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Control invariant partition for heterogeneous Multi-Agent dynamical
systems

M.T. Nguyen, C. Stoica Maniu, S. Olaru

Abstract—This paper aims to present a novel constructive
framework for the functioning zone assignment of linear het-
erogeneous Multi-Agent dynamical systems, in order to improve
the operation safety in a decentralized manner. The main
contributions are related to partitioning the working space of
this global system into multiple non-overlapping regions. The
construction of the partition is mainly based on the desired
position of each agent in a predefined formation and subject
to constraints related to the local dynamics of the agents. Each
region is assigned to one agent and subsequently guaranteed to
be control invariant by applying an optimization-based decen-
tralized control. A numerical example will be shown in order to
prove the effectiveness of the proposed approaches.

Index Terms—Multi-agent dynamical systems, set-theoretic
tools, decentralized control, collision avoidance constraints

I. INTRODUCTION

The attention for Multi-Agent dynamical Systems raised in
the recent years due to their various applications, such as traffic
control, robotics or spacecraft operations. For such applica-
tions, the collision avoidance is one of the most important
features, being related to the mission safety of the whole
Multi-Agent System (MAS). This problem becomes even
more challenging when considering MAS of large dimensions,
which are also affected by possible disturbances issued from
the environment. In this context, centralized approaches are not
appropriate to solve the collision avoidance problem due to the
important computation and communication load. To overcome
these drawbacks, decentralized approaches are mentioned (e.g.
[1], [2], [3]) but without a complete stability proof in the
presence of adversary constraints as the collision avoidance.

Recent results have been reported on the application of set-
theoretic and optimization tools to design the control with
respect to a set of obstacle avoidance constraints [4] and fur-
ther collision avoidance constraints for Multi-Agent dynamical
systems [3]. The authors of [4] pointed out that regulating a
system with respect to a set of obstacle avoidance constraints
is equivalent to control the system around an equilibrium point
which is on the boundary of its admissible domain, represented
as a convex polyhedral region. In [3], the sets characterizing
each agent are obtained and the collision avoidance constraints
are guaranteed if these sets do not overlap. Furthermore,
a feedback control with respect to the obstacle avoidance
constraints for a single agent is proposed in [3].

In order to overcome the complexity of a centralized ap-
proach, a decentralized approach using the leader-follower
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structure is considered in the present study. In this approach,
an agent can communicate only with its closest neighbors
which allows to reduce the communication task. However,
this requires that each agent is authorized to operate within a
restricted zone, called functioning zone to ensure the collision
avoidance. In addition, these zones do not intersect and their
union defines a partition of the working space. Some notable
recent results are reported on the application of Voronoi
diagrams to partition the working space of MAS. In [5], the
authors used the lifting map technique to construct a static
Voronoi diagram for a set of points. This diagram is described
in terms of solving an optimization problem. Another recent
result in [6] employed an optimal control technique to obtain
a Voronoi partition for a set of continuous-time dynamical
agents and the dynamics of agents are employed in the Voronoi
diagram construction.

In this context, the aim of the present paper is to propose a
decentralized control strategy to deal with the collision avoid-
ance constraints for a group composed of one leader agent
and its followers. This strategy is based on the extension of
controlled invariance results for linear time-invariant systems.
The proposed approach is composed of two main steps. The
first step concerns how to partition the working space into
multiple non overlapping functioning zones. The second step
is to design a control strategy to keep the agent operating in
its functioning zone.

The remainder of the paper is organized as follows. The
useful notations throughout this paper are briefly presented
in Section II. Some important prerequisites and the problem
formulation are presented in Section III. The control strategy
to keep an agent operating within its functioning zone is
proposed in Section IV, once a partition is determined. The
partition construction subject to the dynamics of the agents is
presented in Section V. Finally, numerical simulation results
are illustrated in Section VI, followed by some concluding
remarks and perspectives in Section VII.

II. MATHEMATICAL NOTATIONS

0n,m will represent a zero matrix in Rn×m. Given two
matrices P,Q ∈ Rn×m, diag{P,Q} and col{P,Q} denote
respectively the block diagonal matrix and the block column
matrix of P and Q. Q = Q> � 0 implies that Q is a
symmetric strictly positive definite matrix.
A⊕B = {a+ b|a ∈ A, b ∈ B} denotes the Minkowski sum

of two sets A and B. Conv{vi} denotes the convex hull set
of a given set of vertices V = {vi|vi ∈ Rn}. int(A) denotes
the strict interior of the set A.



The set C(G) = {x ∈ Rn|Gx ≤ 0p,1, G ∈ Rp×n} denotes
the polyhedral proper cone.

The following definitions and results are recalled in order
to facilitate the comprehension of this paper.

Definition 1. [7] Consider an autonomous linear system x+ =
Ax + w. A set S is called robustly positive invariant (RPI)
for this system, if x+ ∈ S for all x ∈ S, w ∈ W , which is
equivalent to AS ⊕W ⊆ S .

Definition 2. [4] Given the system dynamics x+ = Ax+Bu,
a set S ∈ Rn is control invariant, if for any x ∈ S there exists
a control action u such that Ax + Bu ∈ S . If u = Kx then
S is linearly control invariant.

Definition 3. [8] A set S = {x ∈ Rn|Gx ≤ θ} is positively
invariant with respect to the system dynamics x+ = Ax if
and only if there exists a matrix H ∈ Rn×n with non-negative
elements, such that GA = HG and Hθ ≤ θ.

Definition 4. A polyhedron P can be represented as a linear
combination of its vertices vi and its rays ri i.e. P = {x ∈
Rn|x =

p∑
i

λivi +
q∑
i

γiri,
p∑
i

λi = 1, 0 ≤ λi ≤ 1, γi ≥ 0}.

Lemma 1. [9] Consider the system x+ = Ax + w, with
a Schur matrix A and a non-negative vector w such that
|w| ≤ w̄, ∀w ∈ W ⊂ Rn. Let A = V JV −1 be the Jordan
decomposition of A. Then the set ΩUB = {x ∈ Rn||V −1x| ≤
(I − |J |)−1|V −1w̄|} is robustly invariant (RI) with respect to
the system’s dynamics.

III. PREREQUISITES AND PROBLEM STATEMENT

A. Properties characterizing an agent

Consider a leader-follower sub-system Σi composed of the
ith agent as leader and its N followers. F i is the set of indices
of the followers for the ith agent (identified by the existence
of a connection to the node i). The nominal discrete-time
dynamics equation of the jth follower is:

x+
j = Ajxj +Bjuj , j ∈ F i (1)

where xj ∈ Rn and uj ∈ Rm are respectively its nominal
state vector and input vector. The pairs (Aj , Bj) are assumed
to be stabilizable, with Aj ∈ Rn×n and Bj ∈ Rn×m. In
the presence of disturbances, the model of the jth follower is
considered to account for it additively:

x̃+
j = Aj x̃j +Bj ũj + wj (2)

where wj ∈ Wj is the disturbance vector, x̃j ∈ Rn and
ũj ∈ Rm are the jth follower’s real state and input vector,
respectively. We assume that Wj ⊂ Rn is bounded and
contains the origin in its strict interior.

If the robust control input vector in (2) has the following
form:

ũj = uj +Kj (x̃j − xj) (3)

then, by denoting ej = x̃j − xj as the tracking error of the
jth follower, we can obtain e+

j = (Aj +BjKj)ej + wj .

By applying Lemma 1, a RPI set Sj is constructed (see
[10]), ensuring that ej(t) ∈ Sj at each considered time instant
if ej(0) ∈ Sj .

The set Sj is considered as a basic geometrical form for the
safety region around the jth follower. Although the real state
x̃j is unknown due to disturbances wj , its trajectory is always
bounded by the tube:

S(xj) = {xj} ⊕ Sj (4)

Therefore, the nominal dynamics (1) together with its robust
tube-based safety region (4) is further used to designate a
follower and furthermore an agent in general.

The collision avoidance constraint between two agents can
be described via the exclusion of their safety regions i.e.
S(xi) ∩ S(xj) = ∅ or xj − xi /∈ Sji = {−Sj} ⊕ Si,∀i 6= j.

B. Control design subject to collision avoidance constraints

For the nominal sub-system Σi, the local control of the jth

follower is uj = ūij + Kj(xj − x̄ij), with x̄ij = x̄j + xi and
ūij = ūj + ui. The pair (x̄j , ūj) denotes the admissible fixed
point of the jth follower determined in the neighborhood of
the origin. Without loss of generality, the origin is considered
to be the fixed point for the leader of Σi. The pair (x̄j , ūj)
are obtained by solving the following optimization

x̄∗j = argmin
ūj

‖x̄j‖ (5a)

subject to:

x̄j /∈ {−Sj} ⊕ Si (5b)
x̄j = Aj x̄j +Bj ūj (5c)

The constraint (5c) characterizes the admissible points on the
equilibrium hyperplane (In − Aj)x̄j = Bj ūj , with the affine
terms parametrized by ūj . Moreover x̄j = 0 if and only
if ūj = 0 proving that the origin lies in this hyperplane.
The expression (5b) presents the collision avoidance constraint
between the jth follower and its leader corresponding to the
origin.

Fig. 1 shows the equilibrium hyperplanes and the fixed
points of three followers around their leader x̄0. The convex
polyhedrons represent their safety regions.

Remark 1. The expression (5b) can not guarantee the col-
lision avoidance between this follower and its neighbors. To
overcome this drawback, the fixed points of all followers in
Σi can be determined by the leader (see [3]). In the present
paper, we consider only the case when the solutions of (5) do
not violate the collision avoidance between the followers.

For the simplicity of notation, instead of determining the
functioning zone relative to the current state of the leader,
the problem can be translated without loss of generality to a
positioning relative to the origin. Hence we can simplify the
notations as x̄ij = x̄j and ūij = ūj and rewrite the anti-collision
constraint as

xj /∈ Sji = {−Sj} ⊕ Si (6)



Fig. 1. Fixed points of 3 followers around the leader.

According to the property of the Minskowki sum, the set Sji
is convex and contains the origin.

The constraint (6) implies that the evolution of xj has to
avoid the forbidden set Sji . In other words, xj will converge
to a fixed point x̄j on a supporting hyperplane {Gx = Γ} of
the polyhedral set Sji while avoiding the collision with Sji.

This requires to design a feedback control:

uj = Kj(Hj)xj (7)

which makes the half-space Hj = {x ∈ Rn|Gx ≥ Γ} positive
invariant and also stabilizes (1). Gx ≤ Γ are the set of
half-spaces forming the boundary of Sji activated by x̄j . By
construction, Hj belongs to the complement set of int(Sji).

The affine term Γ can be neglected if the initial cone Hj is
shifted to the origin (via a change of coordinates), leading to
a proper cone.

According to [4], the linear 1 control law (7) exists if and
only if there exist a non-negative matrix Fj and Pj = P>j � 0
such that:

G (Aj +BjKj) = FjG (8a)[
δPj (Aj +BjKj)Pj

P>j (Aj +BjKj)
>

Pj

]
� 0 (8b)

with the decision variables Fj , Kj(Hj) and Pj . The constraint
(8a) expresses the invariance condition according to Definition
3, while (8b) formulates the Lyapunov stability constraint, with
0 < δ < 1 the rate of convergence.

A method to solve (8) is detailed in [4]. In the present paper
we start from the assumption that (8) is feasible.

Consider a polyhedral set Cj containing the origin and
the local feedback control uj = Kj(Hj)xj defined over Cj
and obtained by solving (8). Clearly, the local control uj is
determined independently of Cj . Hence, the entire set Cj is
not control invariant but there still exists a control invariant

1In the general case, an affine control law can be used in order to handle
fixed-points different from the origin.

subset Ωj ∈ Cj . The set Ωj can be characterized in terms of
the Maximal Output Admissible Set (see [11]) associated with
the local control uj = Kj(Hj)xj . The algorithm to construct
iteratively Ωj is detailed in [11].

C. Problem formulation

In the centralized approach, all collision avoidance con-
straints have to be taken into account while designing the
control strategy for the entire system. The number of these
constraints and their non-convexity burn a considerable com-
putation effort, making the centralized approach not suitable.
As briefly mentioned in Section I, these drawbacks can be
addressed by using a leader-follower structure. In this frame-
work, the communication is restricted only between a follower
and its leader. However, to ensure the collision avoidance, each
follower has to operate within its restricted functioning zone.
These zones do not intersect (in order to avoid collisions) and
their union defines a partition of the working space.

This is particularly interesting for the plug-and-play control
point of view because the partition is the only thing to be
reconfigured when an agent leaves the formation (for instance
due to a fault) or in case of integration of a new agent to
the current formation (e.g. a recovered agent from a faulty
situation).

However, this partition has to be suitable for the local
dynamics of all the followers and also with the desired fixed
points of the followers relative to the current leader’s state.
In other words, the local feedback control of a follower
is determined with respect to the anti-collision constraints
between its dynamics and the one of the leader. Thus not
its entire functioning zone but only a region in the interior
of the functioning zone is control invariant by the predefined
feedback control. To construct such control invariant partition,
we propose to design an interpolation-based control which
drive all followers states towards their corresponding invariant
zone and then switch to the local feedback control.

IV. INTERPOLATION BASED CONTROL

The principles of the interpolation-based control were de-
tailed in [12]. We extend this approach for a proper cone.

Consider a proper cone H and the maximal output admis-
sible set Ω ⊆ H associated with the linear time invariant
dynamics (1) in the presence of a local control uΩ = Kx.
The control law u is defined as a convex combination of uΩ

and a vertex control law associated with a N-step Robustly
Controlled Set PN ⊆ H. As a particularity, in the present
case we would like to enforce PN = H but this goal can face
a structural problem whenever the interpolation step has to
deal with the unbounded functioning region H in conjunction
with input constraints. In this case the feasible region for
the interpolation scheme will be restricted to the maximal
controllable set inside H.

From the constrained control law computation, it will be
considered that either PN or a convex (polyhedral) controlled
invariant subset Φ ⊇ Ω is available together with a feasible



control action on the boundaries of Φ denoted uΦ (the so-
called vertex control [13]). Therefore, the interpolated control
action becomes

u = βuΦ + (1− β)uΩ, 0 ≤ β ≤ 1 (9)

where β and uΦ have to be calculated in real time. The
component uΦ will be activated when x ∈ (Φ \ Ω) and
the scalar β has to be minimized under convex (polyhedral)
constraints in order to get u as close as possible to uΩ.

For simplicity, consider the set Φ scaled out from Ω with
the restriction to the functioning set H. The scaling of the set
Ω will be done with respect to the fixed point x̄ in order to
preserve the control invariance of Φ.

Proposition 1. An outer candidate set Φ for the interpolation
is defined as Φ = ({x̄} ⊕ µΩ0) ∩ H with µ found by solving
the following Linear Programming (LP) problem:

min
µ
µ s.t.

{
x ∈ ({x̄} ⊕ µΩ0)
µ ≥ 0

(10)

with Ω0 = {−x̄} ⊕ Ω and x the current state.

The construction procedure provides the two interpolation
terms Φ and Ω for the constrained control design. We present
next how to effectively obtain the vertex control action uΦ and
then the interpolation coefficient β.

The determination of the vertex control uΦ exploits the fact
that its objective is to push the state x away from the boundary
of Φ towards its interior, or alternatively x+ ∈ αΦ with the
minimal contraction factor α. This can be done by solving the
following LP problem:

uΦ = min
α,uΦ

α s.t.
{
Ax+BuΦ ∈ αΦ
0 ≤ α ≤ 1

(11)

Proposition 2. The optimization problem (11) is recursively
feasible if H is control invariant.

Proof. The set Φ is defined as the intersection of two sets in
Proposition 1. The set x̄ ⊕ µΩ0 is linearly control invariant
by construction. If H is control invariant then the feasible set
of (11) is the intersection of controlled invariant set and the
problem is feasible.

For the determination of the scalar β, we exploit the fact that
the control u is obtained as an interpolation of uΩ and uΦ and
has to be as close as possible to uΩ which has a local linear
control structure around x̄. This desideratum can be translated
in terms of an optimization problem (12). Consider u = βuΦ+
(1−β)uΩ, and x decomposed as x = βxΦ +(1−β)xΩ, where
xΦ ∈ Φ and xΩ ∈ Ω. Let Φ = {x ∈ Rn|FΦx ≤ kΦ} and
Ω = {x ∈ Rn|FΩx ≤ kΩ}. Then the following optimization
problem is obtained:

min
β,xΩ,xΦ

β s.t.


FΦxΦ ≤ kΦ

FΩxΩ ≤ kΩ

βxΦ + (1− β)xΩ = x
0 ≤ β ≤ 1

(12)

Although the problem (12) is nonlinear, we can translate it
into a LP problem following the artifact proposed in [12], by
using a change of variable r = βxΦ. Thus (12) becomes:

min
β,r

β s.t.

 FΦr ≤ βkΦ

FΩ(x− r) ≤ (1− β)kΩ

0 ≤ β ≤ 1
(13)

Solving respectively (10), (11) and (13) in real time provides
the interpolation factor and implicitly the control u = βuΦ +
(1− β)uΩ.

We show the effectiveness of our idea in Fig. 2. The fixed
point chosen is the origin. Given an initial state x(0) /∈ Ω, we
solve firstly (10) to construct Φ. Subsequently, we solve (11)
to get uΦ and further (13) to get u. We see that x is driven
from the boundary of Φ (yellow) into Ω (blue).

Fig. 2. Behavior of the of the jth follower towards Φ and Ω

The drawback of this procedure is that the feasibility of (11)
is ensured if and only if the entire set Φ is control invariant.
However from the definition of Φ in Proposition 1, the control
invariance of Φ = Ω∩H is not guaranteed. The main reason is
that although Ω = {x̄}⊕(µΩ0) is control invariant, the control
invariance of H is not granted. As underlined in Proposition
2, the expression (11) is feasible if and only if H is control
invariant. This leads to the idea of adjusting the given set H
to guarantee the control invariance of the interpolation-based
control strategy.

In our case, the set H represents a functioning zone Cj ,
with j ∈ F i. Hence, we propose to guarantee the control
invariance just for a subset in Cj . This implies finding a
partition appropriate to the local interpolation-based control
in the functioning zone. A new method to deal with such
requirement is presented in the next section.

V. PARTITIONING THE FUNCTIONING ZONES

In the sequel, we use the following definition of a partition
for a Multi-Agent system:

Definition 5. Given a Multi-Agent sub-system Σ composed of
N agents, a partition P[Σ] for the state-space with respect to
Σ is a set of N polyhedral convex cells Cj which satisfy



• Cj ∩ Ck = ∅,∀j, k ∈ N , j 6= k;
• P[Σ] =

⋃
j∈N
Cj;

• x̄j ∈ int(Cj),∀j ∈ N .

We will present in this section a methodology to construct
a partition P[Σ]. We recall that Σ contains an unique leader
agent hence for brevity, the leader’s index is neglected and we
consider only the N followers in Σ. The set N contains their
indices. A convex cell Ci in the Definition 5 corresponds to
the functioning zone of the ith follower.

Moreover, for simplicity, the current state of the leader is
translated to the origin hence each functioning zone can take
the form of a polyhedral proper cone. All of the following
results are presented in R2 to fix the main steps in a formal
manner. The extension for Rp with p > 2 is currently
under development. In the sequel, the following assumption
is mentioned to simplify the presentation.

Assumption 1. 0n,1 ∈ int (Conv{x̄i,∀i ∈ N}) and x̄i /∈
int (Conv{x̄i,∀i ∈ N}).

This means that for the sub-system Σ, the origin is in the
strict interior of the convex hull of all fixed points x̄i with
∀i ∈ N and there are no fixed points in the interior of the
convex hull.

The cell Ci containing the ith agent state is defined as the
linear combination of the hyperplanes which separate the ith

agent from its adjacent neighbors. Their construction is given
in Proposition 3.

Proposition 3. The hyperplane used to separate a follower
i and its closest neighbor j is the one passing through the
origin and a point of separation pa. This point is chosen as
a linear combination of the equilibrium points x̄i and x̄j to
ensure the separation, i.e.

pa = θax̄i + (1− θa)x̄j (14)

with the scalar 0 ≤ θa ≤ 1. The index a belonging to the
set of natural numbers Ψ = {1, . . . N} underlying that there
is a correspondence between neighboring agents in N , i.e.
a = a(i, j).

Consider now the ith agent with its two adjacent neighbors
j and k. The points chosen to separate them are respectively
pa and pb, with a = a(i, j) and b = b(j, k) belonging to Ψ.
According to the Proposition 3, these points have to fulfill{

pa = θax̄i + (1− θa)x̄j
pb = θbx̄j + (1− θb)x̄k

(15)

Therefore the cell Ci can be defined as a
linear combination of unidirectional rays Ci =
{x ∈ Rn|x = γapa + γbpb, γa ≥ 0, γb ≥ 0}.

For example, given Σ composed of 3 followers as illustrated
in Fig.3. The indices set is N = {i, j, k}. Based on their fixed
points x̄i, the points of separation pa, pb , pc are determined
with a = a(i, j), b = b(j, k) and c = c(k, i). Subsequently we
get the partition P[Σ].

Fig. 3. Functioning zone assignment for 3 agents

We redefine the condition of invariance for Ci in terms of
Definition 6.

Definition 6. Consider a proper cone C = {x ∈ Rn|x =∑
i

γiri, γi ≥ 0}, with ri denoting an unidirectional ray. C is

positively control invariant with respect to the system dynamics
x+ = Ax+Bu if and only if there exists a control u and the
non-negative scalars θi ≥ 0 such that Ax+Bu =

∑
i

θiri.

According to the Definition 6, the control invariance of two
half-spaces sharing a common boundary passing through the
origin and the point of separation pa is guaranteed if and only
if there exist the non-negative scalars ρai, ρaj , σai, σaj ≥ 0
and the control action vai and vaj such that{

Aipa +Bivai = ρaipa + σaix̄i
Ajpa +Bjvaj = ρajpa + σaj x̄j

(16)

Let denote Âa = col {Ai, Aj}, B̂a = diag{Bi, Bj} and
va = col{vai, vaj}. We can rewrite (15) and (16) for all the
followers in Σ, i.e.

Âp + B̂v = ∆p + Γx̄ (17a)
x̂ = Θx̄ (17b)

with Â = diag{Âa}, B̂ = diag{B̂a}, v = col{va} and
p = col{pa}, with ∀a ∈ Ψ, x̄ = col{x̄i}, with ∀i ∈ N .

The equations (17a) and (17b) extend respectively (16)
and (15) for all the followers in the sub-system. The matri-
ces ∆ and Γ are parameterized respectively by the scalars
ρai, ρaj , σai, σaj and θa, i.e. ∆ = ∆ ([ρai; ρaj ]), Γ =
Γ ([σai;σaj ]) and Θ = Θ (θa), with ∀a ∈ Ψ and ∀i, j ∈ N .

The problem (17) is non-convex because of the nonlinear
product ∆p. However, the nonlinearity is mild in the sense
that it involves bilinear terms and if this problem is feasible,
the partition is control invariant and thus the feasibility of the
interpolation-based control is guaranteed.

VI. ILLUSTRATIVE EXAMPLE

Here we consider a heterogeneous sub-system Σ composed
of a leader and its three followers. The indices set of the



followers is N = {1, 2, 3}. The current position of the leader
is replaced by the origin, thus its dynamics is neglected and
it can be represented by its convex safety region centered in
the origin. The followers dynamics is xi(t + 1) = Aixi(t) +

Biui(t) + wi(t), with Ai =

[
−0.2 0.5
0.2 0.71

]
, B1 =

[
0.71
0.22

]
,

B2 =

[
−0.71
0.22

]
, B3 =

[
0.01
−0.01

]
. The safety region is

constructed by using a pole placement technique (choosing
the poles [0.2; 0.5]). The disturbance is bounded, i.e. |wi| ≤
[0.2 0.2]>. The vector containing the fixed points for the
three followers is x̄ = col{x̄1, x̄2, x̄3}, with x̄1 = [3.1123; 4],
x̄2 = [−3.1443; 4] and x̄3 = [−0.8400;−4].

The closed-loop feedback control is calculated by each
follower taking into account only the anti-collision constraints
between the follower and the leader. Solving (8) for each
follower gives the feedback gain K1 = [−0.9091 − 0.8681],
K2 = [−0.9091 0.3472] and K3 = [20 1.0659].

According to x̄, the entire working space is partitioned into
three polyhedral proper cones Ci (as illustrated in Fig. 4), by
solving (17) to obtain the control vector v and the points of
separation pa = [1.3874; 4], pb = [−1.3475;−2.2381], pc =
[0.5454;−1.1957]. The indices are expressed as a = a(1, 2),
b = b(2, 3) and c = c(3, 1). Their maximal output admissible
sets Ωi are constructed according to the local control uΩi

=
ūi+Ki(xi−x̄i) and the functioning zone H = Ci, with i ∈ N
(see Fig. 4).

Fig. 4. Evolution of 3 agents towards their fixed points

We consider a set of initial points x1(0) = [5;−10],
x2(0) = [5; 40] and x3(0) = [5;−23]. The evolution of the
three followers is shown in Fig. 4. For the 1st agent (blue
circle line), because x1(0) ∈ Ω1, only its local control uΩ1

is activated and it keeps x1 ∈ Ω1. For the 2nd agent (green
circle line) and the 3rd agent (red circle line), x2(0) /∈ Ω2

and x3(0) /∈ Ω3, the interpolation based control is activated
to push x2 towards Ω2 and x3 towards Ω3; subsequently the
local control will be activated like the case of the 1st agent.

VII. CONCLUSION AND PERSPECTIVES

This paper presents a contribution to the decentralized
control for a Muli-Agent System composed of multiple het-
erogeneous agents. The communication graph, relative to the
dimension of the control design, is simplified by considering
a leader-follower structure. This is often the solution to over-
come the complexity drawbacks of the centralized approaches.
Although the communication is reduced, the collision avoid-
ance constraint can be still satisfied by partitioning the working
space into multiple functioning zones. Subsequently, a control
strategy based on interpolation techniques is proposed to drive
the agent state towards the region where the local linear control
is feasible. This requires a priori that the partition has to be
control invariant. This paper presented the construction of such
partition by means of solving an optimization problem. Its
non-convexity needs to be further explored in future works in
order to be able to characterize the global feasibility of the
related system of constraints.
In the present work, the geometry of the agent’s safety region
and also the current state are not considered in the partition
construction. Future work will also focus on these points
because the partition needs to be updated in real time to be
suitable to the current state of the agents (and thus improve
the collision avoidance). Another interesting point is related
to the existence condition of a partition if the origin is not
included in the strict interior of the formation.
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