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Abstract

In France, buildings account for a large part of the energy consumption and carbon emissions. Both are mainly due
to Heating, Ventilation and Air-Conditioning (HVAC) systems. Because older, oversized or poorly maintained systems
may be using more energy and costing more to operate than necessary, new management approaches are needed. In
addition, energy efficiency can be improved in central heating and cooling systems by introducing zoned operation. So,
the present work deals with the predictive control of multizone HVAC systems in non-residential buildings. First, a real
non-residential building located in Perpignan (south of France) has been modelled using the EnergyPlus software. We
used the Predicted Mean Vote (PMV) index as a thermal comfort indicator and developed low-order ANN-based models
to be used as controller’s internal models. A genetic algorithm allowed the optimization problem to be solved. Using
the proposed strategy, the operation of all the HVAC subsystems is optimized by computing the right time to turn them
on and off, in both heating and cooling modes. Energy consumption is minimized and thermal comfort requirements are
met. In order to appraise the proposed management strategy, it has been compared to basic scheduling techniques. The

simulation results highlight the pertinence of a predicitive approach for multizone HVAC systems management.
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1. Introduction

Within non-residential buildings, almost half of the en-
ergy consumption is due to Heating, Ventilation and Air-
Conditioning (HVAC) systems [1]. In addition, older, over-
sized or poorly maintained systems may be using more en-
ergy and costing more to operate than necessary. As a con-
sequence, new approaches dealing with energy ressources
management are needed to make HVAC systems more ef-
ficient. First, energy efficiency can be improved in central
heating and cooling systems by introducing zoned oper-
ation. This allows a more granular application of heat
and each HVAC subsystem can be controlled indepen-
dently. Another key point is thermal comfort. Thermal
comfort can be defined as “that condition of mind which
expresses satisfaction with the thermal environment” [2].
It is mainly related to indoor conditions and impacted by
both the effectiveness of the building envelope and the way
the HVAC system is used.

Many research studies focusing on improving the oper-
ation of centralized or zoned HVAC systems have been
conducted over the last few years. Recently, Haniff et al.
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provided a detailed review of basic, conventional, and ad-
vanced HVAC scheduling techniques [3]. First, the “in-
terruption”, “Early Switch-Off” (ESO), “Pre-heating (or
pre-cooling) in the Demand Reduction” (DR), and “Alter-
nate Switch-On/Off” (ASOO) basic scheduling techniques
are discussed. The “interruption” technique consists in
suspending the HVAC operation for several hours during
occupancy periods. In opposition, in case of the ESO tech-
nique being used, the HVAC system is (usually) stopped
two hours before people leave the building. The DR tech-
nique is about pre-heating (or pre-cooling) a building dur-
ing off-peak periods (i.e. non-occupancy periods). Finally,
the ASOO technique is based on alternately switching on
and off the HVAC system during office hours [4].

Usually, with a conventional scheduling technique, the
HVAC system operates 24 hours a day and the “night set-
back” mode allows energy saving objectives to be achieved.
Note that, due to its simplicity, the “baseline” approach
is widely used in HVAC management. With such an ap-
proach, the setpoint temperature value is chosen to be at
the lower boundary of the thermal comfort zone during
occupancy periods whereas the “night setback” mode is
applied during innocupancy [5].

Advanced scheduling techniques can also be considered
in HVAC management. So, Lee and Braun used short-term
measurement data to determine demand-limiting control
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setpoint trajectories [6]. The authors developed three dif-
ferent methods, named “Semi-Analytical” (SA), “Expo-
nential setpoint equation-based Semi-Analytical” (ESA),
and “Load Weighted-Averaging” (LWA) methods, respec-
tively. Each method gives an estimate of a building-
specific setpoint trajectory that gives a “flat” cooling load
profile during a specified demand-limiting period [7]. An-
other possible technique is the “5-period division” schedul-
ing [8]. Using this technique, the day is divided into five
periods, according to occupancy, with specific operation in
each period. One can also talk about the “extended pre-
cooling with zone temperature reset” technique [9]. Such
an approach is based on varying the temperature setpoints
and shifting the heating/cooling loads from daytime to
night time [10]. The last advanced scheduling technique
one can highlight is the “agressive duty cycling” technique
[11]. Based on occupancy, the HVAC system is turned on
and off many times in a day and, as a result, an efficient
real-time detection of people is needed.

One can also highlight efficient approaches based on ar-
tificial intelligence tools. In Ref. [12], Gouda et al. pro-
posed an efficient fuzzy controller for HVAC systems by
taking into account a wide range of human comfort crite-
ria in the control action formulation. In Ref. [13], Dounis
and Caraiscos developed a multi-agent control system in
order to manage air quality as well as thermal and illumi-
nance comfort. As another interesting approach, Bermejo
et al. designed a thermal comfort adaptive system based
on fuzzy logic and on-line learning [14]. In most cases,
these approaches require to turn the HVAC system on then
off at fixed times. Consequently, this can impact thermal
comfort negatively if the system is started too late or en-
ergy consumption if triggering happens too soon.

Another interesting option in HVAC management lies in
considering predictive control techniques. As it has been
highlighted by many other studies, these advanced tech-
niques can take advantage of the intermittent use of non-
residential buildings and allows the behaviour of the con-
sidered system to be anticipated [15]. In this sense, Paris
et al. developed a Model Predictive Controller (MPC) in
order to control indoor temperature and minimize energy
consumption in multi-energy buildings [16]. In Ref. [17],
Morogan et al. proposed a distributed predictive approach
to control several areas simultaneously, while taking into
account thermal transfers. In this approach, thermal com-
fort is defined on the basis of a reference temperature.
The proposed algorithm is useful but on-line optimization
is needed and computation time is extensive. Because
predictive control is well adapted to the management of
energy resources, we recently developed a new approach
allowing energy consumption to be significantly reduced
and the HVAC subsystems of a non-residential building to
be turned on and off at the right time [18]. Only heat-
ing was considered. We used the Predicted Mean Vote
(PMV) index as a thermal comfort indicator and focused
on satisfying constraints. The algorithm we developed of-
fers very good performance and does not require on-line

optimization. As a result, it is computationnaly tractable
and can be implemented in an embedded system with lim-
ited resources. Its main drawback lies in the simultaneous
engaging and stop of all of the HVAC subsystems. That is
why the present paper focuses on improving this predici-
tive approach by optimizing for each room of the building
the operation time of its HVAC subsystem. Both heating
and cooling modes are now considered. We decided for a
Genetic Algorithm (GA) so as to solve the optimization
problem [19] and used feedforward (multi-layer) artificial
neural networks trained with the cascade-correlation al-
gorithm to develop the controller’s internal models. Note
that genetic algorithms have been already used in energy
resources and thermal comfort management. In Ref. [20],
Attia et al. reviewed the current trends in simulation-
based Building Performance Optimisation (BPO) and out-
lined criteria for both the selection and evaluation of opti-
mization tools, including evolutionary algorithms. In Refs.
[21, 22], thermal comfort is managed into a unique room by
using a genetic algorithm, without considering heat trans-
fer with the other rooms in the building. Note that Liu
et al. also used this kind of algorithm to optimize HVAC
operation by searching for optimal control settings [23].

The present paper is organized as follows: Section 2 is
about the non-residential building we modelled thanks to
the EnergyPlus software. This building is located in Per-
pignan (France). In Section 3, the Predicted Mean Vote
(PMV) is defined. We used it as a thermal comfort indica-
tor. Next, the predictive strategy as well as the low-order
ANN-based models we developed and used as controller’s
internal models are described (Section 4). Finally, the sim-
ulation results we obtained in both heating and cooling
modes are analyzed and compared with the results given
by basic scheduling techniques (Section 5). The paper ends
with a conclusion and an outlook to future work.

2. Non-residential building

In order for the proposed strategy to be evaluated, the
thermal behaviour of a real non-residential building has
been modelled using the EnergyPlus software, which is
able to perform accurate building simulations.

Figure 1: Topology of the non-residential building located in Per-
pignan. The green, yellow, red and blue areas are for offices in the
ground floor (R1), offices in the first floor (R2), a manufacturing area
(R3) and a warehouse (R4), respectively.

The building is a 1000 m? two-storey structure, built in
2008 and located in Perpignan (France). It is facing south



Table 1: Properties of the materials used in the exterior walls of the building,.

Material Brick Heavy weight concrete Insulation board Gypsum board
Thickness (cm) 10 20 5 2
Thermal conductivity (Wm~='K=1)  0.89 1.45 0.03 0.16
Density (kgm™3) 1920 2000 43 800
Specific heat (Jkg=! K1) 790 1000 1210 1090

and agrees with the French Thermal Regulation of year
2005. About a dozen employees work in the offices at the
ground and first floors (the green and yellow areas in Fig. 1,
R1, R2). The red area in the first floor (R3) is a manufac-
turing area where six persons work seated or in a stand-
ing position. This room is composed of an open space of
230m? and three unheated storage rooms of 110 m?. The
last room in the ground floor is a warehouse (the blue area
in Fig. 1, R4) which is not heated. For both the warehouse
and the manufacturing area, ceiling height is 3.90 m. In the
offices, a suspended ceiling stands at 2.70 m. All the mate-
rials used in the building as well as their main properties
are listed in Table 1. For each material, its thickness (cm),
thermal conductivity (Wm~! K1), density (kgm~3), and
specific heat (Jkg=!K~!) are given. The exterior walls
consist in several layers. From the outside to the inside,
a brick layer, heavy weight concrete, an insulation board,
and a gypsum board are juxtaposed. The interior walls
are composed of two gypsum boards, for a total thermal
resistivity of 2.2 m2 KW~!. The south face and a part
of the west face of the building are made of glass. Note
that glass is treated to filter infrared radiation. This avoid
overheating in summer. The other glasses in the building
consist in 3mm double glazed bays.

The present study focuses on managing the HVAC sub-
systems in the three following rooms of the building: the
offices on both floors (R1, R2) and the manufacturing area
(R3). These rooms are equipped with air and radiant tem-
perature sensors. Note that no heat transfer between the
warehouse (R4) and the other rooms is explicitely taken
into account (considered as a system disturbance). Heat-
ing is handled by a zoned electrical HVAC system consist-
ing in several subsystems, one for each area, where only
the temperature set-points can be adjusted. Each sub-
system is managed by a local controller. All units have a
coefficient of performance equal to 3.8. The characteristics
of the rooms R1, R2, R3 and R4 are listed in Table 2.

Table 2: Characteristics of the rooms R1, R2, R3 and RA4.

Room Rl R2 R3 R4
Surface (m?) 165 155 230 340
Volume (m?) 450 420 900 1330
Heating power (kW) 5 5 10  n/a
Number of occupants (-) 8 5 6 n/a
Metabolic activity (Wm=2) 70 70 116 n/a
Lighting power (kW) 1 1 14 n/a

As previously stated in the paper (Section 1), the pro-
posed management strategy is based on a model predictive
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Figure 2: The three rooms in the building (R1, R2 and R3) equipped
with air and radiant temperature sensors (T} and T}, Vj € [1;3])
and controlled HVAC subsystems. The warehouse (R4) is unheated.
No heat transfer between the warehouse and the other rooms of the
building is explicitely taken into account. T;p, Vj € [1;3], is the
HVAC temperature set-point in the room j.

controller that will supervise the HVAC subsystems and
optimize their operation times (Fig. 2).

3. Thermal comfort

The Predicted Mean Vote (PMV) index is used as a ther-
mal comfort indicator. It has been developed by Fanger
in 1973 [24], before to be standardized by international or-
ganizations. The PMV index allows the thermal sensation
felt by people in a room to be evaluated. This sensation is
described by a scale ranging from -3 to +3. 0 is for a neu-
tral thermal sensation, which is often associated with the
state of (thermal) comfort (Table 3). The exchange of heat
between the human body and its surroundings strongly
governs thermal comfort. It is highly subjective and can
be considered as perfect when the sum of exchanges is
zero. The PMV index is computed as follows, in the room

J, Vi€ [1;3] (1):
PMV; = [0.303exp%036M 4 0.028] x L; (1)

with L; the difference between the heat produced and the
heat lost (2):

Lj=M;—W;—Hj1—Hjs—Hj3—Hjs—Hjs—Hjg (2)
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Figure 3: The cascade-correlation algorithm. White, beige and grey circles deal with inputs, hidden neurons and output neurons, respectively.
Black rectangles depict weighted connections between inputs and output neurons or between hidden neurons and output neurons. White
rectangles depict weighted connections between inputs and hidden neurons or between hidden neurons.

M; is the metabolism and W; is the external work.
Hj1,...,Hj¢ are the heat loss coefficients (W m™2). H;; is
the heat loss by diffusion through the skin and Hj o is the
heat loss by sweating. H; 3 and H; 4 are the losses by latent
and dry respiration, respectively. Finally, H; 5 is the heat
loss by radiance and Hj ¢ is the heat loss by convection.
To calculate these heat loss coefficients, several parameters
about environment and occupants are taken into account,
Vj € [1;3]: air temperature (77), radiative temperature
(T7), relative humidity (HR;), air speed (v§), metabolic
activity, and clothing thermal insulation (/CL;). Note
that air speed is not taken into account in the EnergyPlus
software. However, this missing information is not critical
at all because air speed has no influence on the PMV index
as long as it remains below 0.1ms~!. This is mostly the
case within the considered non-residential building. More-
over, metabolic activity is supposed to be constant and
only depends on the room.

Table 3: Thermal sensation scale.

PMV value Thermal sensation

+3 Hot

+2 Warm

+1 Slightly warm

0 Neutral

-1 Slightly cool

-2 Cool

-3 Cold

In offices (R1 and R2), people work most of the time in
a sitting position and, as a result, M;, Vj € [1;3], is set
to T0Wm~2 (i.e. 1.2met). Activity in the manufacturing
area (R3) is much more dynamic and M; is set higher to
116 Wm~2 (i.e. 2met). Moreover, depending on outdoor
temperature, people dress differently. Consequently, cloth-
ing thermal insulation in the room j (ICL;), ¥j € [1;3],

varies over time [25]. It is defined, each day, from the out-
door temperature observed at 6 a.m., noted tg (Table 4).
Usual clothes for summer are a pant with a short-sleeved
shirt, whereas during winter, usual clothes are a trouser
with a long-sleeved shirt.

Table 4: Clothing thermal insulation.
Outdoor temperature at 6 a.m. ICL; (clo)
te < —5°C 1
—5°C < tg < 5°C 0.818 — 0.0364t¢
5oC S t6 < 26°C 10—0.1635—0.0066t6
tg > 26°C 0.46

4. Multizone predictive control

As previously mentioned in the paper, each room in
the non-residential building has its own HVAC subsys-
tem, handled by a local controller (Fig. 2). Simulation
is carried out using the EnergyPlus building model we
developed and the predicitive control strategy is imple-
mented thanks to Matlab®. The MLE + interface enables
both tools to communicate in real time [26]. As a key
point, we used feedforward neural networks trained with
the cascade-correlation algorithm in order to develop the
controller’s internal models. Hidden and output neurons
use sigmoid and linear activation functions, respectively.

4.1. The cascade-correlation algorithm

During the past decade, artificial neural networks have
been widely used to solve complex real-world problems. A
key point when using such tools is to find the appropri-
ate topology of the network used to solve a given problem
(basically, the number of hidden layers as well as the num-
ber of units, or neurons, to be put on them) and, secondly,
to optimize its parameters using training examples. Train-
ing aims at establishing a satisfactory relationship between



input and output patterns. The cascade-correlation algo-
rithm [27] is an adaptive (or constructive) learning algo-
rithm used with self-growing feedforward neural networks
(with one hidden layer only, what proved to be enough
to approximate a large class of functions) [28]. Compared
with a neural network trained with the conventional back-
propagation algorithm [29], a cascade-correlation neural
network does not have a fixed size (i.e. a fixed number
of units in its hidden layer). A cascade-correlation neu-
ral network grows from an initial topology with no hidden
units. So, each input is connected to each output neuron
and the network is trained using learning data (training ex-
amples). These data have to be fully representative of all
the features the network is intended to learn. When there
is no significant reduction in the approximation error, the
training phase is terminated and all the weights obtained
are frozen. Then, hidden units will be dynamically added
and trained one by one until a given performance criterion
is satisfied (Fig. 3). Usually, a new hidden neuron is cho-
sen from a pool of candidates with different initial weights.
The new hidden units are so cascaded with the neural net-
work inputs as well as existing hidden units. During the
training process, the weights affected to the connections
between these new units and both the network’s inputs and
preexisting hidden units (“input” weights) are adjusted by
maximizing C, which is the sum over all the network’s out-
put neurons of the magnitude of the correlation between
Vp, the value of the candidate unit for example p, and F, ,,
the residual output error measured at neuron o. A gradi-
ent ascent is performed in order to maximize C, with C'
formulated in the following way (3):

C=>"1> (Vo= V)(Epo— E,) (3)

V and E, are the respective averaged values of V and
FE, over all the training examples. In order to maximize
C (3), the partial derivative of C' with respect to each
of the incoming weigths of the candidates (w;) has to be
computed. dC/Ow; can be expressed as follows (4):

Z 0o(Ep.o—
e

0, is the the correlation between the value of the candidate
unit and output o, f, is the derivative of the candidate’s
activation function with respect to the sum of its inputs
(for example p), I, , is the input received by the candidate
unit from unit ¢ (for example p). When the process dis-
cribed above is finished, the adjusted “input” weights are
also frozen. Weights affected to the connections between
the new hidden units and output neurons (called “output
weights”) are further updated using the above-mentioned
backpropagation algorithm with the aim of minimizing the
network output error. This iterative procedure is of involv-
ing more and more hidden neurons and is repeated so as
to achieve a good approximation performance [30].

aC [ ow; = Eo) [} 1ip (4)
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Figure 4: ANN-based model for the room j, Vj,1,m € [1;3] such as
j#1l#m. PMV; is computed at time step k 4 1 using (1) (Section
3, heating or cooling mode).

4.2. Low-order ANN-based models

We used a total of six feedforward (self-growing) artifi-
cial neural networks so as to model at time step k + 1,
Vi € [1;3], the air (7)) and radiative (1]) tempera-
tures (5 and 6) as well as the electrical power consumed
by the HVAC subsystems (P;) (7), for both operation
modes (heating and cooling) and the three considered
rooms in the non-residential building (i.e. the offices on
both floors and the manufacturing area). At time step k,
estimation is carried out from the following inputs: out-
door temperature (Tp,y¢), solar radiation (SR), room oc-
cupancy (0;), Tf, Tj, T;*, and the HVAC temperature
set-points in the two adjacent rooms (7,7 and T:3?) of room
J, V4, l,m € [1;3] such as j # I # m (Fig. 4). We identified
all the parameters and found the optimal topologies of the
ANN-based models through a training phase, resorting to
the cascade-correlation algorithm as well as data generated
by the EnergyPlus model of the non-residential building:

T;'I(k"’_]-) fl( out( )aSR(k)voj(k)a
T} (k), Ty (k), T (k), T (k), T2 (k)

i (k) -
T30 (k), 177 (K ) Tsp(k))

7

' ( ;%
Pj(k+1):f (Tou (k) (k))oj( )

" ( 777 (k), T (k ) Tsp(k))

()

Tout (/f) R(k),0 (6)

=y
=
“ﬁ
—
=y
=

(7)



Depending on the neural model to be developed, the
cascade-correlation algorithm decided for 18 to 24 hidden
neurons. Validation has been carried out using a 2-month
database and we obtained correlation coefficients higher
than 0.9 and mean relative errors lower than 5%, what-
ever the operation mode (heating or cooling) and the room
(R1, R2 or R3). Fig. ?? shows some of the results we ob-
tained, for the ground floor offices and a period of five
winter days. The black line is for values provided by the
EnergyPlus software whereas the red line deals with es-
timated values. Using (1) (see Section 3), PMV;(k + 1),
Vj € [1;3], is computed among others from Tj'(k + 1) and
T7(k+1) (see Fig. 4). Note that M; and HR; are sup-
posed to be constant over the simulation period (i.e. from
June 1 to September 30 then from November 1 to March
31, 2011) and over the forecast horizon, respectively. ICL;
is computed from ¢g (Table 4) and considered as constant
from 6 a.m. (day d) to 6 a.m. (day d+ 1). In addition,
it is the same whatever the room. Finally, vf and W; are
supposed to be null. As previsouly stated in the paper,
we used the developed ANN-based models as controller’s
internal models.

4.8. Control strategy

Fig. 5 depicts the predictive control strategy we devel-
oped first to search for the right time ¢; to turn the HVAC
subsystem on then off in the room j, Vj € [1;3], with
the aim of minimizing the total consumption of electri-
cal power (8). The strategy also deals with the tempera-
ture set-point T;p allowing thermal comfort constraints
to be met during occupancy periods (i.e. leading to
PMV;? = 0). tis about the optimal switching times (inte-
ger values) for the three HVAC subsystems we considered
in the non-residential building:

J* = min
teN

to <t < tp, with t = [t1 t2t3] and p the forecast horizon
PMV™™ < PMV;(k) < PMV™* Y0, (k) # 0,Yj € [1;3]

PMV™" and PMV;"** are thermal comfort thresholds
defined for the room j, Vj € [1;3]. These thresholds can
be adapted in order to meet users’ needs and preferences.
For the simulations, we decided for PM iji" = —0.5 and
PMV™*® =0.5. In addition, outdoor temperature (Tout)
and solar radiation (SR) have been forecasted over an hori-
zon (p) of 8 hours, using previous day values corrected by
current values (9 and 10). Room occupancy (O;) is known
in advance:

Tout(k +p) = Tout(k +p — 24h) + Toue (k) . .. )
— Tout(k — 24h)
SR(k+p) = SR(k + p — 24h) (10)
Finally, 77" (the HVAC temperature set-point in the room

J) is set by the decision block (Fig. 5), according to ¢; and
T;%, vj € [1;3].

4.4. Genetic algorithm for problem resolution
4.4.1. Overview

In order to solve the problem formulated in Section 4.3
(i.e. minimizing electrical power consumption in the non-
residential building while meeting thermal constraints by
turning the HVAC subsystems on then off at the right
time), we decided for a numerical optimizer able to deal
with integer values and known to be efficient in the search
for the optimal solution (or an acceptable solution in its
immediate neighbourhood), by testing a raisonable num-
ber of possible solutions. As a consequence, we used the
Genetic Algorithm (GA) from the Matlab® Global Opti-
mization Toolbox [31]. As it is well known, GAs are meth-
ods for solving constrained and unconstrained optimiza-
tion problems based on a natural selection process that
mimics biological evolution (Darwin’s natural selection hy-
pothesis). GAs are theoretically and empirically proven to
provide robust searches in complex spaces. In particular,
an objective function can be minimized using a genetic
algorithm without calculating derivatives (analytical ap-
proaches based on gradient calculation are restricted to
the estimation of uncorrelated parameters). GAs are also
recognized for their robustness. Due to their probabilistic
nature, the incidence of the initial guess on the optimiza-
tion process effectiveness is low. In addition, GAs produce
not just one optimal individual (solution) but a population
of good individuals. However, GAs have some drawbacks.
In particular, they can be slow to converge in case of com-
plex and hard-to-solve problems. As a result, significant
response times make sometimes their use in real-time ap-
plications not possible. GAs may also be less efficient and
slower than traditional optimization methods in case of
very simple problems.

4.4.2. Optimization process

At each step of the process, the best individuals are se-
lected from the current population (the initial population
is randomly generated) and serve as parents in order to
produce the children for the next generation. Each indi-
vidual in the population is a vector ¢ = [t; t2 t3]. Selection
is based on performance (typically, the genetic algorithm
is more likely to select parents with better fitness values),
that is why the thermal behaviour of the three considered
rooms (R1, R2 and R3) in the non-residential building is
simulated for each individual in the population. Over suc-
cessive generations, this population evolves toward an op-
timal solution ¢,,: allowing both the consumption of elec-
trical power in the room j to be minimized (P;, Vj € [1;3])
and the thermal constraints to be met. As a key point, we
performed crossover (i.e. recombinations of individuals)
and mutation (i.e. random alterations of individuals) oper-
ations during the optimization process [32, 33]. Crossover
has been achieved thanks to the “scattered” technique, us-
ing a randomly-generated binary vector in order to select
and combine some of the “genes” of two parents and form
a child. We quantified the impact of the crossover frac-
tion (C), which is about the part of a given population
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that is made up of crossover children, on performance.
Mutation consists in adding a random number to each
component of a given parent vector. So, we considered
a Gaussian distribution with mean zero and controled the
average amount of mutation applied to a parent in each
generation (i.e. the rate at which the average amount of
mutation (M) decreases (linearly) during the optimization
process). Crossover is the main exploratory device of ge-
netic algorithms when mutation increases the variability of
a given population of individuals. Mutation can be seen
as a random explore and leads to a “jump” in the location
of the generated solutions whereas crossover produces a
more controlled move. Searching for the adequate values
of C' and M aims to favour convergence as well as limit
the risk of falling and being trapped into a local minimum
during the optimization process. This process ends if the
maximum number of generations is reached or the solu-
tion found is not improved for ten successive generations.
The parametric analysis we performed also allowed the im-
pact on performance of both the population size and the
number of successive generations to be highlighted. Note

that, whatever the crossover fraction (C) and the average
amount of mutation (M), the higher both the number of
individuals in the population and the number of genera-
tions are, the higher the percentage of optimal solutions is
(in relation to the minimization of P;, Vj € [1;3], while
meeting the thermal constraints). Of course, the resolution
time increases with the population size and the number of
successive generations. As a result, we searched for the
best compromise so as to reach a satisfactory solution in
a reasonable amount of time. Clearly, a too low crossover
fraction (C) slows down the optimization process. With
C equal to 0.25, acceptable results can be obtained only
in case of many individuals in the population and if many
successive generations are performed. One can also note
that a crossover fraction close to 1 impacts convergence
negatively. In addition, in that case, overconsumption of
electrical power is high. As another interesting point, the
average amount of mutation (M) seems to be less impact-
ful than the crossover fraction (C). Finally, on the basis of
all these factual elements, we decided for 25 individuals in
the population, 40 successive generations, and a crossover



fraction/average amount of mutation equal to 0.5 (Table
5). With such a configuration, overconsumption of electri-
cal power is insignificant whereas the number of solutions
to be tested is rather limited. As a consequence, resolution
time is moderate.

Table 5: Optimal configuration for problem resolution.

Feature Value
Individuals in the population 25
Successive generations 40
Crossover fraction (C) 0.5

Average amount of mutation (M) 0.5

5. HVAC operation

5.1. Non-predictive strategies

We considered five non-predictive strategies, including
four basic scheduling techniques [3], in order to highlight
the benefits of the predictive approach developed for non-
residential buildings equipped with multizone HVAC sys-
tems. The first technique (strategy S1) is the simplest of
all techniques: the subsystems operate all the time, includ-
ing during non-occupancy periods (Fig. 6). The second
technique (strategy S2) is based on a scheduler used to stop
the HVAC subsystems during periods of non-occupancy
and to turn them on in the morning, two hours before
people arrive at the building (i.e. at 6 a.m.). The subsys-
tems are turned off when people leave (i.e. at 6 p.m.). S2
is the technique currently used in the real non-residential
building located in Perpignan (south of France) and mod-
elled using the EnergyPlus software (Fig. 7). The third
scheduling technique we considered (strategy S3) is the
“Early Switch-Off” (ESO) technique. Remember that us-
ing the ESO technique, the HVAC subsystems are turned
off two hours before people leave the building (i.e. at 4
p.m.) (Fig. 8). The next basic technique (strategy S4)
is based on the “Alternate Switch-On/Off” (ASOO) tech-
nique. Using such a technique, the HVAC subsystems are
alternatively switched on and off [4]. In that case, the sub-
systems are one hour on and one hour off between 6 a.m.
and 5 p.m. (Fig. 9). The last basic scheduling technique
we considered is the “pre-heating (or pre-cooling) in the
Demand Reduction” (DR) technique (strategy S5). S5 is
about pre-heating or pre-cooling a building during off-peak
periods (Fig. 10). With such a strategy, the HVAC sub-
systems operate between 5 a.m. and 7 a.m. (pre-heating
or pre-cooling time) but do not operate between 7 a.m.
and 8 a.m. then between 12 p.m. and 1 p.m. (i.e. during
the lunch break). Whatever the non-predictive strategy
(S1, S2, 83, S4 or S5), T;* = 22°C, Vj € [1;3] (even dur-
ing non-occupancy periods if S1 is considered). Remember
that, unlike the basic scheduling techniques, the proposed
predictive strategy allows the right time to turn the HVAC
subsystems on then off to be found in each of the con-
sidered rooms of the building while meeting with thermal
comfort requirements (strategy S6). As a result, consump-
tion of electrical power can be significantly reduced.

5.2. Analysis of the results

5.2.1. Owerall results

In order to evaluate performance regarding thermal
comfort, we considered the percentage of time for which
the PMYV value is out of the desired interval during occu-
pancy periods [—0.5;40.5] (discomfort criterion). More-
over, an average value (per day and square meter) is
used for energy consumption. Tables 6 and 7 summa-
rize the results we obtained for two simulation periods,
from November 1 to March 31 (heating mode) and from
June 1 to September 30, 2011 (cooling mode). First, one
can clearly observe that applying S1 to the three consid-
ered HVAC subsystems leads to high energy consumption,
whatever the operation mode. In addition, thermal com-
fort is rather bad in winter time (heating mode). Taking
S2 as the reference strategy, one can also observe that with
the “Early Switch-Off” (ESO) or the “Alternate Switch-
On/Off” (ASOO) technique, energy consumption is signifi-
cantly reduced, whatever the operation mode, but thermal
comfort is worse (especially during the hottest period of
the year). In heating mode (from November 1 to March
31, 2011), energy consumption is reduced from 80.9 to
54.2 Wh/day m? (-33%) with S3 (ESO) and from 80.9 to
59.5 Wh/day m? (-26%) with S4 (ASOO). In cooling mode
(from June 1 to September 30, 2011), energy consump-
tion is reduced from 122.6 to 96.7 Wh/day m? (-21%) with
S3 (ESO) and from 122.6 to 90.5 Wh/day m? (-26%) with
S4 (ASOO). However thermal comfort is clearly degraded
during this period of the year: 0.2% (S2) vs. 13.4% (S3) or
25.4% (S4). Using S4, the way the HVAC subsystems are
managed leads to significant changes in the PMV index
and, as a result, thermal discomfort is high. In addition,
switching on and off the subsystems many times a day im-
pacts on lifetime. The last basic strategy (S5) we tested
is based on the “Pre-heating (pre-cooling) in the Demand
Reduction” (DR) scheduling technique. As one can see in
Tables 7 and 6, S2 (the technique currently used in the real
non-residential building) and S5 provide very close perfor-
mance, whatever the operation mode (heating or cooling).
During the coldest period of the year (from November 1 to
March 31, 2011), energy consumption is 80.9 Wh/day m?
with S2 and 81.0 Wh/day m? with S5. Thermal comfort
is also similar (slightly better with S2): 14.4% (S2) vs.
16.5% (S5). In cooling mode (from June 1 to September
30, 2011), performance of S5 is slightly better than perfor-
mance of S2. Energy consumption is reduced of about 2%,
from 122.6 Wh/day m? to 119.8 Wh/day m?, and thermal
discomfort is similar (0.2% (S2) vs. 0.1% (S5)). Finally,
the predictive strategy (S6) allows energy consumption to
be reduced and thermal comfort to be improved in a sig-
nificant way, whatever the period of the year, in compar-
ison to what can be observed with S2. In heating mode,
energy consumption and thermal discomfort are reduced
from 80.9 to 69 Wh/day m? (-15%) and from 14.4 to 6.4%
(-56%), respectively. In cooling mode, both are reduced
from 122.6 to 116.2 Wh/day m? (-5%) and from 0.2 to 0.1%
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Figure 6: Daily HVAC operation (S1). 0 is for non-operating HVAC subsystems, 1 is for subsystems in operation.

1_

C

ke

©

()]

a

o

U

<

>

T

O T 1T 1T 1 T 1T 1T 1T "7 "1T "1T "T1T "T 1 T 1T 1T 1
EEEEEEEEEEEEEEEEEEEEEEEE
M M (C (MM (C (O (O (U (O (C M M QO O O O O 0O 0 0 o o a o
g‘-r\lmq-mol\oom‘g:g‘-mlmvmuon\oomo:

Time

Figure 7: Daily HVAC operation (S2). 0 is for non-operating HVAC subsystems, 1 is for subsystems in operation.

1_

[

ke

T

O

o

(@]

U

<C

>

T

O T 1T 1T 1T "1 1 1T 1T 1T 1T "1 1 T 1T 1T 1T 1T 1
EEEEEEEEEEEEEEEEEEEEEEEE
M (M (U (M (U (U (C (U (U (U M M O O O O O o 0 o o o o o
gvmmq-mol\oom‘g:QFvamwl\oomQ:

Time

Figure 8: Daily HVAC operation (S3). 0 is for non-operating HVAC subsystems, 1 is for subsystems in operation.

9



HVAC operation

12 a.m.

Figure 9: Daily HVAC operation (S4). 0 is for non-operating HVAC subsystems, 1 is for subsystems in operation.

1+
c
Q
™
o
o
(@)
()
<
>
I
o T T 1 T I I e L T T T 1
EEEEEEEEEEEEEEEEEEEEEEEE

Figure 10: Daily HVAC operation (S5). 0 is for non-operating HVAC subsystems, 1 is for subsystems in operation.

Table 6: Performance of the different strategies, Vj € [1;3]. The simulation period is from November 1 to March 31, 2011 (heating mode).

Occupancy period Non-occupancy period

Consumption (Wh/day m?) Discomfort criterion

S1 T;” =22°C T;” =22°C 209.5 19.4%
52 T;p =22°C Oft 80.9 14.4%
S3 TjSp =22°C Oft 54.2 18.5%
S4 TjSp =22°C Oft 59.5 17.6%
S5 Tfp =22°C Off 81.0 16.5%
S6 PMV;p =0 Oft 69.0 6.4%

(-50%), respectively.

Taking a look at Tables 6 and 7, one can also note that
due to the way the HVAC subsystems are managed us-
ing S3 (ESO) or S4 (ASOO), energy consumption is lower
than it is when the predictive approach (S6) is considered.
This is of course the consequence of a limited operation
time, in particular for S4. With such a strategy, the sub-
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systems operate up to 5 hours less a day (depending on
the period of the year) than with S6. However, thermal
comfort is much better with this last strategy. In heat-
ing mode (from November 1 to March 31, 2011), energy
consumption is lower of about 21% with S3 and 13% with
S4. Nevertheless, thermal comfort is degraded: 6.4% (S6)
vs. 18.5% (S3) or 17.6% (S4). The same remarks apply



Table 7: Performance of the different strategies, Vj € [1;3]. The simulation period is from June 1 to September 30, 2011 (cooling mode).

Occupancy period Non-occupancy period

Consumption (Wh/day m?) Discomfort criterion

S1 T;p =22°C T;p =22°C
S2 TP =22°C Off
S3 TP =22°C off
S4 TP =22°C Off
S5 TP =22°C Off
S6  PMV"=0 Off

198.5 0.1%
122.6 0.2%
96.7 13.4%
90.5 25.4%
119.8 0.1%
116.2 0.1%

to the cooling mode (from June 1 to September 30, 2011).
Energy consumption is lower with S3 (-16%) or S4 (-22%)
but thermal comfort is clearly worse: 0.1% (S6) vs. 13.4%
(S3) or 25.4% (S4).

5.2.2. Optimal switching times

Tables 8 and 9 give the optimal on/off switching times
computed by the predicitive controller (S6) in heating and
cooling modes, respectively, for two typical weeks. The
simulation period is from January 6 to January 12, 2011
(heating mode) and from July 6 to July 12, 2011 (cooling
mode). January 8-9 as well as July 9-10 are weekend days
and the HVAC subsystems do not operate. Let us remem-
ber that R1 is for the ground floor offices, R2 is for the first
floor offices and R3 is for the manufacturing area. One can
highlight that the HVAC operation time is optimized (it is
most of the time significantly reduced), whatever the room
(comparison is between S2, the technique currently used in
the real non-residential building, and S6). The daily time
saved can reach up to 5 hours in January (heating mode)
and about 2 hours in July (cooling mode). In addition,
thermal comfort requirements are met.

5.2.83. Heating mode

Figs. 11 and 12 describe the way consumption of electri-
cal power and thermal comfort evolve from January 6 to
January 12, 2011 (heating mode) if the HVAC subsystems
are managed using one of the basic techniques we described
in section 5.1 (S1, S2, S3, S4 or S5) or the predictive ap-
proach we developed (S6). With S1 (Fig. 11(a)), overheat-
ing may happen during the afternoon and alters thermal
comfort. Using the scheduling technique S2 (Fig. 11(b)),
such an overheating is delayed or even avoided. As a re-
sult, thermal comfort is improved during the coldest peri-
ods. In addition, turning the HVAC subsystems off during
non-occupancy periods allows energy consumption to be
significantly reduced. Using S3 (Fig. 11(c)), the subsys-
tems are turned on just when the employees start working
in the non-residential building (i.e. at 8 a.m.). Conse-
quently, thermal comfort constraints are not met for sev-
eral hours in the morning. However, turning the HVAC
subsystems off two hours before people leave in the late
afternoon (i.e. at 4 p.m.) allows energy consumption to
be reduced without any significant degradation of com-
fort, because of the thermal inertia of the considered non-
residential building. As another scheduling technique, we
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considered S4 (Fig. 12(a)). Alternatively switching the
HVAC subsystems on and off can be an interesting way of
operating but only if thermal comfort has reached a suf-
ficient level (for the considered non-residential building,
after 11 a.m.). Earlier in the morning, energy storage is
not enough and PMYVj;, Vj € [1;3], can’t be maintained
in the desired interval (i.e. [—0.5;+0.5]). In addition, the
PMV index exhibits high variability, what expresses the
negative impact of such an HVAC operation mode on the
thermal sensation of people. As an interesting point, one
can observe in Fig. 12(a) that thermal comfort remains
stable in the middle of the day in the first floor offices, be-
cause of the topology of the room (in particular, because
of the presence of a large bay window). This is not the
case in the two other rooms (the ground floor offices and
the manufacturing area) where thermal comfort decreases
faster. The last basic scheduling technique we considered
is S5. As one can see in Fig. 12(b), pre-heating the rooms
between 5 a.m. and 7 a.m. then turning the HVAC sub-
systems off during the hour preceding the arrival of the
employees at the building (i.e. between 7 a.m. and 8 a.m.)
do not lead to a satisfying thermal comfort at 8 a.m., espe-
cially in the ground floor offices. Indeed, during the hour
the HVAC subsystems do not operate, the PMV index de-
creases quickly because of a low outdoor temperature and
a limited sunshine, in spite of the building’s thermal iner-
tia. As a result, about 30 minutes are needed to reach an
acceptable thermal comfort in this non-residential build-
ing. Between 12 p.m. and 1 p.m., stopping the subsystems
does not produce the same effect and thermal comfort re-
mains acceptable, because at that time of a higher outdoor
temperature and a significant sunshine. Finally, with S6
(the predictive strategy), heating is stopped sooner than it
is with the other techniques and overheating is completely
avoided (Fig. 12(c)).

5.2.4. Cooling mode

Figs. 13 and 14 describe the way consumption of elec-
trical power and thermal comfort evolve from July 6 to
July 12, 2011 (cooling mode) if the HVAC subsystems are
managed using one of the basic techniques we described in
section 5.1 (S1, S2, S3, S4 or S5) or the predictive approach
we developed (S6). With S1 (Fig. 13(a)), thermal comfort
is perfect, whatever the hour of the day (and whatever
the day of the week), but energy consumption is of course
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Table 8: On/off switching times using S6. The simulation period is from January 6 to January 12, 2011 (heating mode). S2 is the reference.

Day Jan. 6 Jan. 7 Jan. 8 Jan. 9 Jan. 10 Jan. 11 Jan. 12
Starting time 6:15 am. 7:15a.m. n/a n/a 6:30 am. 6:15am. 7:00 a.m.

R1 Stopping time  2:00 p.m. 2:30 p.m. n/a n/a 2:15 p.m.  2:00 p.m. 1:45 p.m.
Time saved (h) 4:15 4:45 n/a n/a 4:15 4:15 5:15
Starting time 5:15 am. 6:15 a.m. n/a n/a 5:00 am. 5:45am. 6:15 a.m.

R2 Stopping time  5:00 p.m. 2:00 p.m. n/a n/a 6:00 p.m. 2:00 p.m. 1:00 p.m.
Time saved (h) 0:15 4:15 n/a n/a -1:00 3:45 5:15
Starting time 6:15 aam. 7:00 am. n/a n/a 6:30 am. 6:15am. 7:00

R3 Stopping time  2:00 p.m. 2:00 p.m. n/a n/a 2:15 p.m.  2:00 p.m. 2:00 p.m.
Time saved (h) 4:15 5:00 n/a n/a 4:15 4:15 5:00

Table 9: On/off switching times using S6. The simulation period is from July 6 to July 12, 2011 (cooling mode).

S2 is the reference.

Day July 6 July 7 July 8 July 9 July 10 July 11 July 12
Starting time 7:45 am. T7:45am. 7:30 n/a n/a 7:45 am. 7:30 a.m.

R1 Stopping time  6:00 p.m. 6:00 p.m. 6:00 pm. n/a n/a 6:00 p.m. 6:00 p.m.
Time saved (h) 1:45 1:45 1:30 n/a n/a 1:45 1:30
Starting time 7:30 am. 7:00 am. 7:00 am. n/a n/a 7:30 am. 7:00 a.m.

R2 Stopping time  6:00 p.m. 6:00 p.m. 6:00 p.m. n/a n/a 6:00 p.m. 6:00 p.m.
Time saved (h) 1:30 1:00 1:00 n/a n/a 1:30 1:00
Starting time 7:30 am. 7:30am. 8:00am. n/a n/a 7:15am. 7:30

R3 Stopping time  5:45 p.m. 5:15 p.m. 5:45 p.m. n/a n/a 5:45 p.m. 5:15 p.m.
Time saved (h) 1:45 2:15 2:15 n/a n/a 1:30 2:15

very high (282.1 Wh/daym?). Using the scheduling tech-
nique S2 (Fig. 13(b)), comfort remains perfect whereas
turning the HVAC systems off during non-occupancy pe-
riods allows energy consumption to be significantly re-
duced (172.9 Wh/day m?), in comparison to what is ob-
served with S1. Using S3 (Fig. 13(c)), let us remember
that the HVAC subsystems are turned on just when the
employees start working in the building (i.e. at 8 a.m.).
Thermal discomfort is observed for less than one hour dur-
ing the morning (i.e. before 9 a.m.). However, turning the
HVAC subsystems off two hours before people leave the
building (i.e. at 4 p.m.) allows energy consumption to
be reduced but thermal comfort is clearly degraded in the
three considered rooms. This is the consequence of a low
thermal inertia during summer. The next scheduling tech-
nique we considered is S4. Taking a look at Fig. 14(a),
one can note that, similarly to what is observed in heating
mode (i.e. from January 6 to January 12, 2011), PMV},
V4 € [1;3], is hard to maintain in the desired interval (i.e.
[—0.5; +0.5]) in the course of the morning. Thereafter, the
increase in outdoor temperature allows thermal comfort
to be acceptable. Clearly, both the low thermal inertia
of the non-residential building as well as the temperatures
observed in Perpignan (south of France) during summer
impact negatively on the strategy’s efficiency. S5 is the
last basic scheduling technique we considered. As one can
see in Fig. 14(b), pre-cooling the three considered rooms
between 5 a.m. and 7 a.m. allows thermal comfort re-
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quirements to be met (barely) when the workers arrive at
the building. As it has been stated previously, the first
floor offices have a low thermal inertia and, as a result,
the PMV index increases strongly (what leads to signif-
icant thermal discomfort) when the HVAC subsystem is
turned off between 12 p.m. and 1 p.m. During this time,
discomfort is weaker in the two other considered rooms
of the building (the first floor offices and the manufactur-
ing area). Finally, with S6 (the predictive strategy), cool-
ing is stopped sooner than it is with the basic techniques
(Fig. 14(c)). However, during hot periods, the benefits of
using S6 are less important than in winter time. Indeed, in
cooling mode, the HVAC subsystems cannot be turned off
as soon as in heating mode. Anyway, using S6 to manage
the HVAC subsystems of the non-residential building is
clearly the best compromise between energy consumption
and thermal comfort.

6. Conclusion

The present work deals with the predictive control
of multizone Heating, Ventilation and Air-Conditioning
(HVAC) systems in non-residential buildings. Such sys-
tems account for a large part of the energy consumption.
Heating and cooling modes have been considered. In order
to test the proposed approach, a real non-residential build-
ing located in Perpignan (south of France) has been mod-
elled using the EnergyPlus software. We used the PMV



(Predicted Mean Vote) index as a thermal comfort indica-
tor and developed low-order ANN-based models to be used
as controller’s internal models. The optimization problem
has been solved using a genetic algorithm. The proposed
strategy allows the operation time of each HVAC subsys-
tem to be optimized (i.e. the right time to turn the HVAC
subsystems on and off to be found) and thermal comfort
requirements to be met. In comparison to what is observed
when using a standard (non-predicitive) strategy, energy
consumption is significantly reduced and thermal comfort
is improved, whatever the operation mode and the period
of the year. Future work will focus on implementing and
validating the predictive strategy in the real building we
modelled using the EnergyPlus software. Finally, natural
ventilation will be considered in cooling mode with the aim
of reducing energy consumption.
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