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Abstract

In classification of incomplete pattern, the missing values can either play a crucial role in the class determination,

or have only little influence (or eventually none) on the classification results according to the context. We propose

a credal classification method for incomplete pattern with adaptive imputation of missing values based on belief

function theory. At first, we try to classify the object (incomplete pattern) based only on the available attribute

values. As underlying principle, we assume that the missing information is not crucial for the classification if a

specific class for the object can be found using only the available information. In this case, the object is committed

to this particular class. However, if the object cannot be classified without ambiguity, it means that the missing

values play a main role for achieving an accurate classification. In this case, the missing values will be imputed

based on the K-nearest neighbor (K-NN) and self-organizing map (SOM) techniques, and the edited pattern with

the imputation is then classified. The (original or edited) pattern is respectively classified according to each training

class, and the classification results represented by basic belief assignments are fused with proper combination rules

for making the credal classification. The object is allowed to belong with different masses of belief to the specific

classes and meta-classes (which are particular disjunctions of several single classes). The credal classification

captures well the uncertainty and imprecision of classification, and reduces effectively the rate of misclassifications

thanks to the introduction of meta-classes. The effectiveness of the proposed method with respect to other classical

methods is demonstrated based on several experiments using artificial and real data sets.

Keywords: belief function, classification, missing values, SOM, K-NN.
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I. INTRODUCTION

In many practical classification problems, the available information for making object classification is

partial (incomplete) because some attribute values can be missing due to various reasons (e.g. the failure

or dysfunctioning of the sensors providing information, or partial observation of object of interest because

of some occultation phenomenon, etc). So it is crucial to develop efficient techniques to classify as best

as possible the objects with missing attribute values (incomplete pattern), and the search for a solution of

this problem remains an important research topic in the pattern classification field [1], [2]. Some more

details about pattern classification can be found in [3], [4].

There have been many approaches developed for classifying the incomplete patterns [1], and they

can be broadly grouped into four different types. The first (simplest) one is to remove directly the

patterns with missing values, and the classifier is designed only for the complete patterns. This method

is acceptable when the incomplete data set is only a very small subset (e.g. less than 5%) of the whole

data set, but it cannot effectively classify the pattern with missing values. The second type is the model-

based techniques [5]. The probability density function (PDF) of the input data (complete and incomplete

cases) is estimated at first by means of some procedures, and then the object is classified using bayesian

reasoning. For instance, the expectation-maximization (EM) algorithm have been applied to many problems

involving missing data for training Gaussian mixture models [5]. In the model-based methods, it must

make assumptions about the joint distribution of all the variables in the model, but the suitable distributions

sometimes are hard to obtain. The third type classifiers are designed to directly handle incomplete pattern

without imputing the missing values, such as neural network ensemble methods [6], decision trees [7],

fuzzy approaches [8] and support vector machine classifier [9]. The last type is the often used imputation

(estimation) method. The missing values are filled with proper estimations [10] at first, and then the edited

patterns are classified using the normal classifier (for the complete pattern). The missing values and pattern

classification are treated separately in these methods. Many works have been devoted to the imputation of

missing data, and the imputation can be done either by the statistical methods, e.g. mean imputation [11],

regress imputation [2], etc, or by machine learning methods, e.g. K-nearest neighbors imputation (KNNI)

[12], Fuzzy c-means (FCM) imputation (FCMI) [13], [14], Self-organizing map imputation (SOMI) [15],

etc. In KNNI, the missing values are estimated using K-nearest neighbors of object in training data space.

In FCMI, the missing values are imputed according to the clustering centers of FCM and taking into

account the distances of the object to these centers [13], [14]. In SOMI [15], the best match node (unit)

of incomplete pattern can be found ignoring the missing values, and the imputation of the missing values
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is computed based on the weights of the activation group of nodes including the best match node and its

close neighbors. These existing methods usually attempt to classify the object into a particular class with

maximal probability or likelihood measure. However, the estimation of missing values is in general quite

uncertain, and the different imputations of missing values can yield very different classification results,

which prevent us to correctly commit the object into a particular class.

Belief function theory (BFT), also called Dempster-Shafer theory (DST) [16] and its extension [17],

[18] offer a mathematical framework for modeling uncertainty and imprecise information [19]. BFT has

already been applied successfully for object classification [20]–[28], clustering [29]–[33] and multi-source

information fusion [34]–[37], etc. Some classifiers for the complete pattern based on DST have been

developed by Denœux and his collaborators to come up with the evidential K-nearest neighbors (EK-NN)

[21], evidential neural network (ENN) [27], etc. The extra ignorance element represented by the disjunction

of all the elements in the whole frame of discernment is introduced in these classifiers to capture the totally

ignorant information. However, the partial imprecision, which is very important in the classification, is

not well characterized. We have proposed credal classifiers [23], [24] for complete pattern considering

all the possible meta-classes (i.e. the particular disjunctions of several singleton classes) to model the

partial imprecise information. The credal classification allows the objects to belong (with different masses

of belief) not only to the singleton classes, but also to any set of classes corresponding to the meta-

classes. In [23], a belief-based K-nearest neighbor classifier (BK-NN) has been presented, and the credal

classification of object is done according to the distances between the object and its K nearest neighbors as

well as two given (acceptance and rejection) distance thresholds. The K-NN classifier generally takes big

computation burden, and this is not convenient for real application. Thus, a simple credal classification rule

(CCR) [24] has been further developed, and the belief value of object associated with different classes

(i.e. singleton classes and selected meta-classes) is directly calculated by the distance to the center of

corresponding class and the distinguishability degree (w.r.t. object) of the singleton classes involved in the

meta-class. The location of center of meta-class in CCR is considered with the same (similar) distance

to all the involved singleton classes’ centers. Moreover, when the training data is not available, we have

also proposed several credal clustering methods [30]–[32] in different cases. Nevertheless, these previous

credal classification methods are mainly for dealing with complete pattern without taking into account the

missing values.

In our recent work, a prototype-based credal classification (PCC) [25] method for the incomplete patterns

has been introduced to capture the imprecise information caused by the missing values. The object hard to
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correctly classify are committed to a suitable meta-class by PCC, which well characterizes the imprecision

of classification due to absence of part attributes and also reduces the misclassification errors. In PCC,

the missing values in all the incomplete patterns are imputed using prototype of each class center, and

the edited pattern with each imputation is respectively classified by a standard classifier (for complete

pattern). With PCC, one obtains c pieces of classification results for each incomplete pattern in a c class

problem, and the global fusion of the c results is given for the credal classification. Unfortunately, PCC

classifier is computationally greedy and time-consuming, and the imputation of missing values based on

class prototype is not so precise. In order to overcome the limitations of PCC, we propose a new credal

classification method for incomplete pattern with adaptive imputation of missing values, and it can be

called Credal Classification with Adaptive Imputation (CCAI) for short.

The pattern to classify usually consists of multiple attributes. Sometimes, the class of the pattern can

be precisely determined using only a part (a subset) of the available attributes, and it implies that the

other attributes are redundant and in fact unnecessary for the classification. So a new method of credal

classification with adaptive imputation strategy (i.e. CCAI) for missing values is proposed. In CCAI, we

attempt to classify the object only using the known attributes value at first. If a specific classification result

is obtained, it very likely means that the missing values are not very necessary for the classification, and

we directly take the decision on the class of the object based on this result. However, if the object cannot

be clearly classified with the available information, it indicates that the missing information included in

the missing attribute values is probably very crucial for making the classification. In this case, we present

a sophisticated classification strategy for the edition of pattern based on the proper imputation of missing

values.

K-nearest neighbors-based imputation method usually provides pretty good performances for the es-

timation of missing values, but the its main drawback is the big computational burden. To reduce the

computational burden, Self-Organizing Map (SOM) [38] is applied in each class, and the optimized

weighting vectors are used to represent the corresponding class. Then, the K nearest weighting vectors of

the object in each class are respectively employed to estimate the missing values. For the classification of

original incomplete pattern (without imputation of missing values) or the edited pattern (with imputation

of missing values), we adopt the ensemble classifier approach. One can respectively get the simple

classification result according to each training class, and each classification result is represented by a

simple basic belief assignment (BBA) including two focal elements (i.e. singleton class and ignorant

class) only. The belief of the object belonging to each class is calculated based on the distance to the
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corresponding prototype, and the other belief is committed to the ignorant element. The fusion (ensemble)

of these multiple BBA’s is then used to determine the class of the object. If the object is directly classified

using only the known values, Dempster-Shafer1 (DS) fusion rule [16] is applied because of the simplicity

of this rule and also because the BBA’s to fuse are usually in low conflict. In this case, a specific result

is obtained with DS rule. Otherwise, a new fusion rule inspired by Dubois and Prade (DP) rule [39] is

used to classify the edited pattern with proper imputation of its missing values. Because the estimation of

the missing values can be quite uncertain, it naturally induces an imprecise classification. So the partial

conflicting beliefs will be kept and committed to the associated meta-classes in this new rule to reasonably

reveal the potential imprecision of the classification result.

In this paper, we present an credal classification method with adaptive imputation of missing values

based on belief function theory for dealing with the incomplete patterns, and it is organized as follows. The

basics of belief function theory and Self-Organizing Map is briefly recalled in section II. The new credal

classification method for incomplete patterns is presented in the section III, and the proposed method

is then tested and evaluated in section IV compared with several other classical methods. The paper is

concluded in the final.

II. BACKGROUND KNOWLEDGE

Belief function theory (BFT) can well characterize the uncertain and imprecise information, and it

is used in this work for the classification of patterns. SOM technique is employed to find the optimized

weighting vectors which are used to represent the corresponding class, and this can reduce the computation

burden in the estimation of the missing values based on K-NN method. So the basic knowledge on BFT

and SOM will be briefly recalled.

A. Basis of belief function theory

The Belief Function Theory (BFT) introduced by Glenn Shafer is also known as Dempster-Shafer

Theory (DST), or the Mathematical Theory of Evidence [16]–[18]. Let us consider a frame of discernment

consisting of c exclusive and exhaustive hypotheses (classes) denoted by Ω = {ωi, i = 1, 2, . . . , c}.

The power-set of Ω denoted 2Ω is the set of all the subsets of Ω, empty set included. For example, if

Ω = {ω1, ω2, ω3}, then 2Ω = {∅, ω1, ω2, ω3, ω1∪ω2, ω1∪ω3, ω2∪ω3,Ω}. In the classification problem, the

singleton element (e.g. ωi) represents a specific class. In this work, the disjunction (union) of several

1Although the rule has been proposed originally by Arthur Dempster, we prefer to call it Dempster-Shafer rule because it has been widely
promoted by Shafer in [16].
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singleton elements is called a meta-class which characterizes the partial ignorance of classification.

Examples of meta-classes are ωi∪ωj , or ωi∪ωj ∪ωk. In BFT, one object can be associated with different

singleton elements as well as with sets of elements according to a basic belief assignment (BBA), which

is a function m(.) from 2Ω to [0, 1] satisfying m(∅) = 0 and the normalization condition
∑
A∈2Ω

m(A) = 1.

The subsets A of Ω such that m(A) > 0 are called the focal elements of the belief mass m(.).

The credal classification (or partitioning) [29] is defined as n-tuple M = (m1, · · · ,mn) of BBA’s,

where mi is the basic belief assignment of the object xi ∈ X , i = 1, . . . , n associated with the different

elements in the power-set 2Θ. The credal classification allows the objects to belong to the specific classes

and the sets of classes corresponding to meta-classes with different belief mass assignments. The credal

classification can well model the imprecise and uncertain information thanks to the introduction of meta-

class.

For combining multiple sources of evidence represented by a set of BBA’s, the well-known Dempster’s

rule [16] is still widely used, even if its justification is an open debate and questionable in the community

[40], [41]. The combination of two BBA’s m1(.) and m2(.) over 2Ω is done with DS rule of combination

defined by mDS(∅) = 0 and for A 6= ∅, B, C ∈ 2Ω by

mDS(A) =

∑
B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C)

(1)

DS rule is commutative and associative, and makes a compromise between the specificity and complexity

for the combination of BBA’s. With this rule, all the conflicting beliefs
∑

B∩C=∅
m1(B)m2(C) are propor-

tionally redistributed back to the focal elements through a classical normalization step. However, this

redistribution can yield unreasonable results in the high conflicting cases [40], as well as in some special

low conflicting cases as well [41]. That is why different rules of combination have emerged to overcome

its limitations. Among the possible alternatives of DS rule, we find Smets’ conjunctive rule (used in his

transferable belief model (TBM) [18]), Dubois-Prade (DP) rule [39], and more recently the more complex

Proportional Conflict Redistributions (PCR) rules [42]. Unfortunately, DP and PCR rules are less appealing

from implementation standpoint since they are not associative, and they become complex to use when

more than two BBA’s have to be combined altogether.
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B. Overview of Self-Organizing Map

Self-Organizing Map (SOM) (also called Kohonen map) [38] introduced by Teuvo Kohonen is a type

of artificial neural network (ANN), and it is trained by unsupervised learning method. SOM defines a

mapping from the input space to a low-dimensional (typically two-dimensional) grid of M ×N nodes. So

it allows to approximate the feature space dimension (e.g. a real input vector x ∈ Rp) into a projected 2D

space, and it is still able to preserve the topological properties of the input space using a neighborhood

function. Thus, SOM is very useful for visualizing low-dimensional views of high-dimensional data by a

non linear projection.

The node at position (i, j), i = 1, . . .M, j = 1, . . . , N corresponds to a weighting vector denoted by

σ(i, j) ∈ Rp. An input vector x ∈ Rp is to be compared to each σ(i, j), and the neuron whose weighting

vector is the most close (similar) to x according to a given metric is called the best matching unit (BMU),

which is defined as the output of SOM with respect to x. In real applications, the Euclidean distance is

usually used to compare x and σ(i, j). The input pattern x can be mapped onto the SOM at location (i, j)

where σ(i, j) is with the minimal distance to x. It is considered that the SOM achieves a non-uniform

quantization that transforms x to σx by minimizing the given metric (e.g. distance measure) [43].

In SOM, the competitive learning is adopted, and the training algorithm is iterative. The initial values

of the weighting vectors σ may be set randomly, but they will converge to a stable value at the end of the

training process. When an input vector is fed to the network, its Euclidean distance to all weight vectors

is computed. Then the BMU whose weight vector is most similar to the input vector is found, and the

weights of the BMU and neurons close to it in the SOM grid are adjusted towards the input vector. The

magnitude of the change decreases with time and with distance (within the grid) from the BMU. The

detailed information about SOM can be found in [38].

In this work, SOM is applied in each training class to obtain the optimized weighting vectors that are

used to represent the corresponding class. The number of the weighting vectors is much smaller than

the original samples in the associated training class. We will utilize these weighting vectors rather than

the original samples to estimate the missing values in the object (incomplete pattern), and this could

effectively reduce the computation burden.

III. CREDAL CLASSIFICATION OF INCOMPLETE PATTERN

Our new method consists of two main steps. In the first step, the object (incomplete pattern) is directly

classified according to the known attribute values only, and the missing values are ignored. If one can get a
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specific classification result, the classification procedure is done because the available attribute information

is sufficient for making the classification. But if the class of the object cannot be clearly identified in the

first step, it means that the unavailable information included in the missing values is likely crucial for the

classification. In this case, one has to enter in the second step of the method to classify the object with a

proper imputation of missing values. In the classification procedure, the original or edited pattern will be

respectively classified according to each class of training data. The global fusion of these classification

results, which can be considered as multiple sources of evidence represented by BBA’s, is then used for

the credal classification of the object. Our new method for credal classification of incomplete pattern

with adaptive imputation of missing values is referred as Credal Classification with Adaptive Imputation,

or just as CCAI for conciseness. CCAI is based on belief function theory, which can well manage the

uncertain and imprecise information caused by the missing values in the classification.

A. First step: Direct classification of incomplete pattern using the available data

Let us consider a set of test patterns (samples) X = {x1, . . . ,xn} to be classified based on a set of

labeled training patterns Y = {y1, . . . ,ys} over the frame of discernment Ω = {ω1, . . . , ωc}. In this work,

we focus on the classification of incomplete pattern in which some attribute values are absent. So we

consider all the test patterns (e.g. xi, i = 1, . . . , n) with several missing values. The training data set Y

may also have incomplete patterns in some applications. However, if the incomplete patterns take a very

small amount say less than 5% in the training data set, they can be ignored in the classification. If the

percentage of incomplete patterns is big, the missing values must usually be estimated at first, and the

classifier will be trained using the edited (complete) patterns. In the real applications, one can also just

choose the complete labeled patterns to include in the training data set when the training information is

sufficient. So for simplicity and convenience, we consider that the labeled samples (e.g. yj, j = 1, . . . , s)

of the training set Y are all complete patterns in the sequel.

In the first step of classification, the incomplete pattern say xi will be respectively classified according

to each training class by a normal classifier (for dealing with the complete pattern) at first, and all the

missing values are ignored here. In this work, we adopt a very simple classification method2 for the

convenience of computation, and xi is directly classified based on the distance to the prototype of each

class.
2Many other normal classifiers (e.g. K-NN) can be selected here depending on the preference of user, and we propose to use this simple

classification method because of its low computation complexity.
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The prototype of each class {o1, . . . ,oc} corresponding to {ω1, . . . , ωc} is given by the arithmetic

average vector of the training patterns in the same class. Mathematically, the prototype is computed for

g = 1, . . . , c by

og =
1

Ng

∑
yj∈ωg

yj (2)

where Ng is the number of the training samples in the class ωg.

In a c-class problem, one can get c pieces of simple classification result for xi according to each class

of training data, and each result is represented by a simple BBA’s including two focal elements, i.e. the

singleton class and the ignorant class (Ω) to characterize the full ignorance. The belief of xi belonging to

class ωg is computed based on the distance between xi and the corresponding prototype og. Normalized

Euclidean distance as eq. (4) is adopted here to deal with the anisotropic class, and the missing values

are ignored in the calculation of this distance. The other mass of belief is assigned to the ignorant class

Ω. Therefore, the BBA’s construction is done by
m

og

i (ωg) = e−ηdig

m
og

i (Ω) = 1− e−ηdig
(3)

with

dig =

√√√√1

p

p∑
j=1

(
xij − ogj
δgj

)2

(4)

and

δgj =

√
1

Ng

∑
yi∈ωg

(yij − ogj)2 (5)

where xij is value of xi in j-th dimension, and yij is value of yi in j-th dimension. p is the number of

available attribute values in the object xi. The coefficient 1/p is necessary to normalize the distance value

because each test sample can have a different number of missing values. δgj is the average distance of all

training samples in class ωg to the prototype og in j-th dimension. Ng is the number of training samples

in ωg. η is a tuning parameter, and the bigger η generally yields smaller mass of belief on the specific

class wg. It is usually recommended to take η ∈ [0.5, 0.8] according to our various tests, and η = 0.7 can

be considered as default value.

Obviously, the smaller distance measure, the bigger mass of belief on the singleton class. This particular

structure of BBA’s indicates that we can just confirm the degree of the object xi associated with the specific

class ωg only according to training data in ωg. The other mass of belief reflects the level of belief one
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has on full ignorance, and it is committed to the ignorant class Ω. Similarly, one calculates c independent

BBA’s mog

i (ωg), g = 1, . . . , c based on the different training classes.

Before combining these c BBA’s, we examine whether a specific classification result can be derived

from these c BBA’s. This is done as follows: if it holds that mo1st
i (ω1st) = argmaxg(m

og

i (ωg)), then the

object will be considered to belong very likely to the class ω1st, which obtains the biggest mass of belief

in the c BBA’s. The class with the second biggest mass of belief is denoted ω2nd.

The distinguishability degree χi ∈ (0, 1] of an object xi associated with different classes is defined by:

χi =
mo2nd
i (ω2nd)

momax
i (ωmax)

(6)

Let ε be a chosen small positive distinguishability threshold value in (0, 1]. If the condition χi ≤ ε is

satisfied, it means that all the classes involved in the computation of χi can be clearly distinguished of

xi. In this case, it is very likely to obtain a specific classification result from the fusion of the c BBA’s.

The condition χi ≤ ε also indicates that the available attribute information is sufficient for making the

classification of the object, and the imputation of the missing values is not necessary. If χi ≤ ε condition

holds, the c BBA’s are directly combined with DS rule to obtain the final classification results of the object

because DS rule usually produces specific combination result with acceptable computation burden in the

low conflicting case. In such case, the meta-class is not included in the fusion result, because these different

classes are considered distinguishable based on the condition of distinguishability. Moreover, the mass

of belief of the full ignorance class Ω, which represents the noisy data (outliers), can be proportionally

redistributed to other singleton classes for more specific results if one knows a priori that the noisy data

is not involved.

If the distinguishability condition χi ≤ ε is not satisfied, it means that the classes ω1st and ω2nd cannot

be clearly distinguished for the object with respect to the chosen threshold value ε, indicating that missing

attribute values play almost surely a crucial role in the classification. In this case, the missing values must

be properly imputed to recover the unavailable attribute information before entering the classification

procedure. This is the Step 2 of our method which is explained in the next subsection.

B. Second step: Classification of incomplete pattern with imputation of missing values

1) Multiple estimation of missing values: In the estimation of the missing attribute values, there

exist various methods. Particularly, the K-NN imputation method generally provides good performance.

However, the main drawback of KNN method is its big computational burden, since one needs to calculate
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the distances of the object with all the training samples. Inspired by [43], we propose to use the Self

Organized Map (SOM) technique [38] to reduce the computational complexity. SOM can be applied in

each class of training data, and then M × N weighting vectors will be obtained after the optimization

procedure. These optimized weighting vectors allow to characterize well the topological features of the

whole class, and they will be used to represent the corresponding data class. The number of the weighting

vectors is usually small (e.g. 5× 6). So the K nearest neighbors of the test pattern associated with these

weighting vectors in the SOM can be easily found with low computational complexity3. The selected

weighting vector no. k in the class ωg, g = 1, . . . , c is denoted σωg

k , for k = 1, . . . , K.

In each class, the K selected close weighting vectors provide different contributions (weight) in the

estimation of missing values, and the weight pωg

ik of each vector is defined based on the distance between

the object xi and weighting vector σωg

k .

p
ωg

ik = e(−λdωg
ik ) (7)

with

λ =
cNM(cNM − 1)

2
∑
i,j

d(σi, σj)
(8)

where dωg

ik is the Euclidean distance between xi and the neighbor o
ωg

k ignoring the missing values, and 1
λ

is the average distance between each pair of weighting vectors produced by SOM in all the classes; c is

the number of classes; M ×N is the number of weighting vectors obtained by SOM in each class; and

d(σi, σj) is the Euclidean distance between any two weighting vectors σi and σj .

The weighted mean value ŷ
ωg

i of the selected K weighting vectors in class training class ωg will be

used for the imputation of missing values. It is calculated by

ŷ
ωg

i =

K∑
k=1

p
ωg

ik σ
ωg

k

K∑
k=1

p
ωg

ik

(9)

The missing values in xi will be filled by the values of ŷ
ωg

i in the same dimensions. By doing this, we

get the edited pattern x
ωg

i according to the training class ωg.

Then x
ωg

i will be simply classified only based on the training data in ωg as similarly done in the direct

3The training of SOM using the labeled patterns becomes time consuming when the number of labeled patterns is big, but fortunately it
can be done off-line. In our experiments, the running time performance shown in the results doesn’t include the computational time spent
for the off-line procedures.
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classification of incomplete pattern using eq. (3) of Step 1 for convenience4.

The classification of xi with the estimation of missing values is also respectively done based on the

other training classes according to this procedure. For a c-class problem, there are c training classes, and

therefore one can get c pieces of classification results with respect to one object.

2) Ensemble classifier for credal classification: These c pieces of results obtained by each class of

training data in a c-class problem are considered with different weights, since the estimations of the missing

values according to different classes have different reliabilities. The weighting factor of the classification

result associated with the class wg can be defined by the sum of the weights of the K selected SOM

weighting vectors for the contributions to the missing values imputation in ωg, which is given by

ρ
ωg

i =
K∑
k=1

p
ωg

ik (10)

The result with the biggest weighting factor ρωmax
i is considered as the most reliable, because one

assumes that the object must belong to one of the labeled classes (i.e. wg, g = 1, . . . , c). So the biggest

weighting factor will be normalized as one. The other relative weighting factors are defined by:

α̂
ωg

i =
ρ
ωg

i

ρωmax
i

(11)

If the condition5 α̂
ωg

i < ε is satisfied, the corresponding estimation of the missing values and the

classification result are not very reliable. Very likely, the object does not belong to this class. It is implicitly

assumed that the object can belong to only one class in reality. If this result whose relative weighting

factor is very small (w.r.t. ε) is still considered useful, it will be (more or less) harmful for the final

classification of the object. So if the condition α̂wg

i < ε holds, then the relative weighting factor is set to

zero. More precisely, we will take

α
ωg

i =


0, if α̂

ωg

i < ε

ρ
ωg
i

ρωmax
i

, otherwise.
(12)

After the estimation of weighting (discounting) factors α
ωg

i , the c classification results (the BBA’s

4Of course, some other sophisticated classifiers can also be applied here according to the selection of user, but the choice of classifier is
not the main purpose of this work.

5The threshold ε is the same as in section III-A, because it is also used to measure the distinguishability degree here.
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m
og

i (.)) are classically discounted [16] by
m̂

og

i (ωg) = α
ωg

i m
og

i (ωg)

m̂
og

i (Ω) = 1− αωg

i + α
ωg

i m
og

i (Ω)

(13)

These discounted BBA’s will be globally combined to get the credal classification result. If αωg

i = 0,

one gets m̂og

i (Ω) = 1, and this fully ignorant (vacuous) BBA plays a neutral role in the global fusion

process for the final classification of the object.

Although we have done our best to estimate the missing values, the estimation can be quite imprecise

when the estimations are obtained from different class with the similar weighting factors, and the different

estimations probably lead to distinct classification results. In such case, we prefer to cautiously keep (rather

to ignore) the uncertainty, and maintain the uncertainty in the classification result. Such uncertainty can be

well reflected by the conflict of these classification results represented by the BBA’s. DS rule is not suitable

here, because all the conflicting beliefs are distributed to other focal elements. A particular combination

rule inspired by DP rule is introduced here to fuse these BBA’s according to the current context. In our

new rule, the partial conflicting beliefs are prudently transferred to the proper meta-class to reveal the

imprecision degree of the classification caused by the missing values. This new rule of combination is

defined by: 
mi(ωg) = m̂

og

i (ωg)
∏
j 6=g

m̂
oj

i (Ω)

mi(A) =
∏⋃

j
ωj=A

m̂
oj

i (ωj)
∏
k 6=j

m̂ok
i (Ω)

(14)

The test pattern can be classified according to the fusion results, and the object is considered belonging

to the class (singleton class or meta-class) with the maximum mass of belief. This is called hard credal

classification. If one object is classified to a particular class, it means that this object has been correctly

classified with the proper imputation of missing values. If one object is committed to a meta-class (e.g.

A ∪ B), it means that we just know that this object belongs to one of the specific classes (e.g. A or B)

included in the meta-class, but we cannot specify which one. This case can happen when the missing

values are essential for the accurate classification of this object, but the missing values cannot be estimated

very well according to the context, and different estimations will induce the classification of the object

into distinct classes (e.g. A or B).

For convenience, Fig. 1 shows the functional flowchart of this new CCAI method.
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Figure 1. Flowchart of the proposed CCAI method.

Guideline for tuning of the parameters ε and η: The tuning of parameters η and ε is very important in

the application of CCAI. η in eq. (3) is associated with the calculation of mass of belief on the specific

class, and the bigger η value will lead to smaller mass of belief committed to the specific class. Based

on our various tests, we advise to take η ∈ [0.5, 0.8], and the value η = 0.7 can be taken as the default

value. The parameter ε is the threshold to tune for changing the classification strategy. It is also used

in Eq. (12) for the calculation of the discounting factor. The bigger ε will make fewer objects going

to the sophisticated classification procedure with the imputation of missing values, and it also forces
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more discounting factors to zero according to Eq. (12), which implies that fewer simple classification

results obtained based on each class can be useful in the global fusion step. So the bigger ε will makes

fewer objects committed to the meta-classes (corresponding to the low imprecision of classification), but it

increases the risk of misclassification error. ε should be tuned according to the compromise one can accept

between the misclassification error and imprecision (non specificity of classification decision). One can

also apply the cross validation [44] (e.g. leave-one-out method) in the training data space to find a suitable

threshold, and the missing values in the test samples are randomly distributed in all the dimensions.

IV. EXPERIMENTS

Three experiments with artificial and real data sets have been used to test the performance of this

new CCAI method compared with the K-NN imputation (KNNI) method [12], FCM imputation (FCMI)

method [13], [14], SOM imputation (SOMI) [15] method and our previous credal classification PCC

method [25]. SOM technique is also employed in the second step of CCAI method, but CCAI is different

from the previous SOMI method. In SOMI method, SOM is applied for the whole training data set, and

the missing values are precisely estimated based on an activation group composed of the best match node

(unit) of input pattern and its close neighbors. Then, the edited pattern with the imputation of missing

values can be classified using a standard classifier. Nevertheless, SOM is not involved in the first step of

CCAI, and the object is directly classified ignoring the missing values. In the second step of CCAI, SOM

is respectively applied in each training class, and multiple estimations of missing values can be obtained

based on the input pattern’s K nearest weighting vectors corresponding to nodes of SOM in each class.

Then different classification results will be produced according to different estimations, and these results

are globally fused for final classification. The conflicting information committed to the meta-class is kept

in the fusion to characterize the imprecision of classification in CCAI, but this cannot be done in SOMI.

These different methods have been programmed and tested with MatlabTM software.

The evidential neural network classifier (ENN) [27] is adopted in the sequel experiments to classify

the edited pattern with the estimated values in PCC, KNNI and FCMI, since ENN produce generally

good results in the classification6. The evidential K-nearest neighbor (EK-NN) method [21] is also used

to classify the edited pattern in Experiment 3 with real data for comparison. The parameters of ENN and

EK-NN can be automatically optimized as explained in [27] and [22]. In SOMI, we use the M×N = 6×8

nodes for mapping the whole input data set consisting of all the training classes to the 2-dimensional grid,

and it has good performance. In the applications of PCC, the tuning parameter ε can be tuned according
6Other traditional classifiers for complete pattern can also be selected here according to the actual application.
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to the imprecision rate one can accept. In CCAI, a small number of the nodes in the 2-dimensional grid

of SOM is given by M ×N = 3× 4 for each class, and we take the value of K = N = 4 in K-NN for

the imputation of missing values. This seems to provide good result in the sequel experiments. In order to

show the ability of CCAI and PCC to deal with the meta-classes, the hard credal classification is applied,

and the class of each object is decided according to the criterion of the maximal mass of belief.

In our simulations, the misclassification is declared (counted) for one object truly originated from ωi

if it is classified into A with ωi ∩ A = ∅. If ωi ∩ A 6= ∅ and A 6= ωi then it will be considered as an

imprecise classification. The error rate denoted by Re is calculated by Re = Ne/T , where Ne is number

of misclassification errors, and T is the number of objects under test. The imprecision rate denoted by

Rij is calculated by Rij = Nij/T , where Nij is number of objects committed to the meta-classes with

the cardinality value j. In our experiments, the classification of object is generally uncertain (imprecise)

among a very small number (e.g. 2) of classes, and we only take Ri2 here since there is no object

committed to the meta-class including three or more specific classes.

A. Experiment 1 (artificial data set)

In the first experiment, we show the interest of credal classification based on belief functions with respect

to the traditional classification working with probability framework. A 3-class data set Ω = {ω1, ω2, ω3}

obtained from three 2-D uniform distributions shown by Fig. 2 is considered here. Each class has 200

training samples and 200 test samples, and there are 600 training samples and 600 test samples in total.

The uniform distributions of the three classes are characterized by the following interval bounds:

x-label interval y-label interval

ω1 (5, 65) (5, 25)

ω2 (95, 155) (5, 25)

ω3 (50, 110) (50, 70)

The values in the second dimension corresponding to y-coordinate of test samples are all missing. So

test samples are classified according to the only one available value in the first dimension corresponding

to x-coordinate.

Several different methods like FCMI, KNNI, SOMI have been applied here for comparison with CCAI

as shown by Fig. 3-(a)–3-(f). Particularly, the classification result obtained using the (first or second)

single step of CCAI (denoted by SCCAI) are also given as in Fig. 3-(d)–3-(e). In the first step of CCAI,

the direct classification is done without imputation of missing value, whereas the object is classified with

imputation of missing values in all incomplete patterns by the only second step of CCAI.
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A particular value of K = 9 is selected in the classifier K-NN imputation method7. For notation

conciseness, we have denoted ωte , ωtest, ωtr , ωtraining and ωi,...,k , ωi ∪ . . . ∪ ωk. The error rate (in

%), imprecision rate (in %) and computation time (Sec.) are specified in the caption of each subfigure.
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Figure 2. Training data and test data.

Because the y value in the test sample is missing, the class w3 appears partially overlapped with the

classes ω1 and ω2 on their margins according to the value of x-coordinate as shown in Fig. 3-(a). The

missing value of the samples in the overlapped parts can be filled by quite different estimations obtained

from different classes with the almost same reliabilities. For example, the estimation of the missing values

of the objects in the right margin of ω1 and the left margin of ω3 can be obtained according to the training

7In fact, the choice of K ranking from 7 to 15 does not affect seriously the results.
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(a). Classification result by FCMI
(Re = 14.67, time = 0.0469s).

(b). Classification result by KNNI
(Re = 14.17, time = 7.9531s).

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

 

 

w
1

w
2

w
3

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

 

 
w

1

w
2

w
3

w
1,2

w
1,3

w
2,3

(c). Classification result by SOMI
(Re = 14.33, time = 0.9063s).

(d). Classification result only by 1st step of SCCAI
(Re = 14.83, time = 0.0156s).
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(e). Classification result only by 2nd step of SCCAI
(Re = 4.83, Ri2 = 19.33, time = 0.1719s).

(f). Classification result by CCAI
(Re = 5.83, Ri2 = 16.83, time = 0.0469s).

Figure 3. Classification results of a 3-class artificial data set by different methods.

class ω1 or ω3. The edited pattern with the estimation from ω1 will be classified into class ω1, whereas it

will be committed to class ω3 if the estimation is drawn from ω3. It is similar to the test samples in the

left margin of ω2 and the right margin of ω3. This indicates that the missing value play a crucial rule in
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the classification of these objects, but unfortunately the estimation of these involved missing values are

quite uncertain according to context. So these objects are prudently classified into the proper meta-class

(e.g. ω1 ∪ ω3 and ω2 ∪ ω3) by CCAI. The CCAI results indicate that these objects belong to one of the

specific classes included in the meta-classes, but these specific classes cannot be clearly distinguished by

the object based only on the available values. If one wants to get more precise and accurate classification

results, one needs to request for additional resources for gathering more useful information. The other

objects in the left margin of ω1, right margin of ω2 and middle of ω3 can be correctly classified based

on the only known value in x-coordinate, and it is not necessary to estimate the missing value for the

classification of these objects in CCAI. However, all the test samples are classified into specific classes by

the traditional methods KNNI and FCMI, and this causes many errors due to the limitation of probability

framework. If we just apply the first step of SCCAI without imputation of the missing value and directly

classify all the objects using the only known value (i.e. value in x-coordinate), it produces bigger error

rate than the other methods, and this indicates that the imputation procedure is important to improve

the accuracy of classification. If only the second step of SCCAI is done with imputation of the missing

values in all incomplete patterns, it causes high imprecision rate that is not an efficient solution, and it

takes much longer computation time than CCAI. CCAI with the adaptive imputation strategy can well

balance the error rate, imprecision rate and computation burden. CCAI consisting of two steps generally

produces smaller error rate than KNNI, FCMI and SOMI thanks to the use of meta-classes. Meanwhile,

the computational time of CCAI is similar to that of FCMI, and is much shorter than KNNI because of

the introduction of SOM technique in the estimation of missing values. It shows that the computational

complexity of CCAI is relatively low. This simple example shows the interest and the potential of the

credal classification obtained with CCAI method.

B. Experiment 2 (artificial data set)

In this second experiment, we evaluate the performance of CCAI method using a 4D data set which

includes 3 classes ω1, ω2, and ω3. The artificial data are generated from three 4D Gaussian distributions

characterized by the following means vectors and covariance matrices (I denotes the 4×4 identity matrix):

µ1 = (10, 50, 100, 100)T ,Σ1 = 10 · I

µ2 = (30, 40, 50, 90)T ,Σ2 = 15 · I

µ3 = (20, 80, 90, 130)T ,Σ3 = 12 · I
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We have used g training samples, and g test samples (for g = 500, and g = 1000) in each class. So there

are total N = 3× g training samples and N = 3× g test samples. Each test sample has n missing values

(for n = 1, 2, 3), and the missing component value is randomly distributed in every dimension. Three

other methods KNNI, FCMI, SOMI and PCC are also applied here for the performances comparison. For

each pair (N, n), the reported error rates, imprecision rates and running time (sec.) are the averages over

10 trials performed with 10 independent random generation of the data sets. For KNNI, the values of K

ranging from 5 to 20 neighbors have been tested, and the mean error rate with K ∈ [5, 20] is given in

Table I. In PCC method, the parameter ε has been optimized to obtain an acceptable compromise between

error rate and the imprecision degree. ENN is adopted to classify the edited pattern with imputation of

missing values in FCMI, KNNI, SOMI and PCC.

Table I
CLASSIFICATION RESULTS FOR 3-CLASS DATA SET BY DIFFERENT METHODS (IN %).

(N,n) FCMI KNNI SOMI PCC CCAI
{Re, time} {Re, time} {Re, time} {Re,Ri2, time} {Re,Ri2, time}

(1500,1) {6.73, 0.9094s} {7.42, 3.0005s} {7.22, 0.9814s} {6.20, 2.33, 0.3484s} {4.64, 3.87, 0.2500s}
(1500,2) {14.38, 0.9016s} {15.68, 2.7759s} {15.43, 0.9546s} {13.47, 5.93, 0.3141s} {9.76, 9.79, 0.2344s}
(1500,3) {36.84, 0.9391s} {40.11, 3.002s} {40.10, 1.0322s} {34.57, 7.97, 0.3484s} {29.71, 15.6, 0.2906s}
(3000,1) {6.75, 1.3922s} {7.54, 12.0386s} {7.14, 1.7310s} {6.17, 1.63, 0.5453s} {4.73, 3.83, 0.3469s}
(3000,2) {14.73, 1.5375s} {15.80, 11.3857s} {15.20, 1.8203s} {14.00, 1.60, 0.5234s} {9.90, 10.33, 0.3063s}
(3000,3) {36.43,1.6500s} {40.48, 10.2803s} {40.05, 1.6094s} {33.94, 8.13, 0.5484s} {29.52, 16.83, 0.3937s}

The classification results of the applied methods (i.e. FCMI, KNNI, SOMI, PCC and CCAI) have

been shown in Table I. Our proposed CCAI method produces the lowest error rate, since some objects

hard to correctly classify because of the missing values have been committed to the proper meta-class.

Meanwhile, CCAI takes the shortest computation time compared with the other methods. This is because

that some incomplete patterns are directly classified ignoring the missing values, which are considered

unimportant for the classification. However, the missing values in each pattern are all imputed by other

methods, and this needs more computations and thus increases the computational time. Moreover, one

can see that KNNI takes the longest time, and this is the main drawback of K-NN based method. The

K-NN strategy is also adopted in CCAI, but we use a few optimized weighting vectors acquired by SOM

technique to represent the whole training data class. Thus, we just need to calculate the distances between

the object and these obtained weighting vectors rather than all the training samples, which reduces a lot

the computation burden.
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C. Experiment 3 (real data set)

Nine well known real data sets8 available from UCI Machine Learning Repository [45] are used in this

experiment to evaluate the performance of CCAI with respect to KNNI, FCMI, SOMI and PCC. Both

ENN and EK-NN are employed here as standard classifier to classify the edited patterns. Moreover, the

single (1st and 2nd) step procedure of CCAI (SCCAI) has been also applied here for comparison. In the

first step of SCCAI, the object is directly classified using the only available attributes without imputation

procedure, whereas all the missing values are imputed before the classification in the second step of

SCCAI. The basic information of these used real data sets is given in Table II. In Hepatitis data set, many

patterns have already contained missing values. The patterns with missing values are considered as test

samples, and the others are used as training samples. There is no missing values in the other seven original

data sets, and it is assumed that n values are missing completely at random in all dimensions of each

test sample. The cross validation is performed for these seven data sets, and we use the simplest 2-fold

cross validation9 here, since it has the advantage that the training and test sets are both large, and each

sample is used for both training and testing on each fold. The 2-fold cross validation has been repeated

10 times, and the average error rate Re and imprecision rate Ri (for PCC and CCAI) of the different

methods are given in Table III. Particularly, the reported classification result of KNNI is the average with

K value ranging from 5 to 15. For the notation conciseness, the selected classifier (SC) is denoted by

A=EK-NN, B=ENN in Table III. For the method of single step of CCAI (SCCAI), A represents the first

step of SCCAI, and B represents the second step of SCCAI.

Table II
BASIC INFORMATION OF THE USED DATA SETS.

name classes attributes instances
Breast 2 9 699

Hepatitis 2 19 155
Statlog (Heart) 2 13 270

Iris 3 4 150
Seeds 3 7 210
Wine 3 13 178

Knowledge 4 5 403
Vehicle 4 18 946
Yeast 7 8 1429

8We select seven classes from Yeast data set, because the last three classes (i.e. VAC POX and ERL) contain quite few samples.
9More precisely, the samples in each class are randomly assigned to two sets S1 and S2 having equal size. Then we train on S1 and test

on S2, and reciprocally.
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One can see in Table III that the credal classification of PCC and CCAI always produce the lower error

rate than the traditional FCMI, KNNI and SOMI methods, since some objects that cannot be correctly

classified using only the available attribute values have been properly committed to the meta-classes,

which can well reveal the imprecision of classification. The selected classifiers (i.e. EK-NN and ENN) for

classification of edited patterns in FCMI, KNNI, SOMI and PCC are usually with the similar performance

in many cases10, but it is known that the K-NN based method generally has big computation burden. The

choice of EK-NN and ENN should be made according to the actual condition in real applications. In CCAI,

some objects with the imputation of missing values are still classified into the meta-class. It indicates that

these missing values play a crucial role in the classification, but the estimation of these missing values is

no very good. In other words, the missing values can be filled with the similar reliabilities by different

estimated data, which lead to distinct classification results. So we have to cautiously assign them to the

meta-class to reduce the risk of misclassification. Compared with our previous method PCC, this new

method CCAI generally provide better performance with lower error rate and imprecision rate, and it

is mainly because more accurate estimation method (i.e. SOM+KNN) for missing values is adopted in

CCAI. However, if only the first step of SCCAI is applied, it produces more misclassification errors that

other methods due to the absence of imputation of missing data. Whereas, the imprecision rate will be

quite high if only the second step of SCCAI is adopted because all the conflicting beliefs caused in the

combination procedure are transferred to the meta-classes. So CCAI with adaptive imputation of missing

values can provide a good compromise between the error and imprecision. This third experiment using

real data sets shows the effectiveness and interest of this new CCAI method with respect to other methods.

V. CONCLUSION

A new credal classification method with adaptive imputation of missing values (called CCAI) for

dealing with incomplete pattern has been presented based on belief function theory. In the first step of

CCAI method, some objects (incomplete pattern) are directly classified ignoring the missing values if the

specific classification result can be obtained, which effectively reduces the computation complexity because

it avoids the imputation of the missing values. However, if the available information is not sufficient to

achieve a specific classification of the object in the first step, we estimate (recover) the missing values

before entering the classification procedure in a second step. The SOM and K-NN techniques are applied

to make the estimation of missing attributes with a good compromise between the estimation accuracy

and computation burden. The credal classification in this work allows the object to belong to different
10EK-NN outperforms ENN sometimes, but ENN can be better in some other cases.
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singleton classes and meta-class (i.e. disjunction of several classes) with different masses of belief. Once

the object is committed to a meta-class (e.g. A∪B), it means that the missing values cannot be accurately

recovered according to the context, and the estimation is not very good. Different estimations will lead the

object to distinct classes (e.g. A or B) involved in the meta-class. So some other sources of information

will be required to achieve more precise classification of the object if necessary. The credal classification is

able to well capture the imprecision of classification thanks to the meta-class and it effectively reduces the

misclassification errors. The effectiveness and interest of the proposed CCAI method have been evaluated

on three distinct experiments using artificial and real data sets.
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Table III
CLASSIFICATION RESULTS FOR DIFFERENT REAL DATA SETS (RATES IN %).

data set (n,SC) FCMI KNNI SOMI PCC SCCAI CCAI
Re Re Re {Re,Ri2} {Re,Ri2} {Re,Ri2}

Hepatitis A 26.40 27.38 27.47 {22.22, 7.56} {23.67, 0} {21.33, 5.33}
B 25.33 26.67 25.33 {20.00, 6.67} {20.00, 8.00}

(3,A) 3.96 4.83 3.85 {4.39, 2.20} {4.98, 0} {3.66, 0}
(3,B) 3.81 3.95 3.51 {3.81, 2.34} {3.22, 0.73}
(6,A) 6.18 9.07 6.47 {5.82, 1.93} {6.15, 0} {4.83, 1.61}

Breast (6,B) 7.32 8.20 5.93 {5.42, 1.32} {4.72, 2.93}
(7,A) 12.02 14.00 13.62 {10.11, 2.86} {12.15, 0} {9.00, 0.66}
(7,B) 11.42 11.54 12.45 {10.10, 2.64} {7.03, 17.11}
(1,A) 6.89 5.29 5.14 {4.80, 2.04} {6.67, 0} {4.00, 1.33}
(1,B) 7.33 4.89 5.00 {5.33, 2.67} {4.00, 3.33}
(2,A) 13.89 13.02 13.24 {8.31, 6.27} {12.00, 0} {8.00, 4.67}

Iris (2,B) 14.00 11.33 12.67 {8.67, 4.00} {7.33, 8.00}
(3,A) 18.22 18.67 18.00 {13.33, 8.67} {17.33, 0} {11.33, 12.00}
(3,B) 17.33 18.44 17.34 {12.67, 9.33} {10.67, 16.00}
(2,A) 15.56 11.59 11.63 {10.51, 2.95} {9.52, 0} {9.52, 0}
(2,B) 15.24 11.19 10.20 {9.52, 4.76 } {9.52, 0.95}
(4,A) 18.17 12.70 12.86 {10.22, 3.52} {10.48, 0} {10.00, 0.48}

Seeds (4,B) 17.14 11.98 12.59 {10.48, 4.29} {9.52, 1.90}
(6,A) 21.75 26.41 25.65 {17.84, 10.32} {22.86, 0} {16.19, 13.81}
(6,B) 20.95 25.71 24.63 {16.19, 14.76} {8.10, 28.57}
(3,A) 29.32 27.12 27.53 {27.38, 0.71} {6.97, 0} {6.74, 1.12}
(3,B) 26.97 26.97 28.65 {26.97, 1.69} {6.18, 8.43}
(7,A) 34.68 26.22 31.30 {27.12, 0.79} {7.87, 0} {7.30, 3.93}

Wine (7,B) 33.24 30.43 31.46 {29.78, 2.25} {5.62, 9.55}
(11,A) 34.76 29.55 34.35 {29.06, 1.61} {14.61, 0} {12.36, 3.93}
(11,B) 33.43 30.90 32.58 {30.34, 2.81} {10.67, 40.45}
(1,A) 30.07 28.53 29.78 {26.72, 4.05} {27.55, 0} { 20.85, 6.20}
(1,B) 34.50 33.51 33.88 {28.35, 6.31} {20.10, 8.19}

Knowledge (2,A) 33.06 29.66 31.51 {27.32, 5.36} {30.69, 0} {23.57, 6.95}
(2,B) 39.68 39.43 41.69 {33.32, 7.73} {20.35, 13.40}
(3,A) 34.32 32.96 35.24 {29.86, 9.97} {34.16, 0} {30.51, 7.69}
(3,B) 39.96 40.69 42.04 {33.76, 11.82} {22.08, 21.59}
(1,A) 37.41 37.78 36.67 {33.41, 12.59} {17.78, 0} {16.30, 0.37}

Heart (1,B) 41.18 41.85 41.11 {36.30, 9.63} {13.70, 21.48}
(5,A) 48.15 38.27 41.48 {35.06, 25.93} {23.70, 0} {22.96, 0.74}
(5,B) 46.89 43.09 42.96 {32.96, 28.52} {22.59, 8.89}
(5,A) 46.00 41.13 41.25 {35.63, 25.75} {50.71, 0} {34.87, 26.48}

Vehicle (5,B) 56.66 55.67 54.73 {37.87, 27.43} {27.66, 50.24}
(9,A) 57.97 45.27 45.68 {38.63, 22.73} {52.25, 0} {36.64, 22.34}
(9,B) 61.82 57.92 57.71 {43.63, 26.95} {28.61, 56.97}
(1,A) 46.57 46.04 45.51 {42.71, 11.12} {46.67, 0} {40.28, 12.36}

Yeast (1,B) 44.97 44.72 44.86 {39.86, 13.92} {27.08, 46.74}
(3,A) 54.29 54.22 54.88 {51.86, 10.87} {56.74, 0} {49.75, 12.64}
(3,B) 51.72 52.81 53.89 {49.38, 13.69} {34.38, 49.31}


