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Abstract

In this paper, we investigate the problem of designing good non-binary LDPC codes for Slepian-Wolf

coding. The design method is based on Density Evolution which gives the asymptotic error probability of the

decoder for given code degree distributions. Density Evolution was originally introduced for channel coding

under the assumption that the channel is symmetric. In Slepian-Wolf coding, the correlation channel is not

necessarily symmetric and the source distribution has to be taken into account. In this paper, we express the

non-binary Density Evolution recursion for Slepian-Wolf coding. From Density Evolution, we then perform code

degree distribution optimization using an optimization algorithm called differential evolution. Both asymptotic

performance evaluation and finite-length simulations show the gain at considering optimized degree distributions

for SW coding.

I. INTRODUCTION

In this paper, we consider the lossless coding of a source X with the help of some side information

Y available at the decoder only (see Figure 1). This setup is called asymmetric Slepian-Wolf (SW)
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Fig. 1. Asymetric Slepian-Wolf coding

coding [28]. Here, for simplicity, it is referred to as SW coding. For this problem, it is well known

that the infimum of achievable rates is given by H(X|Y ), the conditional entropy of X knowing Y

and several practical coding schemes have been proposed [10], [24], [38]. Most of them are based on

channel codes [9], [29], and particularly Low Density Parity Check (LDPC) codes [11], [20], [22]. In

source coding, the source symbols are in general non-binary (for example the pixels or the quantized

coefficients of the transformed blocks of an image). A usual coding solution is to transform the non-

binary symbols into bits and to encode the bit planes independently with binary LDPC codes. To avoid

a performance loss, the dependency between bit planes has to be taken into account at the decoder [18],

[36], at the price of a complexity increase. In this paper, in order to avoid this operation, we consider

directly non-binary LDPC codes [12].

Many efforts have been made in channel coding for the design of good LDPC codes. In particular, [25],

[26] show that the performance of a code depends on its degree distributions. Codes of regular degrees

were first considered, and [25] points out the gap between the performance of regular LDPC codes and

the channel capacity. Then, codes constructed from optimized irregular degree distributions were shown

to reduce the gap within the channel capacity. The degree distribution optimization can be realized from

an optimization algorithm called differential evolution [31] and from Monte Carlo Simulations [15].

Although the issue of constructing properly the coding matrix at finite length remains [23], degree

distribution optimization constitutes a good starting point for practical code design.

In the former optimization method, the code performance evaluation is realized from Density Evolu-
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tion [25]. Denote C(λ, ρ) the ensemble of codes of variable and check node degree distributions λ(x)

and ρ(x). From an asymptotic analysis, density evolution gives an evaluation of the average error rate

over C(λ, ρ) for a given channel of input U and output W described by the conditional distribution

P (W |U) which is assumed to be symmetric. Density evolution techniques have been developed in

channel coding both for binary [25], [26], [34] and non-binary [1], [19] codes.

In SW coding, from the joint probability distribution P (X, Y ), one could think of identifying the

correlation channel P (Y |X) and then simply applying the standard density evolution derived for channel

coding. Unfortunately, as pointed out in [2], [5], a good LDPC code for channel coding is not necessarily

good for SW coding. Two differences have to be taken into account. In SW coding, the source distribution

is not necessarily uniform [33], and the correlation channel P (Y |X) is not necessarily symmetric [6],

[32]. The channel coding scheme and the SW coding scheme thus require codes of different rate and

different code degree distributions.

In this paper, we adress the issue of optimizing non-binary LDPC code degree distributions for the

SW coding problem. In particular we take into account the possibly non-uniform probability distribution

of X and the fact that P (Y |X) is not necessarily symmetric. The contributions of the papers are as

follows.

1) In channel coding, we derive an analytical form of the density evolution recursion for symmetric

channels. We also derive an analytical form of the density evolution in SW coding for any joint

probability distribution P (X, Y ). From the two previous recursions, we restate the result of [4]

which shows an equivalence between the two problems.

2) From the density evolution recusion, we optimize the code degree distributions for SW coding

and show the asymptotic performance gain at considering optimized degree distributions.

3) We also illustrate at finite length the gain at considering optimized degree distributions compared

to regular codes and the gain at considering non-binary LDPC codes.

The paper is organized as follows. Section II presents the related works. Section III introduces the

September 18, 2014 DRAFT

kieffer
Note
This paper are thus as follows



4

notations and recalls some results on Galois Fields. Section IV restates the non-binary LDPC decoding

algorithm for SW coding. Section V expresses the density evolution for channel and SW coding and

restates the result of [4] on the equivalence between the two problems. Section VI presents the code

degree distribution optimization. Section VII gives finite-length simulation results.

II. RELATED WORKS

Binary LDPC codes have been used for SW coding in [3], [7], [20], [22], [30] and references therein.

In all of the above cases, the LDPC decoder consists of a message passing procedure referred to as the

sum-product algorithm. In the same way, [35] proposes to use non-binary LDPC codes and derives the

decoding algorithm expressions. Nevertheless these works do not provide a solution for the design of

good non-binary LDPC codes for SW coding.

On the other hand, density evolution was initially introduced in [25] for binary symmetric channels

and then used in [26] for irregular code optimization. The case of binary non-symmetric channels

was further investigated in [34]. All these works give an analytic expression of the density evolution.

Then, [5] considered density evolution for binary SW coding and non-symmetric channels. In [5], an

equivalence between SW coding and channel coding under density evolution is derived.

For non-binary LDPC codes, the exact density evolution equations are only known for erasure

channels [27]. Alternatively, approximation methods have been proposed, e.g., the density evolution

under Gaussian approximation, which can be applied for the AWGN channel model, for binary [8] as

well as for non-binary LDPC codes [19]. Then, [1] considered density evolution for coset non-binary

LDPC codes. In this case, the channels are not necessarily symmetric, because it is shown that the coset

has a symmetrizing effect. As before, no analytic expression of the density evolution is given, except

with the Gaussian approximation. Although SW codes can be seen as particular coset LDPC codes, [1]

considers channel coding and consequently fixed input symbols distribution. To finish, [15] shows that,

if the all-zero codeword assumption holds, density evolution in channel coding can be approximated

through the use of Monte-Carlo methods (referred to as MC-DE).
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III. NOTATIONS AND PRELIMINARIES

In the following, upper case letters, e.g., X , denote random variables whereas lower case letters, x,

represent their realizations. Vectors, e.g., X = {Xk}nk=1, are in bold. When it is clear from the context

that the distribution of a random variable Xk does not depend on k, the index k is omitted. The imaginary

unit is denoted i. The Kronecker function is denoted δ(x), i.e., δ(x) = 1 if x = 0, δ(x) = 0 otherwise.

In the following,
⊗

stands for the convolution product (not to be confused with ⊗, the multiplicative

operator in GF(q)) and ◦ is the composition operator. In SW coding (see Figure 1), the source X to

be compressed and the SI Y available at the decoder produce sequences of independent and identically

distributed (i.i.d.) discrete symbols {Xn}+∞
n=1 and {Yn}+∞

n=1 respectively. The realizations of the random

variable X belong to GF(q) with q = κα and κ is prime. The realizations of Y belong to a discrete

alphabet Y . Denote P (X = x) = px where 0 < px < 1 and assume ∀(x, y), 0 < P (Y = y|X = x) < 1.

A. Operations in GF(q)

In order to introduce some notations and conventions that will be used in the paper, we recall here

some standard definitions related to Galois Fields. See [21, Chapter 4] for more details. Define Zκ[D]

as the set of polynomials with coefficients in Z/κZ and let P (D) ∈ Gκ[D] an irreducible polynomial

of degree α. Define GF(q) = Gκ[D]/P (D). It follows that every element of GF(q) can be uniquely

represented by a polynomial of degree less than α, i.e, ∀Pa(D) ∈ GF(q),

Pa(D) = a0 + a1D + . . . aα−1D
α−1. (1)

where ak ∈ {0 . . . κ − 1} As a consequence, one can define a one-to-one correspondence between

{0, . . . , q− 1} and GF(q) by associating to each Pa(D) ∈ GF(q) a value a ∈ {0, . . . , q− 1}. Remarking

that any a ∈ {0, . . . , q − 1} can be uniquely decomposed as

a = a0 + a1κ+ . . . aα−1κ
α−1, (2)

a is by convention associated to the polynomial Pa(D) (1). In the following, ⊕, 	, ⊗, � are the

usual operators in GF(q). By an abuse of notation, we will denote by a both its integer value and the
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corresponding element of GF(q). Thus, for any real or complex value x, xa is evaluated from the integer

version of a, but in the expression xa⊕b, a⊕ b is performed in GF(q). Throughout the remaining of the

paper, we denote by r the κ-th root of unity defined by r = exp(2iπ
κ

). With the above convention, one

can show that ra⊕b = rarb.

B. Probability evaluation in GF(q)

Let Z be a random variable with values in GF(q). Denote p the probability vector of size q with

k-th component pk = P (Z = k) and 0 < pk < 1. Denote m the message vector of size q with k-th

component mk = log p0
pk

= log P (Z=0)
P (Z=k)

. From the previous expression, one has pk = e−mk∑q−1

k′=0
e−mk′

. As part

of the LDPC decoder consists of the evaluation of the probability of linear combinations of random

variables, we first express here the probabilities of Z ⊕ a, Z ⊗ a, where a ∈ GF(q), and of Z1 ⊕ Z2.

Note that the operators we describe here to realize these evaluations were initially introduced in [1]

and [19]. We restate them here to make the paper more self contained.

Denote p×a and m×a (∀a ∈ GF(q)\{0}), p+a and m+a (∀a ∈ GF(q)) the probability and message

vectors associated to Z ⊗ a and Z ⊕ a. By definition, ∀a 6= 0, p×ak = P (Z ⊗ a = k) = P (Z = k � a)

and

m×ak = log
P (Z ⊗ a = 0)

P (Z ⊗ a = k)
= log

P (Z = 0)

P (Z = k � a)
. (3)

Let W [a] be a q× q matrix such that ∀k, j = 0, . . . , q− 1, Wk,j[a] = δ(a⊗ j	 k). Then, p×a = W [a]p

and m×a = W [a]m. On the other hand, p+a
k = P (Z ⊕ a = k) = P (Z = k 	 a) and

m+a
k = log

P (Z ⊕ a = 0)

P (Z ⊕ a = k)
= log

P (Z = 	a)

P (Z = k 	 a)
(4)

Denote R[a] the q×q matrix such that ∀k, j = 0, . . . , q−1, Rk,j[a] = δ(a⊕k	j). Denote A[a] the q×q

matrix such that A0,0[a] = 1 and ∀k, j = 0, . . . , q− 1, (k, j) 6= (0, 0), Ak,j[a] = δ(a⊕ k	 j)− δ(a	 j).

Then, p+a = R[a]p and m+a = A[	a]m. Here, two different transforms are needed because of the

numerator in (4). The notations m×a and m+a come from [1] while W [a] and A[a] come from [19].
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Now, let Z1 and Z2 be two random variables with realizations in GF(q) and probability vectors p1

and p2. Then,

P (Z1 ⊕ Z2 = k) =

q−1∑
j=0

P (Z1 = j)P (Z1 ⊕ Z2 = k|Z1 = j) =

q−1∑
j=0

p1,jp2,k	j (5)

:=(p1⊗p2)k . (6)

The operator ⊗ represents a discrete convolution product but does not correspond to the classical circular

convolution product. Consequently, as pointed out in [16], the usual discrete Fourier Transform cannot

be used for the evaluation of (5) and there is a need to define an adapted Fourier-like transform F . Let

f = F(p) and p = F−1(f) with from [19],

fj =

q−1∑
k=0

rk⊗jpk , pk =
1

q

q−1∑
j=0

r−k⊗jfj . (7)

Then

P (Z1 ⊕ Z2 = k) =
(
F−1 (F(p1)F(p2))

)
k

. (8)

This expression can easily be generalized to a sum of K elements. A message version of the Fourier-like

transform can also be defined as f = F̃(m) and m = F̃−1(f) with

fj =

q−1∑
k=0

rk⊗j
e−mk∑q−1
k′=0 e

−mk′
, mk = log

∑q−1
j=0 fj∑q−1

j=0 r
−k⊗jfj

. (9)

Note that if q is a power of 2, then F becomes the Hadamard transform [13].

IV. LDPC ENCODING AND DECODING

LDPC codes initially introduced for channel coding can also be used for SW coding, after adaptation

of the coding process and the decoding algorithm [20], [22]. The SW coding of a source vector x of

length n is performed by producing a vector s = HTx of length m < n. The matrix H is sparse,

with coefficients in GF(q). In the bipartite graph representing the dependencies between the random

variables of X and S, the entries of X are represented by Variable Nodes (VN) and the entries of S are

represented by Check Nodes (CN). The set of CN connected to a VN n is denoted NC(n) and the set of
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VN connected to a CN m is denoted NV(m). The sparsity of H is determined by the edge-perspective

VN degree distribution λ(x) and CN degree distribution ρ(x), where

λ(x) =
∑
k≥2

λkx
k−1, ρ(x) =

∑
j≥2

ρjx
j−1 (10)

The constant 0 ≤ λk ≤ 1 is the fraction of edges emanating from a VN of degree k and 0 ≤ ρj ≤ 1

is the fraction of edges emanating from a CN of degree j. In SW coding, the coding efficiency r(λ, ρ)

of a code is given by r(λ, ρ) = m
n

=
∑

j≥2 ρj/j∑
k≥2 λk/k

. A code is said to be regular if the VN and CN have

constant degrees dv and dc. In this case, r(dv, dc) = dv
dc

.

The sum-product LDPC decoder performs an approximate Maximum A Posteriori (MAP) estimation

of x from the received codeword s and the observed side information y by the mean of message exchange

in the bipartite graph. In non-binary channel coding, the sum-product LDPC decoder is described in [19].

We expressed the SW version of the algorithm in [14] and restate it here for the sake of completeness.

The initial message for a VN n is denoted m(0)(n), and its k-th component is

m
(0)
k (n) = log

P (Xn = 0|Yn = yn)

P (Xn = k|Yn = yn)
, k = 0 . . . q − 1 . (11)

Note that, here, the messages are expressed as vectors of log-likelihood ratios (LLR). Although ex-

changed messages may alternatively be represented as vector of probabilities [37], it is more convenient

for our purpose to assume that they are represented as vectors of LLR values. At iteration `, the message

m(`)(m,n) from CN m to VN n is

m(`)(m,n) = A[sm]F̃−1

 ∏
n′∈NV(m)\n

F̃
(
W [gn′m]m(`−1)(n′,m)

) (12)

where the product is componentwise, s̄m = 	sm�Hn,m, and gn′m = 	Hn′,m�Hn,m. Note that A[sm]

does not appear in the channel coding version of the algorithm and is specific to SW coding (since in

channel coding the syndrome is zero). At a VN n, a message m(`)(n,m) is sent to the CN m and an
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a posteriori message m̃(`)(n) is computed. They both satisfy

m(`)(n,m) = m(0)(n) +
∑

m′∈NC(n)\m

m(`)(m′, n) , (13)

m̃(`)(n) = m(0)(n) +
∑

m′∈NC(n)

m(`)(m′, n) . (14)

The channel version of the algorithm has the same VN message computation. From (14), each VN n

produces an estimate x̂(`)
n = arg mink m̃

(`)
k (n) of xn. The algorithm ends if HTx̂(`) = s or if ` = Lmax,

the maximum number of iterations.

The CN message (12) is calculated from linear operators and a componentwise product. Since the

probability density of these products may be difficult to derive, we introduce the following transform

γ. The function γ applies on vectors of size q and has k−th component γk : C→ R× [−π, π] with

γk(xk + iyk) = (zk, tk) =



(
1
2

log(x2
k + y2

k), arctan yk
xk

)
if xk ≥ 0, yk 6= 0(

1
2

log(x2
k + y2

k), arctan yk
xk

+ π
)

if xk ≤ 0 , yk ≥ 0(
1
2

log(x2
k + y2

k), arctan yk
xk
− π

)
if xk ≤ 0 , yk < 0 .

(15)

where xk and yk are real numbers. Not that there is an overlap between the first two lines of the definition

of γk when xk = 0 and yk 6= 0. However, both lines lead to γk(xk + iyk) = (1
2

log(y2
k),

π
2
) when xk = 0

and yk 6= 0. Also note that γk can also be seen as a function from R2 to R× [−π, π]. We complete the

definition of γk by assuming that when xk + iyk = 0, the value of tk is given by the realization of a

random variable Θ taking its values in [0, 2π] and with probability density function fΘ(θ) = 1
2π

. The

inverse function γ−1 applies on vectors of size q and has j−th component γ−1
j : R× [−π, π]→ C with

γ−1
j (zj, tj) = exp(zj) cos tj + i exp(zj) sin tj . (16)

The CN to VN equation (12) can then be restated as

m(`)(m,n) = A[sm]F̃−1

γ−1

 ∑
n′∈N (m)\n

γ
(
F̃
(
W [gn′m]m(`−1)(n′,m)

)) . (17)

Density evolution consists in the evaluation of the probability densities of the messages at each iteration.

The decoding error probability can then be calculated from the probability of the messages giving false
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estimates x̂k. In this way, the probability densities of m(`)(n,m) and m̃(`)(n) in (13), (14), are easy

to evaluate from the probability densities of the m(`)(m′, n) (assuming the m(`)(m′, n) are realizations

of independent random variables). On the opposite, the probability density of m(`)(m,n) in (12) is

difficult to derive because of the componentwise product. That is why we introduced the function γ

that transforms the product in (12) into a sum.

V. DENSITY EVOLUTION

This section evaluates the probability densities of the messages in channel coding and in SW coding.

The messages exchanged in the graph during the decoding can be seen as random variables. From

the density of the initial messages (11), we want to calculate recursively the probability density of

the messages at iteration `, exploiting (13) and (17). For this, several simplifying assumptions can be

performed. First, it is assumed that the messages arriving at a node at iteration ` are independent.

The so-called independence assumption was originally discussed in [26] and proved formally to be

reasonable in [34]. The main idea is that the messages are independent if they have been calculated on

independent subtrees of the bipartite graph. It is called the cycle-free case. In [34], it is shown that this

cycle-free case happens with probability arbitrarily closed to 1 when n→∞.

The second simplifying assumption is called the all-zero codeword assumption. In channel coding,

the all-zero codeword assumption applies if both the decoder and the channel are symmetric. The BP

decoder described in Section IV fullfils the symmetry conditions of [25] in the case of channel coding

and of SW coding. However, in SW coding, the correlation channel may not be symmetric. Thus, before

explaining the all-zero codeword assumption, we restate the definition of a symmetric channel.

Definition 1. [19] Let P (W |U) be a channel with q-ary input U and arbitrary output W . Denote I[a]

the (q − 1)× (q − 1) diagonal matrix with I[a]i,i = ri⊗a, i = 1, . . . , (q − 1). The channel P (W |U) is

said to be q-ary input symmetric-output if the possible values of W can be relabeled into length (q−1)
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complex-valued vectors W̃ such that

∀a ∈ {0 . . . (q − 1)}, P (W̃ = w̃|U = a) = P (W̃ = I[a]w̃|U = 0) . (18)

As this definition is not intuitive, we also derive the following equivalent definition when both U and

W take their values in GF(q).

Proposition 1. Let U and W be two random variables taking their values in GF(q). Then the channel

P (W |U) is symmetric if and only if there exists a bijective function h : GF(q)→ GF(q) such that

P (W = w|U = u) = P (W = h−1(h(w)⊕ u)|U = 0). (19)

For the proof, see Appendix A.

As a consequence, from (19), at most q parameters are needed to describe the channel. These

parameters correspond to the transition probabilities for the input U = 0. Then, the transition probabilities

for any other input U = i are simply the permuted transition probabilities for U = 0. The permutation is

defined by the function h. In channel coding, [19, Proposition 2] shows that for symmetric channels, the

error probability of the decoding algorithm is independent of the transmitted codeword. Consequently,

the recursion on the probability density is calculated assuming the all-zero codeword was transmitted.

In SW coding, this result applies only if X is distributed uniformly and P (Y |X) is symmetric In this

case, density evolution for channel coding can be performed directly with P (Y |X).

In the following, we first express recursions on the probability densities of the messages in the case

of channel coding for symmetric channels. Then, we express the recursion for SW coding, for any

channel.

A. Density evolution in channel coding for symmetric channels

In the case of a symmetric channel, the probability densities of the messages exchanged in the graph

do not depend on the transmitted codeword [19]. Consequently, we assume that the all-zero codeword

was transmitted and express the density evolution with this assumption. First, denote P̃ (`) the probability
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density of the a posteriori messages (14) at iteration ` under the all-zero codeword assumption. It is

shown in [19] that the error probability of the sum-product LDPC decoder at iteration ` can be calculated

as

p(`)
e = 1−

∫
m∈Rq

+

P̃ (`)(m)dm (20)

where Rq
+ is the set of length q real-valued vectors with positive components only. It thus suffices to

express P̃ (`) at each iteration to obtain the error probability. For the purpose of the paper, we need an

analytical form of DE for non-binary channel coding. As [18] (and any other paper, to the best of our

knowledge) does not provide such an analytical form, we state it in the following proposition.

Proposition 2. Consider a q-ary input symmetric-output channel P (W |U), a code ensemble C(λ, ρ),

and sum-product LDPC decoding for channel coding. Assume that the decoding graph is cycle-free

and that the all-zero codeword is transmitted. At iteration `, denote P (`) the probability density of the

messages from VN to CN, Q(`) the probability density of the messages from CN to VN, and P̃ (`) the

probability density of the a posteriori messages. Then

Q(`)(m) =Γ−1
d

(
1

q − 1

q∑
g=1

ρ
(
Γgc(P

(`−1))
))

(m) (21)

P (`)(m) =P (0)
⊗

λ
(
Q(`)

)
(m) (22)

where Γ−1
d and Γhc are density transform operators defined in Appendix B. Consequently,

P (`)(m) =P (0)
⊗

λ

(
Γ−1
d

(
1

q − 1

q∑
g=1

ρ
(
Γgc
(
P (`−1)

))))
(m) (23)

P̃ (`)(m) =P (0)
⊗

λ̃

(
Γ−1
d

(
1

q − 1

q∑
g=1

ρ
(
Γgc
(
P (`−1)

))))
(m) (24)

where λ̃(x) =
∑

k≥2 λ̃kx
k.

Proof. The channel coding version of the message computation from VN to CN is given by (13). Con-

sequently, (21) is obtained directly from (13) (sum of i.i.d. random variables of probability distribution

P (`−1) and marginalization according to the VN degree distribution). The channel version of the message

September 18, 2014 DRAFT



13

computation from CN to VN is given removing A[sm] in (17). Denote Ḡ a random variables taking

its values in GF(q). For any message m, the density ΓḠW of W [Ḡ]m can be obtained by marginalizing

with respect to Ḡ. From the density transform operator obtained in Appendix B1, it is

ΓḠW (m) =
1

q − 1

q−1∑
ḡ=1

ΓḡW (P (`−1))(m). (25)

Furthermore, denote Γm, ΓF , Γγ the density transform operators obtained respectively for the transform

of m into p (see Appendix B2), for the Fourier Transform (Appendix B3), and for γ (Appendix B4)

and denote Γḡc = ΓγΓFΓmΓḡW . The density ΓḠγ of γ
(
F̃
(
W
[
G
]
m
))

is given by

ΓḠγ (m) =
1

q − 1

q−1∑
ḡ=1

Γḡc(P
(`−1))(m) (26)

by the linearity of the density transform operators. To finish, from the density transform operators Γp,

ΓF−1 , Γγ−1 obtained respectively for the transformation of p into m (see Appendix B2), for the inverse

Fourier Transform (see Appendix B3), and for γ−1 (see Appendix B4), we get (22) where Γ−1
d =

ΓpΓγ−1ΓF−1 . Finally combining (21) and (22) gives (23). To finish, (24) directly derives from (23).

The initial P (0) is obtained by evaluating the probability density of (11) conditioned on the fact that

U = 0. Note that (23) is not convenient for practical density evolution (see the expressions of the

operators in Appendix B). The objective here is only to express a recursion in order to show that a

similar form is obtained in SW coding.

B. Density evolution in SW coding

In SW coding, the all-zero codeword transmission cannot be assumed anymore, even if the correlation

channel P (Y |X) is itself symmetric, because of the source distribution. Denote respectively P (`)
k , Q(`)

k ,

and P̃
(`)
k the probability densities of the messages from VN to CN, from CN to VN, and of the a

posteriori messages conditioned on the fact that X = k. Note that P (`)
k , Q(`)

k , and P̃
(`)
k are probability

densities conditioned on the fact that X = k but do not correspond to an all-k codeword assumption.

In fact, e.g., P (`)
k can be expressed by marginalizing according to the node neighbor values and thus
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depend on all the P (`−1)
j , j = 0, . . . , (q−1). The following proposition gives the expression of the error

probability of the sum-product LDPC decoder in case of SW coding.

Proposition 3. Consider a joint distribution P (X, Y ), where X and Y take their values in GF(q) and

Y respectively, a code ensemble C(λ, ρ), and sum-product LDPC decoding. Let P̃ (`)
k be the probability

density of the a posteriori messages conditioned on the fact that X = k and define

〈P̃ (`)〉(m) =

q−1∑
k=0

P (X = k)P̃
(`)
k ◦ A[	k](m) (27)

Then, in SW coding, the error probability of the LDPC decoder at iteration ` is given by

p(`)
e = 1−

∫
m∈Rq

+

〈P̃ (`)〉(m)dm. (28)

See Appendix C1 for the proof.

Proposition 3 can be interpreted as follows. For a randomly selected variable node of the bipartite

graph (see Section IV), p(`)
e , the probability of error at iteration `, is the probability for an a posteriori

message to produce a false estimate of the symbol value at the variable node. For example, in the binary

case, if X = 0 but the scalar message m(`) < 0, a false estimate of X is produced. Consequently, in the

non-binary case, the error probability can be obtained by marginalizing according to k = 0, . . . , (q− 1)

and, for each k, by integrating P̃
(`)
k over the set of messages producing an error. For X = k, this

corresponds to the set of messages m such that there exists i 6= k such that mi < mk. The marginalization

operation appears in (27). Moreover, the operators A[	k] realize the projection of the space Rq
− on the

set of messages producing an error, thus giving (28).

The following proposition gives the expression of 〈P̃ (`)〉 obtained in SW coding.

Proposition 4. Consider a joint distribution P (X, Y ), where X and Y takes their values in GF(q) and

Y respectively, a code ensemble C(λ, ρ), and sum-product LDPC decoding. Assume that the decoding

graph is cycle-free. Denote P (`)
k and P̃ (`)

k the respective probability densities of the messages from VN

to CN and of the a posteriori messages at iteration ` conditioned on the fact that X = k. Denote also
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〈P (`)〉(m) =
∑q−1

k=0 P (X = k)P
(`)
k ◦ A[	k](m) and 〈P̃ (`)〉(m) =

∑q−1
k=0 P (X = k)P̃

(`)
k ◦ A[	k](m). In

SW coding, the following expressions holds

〈P (`)〉(m) =〈P (0)〉
⊗

λ

(
Γ−1
d

(
1

q − 1

q∑
g=1

ρ
(
Γgc
(
〈P (`−1)〉

))))
(m) (29)

〈P̃ (`)〉(m) =〈P (0)〉
⊗

λ̃

(
Γ−1
d

(
1

q − 1

q∑
g=1

ρ
(
Γgc
(
〈P (`−1)〉

))))
(m) (30)

where Γ−1
d and Γgc are density transform operators defined in Appendix B and λ̃(x) =

∑
k≥2 λ̃kx

k.

See Appendix C for the proof. The initial density is given by

〈P (0)〉 =

q−1∑
k=0

P (X = k)P
(0)
k ◦ A[	k](m) (31)

where P (0)
k is calculated ∀k = 0, . . . q − 1 from the expression of the initial messages (11).

We see that the recursion in SW coding is exactly that obtained in channel coding, except that it

now applies on 〈P (`)〉. Consequently, the only difference is on the initial 〈P (0)〉 which, as expected,

takes into account the probability distribution of X . Consequently, we see that if two joint probability

distributions P (X, Y ) and P (U,W ) have the same initial probability densities respectively 〈P (0)〉 and

P (0), i.e., 〈P (0)〉 = P (0), then they have the same density evolution equations. The result of [4] on the

equivalence between channel coding and SW coding can be restated from this remark.

From the DE equations, we now explain how to optimize the code degree distributions.

VI. ASYMPTOTIC ANALYSIS

In this section, we perform code degree optimization from the DE recursion. We consider two

particular correlation channels P (Y |X) and various input probability distributions P (X). One of the

considered correlation channels is symmetric, while the other is not. For each of the considered source

models, we perform code degree distribution optimization based on density evolution for the equivalent

channel, using a differential evolution algorithm [31].

The results of Proposition 4 show that the probability distributions of the messages can be obtained

recursively. However, no convenient closed-form expression of the density evolution is known for this
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model. Thus, here, an approximate P (`)
e (λ, ρ) will be obtained from an MCMC-based density evolution

method called MC-DE [15]. From this, and assuming that the distribution of X is fixed, we get an

approximate threshold of the code, that is the largest parameter p for which P (`)
e (λ, ρ) goes to 0 when

` goes to infinity.

Now, we want to fix the rate r of the code, and find degree distributions (λ(x), ρ(x)) of rate r that

maximizes the threshold. This optimization can be realized using a genetic algorithm called differential

evolution [31]. Here, the code degree optimization will be on the VN degree distribution λ(x) only.

The CN degree distribution ρ(x) can then be calculated from λ(x) and r.

In the following optimization runs, we always perform MC-DE on 1000 samples and 100 iterations.

This parameters are shown in [15] to be sufficient to obtain good error probability approximations.

For the differential evolution, we consider populations of size 500, with 100 iterations, a crossover

probability of 1, and a mutation factor of 0.85 (see [31]). The optimization is then performed for a

given maximum VN degree value. For each considered setup and maximum VN degree, the following

tables give the best obtained threshold p and the corresponding entropy H(p) = H(X|Y ) 1. The obtained

threshold values are also compared to the threshold for a regular code. In the following, p denotes the

approximate maximum parameter that can be coded with a code of rate r (i.e. for which H(X|Y ) ≤ r).

The following setups are considered.

A. Symmetric Correlation Channel

We first consider a symmetric correlation channel. Consider a source X taking its values in GF(q)

and such that P (X = x) = px. Here, the correlation channel between X and Y is described by a q-ary

1The optimized degree distributions leading to these threshold values are available online at http://www.elsa-dupraz.fr/documents/degrees.

dat
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symmetric channel in GF(q) with

P (Y = x|X = x) =1− p (32)

∀y 6= x, P (Y = y|X = x) =
p

q − 1

where 0 < p < 1. For given source parameters px and p, density evolution gives the error probability

P
(`)
e (λ, ρ) of an LDPC code of degree distributions (λ(x), ρ(x)). We now consider particular choices of

source distributions and give optimization results in the considered cases.

a) GF(4), X ∼ [0.25, 0.25, 0.25, 0.25], r = 3/4, p = 0.355: In this case, the input probability

distribution is uniform and density evolution is the same for channel coding and SW coding. The

following results are obtained.

Max VN deg. 7 10 15 Reg (3, 4)

p 0.340 0.346 0.347 0.278

H(p) 0.731 0.739 0.740 0.647

We see that code degree optimization enables to obtain codes with higher threshold values. Also,

when the maximum possible variable node degree is increased, the threshold value is also increased.

This result is expected, because increasing the number of variable node degrees increases the number

of degrees of freedom for the optimization. Comparison with binary case

b) GF(4), X ∼ [0.5, 0.25, 0.125, 0.125], r = 1/2, p = 0.225: Now, the input probability distribution

is not uniform anymore and density evolution for SW coding differs from density evolution for channel

coding.

Max VN deg. 7 10 15 Reg (3, 6)

p 0.214 0.220 0.221 0.175

H(p) 0.483 0.492 0.494 0.421
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The same conclusions are obtained.

c) GF(16), X ∼ [0.4, 0.04, . . . , 0.04], r = 1/2, p = 0.367: Here, the input probability distribution

is not uniform, and we consider a bigger Galois field.

Max VN deg. 10 15 21 Reg (3, 6)

p 0.321 0.325 0.325 0.294

H(p) 0.454 0.458 0.458 0.426

In all cases, increasing the maximum VN degree enables to increase the performance of the code.

Moreover, the obtained codes perform much better than the regular code.

B. Non-Symmetric Correlation Channel

We now consider a correlation channel that is no more symmetric. The correlation channel between

X and Y is now described by

P (Y = 0|X = 1) =1− p, ∀y 6= 0, P (Y = y|X = 1) =
p

q − 1

∀x 6= 1, P (Y = x|X = x) =1− p, ∀x 6= 1, ∀y 6= x, P (Y = y|X = x) =
p

q − 1
(33)

where 0 < p < 1. The optimization process is the same as before.

d) GF(4), X ∼ [0.25, 0.25, 0.25, 0.25], r = 1/2, p = 0.114:

Max VN deg. 7 10 15 Reg (3, 6)

p 0.089 0.094 0.097 0.091

H(p) 0.456 0.465 0.470 0.460

e) GF(4), X ∼ [0.5, 0.25, 0.125, 0.125], r = 3/4, p = 0.360:

Max VN deg. 7 10 15 Reg (3, 6)

p 0.306 0.316 0.317 0.257

H(p) 0.714 0.721 0.722 0.677
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f) GF(16), X ∼ [0.4, 0.04, . . . , 0.04], r = 1/2, p = 0.367:

Max VN deg. 10 15 20 Reg (3, 6)

p 0.341 0.345 0.346 0.281

H(p) 0.494 0.498 0.499 0.436

We get the same conclusions as for the symmetric case.

Now that optimized degree distributions are obtained, the finite-length code construction can be

performed with an LDPC PEG (Progressive Edge Growth) algorithm [17]. Once the code is constructed,

one has to deal with potentially harmful local structures (mainly short cycles) in order to obtain low

error floors [23]. However, as illustrated in the following section, degree distribution optimization with

density evolution can be seen as a good departure point at the code design process.

VII. FINITE-LENGTH RESULTS

In this section, we analyze the performance of finite-length LDPC codes constructed from regular and

optimized irregular degree distributions. The finite-length construction is performed with an LDPC PEG

(Progressive Edge Growth) algorithm [17]. We consider a codeword length N = 10000 , 50 decoding

iterations, and source symbols in GF(4). Two setups are evaluated.

A. q-ary Symmetric Channel with Uniform Source Distribution

We first consider the case of the q-ary symmetric channel with uniform source distribution. For

performance comparison, three codes are constructed. The first one is the regular (3, 4)-code with

threshold value p̄ = 0.278. The second one is the optimized irregular code with maximum VN degree

7 obtained in the previous section. It has threshold value p̄ = 0.340. In order to evaluate the gain at

considering non-binary LDPC codes, we also construct a (3, 4) binary LDPC code. It will be applied

on the bit planes obtained from the non-binary symbols.
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Fig. 2. BER with respect to correlation channel parameter p, (a) Uniform Source distribution, regular (3, 4)-code and optimized irregular

code with maximum VN degree 7 (b) Non-Uniform source distribution, regular (3, 6)-code and optimized irregular codes with maximum

VN degrees 7 and 10

Fig. 2 (a) represents the obtained Bit Error Rates (BER) with respect to the correlation channel

parameter p. First, we see that the BER performance of the regular code is well predicted by the threshold

value given by density evolution. On the other hand, there is a gap between the BER performance of

the irregular code and the threshold value for the irregular code. The gap comes from the finite-length

construction. In fact, the girth of the code constructed from the LDPC PEG algorithm is 12 for the

regular code and 10 for the irregular code, which penalizes the irregular code. The girth difference

is due to higher degrees in the irregular code. Moreover, at finite length, the decimal coefficients of

the degree distribution are in fact truncated which may result in a performance loss compared to the

threshold value. However, despite the loss due to finite-length construction, we see that there is a clear

performance gain at considering optimized irregular codes.

To finish, we see that the binary regular code perform poorly compared to the non-binary regular

code. This shows the gain at considering non-binary symbols instead of bit planes.
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B. q-ary Symmetric Channel with Non-Uniform Source Distribution

We now consider the q-ary symmetric channel with source distribution X ∼ [0.5, 0.25, 0.125, 0.125].

Here, four codes are constructed. The first code is the regular (3, 6)-code with threshold value p̄ = 0.175.

The second and third codes are the irregular codes optimized with maximum VN degrees 7 and 10,

respectively. They have threshold values p̄ = 0.214 and p̄ = 0.220, respectively. The last code is the

regular (3, 6)-code for binary symbols. It is applied on bit planes obtained from the non-binary symbols.

Fig 2 (b) gives the BERs with respect to p. We obtain the same results as before on the gap between

the threshold value and the BER performance for regular and irregular codes. We also observe that the

optimized irregular code of maximum VN degree 10 performs worst than the irregular code of maximum

VN degree 7. As before, this is due to finite-length construction which penalyzes the code with higher

degree. We also observe an important loss at considering bit plane coding instead of non-binary LDPC

coding.

To conclude, the simulations illustrate the gain at finite-length at considering optimized irregular

code degrees. They show that the gap between the threshold value and the BER performance is higher

for irregular codes than for regular codes. As a consequence, there is some space to improve the

BER performance of irregular code at finite-length. The simulation results also show the BER gain at

considering non-binary codes instead of binary codes applied on bit-planes.

VIII. CONCLUSION

In this paper, we derived the Density Evolution recursion for non-binary LDPC codes for SW coding.

From this recursion, we performed code degree optimization from the differential evolution algorithm.

Asymptotic analysis and finite-length simulations illustrated the performance gain at considering op-

timized degree distributions. Future work will be related to the finite-length code design and to the

extension to the non-symmetric SW coding setup.
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APPENDIX

A. Symmetry

First, from Definition 1, to each value w ∈ GF(q), one has to associate a vector w̃(w) ∈ Cq−1. Denote

Ω̃ = {w̃(0), . . . , w̃(q − 1)}.

From (18),

if w̃ ∈ Ω̃, then ∀u = 0, . . . q − 1, I[u]w̃ ∈ Ω̃. (34)

Consequently, from the expressions of I[u] and r, every non-zero component of w̃ can take at least κ

different values. On the other side, from (18),

∀w̃ ∈ Ω̃, {I[u]w̃}u=0,...,q−1 = Ω̃. (35)

Consequently, each non-zero component of w̃ can take at most κ different values. Thus each non-zero

component of w̃ takes exactly κ different values and any vector w̃ has exactly α non-zero independent

components. We restrict the analysis to these α components of interest and assume without loss of

generality that the other components are always equal to 0.

From the previous restriction, we now assume that w̃(w) ∈ Cα and denote

∀k = 1 . . . α, w̃k(w) = ak(w) exp(ibk(w)) (36)

where ak(w), bk(w) ∈ R. From (34) and (35), ak(w) does not depend on w. Consequently, without loss

of generality, we take ∀w ∈ GF(q), ∀k = 1, . . . , α, ak(w) = 1. In the same way, we show that the

bk(w) can be decomposed into

bk(w) = ck +
2π

κ
dk(w) (37)

where ck ∈ R and dk(w) ∈ {0, . . . , κ − 1}. As before, without loss of generality, we denote ck = 0,

∀k = 1, . . . , α. Finally, one has w̃k = exp
(
i2π
κ
dk(w)

)
.
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Define

d : GF(q)→ {0, . . . , κ− 1}α

w 7→ (d1(w), . . . , dα(w)). (38)

d is necessarily bijective because every value of GF(q) has to be represented differently. Consequently,

there exists a function d−1 : {0, . . . , κ− 1}α → GF(q). Then

(I[u]w̃(w))k = ri⊗u exp

(
i
2π

κ
dk(w)

)
= exp

(
i
2π

κ
(dk(w)⊕ k ⊗ u)

)
(39)

and from (18),

P (W = w|U = u) = P
(
W = d−1 (d(w)⊕ [1, . . . , α]⊗ u) |U = 0

)
(40)

in which the operations ⊕ and ⊗ are componentwise. Further denote h(w) = [1, . . . , α] ⊗ d(w) (h

is necessarily bijective). Define an invertible mapping from {0, . . . , κ − 1}α to GF(q) and denote h :

GF(q)→ GF(q) the composition of h and of the invertible mapping. We get

P (W = w|U = u) = P (W = h−1(h(w)⊕ u)|U = 0). (41)

B. Recursion for channel coding

We look for recursive expressions of Q(`) from P (`) from (13) and (17). For this, we express the

probability density transformations of the operators involved in (17).

1) W [g] and R[s]: In the following, g ∈ GF(q)\{0} and s ∈ GF(q). Let m be a real-valued

vector of size q and ` = W [g]m. Denote PM and PL their respective probability densities and define

ϕ(`) = W [g−1]`. The function ϕ is invertible, and both ϕ and its inverse ϕ−1 are C1. The Jacobian

matrix of ϕ is Jϕ = W [g−1] and det(Jϕ) 6= 0. Consequently, ϕ is a C1-diffeomorphism. By expressing

E[f(L)] for any L1 function f and by variable change we get

PL(`) = det(Jϕ)PM(W [g−1]`) = ΓgW (PM)(`) (42)

where ΓgW is the density transform operator.

Using a similar derivative, a density transform operator ΓsR can be obtained for R[s].
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2) From LLR to probability representation: Define P as the set of vectors of q components such

that ∀k = 0 . . . q − 1, 0 < pk < 1 and
∑q−1

k=0 pk = 1. Let m ∈ {0} × Rq−1 and p ∈ P be vectors of

size q. The probability densities of m and p are denoted respectively PM and PP. Define the function

ϕ : {0} × Rq−1 → P with ϕ(m) = (ϕ0(m), . . . , ϕq−1(m)) and ∀k = 0 . . . q − 1,

ϕk(m) =
exp(−mk)∑q−1
k′=0 exp(−m′k)

. (43)

The function ϕ is invertible with inverse ϕ−1 : P → {0} × Rq−1 with ϕ−1(p) = (φ0(p), . . . , φq−1(p))

and ∀j = 0 . . . q − 1,

φj(p) = log
1−

∑q−1
j′=1 p

′
j

pj
. (44)

Both ϕ and ϕ−1 are C1. The Jacobian matrix Jϕ of ϕ is given by

(Jϕ(m))k,k = − exp(−mk)

(
q−1∑

k′=0,k′ 6=k

exp(−m′k)

)
/

(
q−1∑
k=0

exp(−m′k)

)2

j 6= k : (Jϕ(m))j,k = exp(−mk) exp(−mj)/

(
q−1∑
k=0

exp(−m′k)

)2

(45)

and det(Jϕ(m)) 6= 0. Consequently ϕ is a C1-diffeomorphism and by variable change in E [f(M)] for

every L1 function f ,

PM(m) = det(Jϕ(m))PP(ϕ1(m) . . . ϕq−1(m)) = Γm(PP)(m) (46)
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where Γm is the density transform operator. On the other hand, the Jacobian matrix Jϕ−1 of ϕ−1 is

given by

∀j 6= 0 : (J−1
ϕ (p))j,j = − 1

pj
− 1∑q−1

j′=1 p
′
j

(47)

∀j 6= 0 : (J−1
ϕ (p))j,0 = 0 (48)

∀j 6= 0 : (J−1
ϕ (p))0,j = − 1∑q−1

j′=1 p
′
j

(49)

∀j, k 6= 0 : (J−1
ϕ (p))j,k = − 1∑q−1

j′=1 p
′
j

(50)

(J−1
ϕ (p))0,0 = − 1∑q−1

j′=1 p
′
j

(51)

(52)

Thus det(J−1
ϕ (p)) 6= 0 and from the same arguments as before, a density transform operator Γp can

be obtained for the transformation of m into p.

3) Fourier Transform and inverse Fourier Transform: We consider the Fourier Transform f = F(p)

of a vector p. As F is an invertible linear application, by variable change and from the arguments of

Appendix B1, we show that

PF(f) = det(JF−1)PP(F−1(f)) = ΓF(PP)(f) (53)

where JF−1 is the Jacobian of F−1 and ΓF is the defined density transform operator. A density transform

operator ΓF−1 can also be obtained from the inverse Fourier transform p = F−1(f).

4) γ transform: Define the restricted equivalent function γ̃ : R2\{0, 0} → R× [−π, π] and

γ̃(x, y) =



(
1
2

log(x2 + y2), arctan y
x

)
if x ≥ 0(

1
2

log(x2 + y2), arctan y
x

+ π
)

if x < 0 , y ≥ 0(
1
2

log(x2 + y2), arctan y
x
− π

)
if x < 0 , y < 0 .

(54)

We show that γ̃ is C1 over its interval of definition even in the particular points (x, 0) ∀x 6= 0 and (0, y)

∀y 6= 0. Its inverse application is γ̃−1 : R×[−π, π]→ R2\{0, 0} and γ−1(z, t) = (exp(z) cos t, exp(z) sin t).
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The determinants of the Jacobian matrices Jγ̃ of γ̃ and Jγ̃−1 of γ̃−1 are given by

det(Jγ̃(x, y)) =
1

x2 + y2
> 0 , det(Jγ̃−1(z, t)) = exp(2z) > 0 . (55)

Consequently, γ̃ and γ̃−1 are C1−diffeomorphisms. Denote PX,Y and PZ,T the probability densities

associated to random variables (X, Y ) and (Z, T ). By expressing E[f(X, Y )] and E[f(Z, T )] for every

L1 function f and by variable change, we show that density transform operators can be obtained

∀(x, y) ∈ R2\{0, 0} and ∀(z, t) ∈ R× [−π, π] as

P̃X,Y (x, y) =Γγ(PZ,T )(x, y) =
1

x2 + y2
PZ,T ◦ γ̃(x, y) (56)

P̃Z,T (z, t) =Γγ−1(PX,Y )(z, t) = exp(z)PX,Y ◦ γ̃−1(z, t) . (57)

The density cannot be obtained in (0, 0) by the same method because γ is not continuous in (0, 0).

However, the probability density functions have to be completed. We get

lim
z→−∞

P̃Z,T (z, t) =
1

2π
PX,Y (0, 0) (58)

P̃X,Y (0, 0) = lim
z→−∞

PZ,T (z, t) = lim
z→−∞

PZ(z) (59)

where limz→−∞ PZ,T (z, t) does not depend on t and PZ is the marginal density of the random variable

Z.

Note that in (15), a transform γ involving vectors of size q − 1 is defined. Its components γj ,

j = 1 . . . q−1 apply independently on the components of the input vector (not necessarily composed by

independent random variables). Consequently, the transforms defined in (56) can be directly generalized

to the vector version.

C. Recursion for Slepian-Wolf coding

1) Expression of the error probability: The error probability p(`)
e can be expressed as

p(`)
e = 1−

q−1∑
k=0

P (X = k)

∫
m∈Ωk

P̃
(`)
k (m)dm (60)

September 18, 2014 DRAFT



27

where Ωk = {m ∈ Rq : ∀k′ 6= k : mk′ > mk} is the set of messages giving the right value of X . The

function m̃ → A[	k]m̃ is invertible, C1, and its inverse is also C1. The Jacobian of the application is

A[	k] and det(A[	k]) 6= 0. Thus the application is a C1-diffeomorphism. By change of variable,

p(`)
e = 1−

q−1∑
k=0

P (X = k)

∫
m̃∈Rq

+

P̃
(`)
k (A[	k]m̃)dm̃ (61)

To finish (and by replacing m̃ by m),

p(`)
e = 1−

∫
m∈Rq

+

〈P̃ (`)〉(m)dm. (62)

2) Multinomial formula: The multinomial formula is restated here because it will be useful for the

proof of the recursion. Let (x1 . . . xm) be m scalar values. The multinomial formula gives(
m∑
k=1

xk

)n

=
∑

k1+···+km=n

(
n

k1, . . . , km

) m∏
i=1

xkii (63)

where
(

n
k1,...,km

)
= n!

k1!...km!
is the multinomial coefficient. On the other hand, denote Sx = {x1, . . . , xm}.

One can show that the multinomial formula (63) gives also(
m∑
k=1

xk

)n

=
∑

(x′1...x
′
n)∈Snx

n∏
i=1

x′i . (64)

3) Recursion: For the sake of simplicity, the code is assumed regular with degrees dv and dc.

The irregular version of the recursion is directly obtained by marginalization according to the degree

distributions.

The expression of the density P (`)
x is directly obtained from (13) (sum of random variables) as

P (`)
x (m) = P (0)

x

⊗
(Q(`−1)

x )
⊗

(dv−1)(m). (65)

On the other hand, Q(`)
x (m) can be developed as

Q(`)
x (m) =

∑
ḡ1...ḡdc−1

∑
x1...xdc−1

(
dc−1∏
i=1

pxi
q − 1

)
P (m|x, x1 . . . xdc−1, ḡ1 . . . ḡdc−1) (66)

P (m|x, x1 . . . xdc−1, ḡ1 . . . ḡdc−1) = Γ−1
d

(
dc−1⊗
i=1

Γḡic (P (`−1)
xi

)

)
◦ A[	s̄](m) (67)
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where s̄ = x+
∑dc−1

i=1 ḡixi and (67) is obtained from (22) completed with A and from the multinomial

formula. Furthermore, A[c⊕ b]m = A[c]A[b]m and from (66),

Q(`)
a (m) = Q

(`)
b ◦ A[a	 b](m) (68)

Moreover,

Q
(`)
0 (m) =

∑
ḡ1...ḡdc−1

∑
x1...xdc−1

(
dc−1∏
i=1

pxi
q − 1

)
Γ−1
d

(
dc−1⊗
i=1

Γḡic
(
P (`−1)
xi

◦ A[	xi]
))

(m) (69)

=Γ−1
d

( q−1∑
ḡ=1

q−1∑
x=0

px
q − 1

Γḡc
(
P (`−1)
x ◦ A[	x]

))⊗
(dc−1)

 (m) (70)

by the multinomial formula. Finally, by linearity of the density transform operators

Q
(`)
0 (m) =Γ−1

d

( 1

q − 1

q−1∑
ḡ=1

Γḡc

(
q−1∑
x=0

pxP
(`−1)
x ◦ A[	x]

))⊗
(dc−1)

 (m) (71)

=Γ−1
d

( 1

q − 1

q−1∑
ḡ=1

Γḡc
(
〈P (`−1)〉

))⊗
(dc−1)

 (m). (72)

Then from (65)

〈P (`)〉(m) =

q−1∑
x=0

px

(
P (0)
x

⊗(
Q(`−1)
x

)⊗(dv−1)
)
◦ A[	x](m) (73)

=

q−1∑
x=0

px
(
P (0)
x ◦ A[	x]

)⊗(
Q(`−1)
x ◦ A[	x]

)⊗(dv−1)
(m) (74)

by property of the convolution product. Furthermore, from (68),

〈P (`)〉 = 〈P (0)〉
⊗(

Q
(`−1)
0

)⊗(dv−1)

(m). (75)

To finish, replacing Q(`−1)
0 from (72) gives (29) and (30) derives directly from (29).

showing the entropy equality.
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