Hugo Gimbert
email: hugo.gimbert@cnrs.fr

On the Control of Asynchronous Automata

Keywords: 1998 ACM Subject Classification B.1.2 Automatic synthesis, H.3.4 Distributed systems asynchronous automata, Controller synthesis 1

. There exist three classes of plants for which the existence of a correct controller with causal memory has been shown decidable: when the dependency graph of actions is series-parallel, when the processes are connectedly communicating and when the dependency graph of processes is a tree. We design a class of plants, called decomposable games, with a decidable controller synthesis problem. This provides a unified proof of the three existing decidability results as well as new examples of decidable plants.

Introduction

The decidability of the distributed version of the Ramadge and Wonham control problem [START_REF] Peter | The control of discrete event systems[END_REF], where both the plant and the controllers are modeled as asynchronous automata [START_REF] Ziełonka | Notes on finite asynchronous automata[END_REF][START_REF] Diekert | The Book of Traces[END_REF] and the controllers have causal memory is a challenging open problem. Very good introductions to this problem are given in [START_REF] Muscholl | A look at the control of asynchronous automata[END_REF][START_REF] Muscholl | Automated synthesis of distributed controllers[END_REF].

In this setting a controllable plant is distributed on several finite-state processes which interact asynchronously using shared actions. On every process, the local controller can choose to block some of the actions, called controllable actions, but it cannot block the uncontrollable actions from the environment. The choices of the local controllers are based on two sources of information.

First the controller monitors the sequence of states and actions of the local process. This information is called the local view of the controller. Second when a shared action is played by several processes then all the controllers of these processes can exchange as much information as they want. In particular together they can compute their mutual view of the global execution: their causal past.

A controller is correct if it guarantees that every possible execution of the plant satisfies some specification. The controller synthesis problem is a decision problem which, given a plant as input, asks whether the system admits a correct controller. In case such a controller exists, the algorithm should as well compute one.

The difficulty of controller synthesis depends on several factors, e.g.: the size and architecture (pipeline, ring, ...) of the system, the information available to the controllers, the specification. Assuming that processes can exchange information upon synchronization and use their causal past to take decisions is one of the key aspects to get decidable synthesis problems [START_REF] Gastin | Distributed games with causal memory are decidable for series-parallel systems[END_REF]. In early work on distributed controller synthesis, for example in the setting of [START_REF] Pnueli | Distributed reactive systems are hard to synthesize[END_REF], the only source of information available to the controllers is their local view. In this setting, distributed synthesis is not decidable in general, except for very particular architectures like the pipeline architecture. The paper [START_REF] Finkbeiner | Uniform distributed synthesis[END_REF] proposes information forks as an uniform notion explaining the (un)decidability results in distributed synthesis. The idea of using causal past as a second source of information appeared in [START_REF] Gastin | Distributed games with causal memory are decidable for series-parallel systems[END_REF].

We adopt a modern terminology and call the plant a distributed game and the controllers are distributed strategies in this game. A distributed strategy is a function that maps the causal past of processes to a subset of controllable actions. In the present paper we focus on the termination condition, which is satisfied when each process is guaranteed to terminate its computation in finite time, in a final state. A distributed strategy is winning if it guarantees the termination condition, whatever uncontrollable actions are chosen by the environment.

We are interested in the following problem, whose decidability is an open question.

distributed synthesis problem: given a distributed game decide whether there exists a winning strategy.

There exists three classes of plants for which the distributed synthesis problem has been shown decidable: 1. when the dependency graph of actions is series-parallel [START_REF] Gastin | Distributed games with causal memory are decidable for series-parallel systems[END_REF], 2. when the processes are connectedly communicating [START_REF] Madhusudan | The MSO theory of connectedly communicating processes[END_REF], 3. and when the dependency graph of processes is a tree [START_REF] Genest | Asynchronous games over tree architectures[END_REF][START_REF] Muscholl | Distributed synthesis for acyclic architectures[END_REF].

A series-parallel game is a game such that the dependency graph (A, D) of the alphabet A is a co-graph. Series-parallel games were proved decidable in [START_REF] Gastin | Distributed games with causal memory are decidable for series-parallel systems[END_REF], for a different setup than ours: in the present paper we focus on process-based control while [START_REF] Gastin | Distributed games with causal memory are decidable for series-parallel systems[END_REF] was focusing on action-based control. Actually action-based control is more general than process-based control, see [START_REF] Muscholl | A look at the control of asynchronous automata[END_REF] for more details. The results of the present paper could probably be extended to action-based control however we prefer to stick to process-based control in order to keep the model intuitive. To our knowledge, the result of [START_REF] Gastin | Distributed games with causal memory are decidable for series-parallel systems[END_REF] was the first discovery of a class of asynchronous distributed system with causal memory for which the distributed synthesis problem is decidable Connectedly communicating games have been introduced [START_REF] Madhusudan | The MSO theory of connectedly communicating processes[END_REF]. A game is connectedly communicating if there is a bound k such that if a process p executes k steps in parallel of another process q then all further actions of p will be parallel to q. The event structure of a connectedly communicating games has a decidable MSO theory [START_REF] Madhusudan | The MSO theory of connectedly communicating processes[END_REF] which implies that the distributed synthesis problem is decidable for these games.

An acyclic game is a game where processes are arranged as a tree and actions are either local or synchronize a father and its son. Even in this simple setting the distributed synthesis problem is non-elementary hard [START_REF] Genest | Asynchronous games over tree architectures[END_REF].

Our contribution

We develop a new proof technique to address the distributed synthesis problem, and provide a unified proof of decidability for series-paralell, connectedly communicating and acyclic games. We design a class of games, called decomposable games, for which the distributed synthesis problem is decidable. This leads to new examples of decidable architectures for controller synthesis.

The winning condition of the present paper is the termination of all processes in a final state. Richer specifications can be expressed by parity conditions. In the present paper we stick to termination conditions for two reasons. First, the long-term goal of this research is

H. Gimbert

23:3

to establish the decidability or undecidability of the distributed controller synthesis problem. A possible first step is to prove decidability for games with termination conditions. Second, it seems that the results of the present paper can be lifted to parity games, using the same concepts but at the cost of some extra technical details needed to reason about infinite plays.

Our proof technique consists in simplifying a winning strategy by looking for useless parts to be removed in order to get a smaller winning strategy. These parts are called useless repetitions. Whenever a useless repetition exists, we remove it using an operation called a shortcut in order to get a simpler strategy. Intuitively, a shortcut is a kind of cut-and-paste operation which makes the strategy smaller. By taking shortcuts again and again, we make the strategy smaller and smaller, until it does not have any useless repetition anymore.

If a winning strategy exists, there exists one with no useless repetition. In decomposable games, there is a computable upper bound on the size of strategies with no useless repetition, which leads to decidability of the controller synthesis problem.

Performing cut-and-paste in a distributed game is not as easy as doing it in a singleprocess game. In a single-process game, strategies are trees and one can cut a subtree from a node A and paste it to any other node B, and the operation makes sense as long as the state of the process in the same in both A and B. In the case of a general distributed strategy, designing cut-and-paste operations is more challenging. Such operations on the strategy tree should be consistent with the level of information of each process, in order to preserve the fundamental property of distributed strategies: the decisions taken by a process should depend only of its causal view, not on parallel events.

The decidability of series-parallel games established in [START_REF] Gastin | Distributed games with causal memory are decidable for series-parallel systems[END_REF] relies also on some simplification of the winning strategies, in order to get uniform strategies. The series-parallel assumption is used to guarantee that the result of the replacement of a part of a strategy by a uniform strategy is still a strategy, as long as the states of all processes coincide. Here we work without the series-parallel assumption, and matching the states is not sufficient for a cut-and-paste operation to be correct. This is the reason for introducing the notion of lock. A lock is a part of a strategy where an information is guaranteed to spread in a team of processes before any of these processes synchronize with a process outside the team. When two locks A and B are similar, in some sense made precise in the paper, the lock B can be cut and paste on lock A. Upon arrival on A, a process of the team initiates a change of strategy, which progressively spreads across the team. All processes of the team should eventually play as if the play from A to B had already taken place, although it actually did not.

The complexity of our algorithm is really bad, so probably this work has no immediate practical applications. This is not surprising since the problem is non-elementary even for the class of acyclic games [START_REF] Genest | Asynchronous games over tree architectures[END_REF]. Nevertheless we think this paper sheds new light on the difficult open problem of distributed synthesis.

Organization of the paper

Section 2 introduces the distributed synthesis problem. Section 3 provides several examples. In section 4 we show how to simplify strategies which contains useless repetitions, and prove that if a winning strategy exists, there exists one without any useless repetition. Finally, section 5 introduces the class of decomposable games and show their controller synthesis problem is decidable. Missing proofs can be found in the appendix. Figure 1 The set processes is {1 . . . 7}. A letter is identified with its domain. Here the domains are either singletons, represented by a single dot, or pairs of contigous processes, represented by two dots connected with a vertical segment. On the left handside is represented the trace {2}{3}{4, 5}{2, 3}{4}{1, 2}{3, 4} = {4, 5}{4}{2}{3}{2, 3}{3, 4}{1, 2} which has two maximal letters {1, 2} and {3, 4} thus is not prime. Center left: process 4 sees only its causal view ∂4(u) (in yellow). Center right: uvw = uwv since dom(v) ∩ dom(w) = ∅. Both uv and ∂6(uw) (in yellow) are prime prefixes of uvw and they are parallel. Right: uv and ∂c(uvwc) (in yellow) are parallel.

2

The distributed synthesis problem

The theory of Mazurkiewicz traces is very rich, for a thorough presentation see [START_REF] Diekert | The Book of Traces[END_REF]. Here we only fix notations and recall the notions of traces, views, prime traces and parallel traces. The words in the equivalence class are the linearizations of the trace. The trace whose only linearization is the empty word is denoted ǫ. All linearizations of a trace u have the same set of letters and length, denoted respectively Alph(u) and |u|. Given B ⊆ A, the set of traces such that Alph(u) ⊆ B is denoted B * ≡ in particular the set of all traces is A * ≡ . The concatenation on words naturally extends to traces. Given two traces u, v ∈ A * ≡ , the trace uv is the equivalence class of any word in uv. The prefix relation ⊑ is defined by:

(u ⊑ v ⇐⇒ ∃w ∈ A * ≡ , uw = v) .

Maxima, prime traces and parallel traces

A letter a ∈ A is a maximum of a trace u if it is the last letter of one of the linearizations of u . A trace u ∈ A * ≡ is prime if it has a unique maximum, denoted last(u) and called the last letter of u. Two prime traces u and v are said to be parallel if neither u is a prefix of v nor v is a prefix of u; and there is a trace w such that both u and v are prefixes of w.

These notions are illustrated on Fig. 1.

H. Gimbert

23:5

Processes and automata

Asynchronous automata are to traces what finite automata are to finite words, as witnessed by Zielonka's theorem [START_REF] Ziełonka | Notes on finite asynchronous automata[END_REF]. An asynchronous automaton is a collection of automata on finite words, whose transition tables do synchronize on certain actions.

◮ Definition 1. An asynchronous automaton on alphabet A with processes P is a tuple A = ((A p) p∈P , (Q p) p∈P , (i p) p∈P , (F p) p∈P , ∆) where: every process p ∈ P has a set of actions A p , a set of states Q p and i p ∈ Q p is the initial state of p and F p ⊆ Q p its set of final states. A = p∈P A p . For every letter a ∈ A, the domain of a is dom(a

) = {p ∈ P | a ∈ A p } .
∆ is a set of transitions of the form (a, (q p , q ′ p) p∈dom(a)) where a ∈ A and q p , q ′ p ∈ Q p . Transitions are deterministic: for every a ∈ A, if δ = (a, (q p , q ′ p) p∈dom(a)) ∈ ∆ and δ ′ = (a, (q p , q ′′ p) p∈dom(a)) ∈ ∆ then δ = δ ′ (hence ∀p ∈ dom(a), q ′ p = q ′′ p).

Such an automaton works asynchronously: each time a letter a is processed, the states of the processes in dom(a) are updated according to the corresponding transition, while the states of other processes do not change. This induces a natural commutation relation I on A: two letters commute iff they have no process in common i.e.

(a I b) ⇐⇒ (dom(a) ∩ dom(b) = ∅) .
The set of plays of the automaton A is a set of traces denoted plays(A) and defined inductively, along with a mapping state : plays

(A) → Π p∈P Q p .
ǫ is a play and state(ǫ) = (i p) p∈P , for every play u such that (state p (u)) p∈P is defined and a, (state p (u), q p) p∈dom(a) is a transition then ua is a play and ∀p ∈ P, state p (ua) = state p (u) if p ∈ dom(a), q p otherwise.

For every play u, state(u) is called the global state of u. The inductive definition of state(u) is correct because it is invariant by commutation of independent letters of u.

Counting actions of a process

For every trace u we can count how many times a process p has played an action in u, which we denote |u| p . Formally, |u| p is first defined for words, as the length of the projection of u on A p , which is invariant by commuting letters. The domain of a trace is defined as

dom(u) = {p ∈ P | |u| p = 0} .

Views, strategies and games

Given an automaton A, we want the processes to choose actions which guarantee that every play eventually terminates in a final state.

To take into account the fact that some actions are controllable by processes while some other actions are not, we assume that A is partitioned in

A = A c ⊔ A e
where A c is the set of controllable actions and A e the set of (uncontrollable) environment actions. Intuitively, processes cannot prevent their environment to play actions in A e , while they can decide whether to block or allow any action in A c . C V I T 2 0 1 6 23:6

On the Control of Asynchronous Automata

We adopt a modern terminology and call the automaton A together with the partition A = A c ⊔A e a distributed game, or even more simply a game. In this game the processes play distributed strategies, which are individual plans of action for each process. The choice of actions by a process p is dynamic: at every step, p chooses a new set of controllable actions, depending on its information about the way the play is going on. This information is limited since processes cannot communicate together unless they synchronize on a common action. In that case however they exchange as much information about the play as they want. Finally, the information missing to a process is the set of actions which happened in parallel of its own actions. The information which remains is called the p-view of the play, and is defined formally as follows.

◮ Definition 2 (Views). For every set of processes

Q ⊆ P and trace u, the Q-view of u, denoted ∂ Q (u), is the unique trace such that u factorizes as u = ∂ Q (u) • v and v is the longest suffix of u such that Q ∩ dom(v) = ∅. In case Q is a singleton {p} the view is denoted ∂ p (u) and is a prime trace. For every letter a ∈ A we denote ∂ a (u) = ∂ dom(a) (u).
The well-definedness of the Q-view is shown in the appendix, where we also establish:

∂ Q (uv) = ∂ Q ′ (u) ∂ Q (v) where Q ′ = Q ∪ dom(∂ Q (v)) (1)
(Q ⊆ Q ′) =⇒ (∂ Q (u) ⊑ ∂ Q ′ (u)) . (2
)
We can now define what is a distributed strategy.

◮ Definition 3 (Distributed strategies, consistent and maximal plays). Let G = (A, A c , A e) be a distributed game. A strategy for process p in G is a mapping which associates with every play u a set of actions σ p (u) such that: environment actions are allowed: A e ⊆ σ p (u), the decision depends only on the view of the process:

σ p (u) = σ p (∂ p (u)). A distributed strategy is a tuple σ = (σ p) p∈P where each σ p is a strategy of process p. A play u = a 1 • • • a |u| ∈ plays(A) is consistent with σ, or equivalently is a σ-play if: ∀i ∈ 1 . . . |u|, ∀p ∈ dom(a i), a i ∈ σ p (a 1 • • • a i-1) .
A σ-play is maximal if it is not the strict prefix of another σ-play.

Note that a strategy is forced to allow every environment action to be executed at every moment. This may seem to be a huge strategic advantage for the environment. However depending on the current state, not every action can be effectively used in a transition because the transition function is not assumed to be total. So in general not every environment actions can actually occur in a play. In particular it may happen that a process enters a final state with no outgoing transition, where no uncontrollable action can happen.

Winning games

Our goal is to synthesize strategies which ensure that the game terminates and all processes are in a final state.

◮ Definition 4 (Winning strategy).

A strategy σ is winning if the set of σ-plays is finite and in every maximal σ-play u, every process is in a final state i.e. ∀p ∈ P, state p (u) ∈ F p .

We are interested in the following problem, whose decidability is an open question.

Distributed synthesis problem: given a distributed game decide whether there exists a winning strategy.

If the answer is positive, the algorithm should as well compute a winning strategy.

H. Gimbert

23:7 3

Three decidable classes

Series-parallel games

A game is series-parallel if its dependency alphabet (A, D) is a co-graph i.e. belongs to the smallest class of graphs containing singletons and closed under parallel product and complementation. In this case A has a decomposition tree, this is a binary tree whose nodes are subsets of A, its leaves are the singletons ({a}) a∈A , its root is A. Moreover every node B with two children B 0 and B 1 is the disjoint union of B 0 and B 1 and either

B 0 × B 1 ⊆ D (serial product) or (B 0 × B 1) ∩ D = ∅ (parallel product).
The synthesis problem is decidable for series-parallel games [START_REF] Gastin | Distributed games with causal memory are decidable for series-parallel systems[END_REF].

Connectedly communicating games

A game is k-connectedly communicating if for every pair p, q of processes, if process p plays k times in parallel of process q then all further actions of q will be parallel to p. Formally, for every prime play uvw, (q ∈ dom(v) and

|v| p ≥ k) =⇒ q ∈ dom(w) .
The MSO theory of the event structure of a k-connectedly communicating game is decidable [START_REF] Madhusudan | The MSO theory of connectedly communicating processes[END_REF], which implies that controller synthesis is decidable for theses games.

Acyclic games

An acyclic game is a game where processes P are the nodes of a tree T P and the domain of every action is a connected set of nodes of T P . The synthesis problem is known to be decidable for acyclic games such that the domain of each action has size 1 or 2 [START_REF] Genest | Asynchronous games over tree architectures[END_REF].

Simplifying strategies

In this section we present an elementary operation called a shortcut, which can be used to simplify and reduce the duration of a winning strategy.

To create a shortcut, one selects a σ-play xy and modify the strategy σ so that as soon as any of the processes sees the play x in its view, this process assumes that not only x but also xy has actually occurred. In other words, a shortcut is a kind of cut-and-paste in the strategy: we glue on node x the sub-strategy rooted at node xy.

The choice of x and y should be carefully performed so that the result of the shortcut is still a strategy. We provide a sufficient condition for that: (x, y) should be a useless repetition.

The interest of taking shortcuts is the following: if the original strategy is winning, then the strategy obtained by taking the shortcut is winning as well, and strictly smaller than the original one. In the remainder of this section, we formalize these concepts.

Locks

We need to limit the communication between a set of processes, called a team, and processes outside the team. This leads to the notion of a Q-lock: this is a prime play u such that there is no synchronization between Q and P \ Q in parallel of u.

◮ Definition 5. Let Q ⊆ P. An action b is Q-safe if (dom(b) ⊆ Q or dom(b) ∩ Q = ∅). A play u is a Q-lock if it
is prime and the last action of every prime play parallel to u is Q-safe.

C V I T 2 0 1 6

23:8 On the Control of Asynchronous Automata

The notion of lock is illustrated on the right handside of Fig. 1. Set Q = {1, 2, 3, 4, 5}. Then uv is not a Q-lock because ∂ c (uvwc) is parallel to uv but c is not Q-safe. Locks occur in a variety of situations, including the three decidable classes.

◮ Lemma 6 (Sufficient conditions for Q-locks). Let u be a prime play of a game G and Q ⊆ P. Each of the following conditions is sufficient for u to be a Q-lock:

i) Q = P. ii) u is a (P \ Q)-lock. iii) Q ⊆ dom(last(u)).
iv) The game is series-parallel and Q = dom(B) where B is the smallest node of the decomposition tree of A which contains Alph(u). v) The game is connectedly communicating game with bound k, Q = dom(u) and ∀p ∈ dom(u), |u| p ≥ k. vi) The game is acyclic with respect to a tree T P and Q is the set of descendants in T P of the processes in dom(last(u)). vii) There are two traces x and z such that u = xz and z is a Q-lock in the game G x identical to G except the initial state is changed to state(x).

Taking shortcuts

In this section we present a basic operation used to simplify a strategy, called a shortcut, which consists in modifying certain parts of a strategy, called useless repetitions. These notions rely on the notion of strategic state as well as two operations on strategies called shifting and projection.

◮ Definition 7 (Residual). Let σ be a strategy, u a σ-play and Q ⊆ P. The Q-residual of σ after u is the set:

π(σ, u, Q) = {(v, σ(uv)) | v ∈ A * ≡ , dom(v) ⊆ Q and uv is a σ-play.} .
A winning strategy may take unnecessarily complicated detours in order to ensure termination. Such detours are called useless repetitions.

◮ Definition 8 (Strategic state). Let Q ⊆ P be a state of processes, σ a strategy and u a prime σ-play with maximal letter b. The strategic Q-state of σ after u is the tuple

strate σ,Q (u) = (b, state(u), π (σ, u, Q \ dom(b))) .
◮ Definition 9 (Useless repetition). A useless Q-repetition in a strategy σ is a pair of traces (x, y) such that y is not empty, xy is a σ-play, dom(y) ⊆ Q, both x and xy are Q-locks and strate σ,Q (x) = strate σ,Q (xy).

The following theorem is the key to our decidability results. ◮ Theorem 10. If there exists a winning strategy then there exists a winning strategy without any useless repetition.

The proof of this theorem relies on the notion of shortcuts, an operation which turns a winning strategy into another strategy with strictly shorter duration.

◮ Definition 11 (Duration of a strategy). The duration of a strategy σ is

dur(σ) = u maximal σ-play |u| .
The duration of a strategy σ may in general be infinite but is finite if σ is winning.

◮ Lemma 12. Let (x, y) be a useless Q-repetition in a strategy σ. Let Φ : A * ≡ → A * ≡ and τ defined by Φ(u) = u if x ⊑ u xyu ′ if x ⊑ u and u = xu ′ and ∀p ∈ P, τ p (u) = σ p (Φ(∂ p (u))).
Then τ is a strategy called the (x, y)-shortcut of σ. Moreover for every trace u,

(u is a τ -play) ⇐⇒ (Φ(u) is a σ-play) . (3
)
If σ is a winning strategy then τ is winning as well and has a strictly smaller duration.

Sketch of proof of Lemma 12. The full proof can be found in the appendix. That τ is a strategy follows from the definition: τ p (u) only depends on ∂ p (u). To establish (3), the central point is to show that for every σ-play xu ′ ,

∀p ∈ P, σ p (∂ p (Φ(xu ′)) = σ p (Φ(∂ p (xu ′))) .
There are three types of plays depending whether:

1. x has not occurred (x ⊑ u), 2.
x has occurred in parallel of the process p

(x ⊑ u ∧ x ⊑ ∂ p (u)), 3. p knows that x has occurred (x ⊑ ∂ p (u)).
It may happen that x ⊑ u and there exists a process p 2 in case 2 and a process p 3 in case 3. Then process p 3 is playing the modified strategy xz → σ(xyz) while process p 2 is still playing the original strategy σ, which may a priori create some τ -plays unrelated with σ.

The equality of the strategic states in x and xy ensures that the equivalence (3) stays valid. Moreover, thanks to (3), dur(σ) < ∞ implies dur(τ) < dur(σ) because y is not empty. And according to (3) again, the set of global states of the maximal plays is the same for σ and τ thus if σ is winning then τ is winning as well. ◭

Proof of Theorem 10. As long as there exists a useless repetition, take the corresponding shortcut. According to Lemma 12, this creates a sequence σ 0 , σ 1 , . . . of winning strategies whose duration strictly decreases. Thus the sequence is finite and its last element is a winning strategy without useless repetition. ◭

Decomposable games

In this section we introduce decomposable games, for which the distributed synthesis problem is decidable (Theorem 21). There are actually three notions of decomposability: structural decomposability, process decomposability and action decomposability. These three notions form a hierarchy: structural decomposability implies process decomposability which itself implies action decomposability (Lemma 19). Known decidable classes are decomposable: acyclic games are structurally decomposable (Lemma 14), connectedlycommunicating games are process decomposable (Lemma 16) and series-parallel games are action decomposable (Lemma 18). Structural decomposability is stable under some operations between games which leads to new examples of decidable games (Lemma 26).

Decomposability

The notions of decomposability rely on preorders defined on 2 P or 2 A . A preorder is a reflexive and transitive relation. We denote ≺ the relation (x ≺ y) ⇐⇒ (x y ∧ y x).

C V I T 2 0 1 6

23:10

On the Control of Asynchronous Automata

Structural decomposability

The notion of structural decomposability relies on a preorder on 2 P which is monotonic with respect to inclusion, i.e. ∀Q,

Q ′ ⊆ P, (Q ⊆ Q ′ =⇒ Q Q ′).
◮ Definition 13 (Structural decomposability). A game is -structurally decomposable if for every non-empty prime trace y ∈ A * there exists Q ⊇ dom(y) and b ∈ Alph(y) such that:

(Q \ dom(b)) ≺ Q ∀a ∈ A, (a I b =⇒ a is Q-safe) .
We have already seen one example of structurally decomposable game.

◮ Lemma 14. Acyclic games are structurally decomposable.

Proof. Assume the game is acyclic with process tree T P . Set Q Q ′ iff every process in Q has a T P -ancestor in Q ′ , which is monotonic with respect to inclusion. Let y be a prime trace, p ∈ P the least common ancestor in T P of processes in dom(y) and Q the set of descendants of p. Then dom(y) ⊆ Q. Moreover, since y is prime and since the domain of every action is a connected subset of T P then dom(y) is connected as well thus p ∈ dom(y) and there exists a letter b ∈ Alph(y) such that p ∈ dom(b). We show that b satisfies the conditions in the definition of structural decomposability. First, (Q \ dom(b)) Q and the inequality is strict because the only ancestor of p in Q is p itself and p ∈ dom(b). Second, let a ∈ A such that a I b. Then p ∈ dom(a) and since dom(a) is connected in T P , then either none of the processes in dom(a) or all of them are descendants of p in T P , i.e. a is Q-safe. ◭

Process decomposability

The definition of process decomposable games relies on a parameter k ∈ N and a preorder on 2 P which is monotonic with respect to inclusion.

◮ Definition 15 (Process decomposable games). Fix an integer k. A trace y is k-repeating if y is not empty and ∀p ∈ dom(y), |y| p ≥ k .

A game is (, k)-process decomposable if for every prime play xy, if y is k-repeating then there exists Q ⊇ dom(y) and a prime prefix z ⊑ y such that

∂ last(z) (xz) is a Q-lock and (Q \ dom(last(z))) ≺ dom(y) . (4
)
We have already seen one example of process decomposable games.

◮ Lemma 16. Connectedly communicating games are process decomposable.

Action decomposability

Action decomposability is defined with respect to a parameter k ∈ N and a preorder on 2 A which is monotonic with respect to inclusion.

◮ Definition 17 (Action decomposable games). Let k be an integer. A game is (, k) action decomposable if for every prime play xy such that y is k-repeating, there exists Q ⊇ dom(y) and a prime prefix z ⊑ y such that

∂ last(z) (xz) is a Q-lock and {a ∈ A | dom(a) ⊆ (Q \ dom(last(z))} ≺ Alph(y) .
We have already seen one example of action decomposable games.

◮ Lemma 18. Series-parallel games are action decomposable.

H. Gimbert 23:11 A hierarchy

◮ Lemma 19. Every structurally decomposable game is process decomposable and every process decomposable game is action decomposable.

Thus action decomposability is the most general notion of decomposability. In the sequel for the sake of conciseness, it is simply called decomposability.

Decidability

In this section we show that decomposability is a decidable property and decomposable games have a decidable controller synthesis problem.

◮ Lemma 20 (Decomposability is decidable). Whether a game is decomposable is decidable.

There exists a computable function decomp from games to integers such that whenever a game G is (, k) decomposable for some k, it is (, decomp(G)) decomposable.

The proof is elementary and can be found in the appendix.

◮ Theorem 21. The distributed synthesis problem is decidable for decomposable games.

Proof of Theorem 21. We show that there exists a computable function f from games to integers such that in every decomposable distributed game G every strategy with no useless repetition has duration ≤ f (G).

Let be a preorder on 2 A compatible with inclusion, k ′ an integer and G a (, k ′) action decomposable distributed game. Assume k ′ = decomp(G) w.l.o.g. (cf. Lemma 20).

For every set of actions B ⊆ A, denote G B the game with actions B and the same processes, initial state and final states than G. The transitions of G B are all transitions of G whose action is in

B. An action a ∈ B is controllable in G B iff it is controllable in G.
We show that for every B ⊆ A the game G B is (B , k ′) decomposable, where B denotes the restriction of to 2 B . Let xy be a prime play of G B such that y is k ′ -repeating. Since G is (, k ′) decomposable, there exists Q ⊇ dom(y) and a prime prefix z ⊑ y such that ∂

f (G B) = R B (k ′ + |P|) • |B| • |Q| |P| • 2 2 |A||P|•max{f (G B ′),B ′ ≺B} ,
with the convention max ∅ = 0. Fix a strategy σ with no useless repetition. We prove that for every σ-play zu,

|u| ≤ f G Alph(u) . (5
)
The proof is by induction on Alph(u) with respect to . The base case when Alph(u) = ∅ is easy, in this case |u| = 0.

C V I T 2 0 1 6

23:12

On the Control of Asynchronous Automata

Now let zu be a σ-play consistent with σ. Assume the induction hypothesis holds: for every σ-play z

′ u ′ , if Alph(u ′) ≺ Alph(u) then |u ′ | ≤ f G Alph(u ′) .
We start with computing, for every non-empty set of letters B ≺ Alph(u) an upper bound on the length of every factorization u

= u 0 u 1 • • • u N u N +1 such that B = Alph(u 1) = Alph(u 2) = . . . = Alph(u N) . (6
)
For a start, we consider the case where B is connected in the sense where the dependency graph

D B = (B, D ∩ B × B) is connected. Set k = k ′ + |P|. For 0 ≤ ℓ < N k , denote w ℓ the concatenation w ℓ = u 1+ℓk • u 2+ℓk • • • u k+ℓk and h ℓ = zu 0 w 1 . . . w ℓ-1 . Let R B = dom(B) and fix some c ∈ B. Let 0 ≤ ℓ < N k . We show that ∂ c (w ℓ) is k ′ -repeating and ∂ c (h ℓ w ℓ) = ∂ RB (h ℓ) ∂ c (w ℓ). Since w ℓ = u 1+ℓk • u 2+ℓk • • • u k+ℓk ,
according to property (1) of views there exists a sequence

P ⊇ R 1 ⊇ . . . ⊇ R k such that ∂ c (w ℓ) = ∂ R1 (u 1+ℓk) ∂ R2 (u 2+ℓk) • • • ∂ R k (u k+ℓk) (7)
where R k = {c} and for every 1

≤ i ≤ k -1, R i = R i+1 ∪ dom(∂ Ri+1 (u i+1+ℓk)). Since the sequence (R i) 1≤i≤k ′ +|P| is monotonic, there exists i ∈ k ′ . . . k ′ + |P| such that R i = R i+1 . Denote R = R i = R i+1 and B ′ = {b ∈ B, dom(b) ∩ R = ∅} and B ′′ = {b ∈ B, dom(b) ⊆ R}.
By definition of views, and according to [START_REF] Muscholl | A look at the control of asynchronous automata[END_REF],

B ′ ⊆ Alph(∂ R (u i+1+ℓk)). Since R = R i = R i+1 and R i = R i+1 ∪ dom(∂ Ri+1 (u i+1+ℓk)) then dom(∂ R (u i+1+ℓk)) ⊆ R thus Alph(∂ R (u i+1+ℓk)) ⊆ B ′′ . Since B ′′ ⊆ B ′ then finally B ′ = Alph(∂ R (u i+1+ℓk)) = B ′′ . Thus the set B ′′
= B ′ = B ′′ and R = R B . Finally R B ⊆ R i ⊆ R 1 and since R 1 ⊆ dom(∂ c (w ℓ)) ⊆ R B , the sequence (R i) 1≤i ′ ≤i is constant equal to R B .
Thus, according to [START_REF] Muscholl | A look at the control of asynchronous automata[END_REF] and the definition of R B , for every 1 ≤ i ′ ≤ i, ∂ R i ′ (u i ′ +ℓk) = u i ′ +ℓk . Thus, according to (6) and (7) and since k ′ ≤ i ′ , every letter of B occurs at least k ′ times in ∂ c (w ℓ) thus

∂ c (w ℓ) is k ′ -repeating and ∂ c (h ℓ w ℓ) = ∂ RB (h ℓ) ∂ c (w ℓ).
Since the game is (, k ′) decomposable and ∂ c (w ℓ) is k ′ -repeating, and ∂ c (h ℓ w ℓ) = ∂ RB (h ℓ) ∂ c (w ℓ), there exists a superset T (ℓ) of R B , an action b ℓ , and a prime prefix

w ′ ℓ b ℓ ⊑ ∂ c (w ℓ) such that the play z ℓ = ∂ b ℓ (∂ RB (h ℓ)w ′ ℓ b ℓ) is a T (ℓ) -lock and B ℓ ≺ B where B ℓ = {a ∈ A | dom(a) ⊆ (T (ℓ) \ dom(b ℓ))} .
For every 0 ≤ ℓ < N k , denote strate ℓ = b ℓ , (s ℓ,p) p∈P , σ (ℓ) the T (ℓ) strategic state of σ after z ℓ . We show two properties of (strate ℓ) 0≤ℓ< N k . First, all elements of (strate ℓ) 0≤ℓ< N k are distinct. For the sake of contradiction, assume strate ℓ = strate ℓ ′ for some 0

≤ ℓ < ℓ ′ < N k . We show that z ℓ < z ℓ ′ . Since strate ℓ = strate ℓ ′ then b ℓ = b ℓ ′ , denote this letter b. Then z ℓ = ∂ b (∂ RB (h ℓ)w ′ ℓ b) ⊑ ∂ b (∂ RB (h ℓ) ∂ c (w ℓ)) = ∂ b (∂ c (h ℓ w ℓ)) ⊑ ∂ b (∂ c (h ℓ ′)) ⊑ ∂ b (∂ RB (h ℓ ′)) < ∂ b (∂ RB (h ℓ ′)w ′ ℓ ′ b) = z ℓ ′
, where the second inequality holds because h ℓ w ℓ ⊑ h ℓ ′ since ℓ ≤ ℓ ′ -1, and the third inequality holds because c ∈ B thus dom(c) ⊆ R B hence property (2) applies. Moreover the last inequality is strict because there is at least one more b in

∂ b (∂ RB (h ℓ ′)w ′ ℓ ′ b) than in ∂ b (∂ RB (h ℓ ′)).
We get a contradiction because by hypothesis there is no useless repetition in σ, however, denoting x = z ℓ and y such that xy = z ℓ ′ , the pair (x, y) is a useless T (ℓ) -repetition in σ: by hypothesis the strategic T (ℓ) -states of z ℓ and z ℓ ′ are equal and both x and xy are T (ℓ) -locks, moreover y is not empty because z ℓ < z ℓ ′ and finally dom(y ℓ) . Thus (x, y) is a useless repetition in σ.

) ⊆ dom(u 1+ℓk • • • u k+ℓ ′ k) ⊆ R B ⊆ T (

H. Gimbert

23:13

Second, for every 0

≤ ℓ < N k , all plays in σ (ℓ) = π(σ, z ℓ , T (ℓ) \ dom(b ℓ)) have length ≤ m = max B ′ ≺B f (G B ′). Let z ℓ u ′ be a σ-play such that dom(u ′) ⊆ (T (ℓ) \ dom(b ℓ)). Then Alph(u ′) ⊆ B ℓ . Since is monotonic with respect to inclusion, Alph(u ′) B ℓ ≺ B Alph(u). Thus by induction hypothesis, |u ′ | ≤ f G Alph(u ′) ≤ m.
According to the second property, there are at most 2 2 m|A||P| different residuals appearing in the sequence (σ The inequality N ≤ k • K has been established under the assumption that D B is connected. The general case reduces to this case: let C be a connected component of D B and for

1 ≤ i ≤ N let v i be the projection of u i on C. Then ∀1 ≤ i ≤ N, Alph(v i) = C and there exists u ′ 0 such that u = u ′ 0 v 1 v 2 . . . v N u N +1 thus N ≤ k • K.
Let us reformulate the inequality N ≤ k • K as a property of an undirected complete graph with edges colored by 2 A . Let u = a 1 a 2 • • • a |u| the factorization of u into its letters. Let J u be the complete graph with vertices 1, . . . , |u| and the label of the edge {i, j} with i < j is the set of letters {a i , . . . , a j }. Then every monochromatic clique of J u has size

≤ k • K. Thus, according to Ramsey theorem, |u| ≤ R T (k • K) = R T ((k ′ + |P|) • K), which completes the inductive step.
As consequence, winning strategies in G can be looked for in the finite family of strategies whose all plays have length ≤ f (G) with f (G) computable. As a consequence, the synthesis problem can be solved by enumerating all these strategies and testing whether any of them is winning. For testing whether a strategy of finite duration is winning the algorithm simply checks that the global state of all the maximal plays is final. ◭

New examples of decidable games

The three classes of games whose decidability is already known are decomposable (cf Lemmas 14, 16 and 18). In this section we give some new examples of decidable games.

◮ Lemma 22. Four players games are structurally decomposable.

Although our techniques do not seem to provide an algorithm for solving games with five processes, they can address a special case of those.

◮ Lemma 23. Let G be a distributed game with five processes. Assume that the number of actions that a process can successively play in a row without synchronizing simultaneously with two other processes is bounded. Then G is process decomposable. The class of structurally decomposable games is stable under projection and merge.

Another decidable example is the class of majority games: ◮ Lemma 24 (Majority games). Assume that every non-local action synchronizes a majority of the processes i.e. for every action

◮ Definition 25 (Projecting games). Let G be a game with processes P and alphabet (A p) p∈P . Let P ′ ⊆ P a subset of the processes. The projection of G on P ′ is the game G ′ with processes P ′ and alphabet

A ′ = {a ∈ A | dom(a) ∩ P ′ = ∅} partitioned in (A ′ ∩ A p) p∈P ′ . The states of a process p ∈ P ′ are the same in G and G ′ , every transition δ ∈ {a} × Π p∈dom(a) Q p × Q p of G on a letter a ∈ A ′ is projected to {a} × Π p∈dom(a)∩P ′ Q p × Q p ,
and every transition on a letter a ∈ A ′ is simply deleted.

C V I T 2 0 1 6

23:14

On the Control of Asynchronous Automata

The following result combines two structurally decomposable games into one.

◮ Lemma 26 (Merging games). Let G be a game, and P 0 , P 1 ⊆ P two set of processes such that P = P 0 ∪ P 1 and for every action a ∈ A, (dom(a) ∩ P 0 = ∅) ∧ (dom(a) ∩ P 1 = ∅) =⇒ (P 0 ∩ P 1 ⊆ dom(a)) .

If both projections of G on (P 0 \ P 1) and (P 1 \ P 0) are structurally decomposable then G is structurally decomposable.

The merge operation can combine two structurally decomposable games in order to create a new one. For example all acyclic games can be obtained this way, since 3-player games are structurally decomposable and every tree with more than three nodes can be obtained by merging two strictly smaller subtrees. This technique can go beyond acyclic games, by merging together 4-player games and majority games. The graph of processes is an undirected graph with nodes P and there is an edge between p and q whenever both p and q both belong to the domain of one of the actions. Then all the games whose graph of processes is contained in the one depicted on Fig. 2 are structurally decomposable.

Conclusion

We considered the distributed synthesis problem, which aims at controlling asynchronous automata using automatically synthesized controllers with causal memory. We presented a theorem that unifies several known decidability results and provide new ones.

The decidability of this problem is still open to our knowledge, even in the simple case where the graph of processes is a ring of five processes where each process can interact only with both its neighbors.

Another intriguing open problem is the case of weakly k-connectedly communicating plants. In such a plant, whenever two processes play both k times in a row without hearing from each other, they will never hear from each other anymore. It is not known whether the MSO theory of the corresponding event structures is decidable or not [START_REF] Madhusudan | The MSO theory of connectedly communicating processes[END_REF], and we do not know either how to use techniques of this paper to solve this class of games.

Appendix 6

Definition of the Q-view

For every set of processes Q and word u ∈ A * , we define inductively the Q-view of u as follows. If u is empty, its view is empty. If u is a word and a is a letter then:

∂ Q (ua) = ∂ Q (u) if dom(a) ∩ Q = ∅ ∂ Q∪dom(a) (u)a if dom(a) ∩ Q = ∅ . (8
)
An easy induction shows that for every words u, v,

∂ Q (uv) = ∂ Q ′ (u) ∂ Q (v) where Q ′ = Q ∪ dom(∂ Q (v)) . (9)
◮ Lemma 27. Let Q be a set of processes and u, v two words and a, b two letters such that

a I b, ∂ Q (uabv) = ∂ Q (ubav) .
Proof. According to [START_REF] Pnueli | Distributed reactive systems are hard to synthesize[END_REF],

∂ Q (uabv) = ∂ Q ′′ (u) ∂ Q ′ (ab) ∂ Q (v) with Q ′ = Q ∪ dom(∂ Q (v)) and Q ′′ = Q ′ ∪ dom(∂ Q ′ (ab)). Then ∂ Q ′ (ab) = ∂ Q ′′′ (a) ∂ Q ′ (b) where Q ′′′ = Q ′ ∪ dom(∂ Q ′′′ (a)). However a I b thus dom(∂ Q ′′′ (a)) ∩ dom(b) = ∅ hence ∂ Q ′′′ (a) = ∂ Q ′ (a) thus ∂ Q ′ (ab) = ∂ Q ′ (ba) and by symetry ∂ Q (uabv) = ∂ Q (ubav). ◭
According to Lemma 27, the view is independent by commutation of independent letters, thus its definition extends to traces.

A simple induction provides several useful properties of views.

∂ Q (u) ⊑ u (10) ∂ dom(u) (u) = u (11) (∂ Q (u) = ǫ) ⇐⇒ (dom(u) ∩ Q = ∅) (12)
(Q ⊆ Q ′) =⇒ (∂ Q (u) ⊑ ∂ Q ′ (u)) (13) ∂ Q (∂ Q (u)) = ∂ Q (u) (14) ∂ Q (uv) = ∂ Q (u ∂ Q (v)) . (15
)
To establish that the definition of views given in Definition 2 is equivalent to the one given by (8), we have to show: ◮ Lemma 28. For every set of processes Q, every trace u has a longest suffix v such that

dom(v) ∩ Q = ∅. And u = ∂ Q (u)v.
Proof. According to [START_REF] Peter | The control of discrete event systems[END_REF], there exists w such that u = ∂ Q (u)w. We show that dom(w)∩Q = ∅. According to [START_REF] Diekert | The Book of Traces[END_REF]

, ∂ Q (u) = ∂ Q ′ (u) ∂ Q (w) with Q ′ = Q ∪ dom(∂ Q (w)). Since Q ′ ⊇ Q then | ∂ Q (u)| ≤ | ∂ Q ′ (u)| according to (13) thus | ∂ Q (w)| = 0 hence dom(w) ∩ Q = ∅ according to (12). Let v be a suffix of u such that dom(v) ∩ Q = ∅. Let u ′ such that u = u ′ v. Then ∂ Q (u) = ∂ Q (u ′) thus ∂ Q (u) ⊑ u ′ hence |u ′ | ≥ |u| -|w| hence |v| ≤ |w|.

◭ Elementary properties of traces

Not all properties of the concatenation operator and the prefix relation on words are preserved on traces, however the following are:

∀u, v ∈ A * , ((u ⊑ v) ∧ (v ⊑ u) =⇒ u = v) , (16
) ∀u, v, w ∈ A * , (uv = uw) =⇒ (v = w) , (17
) ∀u, v, w ∈ A * , (uv ⊑ uw) =⇒ (v ⊑ w) . (18
)
The following two lemmas list some basic properties of traces used in the proofs.

◮ Lemma 29. Let u, v, x, y some traces such that uv = xy. Then there exists factorizations x = x ′ x ′′ and y = y ′ y ′′ such that:

u = x ′ y ′ (19) v = x ′′ y ′′ (20) dom(x ′′) ∩ dom(y ′) = ∅ . (21
)
Proof. By induction on |uv|. The case where uv is empty is trivial. Otherwise let a be a maximal action of v so that v = v 0 a. There are two cases.

If dom(a) ∩ dom(y) = ∅ then since a is a maximal action of xy and does not commute with y, a is a maximal action of y. Thus y factorizes as y = y 0 a and we apply the induction hypothesis to the equality uv 0 = xy 0 and append a to y ′′ 0 . If dom(a) ∩ dom(y) = ∅ then a is a maximal action of x which factorizes as x = x 0 a. We apply the induction hypothesis to the equality uv 0 = x 0 y and append a to x ′′ 0 . ◭

We define the notion of Q-prime trace.

◮ Definition 30 (Q-prime trace). A trace is Q-prime if ∂ Q (u) = u.
We make use of the following properties of traces.

◮ Lemma 31. For every trace u, v, x ∈ A * and a ∈ A and B ⊆ A,

uv is Q-prime =⇒ v is Q-prime (22) u and v are Q-prime =⇒ uv is Q-prime (23) If ua is prime, (av is Q-prime ⇐⇒ uav is Q-prime) (24) (u ⊑ ∂ Q (uv)) ⇐⇒ (∂ Q (uv) = u ∂ Q (v)) (25
)
If ua is prime,

∂ Q (uav) = ua ∂ Q (v) ⇐⇒ ∂ Q (av) = a ∂ Q (v) (26)
(∂ Q (uv) = ∂ Q (u)) =⇒ ∂ Q (v) = ǫ (27) ((a ⊑ u) ∧ (x ⊑ u) ∧ (a ⊑ x)) =⇒ ((dom(a) ∩ dom(x) = ∅) ∧ (ax ⊑ u)) . (28
)
Proof. We prove (22). If the last letter of a word v ′ ∈ v is not in Q, then the same holds for every u ′ v ′ where u ′ is a linearization of the trace u thus uv is not Q-prime since u ′ v ′ is a linearization of the trace uv.

We prove (23). Assume both u and v are Q-prime. Every linearization of uv is an interleaving of a linearization of u and a linearization of v thus it terminates with a letter whose domain intersects Q. Hence uv is Q-prime.

C V I T 2 0 1 6

We prove (24). Assume ua prime. The converse implication follows from (22). Assume av is Q-prime. We prove that uav is Q-prime by induction on |u|. If |u| = 0 then u = ǫ and uav = av is Q-prime by hypothesis. By induction let n ∈ N and assume u ′ av is Q-prime for all u ′ such that |u ′ | ≤ n. Let u such that |u| = n + 1, we prove that uav is Q-prime. We prove (25). The converse implication in (25) is obvious so it is enough to prove the direct implication. Assume u ⊑ ∂ Q (uv). According to (16) it is enough to prove By definition ∂ Q (uv) is the shortest prefix of uv such that uv=∂ Q (uv)v ′ with dom(v ′) ∩ Q = ∅, thus by hypothesis there exists w ′ such that uv

both ∂ Q (uv) ⊑ u ∂ Q (v) and u ∂ Q (v) ⊑ ∂ Q (uv). We start with u ∂ Q (v) ⊑ ∂ Q (uv). Since u ⊑ ∂ Q (uv), then ∂ Q (uv) = uw for some w ∈ A * and uv = uww ′ for some w ′ such that dom(w ′) ∩ Q = ∅. Then v = ww ′ according to (17) and since dom(w ′) ∩ Q = ∅, then ∂ Q (v) ⊑ w, thus u ∂ Q (v) ⊑ uw = ∂ Q (uv)
= uww ′ v ′ . v = ww ′ v ′ thus by definition of ∂ Q (v) again, ww ′ ⊑ ∂ Q (v) thus w ⊑ ∂ Q (v).
We prove (26). Let

Q ′ = Q∪dom(∂ Q (v)) Then according to (1), ∂ Q (uav) = ∂ Q ′ (ua) ∂ Q (v) and ∂ Q (av) = ∂ Q ′ (a) ∂ Q (v) thus (∂ Q (av) = a ∂ Q (v)) ⇐⇒ (dom(a) ∩ dom(Q ′) = ∅) ⇐⇒ (∂ Q ′ (ua) = ua) (since ua is prime). We prove (27). Let Q ′ = Q∪dom(∂ Q (v)). Then according to (1), ∂ Q (uv) = ∂ Q ′ (u) ∂ Q (v). Since Q ⊆ Q ′ then ∂ Q (u) ⊑ ∂ Q ′ (u) thus ∂ Q (uv) = ∂ Q (u) implies ∂ Q (u) = ∂ Q ′ (u) = ∂ Q ′ (u) ∂ Q (v) hence ∂ Q (v) = ∅.
Finally, we prove (28). Assume a ⊑ u and x ⊑ u and a ⊑ x. We show that dom(a) ∩ dom(x) = ∅ and ax ⊑ u. Let u 1 , u 2 such that u = au 1 and u = xu 2 . Then according to Lemma 29, there exist factorizations a = a ′ a ′′ and u 1 = u 3 u 4 such that x = a ′ u 3 and u 2 = a ′′ u 4 and dom(a ′′) ∩ dom(u 3) = ∅. Since a is a letter, either (a ′ = a ∧ a ′′ = ǫ) or (a ′ = ǫ ∧ a ′′ = a). However a ⊑ x thus a ′ = a hence (a ′ = ǫ ∧ a ′′ = a). Thus dom(a) ∩ dom(x) = dom(u 3) ∩ dom(x) = ∅. And u = xu 2 = xau 4 = axu 4 thus ax ⊑ u. ◭ ◮ Lemma 32. Let w be a trace and u and v two prefixes of w. The set of prefixes common to both u and v has a maximum (for the prefix relation) called the longest common prefix of u and v and denoted lcp(u, v). Let u ′′ , v ′′ such that u = lcp(u, v)u ′′ and v = lcp(u, v)v ′′ . Then dom(u ′′) ∩ dom(v ′′) = ∅.

Proof. The proof of the lemma is by induction on |w|.

The case where |w| = 0 is trivial, in this case lcp(u, v) is the empty trace. Assume |w| ≥ 1. Denote L(u, v) the set of prefixes common to both u and v. Let a be a letter and w ′ be a trace such that w = aw ′ .

Assume a ⊑ u and a ⊑ v then u and v are two prefixes of w ′ and the proof of this case follows by induction.

If a ⊑ u and a ⊑ v then let u = au ′ . Then L(u, v) = L(u ′ , v). Since both v and u ′ are prefixes of w ′ then lcp(u ′ , v) is inductively well-defined. Since L(u, v) = L(u ′ , v) then lcp(u, v) = lcp(u ′ , v) and the proof of this case follows by induction. The case a ⊑ u and a ⊑ v is symmetric.

If both a ⊑ u and a ⊑ v then let u = au ′ and v = av ′ . Since both v ′ and u ′ are prefixes of

w ′ then lcp(u ′ , v ′) is inductively well-defined. Denote ℓ = a • lcp(u ′ , v ′). Remark that a • L(u ′ , v ′) ⊆ L(u, v) thus ℓ ∈ L(u, v
) and ℓ is a good candidate for lcp(u, v). For that we show that every z ∈ L(u, v) is a prefix of ℓ. There are two cases. First case: a ⊑ z thus there exists z ′ such that z = az ′ then az ′ ⊑ au ′ and az

′ ⊑ av ′ thus z ′ ∈ L(u ′ , v ′) hence z ′ ⊑ lcp(u ′ , v ′) thus z = az ′ ⊑ a • lcp(u ′ , v ′) = ℓ. Second case, a ⊑ z. Then (28) implies dom(a) ∩ dom(z) = ∅ and az ∈ L(u, v). Thus z ∈ L(u ′ , v ′) hence z ⊑ lcp(u ′ , v ′) and there exists z ′ such that lcp(u ′ , v ′) = zz ′ . Then ℓ = a • lcp(u ′ , v ′) = azz ′ = zaz ′ thus z ⊑ ℓ
which terminates the proof of the second case. Finally, every z ∈ L(u, v) is a prefix of ℓ and ℓ ∈ L(u, v) thus lcp(u, v) is well-defined. The second statement follows easily by induction since u

′ = lcp(u ′ , v ′)u ′′ and v ′ = lcp(u ′ , v ′)v ′′ . ◭ 8
Properties of locks: proof of Lemma 6 Lemma 6. Let u be a prime play of a game G and Q ⊆ P. Each of the following conditions is sufficient for u to be a Q-lock:

i) Q = P. ii) u is a (P \ Q)-lock. iii) Q ⊆ dom(last(u)).
iv) The game is series-parallel and Q = dom(B) where B is the smallest node of the decomposition tree of A which contains Alph(u). v) The game is connectedly communicating game with bound k, Q = dom(u) and ∀p ∈ dom(u), |u| p ≥ k. vi) The game is acyclic with respect to a tree T P and Q is the set of descendants in T P of the processes in dom(last(u)). vii) There are two traces x and z such that u = xz and z is a Q-lock in the game G x identical to G except the initial state is changed to state(x).

Proof. For the remainder of the proof we fix v a prime play parallel to u and c = last(v).

We denote b = last(u) (thus c I b since v is parallel to u). To show that u is a Q-lock we need to show that c is Q-safe. We prove that any of the conditions i) to vii) is sufficient to prove that c is Q-safe.

Condition i) is sufficient because every letter is P-safe.

Condition ii) is sufficient because an action is

Q-safe iff it is P \ Q-safe. Condition

23:20

On the Control of Asynchronous Automata

For series-parallel games (assume iv) holds) we distinguish between two cases. In case c ∈ B then dom(c) ⊆ dom(B) = Q thus c is Q-safe. In case c ∈ B then let C be the smallest node of the decomposition tree containing both B and {c}. We show that C is a parallel node. Indeed C contains both b ∈ B and c thus it is not a singleton hence not a leaf. By For connectedly communicating games (assume (v) holds), we establish that c is Q-safe by showing that (dom(c)

∩ Q = ∅) =⇒ (dom(c) ⊆ Q). Let p ∈ dom(c) ∩ Q.
Since u and v are parallel there exists a play w such that both u ⊑ w and v ⊑ w.

Then ∂ p (u) ⊑ ∂ p (w) and ∂ p (v) ⊑ ∂ p (w). Since c = last(v) and p ∈ dom(c) then ∂ p (v) = v thus v ⊑ ∂ p (w), which we reuse later. Let w ′ such that ∂ p (w) = ∂ p (u)w ′ . By hypothesis, |u| p ≥ k thus | ∂ p (u)| p ≥ k. By definition of connectedly communicating games, since ∂ p (w) is prime, ∂ p (w) = ∂ p (u)w ′ and | ∂ p (u)| p ≥ k then dom(w ′) ⊆ dom(∂ p (u)) thus dom(∂ p (w)) ⊆ dom(∂ p (u)). Since v ⊑ ∂ p (w), we get dom(v) ⊆ dom(∂ p (u)) ⊆ dom(u) = Q. In particular dom(c) ⊆ Q thus c is Q-safe which terminates the proof in case (v) holds.
For acyclic games (assume (vi) holds), we show that c is Q-safe as follows. By definition of acyclic games, the domain of every action is connected in T P . Let p ∈ dom(b) be of minimal depth in the tree T P among the processes in dom(b). Then Q is the set of descendants of p in T P . Since u and v are parallel then c I b thus p ∈ dom(c). Since dom(c) is connected in T P then either all processes in dom(c) are descendants of p or none of them are. In other words

(dom(c) ⊆ Q) ∨ (dom(c) ∩ Q = ∅) i.e. c is Q-safe.
Now assume property (vii) holds. We show that there exists x ′ , x ′′ , z ′ , z ′′ , v ′ such that:

x = x ′ x ′′ (30) z = z ′ z ′′ (31) v = x ′ z ′ v ′ (32) dom(v ′) ∩ dom(x ′′ z ′′) = ∅ (33) dom(x ′′) ∩ dom(z ′) = ∅ . (34
)
For that let y be the longest common prefix of u = xz and v i.e. y = lcp(xz, v). According to Lemma 32, there exists y ′ and v ′ such that yy ′ = xz, yv ′ = v and dom(y ′) ∩ dom(v ′) = ∅.

Since yy ′ = xz, according to Lemma 29 there exists factorizations x = x ′ x ′′ and z = z ′ z ′′ such that y = x ′ z ′ and y ′ = x ′′ z ′′ and dom(

x ′′) ∩ dom(z ′) = ∅. Now we prove that xz ′ v ′ z ′′ is a play. First, xz = x ′ x ′′ z ′ z ′′ = x ′ z ′ x ′′ z ′′ thus since xz is a play, x ′ z ′ x ′′ z ′′
is also a play. And by hypothesis v = x ′ z ′ v ′ is also a play. Set w = x ′ z ′ then to summarize both wx ′′ z ′′ and wv ′ are plays. Since the processes playing in x ′′ z ′′ and v ′ are distinct (cf. (33)) then wv ′ x ′′ z ′′ = x ′ z ′ v ′ x ′′ z ′′ is also a play. And according to (33) and (34

), x ′ z ′ v ′ x ′′ z ′′ = x ′ z ′ x ′′ v ′ z ′′ = x ′ x ′′ z ′ v ′ z ′′ = xz ′ v ′ z ′′ . Thus xz ′ v ′ z ′′ is a play.
Now, we show that w = z ′ v ′ and z = z ′ z ′′ are two parallel prime plays in the game G x with initial state state(x). Remark first that both w and z are a prefix of wz ′′ = z ′ v ′ z ′′ = zv ′ . And since xz ′ v ′ z ′′ = xwz ′′ is a play in G (cf supra) then wz ′′ is a play in G x , thus both prefixes w and z are plays in G x as well. Since w is a suffix of the prime trace v = x ′ z ′ v ′ = x ′ w, it is prime with maximal action c = last(v). Since z is a suffix of the prime trace u = xz, it is prime with maximal action b = last(u). Then τ is a strategy called the (x, y)-shortcut of σ. And, for every trace u, (u is a τ -play) ⇐⇒ (Φ(u) is a σ-play) .

(

) 35
If σ is a winning strategy then τ is winning as well and has a strictly smaller duration. Proof. First notice that:

x ⊑ ∂ p (xu ′) ⇐⇒ ∂ p (xu ′) = x ∂ p (u ′) ⇐⇒ b ⊑ ∂ p (bu ′) ⇐⇒ ∂ p (xyu ′) = xy ∂ p (u ′) (42) ⇐⇒ xy ⊑ ∂ p (xyu ′),
which comes from applications of (25) and (26) and (37) and property (9) of views.

To show (41), we consider several cases. We prove (35) by induction on u. The base case u = ǫ holds because Φ(ǫ) = ǫ and ǫ is consistent with every strategy. Assume (35) holds for u and all its prefixes and let c be a letter. We show that (35) holds for uc as well.

We start with the direct implication. Assume that uc is a τ -play. We have to show Φ(uc) is a σ-play.

(

) 43
Since uc is a τ -play then u is a τ -play thus by induction hypothesis Φ(u) is a σ-play. And since uc is a τ -play then ∀p ∈ dom(c), c ∈ τ p (u) .

(44)

To show (43) we distinguish between three cases. First case: assume x ⊑ uc. Then Φ(uc) = uc then a fortiori x ⊑ ∂ p (u) thus Φ(∂ p (u)) = ∂ p (u). Hence ∀p ∈ dom(c), τ p (u) = σ p (Φ(∂ p (u))) = σ p (∂ p (u)) = σ p (u). Hence according

 We fix an alphabet A and a symmetric and reflexive dependency relation D ⊆ A × A and the corresponding independency relation I ⊆ A × A defined as ∀a, b ∈ A, (a I b) ⇐⇒ (a, b) ∈ D. A Mazurkiewicz trace or, more simply, a trace, is an equivalence class for the smallest equivalence relation ≡ on A * which commutes independent letters i.e. for every letters a, b and every words x, y, a I b =⇒ xaby ≡ xbay .

 last(z) (xz) is a Q-lock in G and C ≺ Alph(y) where C = {a ∈ A | dom(a) ⊆ Q and a I last(z)}. Since is monotonic with respect to inclusion then {b ∈ B | dom(b) ⊆ Q and bI last(z)} = (C ∩ B) C ≺ Alph(y) thus (C ∩B) ≺ B Alph(y). Since xy is a play in G B then ∂ last(z) (xz) ⊑ xy is a play in G B as well. And since every play in G B is a play in G, ∂ last(z) (xz) is a Q-lock not only in G but also in G B . All conditions of action decomposability are met : G B is (B , k ′) decomposable.Denote R B (m) the largest size of a complete undirected graph whose edges are labelled with 2 B and which contains no monochromatic clique of size ≥ m. According to Ramsey theorem, R B (m) is finite and computable. For every B ⊆ A, defined inductively f (G B) as :

 is a connected component of the graph D B = (B, D ∩ B × B): by definition of B ′ and B ′′ , all edges with source B ′′ have target in B ′ = B ′′ . However by hypothesis D B is connected thus B

 (ℓ)) 0≤ℓ< N k . Thus the sequence (strate ℓ) 0≤ℓ< N k takes at most K = |B| • |Q| |P| • 2 2 m|A||P| different values. And according to the first property, all these states are different thus N ≤ k • K.

 a, | dom(a)| = 1 or | dom(a)| ≥ |P \ dom(a)|. Then the game is structurally decomposable.

Figure 2 A

 2 Figure 2 A decidable process architecture.

 Since |u| = n + 1, there exists b ∈ A and u ′ ∈ A * such that u = bu ′ and |u ′ | = n. Using (22) and the induction hypothesis so on one hand we know that u ′ av is Q-prime. By definition of a trace, for any trace w, bw = {xbz | x, z words on A , xz ∈ w, b I x} . (29) Let y a linearization of uav = bu ′ av, we prove that the last letter of y is in A Q = ∪ p∈Q A p . According to (29), y factorizes as y = xbz with xz ∈ u ′ av and x I b. Since xz ∈ u ′ av and u ′ av is Q-prime, if z is not empty then it ends with a letter in ∪ p∈Q A p and so does y. Assume now that z is empty, then y = xb with x ∈ u ′ av and x I b. Since y ∈ bu ′ av then Alph(u ′ a) ⊆ Alph(y) and Alph(v) ⊆ Alph(y). Since Alph(y) = Alph(x) ∪ {b} and x I b every letter of u ′ a and av commute with b thus bu ′ a = u ′ ab and bv = vb. Since bu ′ a = ua is prime, bu ′ a = u ′ ab implies a = b. Since bv = vb then av = va and since av is Q-prime, a = b ∈ B. Finally b ∈ A Q and since y = xb the last letter of y is in A Q , which terminates the proof of the inductive step, and the proof of (24).

 and we got the first prefix relation. Now we prove the converse prefix relation. Since∂ Q (v) ⊑ w then by definition of ∂ Q there exists w ′′ ∈ A * such that w = ∂ Q (v)w ′′ and dom(w ′′) ∩ Q = ∅. Then uv = u ∂ Q (v)w ′′ w ′ and dom(w ′′ w ′) ∩ Q = ∅ thus by definition of ∂ Q , ∂ Q (uv) ⊑ u ∂ Q (v). By definition of w this implies uw ⊑ u ∂ Q (v) thus according to (18) w ⊑ ∂ Q (v). Finally w = ∂ Q (v) and u ∂ Q (v) = uw = u ∂ Q (v)which terminates the proof of (25).

 iii) is sufficient because by hypothesis c I b thus (dom(c) ∩ Q) ⊆ (dom(c) ∩ dom(b)) = ∅. C V I T 2 0 1 6

 minimality of C, one son of C contains B while the other contains c. Then node C cannot be a serial product because dom(b) ∩ dom(c) = ∅ and one son of C contains b ∈ B while the other contains c. Thus dom(B) ∩ dom(c) = ∅ and c is Q-safe.

 Hence w and z are two parallel plays in G x . By hypothesis, z is a Q-lock in G x thus c = last(w) is Q-safe. ◭ Taking shortcuts: proof of Lemma 12 Lemma 12. Let (x, y) be a useless Q-repetition in a strategy σ. Let Φ : A * ≡ → A * ≡ and τ defined by Φ(u) = u if x ⊑ u xyu ′ if x ⊑ u and u = xu ′ and ∀p ∈ P, τ p (u) = σ p (Φ(∂ p (u))).

Proof.◮

 That τ is a strategy follows from the definition: τ p (u) only depends on ∂ p (u). Let b = last(x). Since (x, y) is a useless Q-repetition then both x and xy are Q-locks, in particular they are prime, (36)last(x) = last(xy) = b (37) dom(y) ⊆ Q (38) state(x) = state(xy) (39) π (σ, x, Q \ dom(b)) = π (σ, xy, Q \ dom(b)) . (40)Proof of property (35). We start with a preliminary lemma. Lemma 33. For every σ-play xu ′ , ∀p ∈ P, σ p (∂ p (Φ(xu ′)) = σ p (Φ(∂ p (xu ′))) . (41)

First case.C

 Assume x ⊑ ∂ p (xu ′). Then according to (42), Φ(∂ p (xu ′)) = Φ(x ∂ p (u ′)) = xy ∂ p (u ′) = ∂ p (xyu ′) = ∂ p (Φ(xu ′)) and in this case (41) holds. Second case. Assume x ⊑ ∂ p (xu ′) and dom(∂ p(u ′)) ⊆ Q. Remark first that according to (42), b ⊑ ∂ p (bu ′) thus according to (9), dom(b) ∩ dom(∂ p (u ′)) = ∅ thus dom(∂ p (u ′)) ⊆ (Q \ dom(b)). Since x ∂ p (u ′) ⊑ xu ′ and xy ∂ p (u ′) ⊑ xyu ′ then both x ∂ p (u ′) and xy ∂ p (u ′) are σ-plays, hence (∂ p (u ′), σ(x ∂ p (u ′))) ∈ π (σ, x, Q \ dom(b)) and (∂ p (u ′), σ(xy ∂ p (u ′))) ∈ π (σ, xy, Q \ dom(b)) . Thus according to (40), we get σ p (x ∂ p (u ′)) = of Asynchronous Automata σ p (xy ∂ p (u ′)). Thus (41) holds since σ p (∂ p (Φ(xu ′))) = σ p (∂ p (xyu ′)) = σ p (∂ p (xy ∂ p (u ′))) = σ p (xy ∂ p (u ′)) = σ p (x ∂ p (u ′)) = σ p (∂ p (x ∂ p (u ′))) = σ p (∂ p (xu ′)) = σ p (Φ(∂ p (xu ′))) ,where the equalities hold because σ is a distributed strategy, according to property (15) of views and becausex ⊑ ∂ p (xu ′) thus Φ(∂ p (xu ′)) = ∂ p (xu ′). Third case. Assume x ⊑ ∂ p (xu ′) and dom(∂ p (u ′)) ⊆ Q. We show by contradiction that dom(∂ p (u ′)) ∩ Q = ∅. Otherwise, since ∂ p (u ′) is prime there would exists some letter d ∈ Alph(∂ p (u ′)) such that dom(d) intersects both Q and P \ Q. Let w = ∂ d (∂ p (xu ′)). Remark that w = ǫ and ∂ p (u ′) = ∅.We show that w ⊑ x by contradiction. Otherwisewu ′ ⊑ xu ′ hence ∂ d (∂ p (wu ′)) ⊑ ∂ d (∂ p (xu ′)) = w. Let R = dom(∂ p (u ′)). Since ∂ p (u ′) = ∅ then p ∈ R thus according to (9), ∂ p (wu ′) = ∂ R (w) ∂ p (u ′). And since w is d-prime and dom(d) ⊆ R then ∂ R (w) = w thus ∂ p (wu ′) = w ∂ p (u ′). Then since w is d-prime, ∂ d (∂ p (wu ′)) = w ∂ d (∂ p (u ′)). But then ∂ d (∂ p (wu ′)) ⊑ w shown above implies ∂ d (∂ p (u ′)) = ǫ, a contradiction with d ∈ Alph(∂ p (u ′)). Thus w ⊑ x hence w = ∂ d (∂ p (xu ′)) ⊑ xu ′ is a prime play parallel to x ⊑ xu ′ with maximal action d. However d is not Q-safe, contradicting the hypothesis that x is a Q-lock (cf. (36)). Thus dom(∂ p (u ′)) ∩ Q = ∅. Since dom(∂ p (u ′)) ∩ Q = ∅ then R ∩ Q = ∅. Since dom(y) ⊆ Q (cf. (38)) then ∂ R (y) = ǫ thus ∂ p (xyu ′) = ∂ R (xy) ∂ p (u ′) = ∂ R (x) ∂ p (u ′) = ∂ p (xu ′)according to the property (9) of views. Thus (41) holds since σ p (∂ p (Φ(xu ′))) = σ p (∂ p (xyu ′)) = σ p (∂ p (xu ′)) = σ p (Φ(∂ p (xu ′))) , where the last equality holds since x ⊑ ∂ p (xu ′) thus Φ(∂ p (xu ′)) = ∂ p (xu ′). This completes the proof of (41).◭

Acknowledgements

We thank Blaise Genest, Anca Muscholl, Igor Walukiewicz, Paul Gastin and Marc Zeitoun for interesting discussions on the topic. Moreover we thank one of the reviewers of a previous version, who spotted several mistakes and did provide very useful comments which led to several improvements in the presentation of the results.

to (44), ∀p ∈ dom(c), c ∈ σ p (u). Since u = Φ(u) then u is a σ-play hence by definition of σ-plays, uc as well is a σ-play. Thus (43) holds in this case.

Second case: assume x ⊑ uc and x ⊑ u. Then x = uc and c is the maximal letter of x. Then Φ(uc) = Φ(x) = xy. Since (x, y) is a σ-repetition then xy is a σ-play thus (43) holds.

Third case: assume x ⊑ u. Let u ′ such that u = xu ′ . By induction hypothesis, Φ(u) = xyu ′ is a σ-play thus to show that Φ(uc) = xyu ′ c is a σ-play, it is enough to prove ∀p ∈ dom(c), c ∈ σ p (∂ p (xyu ′)) = σ p (∂ p (Φ(u)) .

(45)

We show first that

This holds because u = xu ′ is a τ -play thus ∂ p (u) ⊑ u as well is a τ -play and by induction hypothesis, Φ(∂ p (u)) is a σ-play. Thus by definition of τ , τ p (u) = σ p (Φ(∂ p (u))) thus (46) holds according to (44). Then (46) and Lemma 33 show that (45) holds. This completes the proof of the direct implication of (35).

Now we show the converse implication of (35). Assume that Φ(uc) is a σ-play. We have to show that uc is a τ -play.

There are two cases. If x ⊑ u. Then Φ(u) = u thus by induction hypothesis, u is both a τ -play and a σ-play. Moreover σ and τ coincide on u thus since uc is a σ-play then uc is a τ -play as well.

If x ⊑ u. Let u ′ such that u = xu ′ . Then both Φ(u) = xyu ′ and Φ(uc) = xyu ′ c are σ-plays. By induction hypothesis, xu ′ is a τ -play thus to show that xu ′ c is a τ -play we shall show

hence (47) holds according to Lemma 33. This terminates the proof of the converse implication of (35). ◭ Proof that τ is winning. Since σ is winning, the set of σ-plays is finite. According to property (35) and the definition of τ , every τ -play is either a σ-play or is a subword of a σ-play thus the set of τ -plays is finite as well. Let u be a maximal τ -play. If x ⊑ u then u is a maximal σ-play and since σ is winning u is a winning play. Proof. Let be the inclusion preorder. We assume G is k-connectedly communicating and show that G is (, k)-process decomposable. Let xy be a prime play of G such that y is k-repeating. We set Q = dom(y) and z = y and show that both conditions in the definition of process decomposability are satisfied. Let b = last(y). Then dom(b)

Denote G x the game identical to G except the initial state is state(x). Then according to Lemma 6, xy is a Q-lock in G: according to v) applied to G x the play y is a Q-lock in G x hence according to vii) of the same lemma, xy is is a Q-lock in G. ◭

Series-parallel games: proof of Lemma 18

Lemma 18. Series-parallel games are action decomposable.

Proof. Let T A be the decomposition tree of A. For every non-empty subset B ⊆ A the set of nodes containing B is a branch of T A . We denote B ↑ the smallest node of this branch and moreover we set ∅ ↑ = ∅. The preorder on 2 A is defined as

Let xy be a prime play such that y is not empty. Set Q = dom(Alph(y) ↑) and z = y. We show that both conditions in the definition of action decomposable games are satisfied. Let G x be the game obtained by changing the initial state to state(x). According to property iv) of Lemma 6,

We start with a preliminary remark. Let C ⊆ A. We say that C is connected if C induces a connected subset of the dependency graph of the alphabet, i.e. if the graph with nodes C and edges

In particular, since y is prime then Alph(y) is connected thus Alph(y) ↑ is either the singleton {b} or a serial product node with two sons B and C. In the first case, Q = dom(b) thus A ′ = ∅ ≺ Alph(y). In the second case w.l.o.g. assume that b ∈ B. Then no action of

A hierarchy: proof of Lemma 19

Lemma 19. Every structurally decomposable game is process decomposable and every process decomposable game is action decomposable.

Proof. For the first implication, fix a preorder on P which is monotonic with respect to inclusion and witnesses the structural decomposability of the game. We show that the game is process decomposable with parameter (1,). Let xy be a prime play. Then the suffix y is prime. By definition of structural decomposability, there exists Q ⊇ dom(y) and a letter b ∈ Alph(y) such that (H1

Let z be a prime prefix of y with maximal letter b, which exists since b ∈ Alph(y) thus y H. Gimbert

23:25

factorizes as y = y ′ by ′′ and we can choose z = ∂ b (y ′ b). Then (H2) implies that ∂ b (xz) is a Q-lock and (H1) is exactly condition (4) in the definition of process decomposability thus all conditions for process decomposability are met. Now assume the game is process decomposable with parameters (k, P). We define the preorder A on 2 A by (B A B ′) ⇐⇒ (dom(B) P dom(B ′)). Then every (k, P) process decomposable game is (k, A) action decomposable because, ∀b ∈ A,

and, as a consequence, for every trace y,

Decidability of decomposability: proof of Lemma 20

Lemma 20. Whether a game is decomposable is decidable. There exists a computable function decomp from games to integers such that whenever a game G is (, k) decomposable for some k, it is (, decomp(G)) decomposable.

Proof. The definition of locks can be reformulated using the notion of locked states.

We reformulate what it means for a game not to be decomposable, in terms of computations of asynchronous automata. For every b ∈ A, denote A b the automaton identical to A except it is restricted to letters whose domain do not intersect dom(b): other letters are removed from the alphabet and the corresponding transitions are deleted.

◮ Lemma 35. Let Q ⊆ P. A prime play with last letter b and global state (q p) p∈P is a Q-lock iff the global state (q p) p∈P is Q-locked in A b .

Proof. Reformulation of the definition of Q-locks.

◭

Let be a preorder on 2 A compatible with inclusion.

For every letter b and subset of processes Q denote

Remark that C is computable because checking whether a global state is Q-locked reduces to checking accessibility in the graph of the global states of the automaton, thus the set of Q-locked global states is computable.

Denote A ′ the synchronous automaton reading finite words in A * which computes onthe-fly the global state of A as well as the list L ⊆ A of maximal actions of the current play. In particular, A ′ can detect whether the current input word is a prime trace, which is equivalent to |L| = 1. Denote Z the set of states of A ′ accessible from the initial state by a prime trace. The following properties are equivalent. i) There exists k ∈ N such that the game is (, k) action decomposable.

C V I T 2 0 1 6

23:26

On the Control of Asynchronous Automata

ii) There exists k ∈ N such that for every prime play xy, if y is k-repeating there exists a prime prefix z ⊑ y such that (Alph(y), last(z), state(∂ last(z) (xz))) ∈ C .

Property ii) is actually a simple reformulation of i) based on Lemma 35 and the definition of C. We show that it is decidable. For that we characterize it using the notion of nondecomposability witness.

Fix some word x ∈ A * and B ⊆ A. We say that a word y ∈ A * is a non-decomposability witness for (x, B) if:

We show that the language L x,B of non-decomposability witness for (x, B) is a regular language of finite words. Condition a) is clearly regular. Condition b) can be checked with A ′ , initialized with state(x) and the list of maximal actions in x: for (xy) ≡ to be prime. there should be a unique maximal action in this modified version of A ′ after reading y. To show that condition c) is regular, we show that the set of mirror images of words y not satisfying c) is regular. While reading the mirror image of y, the automaton guesses on-the-fly the sequence of global states and transitions performed by the automaton, which should end-up in state(x) once the first letter of y has been read. The automaton picks non-deterministically at some moment the last letter c of z ≡ and simultaneously guesses q = state(∂ c (x ≡ z ≡)) under the constraint (Alph(y), c, q) ∈ C. From then on the automaton keeps reading y backwards and computes on-the-fly ∂ c (x ≡ z ≡) using the inductive definition of the view, see [START_REF] Muscholl | Distributed synthesis for acyclic architectures[END_REF]. This way the automaton can check that q is equal to state(∂ c (x ≡ z ≡)). Now we show that property ii) is decidable. Note that L x,B actually does depend only on B (condition a)), on the set of maximal actions in x ≡ (condition b)) and on (∂ p (x ≡)) p∈P (condition c)). Thus the collection of possible languages L x,B can be explicitely computed as a finite collection (L xi,Bi) 1≤i≤M , together with the corresponding finite collection of automata (A xi,Bi) 1≤i≤M .

And property ii) holds if and only if for every language L x,B , Proof. Assume |P| = 4, we show that the game is structurally decomposable for the preorder on 2 P defined by: Q Q ′ ⇐⇒ |Q| ≤ |Q ′ | , which is monotonic with respect to inclusion. Let y be a prime trace. We set

Five players games: proof of Lemma 23

Lemma 23. Let G be a distributed game with five processes. Assume that the number of actions that a process can successively play in a row without synchronizing simultaneously with two other processes is bounded. Then G is process decomposable.

Proof. Let B be the corresponding bound. Let the order on P which compares cardinality: Proof. We show that the game is structurally decomposable for the pre-order on 2 P defined by: Q If both projections of G on (P 0 \ P 1) and (P 1 \ P 0) are structurally decomposable then G is structurally decomposable.

Proof. Let G 0 and G 1 the projections of G on P 0 and P 1 and 0 , 1 some preorders witnessing that 0 and G 1 are structurally decomposable. Let be the preorder on 2 P defined by:

which coincides with 0 and 1 on 2 P0\P1 and 2 P1\P0 respectively and all sets intersecting both P 0 and P 1 are -equivalent and strictly ≺-greater than sets in 2 P0\P1 ∪ 2 P1\P0 . Then is monotonic with respect to inclusion because 0 and 1 are. We show that G is structurally decomposable. Let y be a prime trace. Assume first (dom(y) ∩ P 0 = ∅ ∧ dom(y) ∩ P 1 = ∅). We set Q = P. Since y is prime then y has at least one letter b whose domain intersects both P 0 and P 1 thus by hypothesis P 0 ∩ P 1 ⊆ dom(b). Hence by definition of , (P \ dom(b)) ≺ dom(b) dom(y). And every action is P-safe thus conditions for structural decomposability are fulfilled in this case.

Assume that dom(y) ⊆ P 0 \ P 1 (the case dom(y) ⊆ P 1 \ P 0 is symmetric). Since G 0 is structurally 0 decomposable, there exists Q 0 ⊆ P 0 \ P 1 and a letter b of y such that: ∀a ∈ A, dom(a) ∩ (P 0 \ P 1) = ∅ ∧ a I b =⇒ a is Q 0 -safe in G 0 (49)

Set Q = Q 0 ∪ P 1 . Since dom(y) ⊆ (P 0 \ P 1) and Q ∩ (P 0 \ P 1) = Q 0 then (50) and the definition of ≺ implies Q \ dom(b) ≺ dom(y). We show that every letter a I b is Qsafe for that we assume dom(a) ∩ Q = ∅ and we prove that dom(a) ⊆ Q or equivalently dom(a) ∩ (P 0 \ P 1) ⊆ Q 0 . If dom(a) ∩ (P 0 \ P 1) = ∅ there is nothing to prove. Otherwise since dom(a) ∩ Q = ∅ then dom(a) ∩ Q 0 = ∅. Moreover according to (49), a is Q 0 -safe in G 0 thus since dom(a) ∩ Q 0 = ∅ then dom(a) ∩ (P 0 \ P 1) ⊆ Q 0 which terminates to prove that every action a I b is Q-safe. Thus G is structurally decomposable. ◭