elastic anisotropy in the single crystal ranges from 5 to

20% with larger velocities along the c-axis.

Introduction

Seismic observations using body waves differential travel times [START_REF] Poupinet | Possible heterogeneity of the Earth's inner core deduced from PKIKP travel times[END_REF][START_REF] Morelli | Anisotropy of the inner core inferred from PKIKP travel times[END_REF][START_REF] Waszek | Reconciling the hemispherical structure of earths inner core with its super-rotation[END_REF], long period normal modes [Woodhouse et al., 1986;[START_REF] Deuss | Regional variation of inner core anisotropy from seismic normal mode observations[END_REF], and the analysis of autocorrelation of earthquake coda [START_REF] Wang | Equatorial anisotropy in the inner part of Earths inner core from autocorrelation of earthquake coda[END_REF] provide strong evidences that the Earth's inner-core is anisotropic, with Pwaves traveling faster by up to 3% in the polar than in the equatorial direction. Further analyses refined this observation, providing evidences for both hemispherical and radial variations of the amplitude of anisotropy [START_REF] Tkalčić | Complex inner core of the Earth: The last frontier of global seismology[END_REF][START_REF] Deuss | Heterogeneity and anisotropy of Earth's inner core[END_REF][START_REF] Wang | Equatorial anisotropy in the inner part of Earths inner core from autocorrelation of earthquake coda[END_REF].

However, this apparent complexity should not obscure the first-order observation that the fast propagation direction for inner-core seismic waves is aligned with the Earth's rotation axis. The observed axial anisotropy still lacks a conclusive explanation. This paper will hence focus on reproducing this first-order observation from a multiscale model.

A multiscale model of inner-core anisotropy should allow to build a synthetic inner-core with a given choice of crystal structure, elastic moduli, and crystal alignment mechanism, coupled with an inner-core formation hypothesis. In a second stage, the model should simulate present-day seismic observations which can then be compared with actual measurements [Fig. 1, Lincot et al., 2014].

In this work, we investigate whether such integrated model can indeed reproduce the first-order observation of several percents North-South global seismic anisotropy in the inner-core. The abundance of symmetries for elasticity and plasticity of body-centeredcubic (bcc) and face-centered-cubic (fcc) phases combined with the integrated nature of inner-core anisotropy measurements is such that plastic deformation of such crystal
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structures cannot explain the global inner-core anisotropy [START_REF] Lincot | Is inner core seismic anisotropy a marker of plastic flow of cubic iron?[END_REF]. Here, we investigate the effect of an hexagonal-close-packed (hcp) structure for the inner-core Fe alloy. Under the assumption that the inner-core anisotropy results from plastic deformation along a dominant slip system, we find that necessary conditions for a successful anisotropic model are 5 to 20% single crystal elastic anisotropy, plastic deformation by pyramidal slip, and a large-scale flow induced by a low-degree inner-core formation model.

Methods

Inner-core formation model

It is typically assumed that the inner-core anisotropic structure results from an alignment of anisotropic Fe-alloy crystals acquired either during solidification [START_REF] Bergman | Measurements of elastic anisotropy due to solidification texturing and the implication for the Earth's inner core[END_REF][START_REF] Deuss | Regional variation of inner core anisotropy from seismic normal mode observations[END_REF] or as a result of subsequent deformation [START_REF] Yoshida | Growth model of the inner core coupled with outer core dynamics and the resultant elastic anisotropy[END_REF][START_REF] Karato | Seismic anisotropy of the Earth's inner core resulting from flow induced Maxwell stresses[END_REF]Wenk et al., 2000a;[START_REF] Deguen | Structure and dynamics of Earth's inner core[END_REF] although other models have been proposed assuming, for instance, the presence of aligned aspherical liquid inclusions in the inner-core [START_REF] Singh | On the presence of liquid in the Earth's inner core[END_REF].

Radial dendritic growth [START_REF] Bergman | Measurements of elastic anisotropy due to solidification texturing and the implication for the Earth's inner core[END_REF] aligns the crystals relative to the spherical inner-core boundary (ICB) which is unlikely to produce a global cylindrical axisymmetric anisotropy [START_REF] D R A F T Lincot | Seismic response and anisotropy of a model hcp iron inner core[END_REF]]. An additional orientation mechanism is required for aligning the fast P -wave crystal directions with the Earth's rotation axis. Two classes of processes have been suggested in the literature: (i) a forcing of inner-core dynamics from the outer core magnetic field [START_REF] Karato | Seismic anisotropy of the Earth's inner core resulting from flow induced Maxwell stresses[END_REF][START_REF] Buffett | Texturing of the Earth's inner core by Maxwell stresses[END_REF] (ii) an effect of the Earth's rotation through the ellipticity of a convective inner-core [START_REF] Buffett | Onset and orientation of convection in the inner core[END_REF] or inner-core preferential growth [START_REF] Yoshida | Growth model of the inner core coupled with outer core dynamics and the resultant elastic anisotropy[END_REF]. Recent studies evaluated that the D R A F T January 21, 2016, 4:29pm D R A F T direct effect of the Lorentz forcing generates weak deformation [START_REF] Lasbleis | Earths inner core dynamics induced by the Lorentz force[END_REF]. The effect of the magnetic field on anisotropy would result from solidification textures mostly, which are not well understood at inner-core conditions and have not been observed in analogue experiments [START_REF] Brito | Experimental crystallization of gallium: Ultrasonic measurements of elastic anisotropy and implications for the inner core[END_REF]. In addition, recent calculations of the thermal conductivity of Fe at core conditions [START_REF] Zhang | Effects of electron correlations on transport properties of iron at Earth's core conditions[END_REF] indicate that thermal convection is unlikely in the inner-core [START_REF] Deguen | Structure and dynamics of Earth's inner core[END_REF], although compositional convection may be an option [START_REF] Gubbins | Compositional instability of earth's solid inner core[END_REF].

We therefore focus on models of inner-core growth with faster solidification in the equa- η ṙic , where ∆ρ is the density difference across the inner core associated with compositional or thermal stratification (excluding the contribution of compression), g the acceleration of gravity at the ICB, η the dynamic viscosity of the inner core, r ic the inner core radius and ṙic the inner core growth rate [START_REF] D R A F T X -15 Deguen | Tectonic history of the Earth's inner core preserved in its seismic structure[END_REF]. Density stratification tends to localize the deformation in a thin shear layer below the ICB, whose thickness decreases with increasing |B|, and in which the strain rate increases with |B|.

In this study, we set B * = -10 6 (corresponding to ∆ρ 5 kg.m -3 and η 10 18 Pa.s).
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Larger B * values would result in earlier stratification in the Earth's history and and, consequently, reduce the central part of pure shear deformation [START_REF] D R A F T X -15 Deguen | Tectonic history of the Earth's inner core preserved in its seismic structure[END_REF][START_REF] Deguen | Texturing in Earths inner core due to preferential growth in its equatorial belt[END_REF]. Also note that model c) assumes random solidification textures at the ICB. Deformation is large in such model and, hence, solidification textures are quickly erased and do not play an important role in the modeled global scale anisotropy, as in this study, but can play a crucial role for studies focused on the superficial layer of the inner-core.

As illustrated in Fig. 2, a model reproducing present day seismic observations should integrate the whole history of the inner-core. In that view, seismic anisotropy is a marker of inner-core formation and evolution and will record changes in dynamics or mineralogy during its history.

Inner-core Fe-alloy textures

For each inner-core formation model, we assume plastic deformation of the inner-core Fe-alloy on a dominant slip system. We follow the deformation of 100 markers introduced at the ICB during inner-core growth and calculate the corresponding textures for a 10000 grains aggregate using the visco-plastic self-consistent (VPSC) code of [START_REF] Lebensohn | A selfconsistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys[END_REF]. Experiments on Fe and analogues indicate that basal slip and twinning dominate the plastic behavior of hcp-Fe at low temperature [Wenk et al., 2000b;[START_REF] Merkel | Deformation of polycrystalline iron up to 30 GPa and 1000 K[END_REF] and that, as temperature increases, twinning disappears and the activity of pyramidal c + a slip increases [START_REF] Poirier | TEM study of an analogue of the Earth's inner core -Fe[END_REF][START_REF] Miyagi | In situ phase transformation and deformation of iron at high pressure and temperature[END_REF][START_REF] Merkel | Texture and elastic strains in hcp-iron plastically deformed up to 17.5 GPa and 600 K: experiment and model[END_REF]. We simulate the texture of an hcp aggregate at each marker for three
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different dominant slip systems: basal, prismatic and pyramidal c + a (Table 1). The final results are meridional maps of textures for a present day inner-core (Fig. 3).

This results in a striking observation: simulations with the pyramidal c+a slip system are very efficient at aligning the c-axes of the polycrystals with the Earth's rotation axis.

Simulations with other slip systems can induce strong textures at the local scale but, over the scale of the inner core, the hcp-alloy alignment is not consistent. Indeed, unlike basal and prismatic slip, pyramidal c + a slip includes c in the slip direction: it is prone to align the c-axes of the aggregate during deformation.

Inner-core elasticity

Given the spread of published data for the elasticity of hcp-Fe at inner-core conditions [START_REF] Vočadlo | Ab initio calculations of the elasticity of hcp-fe as a function of temperature at inner-core pressure[END_REF][START_REF] Sha | Elastic isotropy of -fe under Earth's core conditions[END_REF][START_REF] Martorell | Strong premelting effect in the elastic properties of hcp-fe under inner-core conditions[END_REF] and the unknown influence of alloying elements, we estimate the global inner-core anisotropy as a function of single-crystal elasticity over a wide range of values. Rather than using grid points in the five-dimensional space of independent elastic constants, we generate elastic moduli by a Monte-Carlo approach.

We generate 4500 random sets of single-crystal elastic moduli which satisfy the following requirements. The Hill average of the bulk and shear moduli of the randomly oriented aggregate should be within 15% of inner-core values [K = 1400 GPa and G = 170 GPa, [START_REF] Dziewoński | Preliminary reference Earth model[END_REF]. The single-crystal elastic moduli should also satisfy conditions for mechanical stability for hcp [START_REF] Wallace | Thermodynamics of Crystals[END_REF] C 11 -C 12 > 0;

(1)

C 11 + C 12 + C 33 > 0; D R A F T January 21, 2016, 4:29pm D R A F T X -9 (C 11 + C 12 )C 33 -2 C 2 13 > 0; C 44 > 0,
where C ij are single-crystal elastic moduli.

For each inner-core formation model, elastic model, and marker position, we calculate the polycrystalline elastic tensor using the simulated textures and single-crystal elastic moduli.

Inner-core seismic anisotropy

More than 300000 synthetic seismic rays are generated randomly to probe the whole inner-core. For each ray, we estimate the normalized seismic travel times residual δt/t = (s -s 0 )/s 0 where s is the simulated slowness of the seismic ray, and s 0 is the slowness of that same ray for an homogeneous and fully isotropic inner-core [START_REF] D R A F T Lincot | Seismic response and anisotropy of a model hcp iron inner core[END_REF].

Many seismological studies use averaging procedures with travel times residuals fitted to [START_REF] Creager | Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP[END_REF][START_REF] Deuss | Heterogeneity and anisotropy of Earth's inner core[END_REF] 

δt/t = a 1 + a 2 cos 2 ζ + a 3 cos 4 ζ, (2) 
where a 1 , a 2 and a 3 are adjustable parameters and ζ is the angle between the ray and the Earth rotation axis. The quantity a 2 + a 3 is the difference between polar (ζ = 0 • ) and equatorial (ζ = 90 • ) residuals. It is a measure of the global inner-core anisotropy often reported in the literature. It will be used in the rest of the paper (Fig. 4).
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Results

Parameters for hcp single-crystal anisotropy

Despite the complexity introduced by elasticity, crystal plasticity, geodynamics, and seismic rays geometry, two dimensionless elastic parameters are found to primarily affect the global inner-core anisotropy: ∆ c-a and ∆ 45 • . ∆ c-a describes the relative difference in P -waves velocities along the c-and a-axes (V c P and V a P ), and ∆ 45 • is related to the concavity of the single-crystal P -wave velocities, 45 • away from the c-axis (V 45 • P ). They are calculated as follow

∆ c-a = V c P -V a P V m P , (3) 
∆ 45 • = V 45 • P -(V c P + V a P ) /2 V m P ,
where V m P is the average P -wave velocity.

Global anisotropy results are consistent when plotted as a function of ∆ c-a and ∆ 45 • : they reveal parallel isocontour mainly controlled by ∆ c-a (Fig. 4). This analysis allows to classify our 4500 sets of random elastic moduli and other calculations from the literature in a simple representation and estimate their effect on global inner-core anisotropy.

Inner-core anisotropy

Seismic studies report global inner core anisotropy of up to several percents with North-South velocities larger than those in the equatorial plane [START_REF] Deuss | Heterogeneity and anisotropy of Earth's inner core[END_REF][START_REF] Tkalčić | Complex inner core of the Earth: The last frontier of global seismology[END_REF] 

Discussion and conclusion

Previous studies have shown that bcc and fcc phases orientation through dislocation creep cannot explain the observed North-South global inner-core anisotropy [START_REF] Lincot | Is inner core seismic anisotropy a marker of plastic flow of cubic iron?[END_REF] . Here, we show that an hcp inner-core Fe-alloy, deforming plastically along a dominant pyramidal c + a slip system, with 5 to 20% elastic anisotropy in the single-crystal, and a simple low-degree inner-core formation model can produce a global anisotropy of 1 to 3%.

Hexagonal crystals are axisymmetric around their c-axis for elasticity. As such, a most efficient model of inner-core anisotropy should align the c-axes of the hcp aggregates with the Earth's rotation axis. This ingredient is crucial for reproducing inner-core anisotropy and can be obtained if the plasticity of the inner-core hcp-alloy is dominated by pyramidal c + a slip.

Fig. 4 allows for constraining ∆ c-a and ∆ 45 • for single-crystal elastic tensors compatible with anisotropy observations. Do note, however, that our solution for single-crystal elasticity is not unique. First-principles calculations for stable hcp-Fe at inner-core conditions [START_REF] Vočadlo | Ab initio calculations of the elasticity of hcp-fe as a function of temperature at inner-core pressure[END_REF][START_REF] Sha | Elastic isotropy of -fe under Earth's core conditions[END_REF] lead to a weak single-crystal anisotropy and weak global anisotropy, below 1% (Fig. 4). Recently, it was shown that hcp-Fe may exhibit a strong nonlinear shear weakening just before melting, with a reduction in V S and a large increase in single-crystal anisotropy [START_REF] Martorell | Strong premelting effect in the elastic properties of hcp-fe under inner-core conditions[END_REF]. With such elastic moduli, our multi-scale model is successful at reproducing inner-core global seismic anisotropy (Fig. 4).
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A large-scale coherent alignment of anisotropic Fe-alloy through the inner-core is required to reproduce a North-South global seismic anisotropy, which likely requires that crystal alignment is due to a low-degree deformation field. A more complex geometry like, for example, high Rayleigh number convection, could generate locally strong textures but such anisotropy would be canceled at the scale of seismic observations. At this point, other details of the scenario of inner-core formation can not be discriminated. Observations of inner-core anisotropy are constrained by a distinct set of specific ray paths -a few hundreds -that are now being supplemented by the addition of virtual paths using the cross-correlation of ambient noise and earthquake coda [START_REF] Wang | Equatorial anisotropy in the inner part of Earths inner core from autocorrelation of earthquake coda[END_REF][START_REF] Boué | Reverberations, coda waves and ambient noise: Correlations at the global scale and retrieval of the deep phases[END_REF]. In addition, the representation of seismic observations with fits (Eq. 2) oversimplifies the data by smoothing the geographical and depth dependence of the seismic travel times. In the future, such direct multi-scale model should be extended for inverting the actual observations of seismic travel times, including their radial and lateral variations [START_REF] Deuss | Heterogeneity and anisotropy of Earth's inner core[END_REF][START_REF] Tkalčić | Complex inner core of the Earth: The last frontier of global seismology[END_REF][START_REF] Wang | Equatorial anisotropy in the inner part of Earths inner core from autocorrelation of earthquake coda[END_REF]. This new approach will constrain the different scenarios regarding the history of the Earth's inner-core and its interactions with the outer core [START_REF] Deguen | Structure and dynamics of Earth's inner core[END_REF] and the geodynamo [START_REF] Aubert | Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity[END_REF].
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  Multiscale model of inner-core anisotropy produced by hcp alloy deformation • 5 to 20% single-crystal elastic anisotropy and plastic deformation by pyramidal slip • Low-degree inner-core formation model with faster crystallization at the equator The Earth's solid inner-core exhibits a global seismic anisotropy of several percents. It results from a coherent alignment of anisotropic Fe-alloy crystals through the inner-core history that can be sampled by present-day seismic observations. By combining self-consistent polycrystal plasticity, inner-core formation models, Monte-Carlo search for elastic moduli, and simulations of seismic measurements, we introduce a multiscale model that can reproduce a global seismic anisotropy of several percents aligned with the Earth's rotation axis. Conditions for a successful model are an hexagonalclose-packed structure for the inner-core Fealloy, plastic deformation by pyramidal c + a slip, and large-scale flow induced by a lowdegree inner-core formation model. For global D R A F T January 21, 2016, 4:29pm D R A F T

  torial plane[Fig. 2a, Yoshida et al., 1996], with solidification texturing[Fig. 2b, Bergman, 1997] and/or density stratification[Fig. 2c, Deguen and Cardin, 2009] as possible additional ingredients. In all cases, we impose a solidification rate twice as large at the equator than at the poles. Model a) assumes random solidification textures while model b) includes solidification textures in which the c-axes of the hcp crystals lie preferentially in the plane of the ICB. Model c) accounts for a stable density stratification during innercore formation. The importance of stratification depends on the value of the buoyancy number B * = ∆ρ g r 2 ic

  . As shown in Fig. 4, this level of anisotropy is difficult to reach if deformation of the inner-core hcp-alloy is controlled by dominant basal or prismatic slip, irrespectively of the inner-core formation model. Indeed, inner-core anisotropy is measured with waves crossing the entire D R A F T January 21, 2016, 4:29pm D R A F T X -11 inner core. If polycrystalline textures are not consistent over large regions, the anisotropy of the single-crystal will be canceled at the global scale of the seismic measurement. Pyramidal c + a slip, on the other hand, is prone to align the c-axes of an aggregate during its deformation. Hexagonal crystals are axisymmetric around the single-crystal c-axis for elasticity. As such, this mechanism allows for significant enhancement of the global scale inner-core anisotropy. With dominant pyramidal c + a slip, faster velocities along single-crystal c-axes (∆ c-a > 0) are required to obtain a positive global anisotropy. ∆ 45 • acts as a secondary but non negligible factor: a concave variation of the velocities (∆ 45 • > 0) tends to amplify the global anisotropy. Models with dominant pyramidal c + a slip, faster crystallization in the equatorial region, and random crystallization textures at the solidification front produce global anisotropies 5 to 15 times smaller than ∆ c-a at the single-crystal level. The addition of solidification textures enhances the global anisotropy but also adds scatter in the representation of Fig. 4 with a few models with ∆ c-a < 10% producing a global anisotropy larger than 3%. In such model, textures produced in the central portions of the inner-core are induced by plastic deformation, with a global cylindrical symmetry, whereas the outer portions of the inner-core are mostly influenced by solidification textures with a global spherical symmetry (Fig. 3). This induces heterogeneities in travel time calculations and scatter in the representation of Fig. 4. The addition of stratification reinforces the global anisotropy by up to 50%. For example, in the stratified model with dominant pyramidal c + a slip, single-crystal anisotropies with ∆ c-a between 5 and 20% are required for a global anisotropy between 1 and 3%. D R A F T January 21, 2016, 4:29pm D R A F T
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prismatic, pyramidal c+a first order, pyramidal c+a second order. The pyramidal a slip system is weakly activated in all cases. Results for simulations using both pyramidal c + a slip systems are nearly identical and are presented together in the paper.