ⊗ ρ)0 = (τ ⊗ ω)0 is easy;
the problem comes from the tails of those streams:

(σ ⊗ ρ)′ = σ′ ⊗ ρ + σ ⊗ ρ′

(τ ⊗ ω)′ = τ ′ ⊗ ω + τ ⊗ ω′
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First we need to cancel the sum operation (using c+). Second,
while we have σ′ R τ ′ and ρ′ R ω′ by assumption, we only have
ρ bR ω and σ bR τ . In the end, instead of c⊗b 6 bc⊗, we have

c⊗b 6 bc+c⊗(b ∨ 1) (12)

We shall see in the following section that such a result nevertheless
ensures that the function c⊗ is below the companion of b, and can
thus safely be used in enhanced coinductive proofs about streams.

6. Compatibility up-to
In this section we show that the companion is a coinductive object.
This gives us powerful proof techniques to obtain enhancements.

Definition 6.1. Let B be the following function from monotone
functions on X to monotone functions on X:

B : [X → X]→ [X → X]

g 7→
∨

fb6 bg

f

Lemma 6.2. B is monotone, and for all functions f, g : [X → X],

f 6 Bg iff fb 6 bg (13)

In particular, f is compatible if and only if it is a post-fixpoint
of B, so that the companion is the greatest fixpoint of B:

t = νB (14)

We can thus reuse the machinery from Section 3 with B, in the
second-order lattice [X → X]. Let T the companion of B, and let
B† be the corresponding enhancement of B: B† , BT .

In the previous section, in the example about streams, we had a
first function c+, which was compatible and thus trivially below the
companion. In contrast, we claimed that the function c⊗ was below
the companion, although it is not compatible stricto senso: we do
not have c⊗b 6 bc⊗, i.e., c⊗ 6 Bc⊗ (where B is the higher-
order function associated to the function b from Section 5). Instead,
we had c⊗ 6 B(c+c⊗(b ∨ 1)). Using the results below, we will
deduce from this inequality that c⊗ 6 B†c⊗, so that c⊗ 6 νB:
the function c⊗ indeed lives below the companion.

In a sense, we face the standard scenario of bisimulation proofs,
but in the lattice of monotone functions: c⊗ is an obvious coin-
ductive candidate, but it is too weak, we should strengthen it to
get a post-fixpoint. Luckily, instead of doing so, we can use an en-
hancement to build on the knowledge accumulated so far about the
companion (in this case, that it contains c+, amongst other things.)

Getting back to the abstract framework, the second-order com-
panion T enjoys many good properties, listed in Proposition 6.4
below. We first need to establish a compatibility result for B.

Lemma 6.3. The function S : f 7→ ff is compatible for B.

Proof. We have

SB 6 BS

iff ∀f, (Bf)(Bf) 6 B(ff) (by definition of S)
iff ∀f, (Bf)(Bf)b 6 bff (by (13))

Fix some monotone function f : [X → X]. By taking g = f and
f = Bf in (13) we have (Bf)b 6 bf . Thus we get

(Bf)(Bf)b 6 (Bf)bf 6 bff

and S is compatible for B.

Proposition 6.4. For any function f : [X → X], we have

t 6 Tf (15)
b 6 Tf (16)
1 6 Tf (17)
f 6 Tf (18)

TTf 6 Tf (19)
(Tf)(Tf) 6 Tf (20)

In particular, Tf is always an idempotent function.

Proof. • (15): recall that t = T⊥, and T is monotone;
• (16),(17): trivial consequences of the previous point and (4)

and (5), respectively;
• (18),(19): respective instances of (5) and (6) forB (thus moving

to the lattice [X → X]);
• (20): by Lemma 6.3 we get S 6 T . Then it suffices to compute:

(Tf)(Tf) = STf 6 TTf 6 Tf .

Note that the way we obtain (20) is very similar to the way we
establish transitivity of tR at the end of Section 4.

Coming back to the example about the shuffle product on
streams, write t and T for the companions of b and B. It is now
straightforward to check that c+c⊗(b ∨ 1) 6 Tc⊗:

c+c⊗(b ∨ 1) 6 tc⊗(b ∨ 1) (c+ is compatible)

6 (Tc⊗)c⊗(Tc⊗ ∨Tc⊗)
(by (15), (16), and (17))

6 (Tc⊗)(Tc⊗)(Tc⊗) (by (18))

6 Tc⊗ (by (20) twice)

So from (12) we deduce c⊗ 6 B†c⊗ and thus c⊗ 6 t, as
announced earlier.

(Note that we chose to make the function c+c⊗(b∨ 1) explicit
here for the sake of explanation. In a direct proof, one would prove
c⊗ 6 B†c⊗ by extracting the required components out of Tc⊗ on
the fly, exactly as we did in Section 4 but at the second-order level.)

7. Symmetry arguments
We now give a rather general result allowing to exploit symmetry
arguments in various proofs. This result formally justifies standard
practice in bisimulation proofs with paper and pencil. When it
comes to formal, mechanised, proofs, it is crucial to have such
results, to factor the code and avoid cut-and-paste.

Let i : [X → X] be a monotone involution on X:

ii = 1 (21)

Call an element x ∈ X symmetric if ix = x (which is equivalent
to ix 6 x thanks to (21)). Call a function f : [X → X] symmetric
if fi = if (which is equivalent to f being compatible for i, again
using (21)).

As a concrete example in the lattice of binary relations, the
natural candidate for the function i is the transposition function
from Section 4:

i :R 7→ R−1 = {〈Q, P 〉 | P R Q}

With such a choice, a relation R is symmetric if R−1 = R, and a
function f is symmetric if f(R−1) = f(R)−1 for all relationR.

When the function b is symmetric, the following proposition can
be used factor out proofs about symmetric candidates, both at the
level of elements (X) and at the level of enhancements ([X → X]).
We instantiate this result in the following section, when reasoning
about bisimilarity in CCS and the π-calculus.
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P
α−→ P ′

P +Q
α−→ P ′

P
α−→ P ′

(νa)P
α−→ (νa)P ′

α 6= a, a
!P |P α−→ P ′

!P
α−→ P ′

Figure 2. Remaining rules for the LTS of CCS.

Proposition 7.1. Let s : [X → X] be a monotone function such
that the function b decomposes as follows:

b = s ∧ isi
Then νb is symmetric, it = t, and

1. for all x, y ∈ X with x symmetric,

x 6 bty iff x 6 sty (22)

2. for all f, g : [X → X] with f symmetric,

fb 6 bTg iff fb 6 sTg (23)

Proof. First of all, i is compatible for b:

ib = i(s ∧ isi) 6 is ∧ iisi = isii ∧ si = (isi ∧ s)i = bi

Whence i 6 t. With (6) and (21), it follows easily that it = t, of
which iνb = νb is a special case since νb = t⊥. In the subsequent
equivalences, the forward implications follow from b 6 s. For the
converse implications:

1. assume that x 6 sty with x symmetric. We have

x = ix 6 isty = isity

and thus x 6 sty ∧ isity = bty.
2. first note that (Tg)i = i(Tg): we have

i(Tg) 6 t(Tg) 6 (Tg)(Tg) 6 Tg

whence iTg = Tg by using (21); we get (Tg)i = Tg by a
similar argument.
Then assume that fb 6 sTg with f symmetric. We have

fb = fiib = ifbi 6 is(Tg)i = isiTg

and thus fb 6 sTg ∧ isiTg = bTg.

8. Examples: up-to congruence for CCS and pi
In this section, we illustrate the above framework by applying it
to recover up-to-context and up-to congruence for CCS and the
π-calculus, in compositional way. Indeed, thanks to the closure
properties of the companion, it suffices to show that the functions
associated to each syntactic construction are below t to obtain
the full context closure function. Combined with the fact that the
transposition function i and the squaring function j are also below
t, we will immediately obtain the full congruence closure.

8.1 CCS
For the sake of completeness, let us consider here the entire calcu-
lus of communicating systems [19]. In addition to the operations
used in Section 4, there is choice, name restriction, and replication.

P,Q ::= A | 0 | α.P | P |P | P + P | (νa)P | !P
α, β ::= a | a | τ

The additional rules for the labelled transition system are given in
Figure 2. (The symmetrical rule for choice is omitted.)

Recall the function b from Section 4, which we used to define
bisimilarity. Let s be the “first half” of this function:

s : R 7→ {〈P,Q〉 | ∀α, P ′,P α−→ P ′ entails

∃Q′, Q α−→ Q′ and P ′ R Q′ }

With such a function, we only play from left to right. The post-
fixpoints of s are the simulations, and its greatest fixpoint is similar-
ity. The composite function isi corresponds to simulations again,
but played from right to left. As expected the function b for bisim-
ilarity thus decomposes as required in Proposition 7.1:

b = s ∧ isi (24)

Applied in this setting, equivalence (22) is not so surprising:
when analysing the transitions of a symmetric bisimulation candi-
date, we can restrict ourselves to the left-to-right part of the bisim-
ulation game. Note that thanks to the companion, we do not need
y to be symmetric (because ty is). The second equivalence (23)
is quite important in the sequel: one can also restrict ourselves to
the left-to-right part of the bisimulation game when analysing the
behaviour of a potential enhancement, provided it is symmetric.

Following closely the syntax of the calculus, we define the
following functions on binary relations:

c. :R 7→ {〈α.P, α.Q〉 | α a label, P R Q}
c| :R 7→

{
〈P |P ′, Q|Q′〉 | P R Q, P ′ R Q′

}
c+ :R 7→

{
〈P + P ′, Q+Q′〉 | P R Q, P ′ R Q′

}
c! :R 7→ {〈!P, !Q〉 | P R Q}
cν :R 7→ {〈(νa)P, (νa)Q〉 | α a name, P R Q}

The functions c| and c. have already been defined in Section 4; we
include them here to emphasise the uniformity of those definitions.

Let c be one of the above functions; we want to prove c 6 t,
where t is the companion of b. From the results of Section 6, it
thus suffices to prove cb 6 bTc, where T is the companion of the
second-order function B associated to b. And since all the above
functions are symmetric, it suffices by (23) to prove

cb 6 sTc

For the “dynamic” operations that disappear after a single transition
(functions c. and c+), we actually do not need coinduction at all.
Routine computations lead to

c.b 6 sb c+b 6 s

(For c., we have c. 6 s.) This is fine because b, 1 6 T⊥ (16, 17).
Instead, we do need coinduction for the “static” operations,

which persist through transitions. The simplest is name restriction:
we have cνb 6 scν , and cν 6 Tcν by (18). Parallel composition
and replication require more care, we give detailed proofs to better
illustrate our method.

Lemma 8.1. We have c|b 6 sTc|, whence c| 6 t.

Proof. LetR be a relation, an let P,R,Q, S be processes such that
〈P,Q〉, 〈R,S〉 ∈ bR. We have to show that 〈P |R,Q|S〉 belongs
to sTc|. Thus suppose that P |R α−→ P0 and let us find some Q0

such that Q|S α−→ Q0 and 〈P0, Q0〉 ∈ Tc|R. There are four cases
according to the rules of parallel composition (Figure 1):

1. P0 = P ′|R′ with α = τ , and for some name a, P a−→ P ′,
and R a−→ R′. From our assumptions about 〈P,Q〉 and 〈R,S〉,
we obtain processes Q′ and S′ such that Q a−→ Q′, S a−→ S′,
P ′ R Q′ and R′ R S′. We deduce that Q|S τ−→ Q′|S′, and the
pair 〈P ′|R′, Q′|S′〉 belongs to c|R and hence Tc|R by (18).

2. same as above but with a and a exchanged.
3. P0 = P ′|R with P α−→ P ′. From the hypothesis about the pair
〈P,Q〉we obtain a processQ′ such thatQ a−→ Q′ andP ′ R Q′.
We deduce that Q|S α−→ Q′|S, and it remains to show

〈P ′|R,Q′|S〉 ∈ Tc|R

6 2016/1/19



This is not as direct as before: rather than R R S, we have
R bR S. From (18) and (20), we have c|Tc| 6 Tc|. There-
fore, it suffices to show that P ′ Tc|R Q′ and R Tc|R S. The
former holds thanks to (17); for the latter we use (16) instead.

4. P0 = P |R′ with R α−→ R′. This case is handled as above.

(Note that the above proof amounts to proving c|b 6 sc|(b∨1)
and then showing that c|(b∨1) 6 Tc| using the generic properties
of T—Proposition 6.4.)

Finally consider replication. This operation is quite challenging
as far as up-to techniques are concerned: there were a slight mistake
in [28], it requires specific rule formats [25], and people formalis-
ing up-to techniques in proof assistants have eluded this operation
so far [7, 21]. The techniques developed therein allow us to give a
much cleaner proof, thus amenable to formalisation.

Let us first discuss the LTS rule for replication.

• The one presented in Figure 2 is standard; it makes it trivial to
prove !P ∼ !P |P (which is the intended meaning) but it has
the drawback of making the LTS infinitary branching.

• The obvious rule “P α−→ P ′ entails !P
α−→!P |P ” is not enough

in presence of choice, as it does not allow !(a.0 + a.0) to
perform internal transitions.

• In his book about the π-calculus [28], Sangiorgi prefers to inline
the behaviour of parallel composition to keep the LTS finitely
branching. But this leads to duplication: there are two rules for
replication in CCS, and three in the π-calculus.

Here we propose a path which is agnostic about this choice: it relies
only on the following proposition, which is always valid in CCS
and in π, whatever their presentation.

Proposition 8.2.

(i) If !P
α−→ P0, then there exists P1 such that P |P α−→ P1 and

P0 ∼ !P |P1.
(ii) Conversely, if P |P α−→ P1, then there exists P0 such that

!P
α−→ P0 and P0 ∼ !P |P1.

We need another preliminary result:

Lemma 8.3. The following function is compatible.

k :R 7→
{
〈P,Q〉 | ∃P ′Q′, P ∼ P ′, P ′ R Q′, Q′ ∼ Q

}
Lemma 8.4. We have c!b 6 sTc!, whence c! 6 t.

Proof. LetR be a relation, let 〈P,Q〉 ∈ bR. We have to show that
〈!P, !Q〉 belongs to sTc!. Thus suppose that !P

α−→ P0 and let us
find some Q0 such that !Q

α−→ Q0 and 〈P0, Q0〉 ∈ Tc!R.
By Proposition 8.2(i), there is some P1 such that P |P α−→ P1

and P0 ∼ !P |P1. Now notice that

〈P |P,Q|Q〉 ∈ c|bR (by definition of c|)
6 tbR (by Lemma 8.1)
6 btR (the companion is compatible (3))

By definition of b, we thus obtain a process Q1 such that Q|Q α−→
Q1 and P1 tR Q1. We continue with Proposition 8.2(ii) which
gives us Q0 such that !Q

α−→ Q0 and Q0 ∼ !Q|Q1.
Summarising our assumptions, we have

!P
α−→ P0 ∼ !P |P1

P bR Q
P1 tR Q1

!Q|Q1 ∼ Q0
α←−!Q

It remains to show that 〈P0, Q0〉 ∈ Tc!R. This follows from the
closure properties of T (Proposition 6.4), and c|,k 6 t (Lem-
mas 8.1 and 8.3).

ab.P
ab−−→ P a(b).P

a(c)−−−→ P{c/b}

P
α−→ P ′

P |Q α−→ P ′|Q
bn(α)#Q

P
a(b)−−−→ P ′ Q

ab−−→ Q′

P |Q τ−→ P ′|Q′
P

a(b)−−−→ P ′ Q
aνb−−→ Q′

P |Q τ−→ (νb)(P ′|Q′)
b#P ′

P
α−→ P ′

(νb)P
α−→ (νb)P ′

b#n(α)
P

ab−−→ P ′

(νb)P
aνb−−→ P ′

a 6= b

Figure 3. LTS rules for prefix, parallel composition, and name
restriction in the π-calculus.

8.2 The π-calculus
The π-calculus [20] differs from CCS in that names can be passed
along synchronisations. We briefly recall the main definitions here,
referring to Sangiorgi’s book for a more detailed exposition of this
calculus [28]. The syntax of processes remains the same as in CCS,
only the notion of prefix changes:

P,Q ::= A | 0 | π.P | P |P | P + P | (νa)P | !P
π ::= a(b) | ab (prefixes)
α ::= π | aνb | τ (labels)

The prefix a(b) denotes the input on a of a name b, bound in the
continuation; ab denotes the output on a of a name b. Labels include
two additional constructs: τ for internal communications, and aνb,
for the emission of a private name b, bound in the continuation.

Concerning the (early) LTS, the rules for process constants,
choice, and replication are the same as in CCS, the other ones are
given in Figure 3. The three symmetrical rules for parallel compo-
sition are omitted. Processes are considered modulo alpha equiv-
alence. The functions n(·) (names of a label) and bn(·) (bound
names of a label) are defined as follows:

α a(b) ab aνb τ
n(π) {a, b} {a, b} {a, b} ∅

bn(π) ∅ ∅ {b} ∅
To define (early) bisimilarity, one can import the function b

from CCS almost as is. The only peculiarity is that we should ig-
nore bound output transitions aνbwhen b occurs free in the answer-
ing process. Indeed, one should equate the following processes

P , (νb)ab.0 Q , P |(νc)cd.0
(Because (νc)cd.0 is clearly equivalent to 0.) However, while P
can perform a transition labelled aνb for any b 6= a, the process Q
can only perform such a transition when b 6= a, d, because of its
free (yet useless) occurrence of d.

Whence the appropriate definitions of functions s and b:

s : R 7→ {〈P,Q〉 | ∀α, bn(α)#Q and P
α−→ P ′

entail ∃Q′, Q α−→ Q′ and P ′ R Q′ }
b , s ∧ isi

The functions c|, c+, cν , c! are defined exactly as in CCS; we
however replace the function c. with the two following ones:

co :R 7→ {〈ab.P, ab.Q〉 | a, b names, P R Q}
ci :R 7→ {〈a(b).P, a(b).Q〉 | a, b names, ∀c, P{c/b} R Q{c/b}}
The reason why we need such a quantification on all names c in
the definition of ci is that bisimilarity is not preserved by input
prefixes in the π-calculus: it is not closed under substitution, and
the input prefix brings such substitutions. Thus, the plain function
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corresponding to input prefix cannot be below the companion (it
always preserves bisimilarity (8)). Instead, the above definition of
ci takes into account the fact that b might be substituted later on.

Like in CCS, it is routine to check that we have

cob 6 sb cib 6 sb c+b 6 s

Whence c 6 t for c ∈
{
co, ci, c+

}
. Name restriction is no longer

compatible stricto-senso: we have

cνb 6 s(cν ∨ 1)

The identity comes from the opening rule, where name restriction
disappears. This is however sufficient to conclude that cν 6 t.

The proof for parallel composition also has to be slightly
adapted, to take care of the new side conditions in the rules, but
also because of scope extrusion: in the second synchronisation
rule, a name restriction appears, which was not there in CCS. Ac-
cordingly, one can prove

c|b 6 s(c|(b ∨ 1) ∨ cνc|)

Since we already obtained cν 6 t, this suffices to deduce c| 6 t.
Replication is handled exactly as in the previous section (our

proof of Lemma 8.4 is generic). The counterpart of Lemma 8.3
however requires more care, because of the condition on bound
output transitions in the definition of s. The problem is well-known:
although bisimilarity is transitive in the π-calculus, the composition
of two bisimulations is not always a bisimulation [28]. The reason
appears explicitly in the following proof.

Lemma 8.5 (Lemma 8.3 for π). In the π-calculus, the following
functions are below t

σ :R 7→ {〈σP, σQ〉 | σ injective name substitution, P R Q}
j :R 7→ {〈P,R〉 | ∃Q, P R Q, Q R R}
k :R 7→

{
〈P,Q〉 | ∃P ′Q′, P ∼ P ′, P ′ R Q′, Q′ ∼ Q

}
Proof. The function σ is actually compatible. In contrast, the
squaring function j is not compatible in π. We use second-order
enhancements and symmetry arguments to reduce the problem to
jb 6 sTj. To prove this inclusion, let R be a relation and assume
P bR Q and Q bR R for some processes P,Q,R. We have to
show that 〈P,R〉 ∈ sTj. Further assume P α−→ P ′.

• If α is not a bound output, then bn(α) = ∅ and the proof is
standard: we first get Q′ such that Q α−→ Q′ and P ′ R Q′, and
then R′ such that R α−→ R′ and Q′ R R′. We finally check that
P ′ jR R′, and thus P ′ TjR R′.

• If instead α = aνb, then we know by assumption that b#R,
but we would need b#Q to perform the first step above. Since
this might not be the case, we pick some name c fresh for both
P , Q, and R, and we use the permutation σ = (bc) to play a
challenge on aνc instead: we have P aνc−−→ σP ′ with c#Q, so
that we get Q′ such that Q aνc−−→ Q′ and σP ′ R Q′. Then since
c#R, we get R′ such that R aνc−−→ R′ and Q′ R R′. Since
b, c#R, it follows that R aνb−−→ σR′. We have σP ′ jR σR′.
Since σ is injective, we get σσP ′ σjR σσR′. From σσ = 1
and σ 6 t, we finally obtain P ′ TjR R′.

That k 6 t follows from j 6 t and the closure properties of t
(Lemma 3.2).

9. Respectful vs. compatible
Before turning to parametric coinduction, we discuss an historical
peculiarity which caused some troubles since the introduction of

up-to techniques, and which we can nicely solve by using the
companion function.

When Sangiorgi studied the bisimulation proof technique [27],
he introduced the notion of respectful function to obtain compo-
sitionality results. With the present notation, a monotone function
f : [X → X] is respectful (for b) if for all x, y ∈ X ,

x 6 y and x 6 by entail fx 6 bfy .

Let b′ , b ∧ 1 (i.e., b′y = by ∧ y). Without the assumption
x 6 y, respectfulness would be equivalent to compatibility (for b).
With this assumption, it is equivalent to compatibility for b′.

One can easily show that any compatible function (for b) is re-
spectful, but some interesting respectful functions are not compat-
ible. This is the reason why Sangiorgi needed this refinement. For
instance the context closure function in CCS is respectful but not
compatible. Hur et al. used respectfulness for the same reason [11].

In our own previous work [18, 22, 24], some of which with
Sangiorgi, we found that the theory of plain compatibility was
somewhat nicer to develop than that of respectfulness, so that we
proposed to use the function b′ rather than b when necessary (doing
so is always possible). Although this is not the only reason, Pohjola
and Parrow also chose a function b such that b = b′ in their theory
of up-to techniques for the psi-calculus [21].

In this paper, we used the most natural function b to define
strong bisimilarity in CCS, and this function does not satisfies
b = b′. So how is it possible that we could obtain up-to context?

The point is that with the companion function, we do not need
the up-to context function to be compatible stricto-senso. It just has
to be below the companion function t. For instance, in our proof
for the parallel composition operation in CCS, we obtained c|b 6
bTc|, which does not entail compatibility of c|.This contrasts with
the literature, where we would prove c|b′ 6 b′c|, i.e., that c| is
respectful (compatible for b′).

That we can recover up-to context in CCS and π without switch-
ing to b′ is not a coincidence: the greatest respectful function al-
ways coincides with the greatest compatible function:

Proposition 9.1. Let t′ be the companion of b′. We have t′ = t and
b′† = b†

Proof. Any function compatible for b is compatible for b′, whence
t 6 t′ (∗). Then we show b 6 b′t (∗∗). We have b′t = bt ∧ t; we
get b 6 bt using (5), and b 6 t is just (4).

To obtain t′ 6 t, we show that t′ is compatible for b:

t′b 6 t′b′t (by (∗∗))

6 b′t′t (compatibility of t′)

6 b′t′ (by (∗) and idempotence of t′)

6 bt′ (b′ 6 b′)

Finally, bt 6 b′tt = b′t 6 bt by (∗∗), idempotence of t, and
the fact that b′ 6 b. So that b′† = b′t′ = b′t = bt = b†.

In other words, the historical tradeoff between b and b′, or
compatibility and respectfulness, is irrelevant. The functions b and
b′ lead to the same coinductive proof principle once enhanced with
their companion. One can actually go even further and show that
obtaining specific up-to techniques is equally hard with b′ and b:
their (enhanced) second-order proof principles also collapse.

Proposition 9.2. Let B′ be the second-order function associated
to b′, and T ′ be the companion of B′ (so that νB′ = t′ = T ′⊥).
We have T ′ = T and B′† = B†.

Proof. The proof is slightly harder than the previous one; it is
given in appendix. Note that unlike b and b′, B and B′ cannot be
compared in general.
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10. Parametrised coinduction
Recall the coinductive proof principle, as provided by Knaster-
Tarski’s theorem:

x 6 y 6 by

x 6 νb

This approach has an important drawback: the need to define the
coinductive predicate (y) up-front. This does not match the stan-
dard practice, where the coinductive predicate is obtained incre-
mentally from x, by progressively extending it until it becomes a
post-fixpoint. In the context of a paper proof, one can always gather
the final coinductive predicate a posteriori, to display it at the be-
ginning of the proof. In the context of interactive formal proofs,
this becomes really inconvenient.

To solve this problem, Hur et al. proposed to use parametrised
coinduction [11]. The trick consists in defining an auxiliary func-
tion Gb : [X → X] with the following properties:

Gb⊥ = νb (25)
Gbx = b(x ∨Gbx) (26)

y 6 Gb(y ∨ x) ⇒ y 6 Gbx (27)

Concretely, they define Gbx as the greatest fixpoint of the function
z 7→ b(z ∨ x). Intuitively, Gbx represents what can be deduced
using x as a coinduction hypothesis. When x is empty, we get
the greatest fixpoint of b (25), this is how one initialises a proof
by parametric coinduction. The second equation (26) makes it
possible to unfold the bisimulation game: after having played b,
one can either use the coinduction hypothesis (x), or continue
the game (Gbx). Implication (27) makes it possible to accumulate
knowledge: to prove that y can be deduced from x, one can add y to
the current set of coinductive assumptions. Note that we do no have
y 6 Gby: implication (27) would obviously be wrong otherwise.
Instead, to get access to the coinductive assumptions, one needs
to go through b (the bisimulation game) at least once, using the
second equation (26). As explained by Hur et al., this corresponds
to having a semantic guardedness check for corecursive definitions.

Hur et al. also show how to use up-to techniques with parametric
coinduction, using the greatest respectful function (which coincides
with t, according to Section 9). As in the present paper, the idea is
to switch to b† = bt, and thus they use Gb† rather than Gb. To
be able to freely use up-to techniques in incremental proofs, they
prove a fourth equation [11, Theorem 13]:

Gb† = tGb† (28)

Surprisingly, we actually have

Theorem 10.1. Gb† = b†.

(This result is proved in the appendix; it is a simple consequence
of Theorem 10.2 below. Note that Gb 6= b in general: the compan-
ion plays a crucial role in the above theorem. Also note that with
such a characterisation, Equation (28), i.e., [11, Theorem 13], be-
comes a simple corollary: tGb† = tbt and bt 6 tbt 6 btt = bt.)

So we do not need the machinery of the Gb† function to imple-
ment parametric coinducion; it is already provided by the compan-
ion. Following this idea, we can actually present parametric coin-
duction with a finer granularity.

Let us first prove the following counterpart to (27):

Theorem 10.2. For all x, y ∈ X , if y 6 bt(y ∨ x) then y 6 tx.

Proof. Assume y 6 bt(y ∨ x) (H), and let f : z 7→
∨
x6z y. This

function maps the points above x to y and all other points to the
bottom element. In particular, fx = y, so that we have to show
fx 6 tx. We show a bit more, namely, that f 6 t.

y 6 t⊥
y 6 νb

INIT
y 6 x

y 6 tx
DONE

y 6 ftx f 6 t

y 6 tx
UP TO f

y 6 bt(y ∨ x)

y 6 tx
COIND

Figure 4. A proof system for parametric enhanced coinduction.

To this end, we use second-order coinduction up-to, and we
prove f 6 B†f , i.e, fb 6 bTf . Let z ∈ X . If x 66 bz, then
fbz = ⊥ 6 b(Tf)z. Otherwise, assume x 6 bz (H ′); we have

fbz = y (by definition of f and (H ′))
6 bt(y ∨ x) (by (H))
= bt(fx ∨ x) (by definition of f )

6 bt(fbz ∨ bz) (by (H ′))
= b(t(fb ∨ b))z

We easily check that t(fb∨ b) 6 Tf using Proposition 6.4, so that
we have fb 6 bTf , as required.

Intuitively, tx contains everything that can safely be deduced
from x, not necessarily in a guarded way. In particular, x can be
deduced from tx. Instead, btx = Gb†x is more restrictive and
corresponds to guarded deductions only: we do not have x 6 btx in
general. With this intuition, the above proposition reads as follows:
to deduce y from x, one can assume y provided one switches to
guarded deductions.

This leads us to the “proof system” given in Figure 4. The four
rules are valid: if their premises hold, so do their conclusion. The
first one is for initialisation: to prove that y is below the greatest
fixpoint, deduce it from the empty context. The second rule is an
axiom rule: if y belongs to the context x, then we can deduce y.
The third one makes it possible to use any enhancement known to
be below the companion. By stacking uses of this rule, one can
perform inductive (or equational) reasoning. The fourth rule is just
Theorem 10.2: it corresponds to an actual coinductive step. Also
note that since b 6 t, the third rule can be used to play one step of
the bisimulation game, without storing the current value of y in the
context. Doing so corresponds to using Equation (26) from Hur et
al.’ formalism.

To give an example, let us revisit the example from Section 4.
We wanted to prove that A ∼ B, and we guessed that the relation
S , {〈A,B〉, 〈C,D〉} could be used as a bisimulation candidate,
thanks to several enhancements. With the proof system from Fig-
ure 4, we can give a parametric-style proof, where we do not guess
the bisimulation candidate in advance.

〈A,B〉 ∈ S
〈A,B〉 ∈ tS (DONE)

〈C,D〉 ∈ S
〈C,D〉 ∈ tS (DONE)

〈A|C,B|D〉 ∈ tS
〈C,D〉 ∈ btS
〈C,D〉 ∈ t〈A,B〉
〈D,C〉 ∈ t〈A,B〉
〈b.D, b.C〉 ∈ t〈A,B〉
〈A,B〉 ∈ bt〈A,B〉
〈A,B〉 ∈ t⊥
A ∼ B (INIT)

(COIND)

(DEF. OF b)

(UP TO c. 6 t)

(UP TO i 6 t)

(COIND)

(DEF. OF b)

(UP TO c| 6 t)

As previously, the required enhancements do not need to be de-
clared up-front, they are extracted from the companion using the
third rule, when needed.
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A similar proof could be obtained using Hur et al.’ formalism,
but we think that the proof system from Figure 4 is cleaner as it
properly separates concerns: the main judgement is of the shape
x 6 ty: “deduce x from y” either inductively or coinductively. The
guardedness constraints appear only right after a coinductive step
(rule COIND), where the judgement temporarily takes the shape
x 6 bty: “deduce x from y in a guarded way”. In such a situation,
after playing the game once, i.e., going through the definition of b,
we get back to the original judgement.

Lastly, we left aside the proofs of c., c|, i 6 t in the above
example, because we obtained them once and for all in Sections 4
and 8.1. Note however that the third rule (UP TO) allows us to jump
to the next level in the middle of a proof: since t = νB = T⊥,
one can fulfill its second premise by using the same proof system.
In fact, by the results of Section 6, these four rules cover not
only enhanced coinduction, but also the enhancements themselves.
Nothing prevents us from continuing with the next level again,
although we did not find any concrete application so far.

11. Directions for future work
GSOS is a rule format that was introduced to ensure congruence
properties for bisimilarity [4]. We have recently shown that it also
gives rise to a respectful contextual closure function: up-to con-
text can always be used for GSOS specifications [5]. In light of the
present results, we can deduce that such a closure is always con-
tained in the companion in two ways: first by reusing the existing
proofs of respectfulness and switching to the companion by Propo-
sition 9.1; second, by an easy generalisation of our treatment of
CCS (Section 8.1).

The later approach is rather intriguing from a categorical point
of view. Indeed, GSOS specification can be seen abstractly as
distributive laws [3, 33]. More precisely, when Σ is the functor
corresponding to a term signature, and whenFX = (PωX)A is the
functor whose coalgebras are the finitary branching LTS with labels
inA, we have that a GSOS specification is exactly a distributive law

Σ(F × Id)⇒ FT

The fact that we have F × Id on the left makes it quite natural
to consider respectfulness rather than compatibility when studying
up-to-context techniques in this setting. The present results how-
ever suggest that there might be a more direct path, by using a cat-
egorical version of the companion.
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A. Omitted proofs
Proof for Remark 3.8. First note that the function mapping a func-
tion to its companion is not monotone, so that the inequality t 6
t? (?) does not follow directly from b 6 b†. Instead we show that t
is compatible for b†:

tb† = tbt 6 btt = b†t (by (3))

Similarly for the converse inequality, we show that t? is compatible
for b:

t?b 6 t?b† (by (5))

6 b†t? (by (3) for b†)

= btt? (by definition)

6 bt?t? = bt? (by (?) and idempotence of t?)

The second equality follows:

b†
†

= b†t? = b†t = btt = bt = b†

Proof of Proposition 9.2. First recall from Proposition 9.1 and its
proof that t = t′ and b 6 b′t (**). Let S be either T or T ′; we first
show

BS = B′S (29)
Let f, g : [X → X], we have

f 6 B′Sg ⇔ fb′ 6 b′Sg (by (13))

⇔ fb′ 6 bSg (because b 6 Sg)

⇐ fb 6 bSg (because b′ 6 b)
⇔ f 6 BSg (by (13))

(in the second step, we use b 6 b′t to deduce b 6 S when
S = T ′.) Thus BS 6 B′S. Conversely, suppose that f 6 B′Sg,
i.e., fb′ 6 bSg. Then we have

fb 6 fb′t (by (**))
6 b(Sg)t (by assumption)
6 bSg (because t 6 Sg)

whence f 6 BSg, and consequently B′S 6 BS. Equation (29) is
thus proved.

Now to prove T = T ′, we prove that T is compatible for B:

TB′ 6 TB′T = TBT = BT = B′T

and that T ′ is compatible for B:

T ′B 6 T ′BT ′ = T ′B′T ′ = B′T ′ = BT ′

We finally conclude: B′T ′ = B′T = BT .

Proof of Theorem 10.1. First note that we can strengthen the con-
clusion of Theorem 10.2 into y 6 btx. Indeed, from the hypothesis
(y 6 bt(y ∨ x)) and the stated conclusion (y 6 tx) we deduce
y 6 bt(tx ∨ x); then we check that t(tx ∨ x) = tx.

Now recall that Gb†x is the greatest fixpoint of the function
z 7→ bt(z∨x). By monotonicity of bt, btx is a post-fixpoint of this
function: btx 6 bt(btx ∨ x); thus btx 6 Gb†x. To prove Gb†x 6
btx, we use the aforementioned refinement of Theorem 10.2 and
the fact thatGb†x is a post-fixpoint, i.e.,Gb†x 6 bt(Gb†x∨x).
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