
HAL Id: hal-01259151
https://hal.science/hal-01259151v1

Preprint submitted on 19 Jan 2016 (v1), last revised 3 Aug 2017 (v12)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Class of Zielonka Automata with a Decidable
Controller Synthesis Problem

Hugo Gimbert

To cite this version:
Hugo Gimbert. A Class of Zielonka Automata with a Decidable Controller Synthesis Problem. 2016.
�hal-01259151v1�

https://hal.science/hal-01259151v1
https://hal.archives-ouvertes.fr

A Class of Zielonka Automata with a
Decidable Controller Synthesis Problem

Hugo Gimbert

LaBRI, CNRS, Université de Bordeaux, France

hugo.gimbert@cnrs.fr

Abstract

The decidability of the distributed version of the Ramadge and
Wonham control problem (Ramadge and Wonham 1989), where
both the plant and the controllers are modelled as Zielonka au-
tomata (Zielonka 1987; Diekert and Rozenberg 1995) is a challeng-
ing open problem (Muscholl et al. 2008).

There exists three classes of plants for which the existence of
a correct controller has been shown decidable in the distributed
setting: when the dependency graph of actions is series-parallel,
when the processes are connectedly communicating and when the
dependency graph of processes is a tree.

We generalize these three results by showing that a larger class
of plants, called broadcast plants, has a decidable controller synthe-
sis problem. We give new examples of plants for which controller
synthesis is decidable.

1. Introduction

The decidability of the distributed version of the Ramadge and
Wonham control problem (Ramadge and Wonham 1989), where
both the plant and the controllers are modelled as Zielonka au-
tomata (Zielonka 1987; Diekert and Rozenberg 1995) is a challeng-
ing open problem. A very good introduction to the distributed con-
troller synthesis problem is given in (Muscholl et al. 2008).

We assume that the plant is distributed on several finite-state
processes which interact asynchronously using shared actions. On
every process, the local controller can choose to block some of
the actions, called controllable actions, but he cannot block the
uncontrollable actions from the environment. The choice of the
local controller is based on several sources of information: first he
can observe the local sequence of states and actions of the process
and second when a shared action is played all the local controllers
of the corresponding processes can exchange as much information
as they want, in particular together they can compute their mutual
view of the global execution.

Assuming that processes can exchange information upon syn-
chronization is a game changer from the point of view of decid-
ability. Actually, in the setting of (Pnueli and Rosner 1990), dis-
tributed synthesis is not decidable except for very simple archi-
tectures like the pipeline architecture. The comparison between
the two assumptions is discussed in (Gastin et al. 2004). The pa-

[Copyright notice will appear here once ’preprint’ option is removed.]

per (Finkbeiner and Schewe 2005) proposes information forks as
an uniform notion explaining the (un)decidability results in dis-
tributed synthesis.

A correct controller restricts controllable actions so that every
possible execution of the plant satisfies some specification. In the
present paper we focus on local reachability conditions: the set
of plays authorized by the controller should be finite, and in each
maximal play all processes should be in a final state.

We adopt a modern terminology and call the plant a game and
the controllers are strategies in this game. Of course strategies
should be distributed and the choice of actions to restrict should
depend only of its local view of the global execution. Our goal is
to decide, given a distributed game, whether there exists a winning
strategy for the controllers in the game, which guarantees the local
reachability condition to hold.

There exists three classes of plants for which the existence of a
winning distributed strategy has been shown decidable: when the
dependency graph of actions is series-parallel, when the processes
are connectedly communicating and when the dependency graph of
processes is a tree.

Connectedly communicating games have been introduced (Madhusudan et al.
2005) under the name of connectedly communicating processes. In-
tuitively, a game is connectedly communicating if there is a bound
k such that if a process p executes k steps without hearing from pro-
cess q, directly or indirectly, then p will never hear from q again.
The event structure of a connectedly communicating games has
a decidable MSO theory (Madhusudan et al. 2005) which implies
that controller synthesis is decidable for these games.

A series-parallel game is a game such that the dependence
graph (A,D) of the alphabet A is a co-graph. Series-parallel games
were proved decidable in (Gastin et al. 2004), for a different setup
than ours: in the present paper we focus on process-based control
while (Gastin et al. 2004) was focusing on action-based synthesis.
Actually action-based control is more general than process-based
control, see (Gastin et al. 2004) for a proof. The results of the
present paper could probably be extended to action-based control
however we prefer to stick to process-based control in order to keep
the model intuitive. To our knowledge, the result of (Gastin et al.
2004) was the first discovery of a class of asynchronous distributed
system for which controller synthesis is decidable

An acyclic game as defined in (Genest et al. 2013) is a game
where processes are arranged as a tree and actions are either local
or synchronize a father and his son. Formally, the processes are
arranged as a tree TP = (P, EP), and each action is either a local
action whose domain is a singleton or a synchronizing action such
that dom(a) = {p, q} and (p, q) ∈ EP i.e. q is the father of p in
the process tree.

We generalize these three results by showing that a larger class
of games, called broadcast games, has a decidable controller syn-
thesis problem, this is our main result. We give new examples

1 2016/1/19

of distributed games where the existence of a winning strategy is
decidable: acyclic games with arbitrary actions and triangulated
games.

The proof of decidability of broadcast games is fairly simple and
intuitive, at least when one is familiar with notations and concepts
from Zielonka automata and distributed synthesis. In a nutshell,
we start with a winning strategy and look for useless parts that
we can remove in order to get a simpler strategy. These parts are
called useless threads. Whenever a useless thread exists, we remove
it using an operation called a shortcut in order to get a simpler
strategy. Intuitively, a shortcut is like a cut and paste operation in
the strategy from a point A to a point B, such that B is an ancestor
of A, which makes the strategy smaller. By taking shortcuts again
and again, we make the strategy smaller and smaller, until it does
not have useless thread anymore. Strategies with no useless threads
have bounded size and they can be enumerated which leads to
decidability.

Performing cut-and-paste in a distributed strategy is not as easy
as doing it in a synchronous game. In a synchronous game with
only one process, strategies are trees and one can cut a subtree
from a point A and paste it to an ancestor B of A. As long as
the unique process is in the same state at A and B this will define
another, shorter, strategy. The decidability of series-parallel games
established (Gastin et al. 2004) relies also on some simplification
of the winning strategies, in order to get uniform strategies. The
series-parallel assumption is used to guarantee that the result of
the replacement of a part of a strategy by a uniform strategy is
still a strategy, as long as the states of all processes coincide.
But in the case of a general distributed strategy, without series-
parallel assumption, it is not sufficient that states of the processes
coincide at the source and the destination, one has also to take into
account the parallelism and the various information of the different
processes, so that the result of the operation is still a distributed
strategy.

This is the reason for introducing the notion of broadcasts. A
broadcast is a part of a strategy where a pool of processes can
synchronize and one of the processes of the pool can broadcast
an information to the others such that this information is received
by each process of the pool before it synchronizes with other
processes outside the pool. When two broadcasts are similar in
some sense made precise in the proof of the theorem, they can
be used to perform cutting and pasting and create shortcuts in the
strategy: upon arrival on A, a process of the pool broadcasts to other
processes of the pool that they should jump to B, and play as if the
path from A to B had been already taken.

The transformation of an arbitrary winning strategy to a simpler
one is done by induction on the set of actions, which relies on
a notion of inductive decomposition of the set of actions. This
notion is useful to derive rather easily from our techniques the
three known decidability results we mentioned above. However to
our opinion the technical core of the paper is not this notion of
inductive decomposition but rather the notion of useless threads and
shortcuts, and the proof that taking a shortcut of a useless thread
turns a distributed strategy into another distributed strategy.

The complexity of our algorithm is really bad, so it is not clear
whether this work will have practical applications, however we
think our contribution has nevertheless some interest, since it sheds
new light on the difficult open problem of distributed synthesis.

2. Definitions and basic properties

2.1 Mazurkiewicz traces

The theory of Mazurkiewicz traces is very rich and extensively de-
veloped in (Diekert and Rozenberg 1995). Here we only fix nota-
tions and recall the notions of traces, prime traces and views, and

list a few elementary properties of traces that we will use through-
out the paper.

We fix an alphabet A and a symmetric and reflexive dependency
relation D ⊆ A× A and the corresponding independency relation
I ⊆ A×A defined by:

∀a, b ∈ A, (a I b) ⇐⇒ (a, b) 6∈ D .

For u, v ∈ A∗, we denote A(u) the set of letters of u and we write:

u I v

whenever A(u)× A(v) ⊆ I .
A Mazurkiewicz trace on (A, I) is an equivalence class of

words for the smallest equivalence relation ≈ on A∗ such that:

∀u, v ∈ A
∗
,∀a, b ∈ A, ((a I b) =⇒ (uabx ≈ ubax)) .

In most of the paper, a Mazurkiewicz trace is simply called a trace.
A word in a trace is called a linearization of the trace.

The empty trace denoted ǫ is the singleton which contains only
the empty word.

All words of a trace have the same alphabet, thus the notation
A(u) extends to traces. The length of a trace u, denoted |u|, is the
number of letters of any linearization of u.

For a subset B ⊆ A, a trace on B is a trace u such that
A(u) ⊆ B. We abuse the notation and from now on we denote
B∗ the set traces on an alphabet B ⊆ A. We will explicitly state
when B∗ should be considered as the set of words on B rather than
the set of traces of B, and use the notation words(B) to denote the
set of finite words on B.

The concatenation on words naturally extends to traces, given
two traces u, v ∈ A∗, the trace uv is the equivalence class of any
word u′v′ such that u′ ∈ u and v′ ∈ v. Also the notion of prefix
extends to traces. A trace u ∈ A∗ is a prefix of a trace v ∈ A∗,
denoted

u ⊑ v

if there exists w ∈ A∗ such that uw = v. And u is a suffix of
v is there exists w ∈ A∗ such that v = wu. Not all properties
of the concatenation operator and the prefix relation on words are
preserved on traces, however the following are:

∀u, v ∈ A
∗
, ((u ⊑ v) ∧ (v ⊑ u) =⇒ u = v) , (1)

∀u, v, w ∈ A
∗
, (uv = uw) =⇒ (v = w) , (2)

∀u, v, w ∈ A
∗
, (uv ⊑ uw) =⇒ (v ⊑ w) . (3)

A trace u ∈ A∗ is prime if all its linearization have the same
last letter. If this letter is a ∈ A, i.e. if u ∈ A∗a, u is said to be
a-prime. Let B ⊆ A. If all linearization of u ends up with a letter
in B then u is said to be B-prime.

Let B ⊆ A and u ∈ A∗. Then there exists a shortest prefix
∂B(u) of u, called the B-view and denoted

∂B(u) .

such that u factorizes as u = ∂B(u) · v with v I B. If B is a
singleton {b} then the B-view is also called the b-view and denoted
∂b(u).

The following lemma lists some basic properties of traces that
we use later in the paper. In case the reader is already familiar
with trace theory, these properties and their proofs will probably
seem obvious to him. However, if the reader is new to trace theory,
proving these properties is a nice exercise to get familiar with basic
notions of a prefix of a trace, prime traces, views and their interplay.

2 2016/1/19

Lemma 1. For every trace u, v, x ∈ A∗ and a ∈ A and B ⊆ A,

(u I B) ⇐⇒ (∂B(u) = ǫ) (4)

(x ⊑ uv) =⇒ ∃x0 ⊑ u,∃x1 ⊑ v, x = x0x1 (5)

(x ⊑ uv) =⇒ ∃x0, x1, x2, x3 ∈ A
∗
, (6)

(x = x0x1) ∧ (u = x0x2) ∧ (v = x1x3) ∧ (x2 I x1)

uv is B-prime =⇒ v is B-prime (7)

u and v are B-prime =⇒ uv is B-prime (8)

If ua is prime, (av is B-prime ⇐⇒ uav is B-prime) (9)

(u is B-prime ∧ ¬(a I u)) =⇒ (au is B-prime) (10)

(u ⊑ ∂B(uv)) ⇐⇒ (∂B(uv) = u ∂B(v)) (11)

(uw ⊑ ∂B(uv)) =⇒ (w ⊑ ∂B(v)) (12)

∂B(∂B(u)) = ∂B(u) (13)

∂B(uv) = ∂B(u ∂B(v)) (14)

If ua is prime,

uav ⊑ ∂B(uavw) ⇐⇒ av ⊑ ∂B(avw) (15)

Proof. The equivalence (4) is immediate from the definition of ∂B .
Equation (5) is a corollary of (6) which is well-known, see (Diekert and Rozenberg

1995) for example. It can be proved by induction on |x|.
We prove (7). If the last letter of a word v′ ∈ v is not in B, then

the same holds for every u′v′ where u′ ∈ u thus uv is not B-prime
since u′v′ ∈ uv.

We prove (8). Assume both u and v are B-prime. Every lin-
earization of uv is a shuffle of a linearization of u and a lineariza-
tion of v thus it terminates with a letter in B. Hence uv is B-prime.

We prove (9). Assume ua prime. The converse implication
follows from (7). Assume av is B-prime. We prove that uav is B-
prime by induction on |u|. If |u| = 0 then u = ǫ and uav = av is
B-prime by hypothesis. By induction let n ∈ N and assume u′av is
B-prime for all u′ such that |u′| ≤ n. Let u such that |u| = n+ 1,
we prove that uav is B-prime. Since |u| = n + 1, there exists
b ∈ A and u′ ∈ A∗ such that u = bu′ and |u′| = n. Using (7)
and the induction hypothesis so on one hand we know that u′av is
B-prime. By definition of a trace, for any trace w,

bw = {xbz | x, z ∈ words(A), xz ∈ w, b I x} . (16)

Let y a linearization of uav = bu′av, we prove that the last letter
of y is in B. According to (16), y factorizes as y = xbz with
xz ∈ u′av and x I b. Since xz ∈ u′av and u′av is B-prime,
if z is not empty then it ends with a letter in B and so does y.
Assume now that z is empty, then y = xb with x ∈ u′av and x I b.
Since y ∈ bu′av then A(u′a) ⊆ A(y) and A(v) ⊆ A(y). Since
A(y) = A(x) ∪ {b} and x I b every letter of u′a and av commute
with b thus bu′a = u′ab and bv = vb. Since bu′a = ua is prime,
bu′a = u′ab implies a = b. Since bv = vb then av = va and since
av is B-prime, a = b ∈ B. Finally b ∈ B and since y = xb the
last letter of y is in B, which terminates the proof of the inductive
step, and the proof of (9).

We prove (10) by contradiction. Assume au is not B-prime then
there exists a word v′ and a letter c 6∈ B such that v′c ∈ au.
Let u′ ∈ u then au′ ∈ au and v′c ≈ au′ thus A(v′) ∪ {c} =
A(u′)∪{a}. If a 6∈ A(v′) then a = c and v′c ≈ au′ implies a I u
which is false by hypothesis. Thus a ∈ A(v′). Let w′ be the longest
prefix of v′ which does not contain a and x′ the suffix of v′ such
that v′ = w′ax′c. Then au′ ≈ w′ax′c and a 6∈ A(w′) thus w′

I a
. Then w′ax′c ≈ aw′x′c thus aw′x′c ≈ au′ hence w′x′c ≈ u′

and w′x′c ∈ u. Since c 6∈ B, this contradicts the hypothesis u is
B-prime.

We prove (11). The converse implication in (11) is obvious so
it is enough to prove the direct implication. Assume u ⊑ ∂B(uv).

According to (1) it is enough to prove both ∂B(uv) ⊑ u ∂B(v) and
u ∂B(v) ⊑ ∂B(uv). We start with u ∂B(v) ⊑ ∂B(uv).. Since u ⊑
∂B(uv), then ∂B(uv) = uw for some w ∈ A∗ and uv = uww′

for some w′
IB. Then v = ww′ according to (2) and since w′

IB,
then ∂B(v) ⊑ w, thus u ∂B(v) ⊑ uw = ∂B(uv) and we got
the first prefix relation. Now we prove the converse prefix relation.
Since ∂B(v) ⊑ w then by definition of ∂B there exists w′′ ∈ A∗

such that w = ∂B(v)w′′ and w′′
I B. Then uv = u ∂B(v)w′′w′

and w′′w′
I B thus by definition of ∂B , ∂B(uv) ⊑ u ∂B(v). By

definition of w this implies uw ⊑ u ∂B(v) thus according to (3)
w ⊑ ∂B(v). Finally w = ∂B(v) and u ∂B(v) = uw = u ∂B(v)
which terminates the proof of (11).

Equation (12), is a direct corollary of (11). Let v′, w′ such that
∂B(uv) = uwv′ and uv = ∂B(uv)w′. Then according to (11),
uwv′ = u ∂B(wv′w′) thus according to (2), wv′ = ∂B(wv′w′)
and since v = wv′w′, we getw ⊑ ∂B(v).

By definition ∂B(uv) is the shortest prefix of uv such that
uv=∂B(uv)v′ with v′ I B, thus by hypothesis there exists w′ such
that uv = uww′v′. v = ww′v′ thus by definition of ∂B(v) again,
ww′ ⊑ ∂B(v) thus w ⊑ ∂B(v).

We prove (13). Since ∂B(u) ⊑ u, then ∂B((∂B(u)) ⊑ ∂B(u)
according to (1) it is enough to prove ∂B(u) ⊑ ∂B(∂B(u)).
By definition of ∂B , u = ∂B(u)u

′ with u′
I B and ∂B(u) =

∂B(∂B(u))u′′ with u′′
I B. Thus u = ∂B(∂B(u))u′′u′ with

u′′u′
I B hence by definition of ∂B , ∂B(u) ⊑ ∂B(∂B(u)).

We prove (14). Since u ∂B(v) ⊑ uv, then ∂B(u ∂B(v)) ⊑
∂B(uv) and according to (1) it is enough to prove ∂B(uv) ⊑
∂B(u ∂B(v)). By definition of ∂B(v) there exists v′ I B such that
v = ∂B(v)v′ then uv = u ∂B(v)v′ thus ∂B(uv) ⊑ u ∂B(v).
According to (13), ∂B(∂B(uv)) = ∂B(uv) thus ∂B(uv) ⊑
∂B(u ∂B(v)) which terminates the proof of (14).

We prove (15). Assume ua is prime. The direct implication is
immediate using (12). For the converse implication, assume av ⊑
∂B(avw). Since ∂B(uavw) = ∂B(uav ∂B(w)), without loss of
generality we can assume w = ∂B(w) thus ∂B(avw) = avw, thus
we can replace v with vw and assume w = ǫ. Then ∂B(av) = av
thus according to (11) v = ∂B(v) and a = ∂B(a). Then uav
factorizes as uav = w0w1 with w0 = ∂B(uav) and w1 I B. Then
according to (6), ua = u0u1 such that w0 = u0z0 and w1 = u1z1.
Since ua is a-prime then either u1 = ǫ or u1 is a-prime. In case
u1 = ǫ then w0 = uaz0 thus ua ⊑ ∂B(uav) and according
to (11), ∂B(uav) = u ∂B(av) = uav so the proof is done.
Otherwise, u1 is a-prime but w1 ∈ B thus a I B, a contradiction
with a = ∂B(a). This terminates the proof of (15).

2.2 Processes and automata

Definition 1. A Zielonka automata A on the alphabet A and the
set of processes P is a tuple

A = (A, (Qp)p∈P, (ip)p∈P, (Fp)p∈P, (Ap)p∈P,∆),

where

• P is a finite set called the set of processes,

• Qp is the set of states of process p,

• ip ∈ Qp is the initial state of p,

• Fp ⊆ Qp is the set of final states of p,

• Ap is the set of actions of process p,

• A =
⋃

p∈P Ap and for a ∈ A, the set {p ∈ P | a ∈ Ap} is

called the domain of a and denoted dom(a),
• T ⊆

⋃

a∈A
{a}×

∏

p∈dom(a) Qp×Qp is the set of transitions,

We assume that transitions are deterministic i.e. for every a ∈ A,
if (a, (qp, q

′
p)p∈dom(a)) ∈ ∆ and (a, (qp, q

′′
p)p∈dom(a)) ∈ ∆ then

q′p = q′′p for every p ∈ dom(a).

For the rest of the paper we fix a Zielonka automaton A.

3 2016/1/19

The automaton A defines a reflexive and symmetric dependency
relation D on a defined by:

((a, b) ∈ D) ⇐⇒ (dom(a) ∩ dom(b) 6= ∅ ,

and the associate independency relation I

a I b ⇐⇒ dom(a) ∩ dom(b) = ∅ .

This naturally defines a notion of Mazurkiewicz on alphabet A.
We extend the notion of views and independence to processes.

Let p ∈ P then the p-view of a trace u ∈ A∗ is

∂p(u) = ∂Ap(u) ,

and since all letters of Ap are dependent from each other,

∀p ∈ P,∀u ∈ A
∗
, ∂p(u) is prime. (17)

Moreover for p ∈ P and u ∈ A∗,

p I u

is a notation for Ap I u. We extend the notion of domain to traces:

dom(a1 · · · an)
⋃

−i = 1n dom(ai) .

Definition 2 (Plays and maximal plays). The set of plays of the
automaton A denoted plays(A) is defined inductively, together
with a mapping Q : plays(A) → Πp∈PQp. The set plays(A) ⊆
A∗ is the smallest set of traces on A such that:

• ǫ is a play and Q(ǫ) = (ip)p∈P,

• if u ∈ plays(A), a ∈ A and there exists (a, (qp, q
′
p)p∈dom(a)) ∈

∆ such that ∀p ∈ dom(a), qp = Qp(u) then ua ∈ plays(A)
and for every p ∈ P,

Qp(ua) =

{

Qp(u) if p 6∈ dom(a),

q′p otherwise.

The definition makes sense because for every u ∈ plays(A),
whatever linearization of u is chosen to compute Q(u) does not
change the value of Q(u), since

∀u ∈ plays(A), Qp(u) = Qp(∂p(u)) ,

which can be easily proved inductively.

2.3 Strategies and games

Given an automaton A, our goal is to help processes to find a way
to choose actions so that the length of plays in A is bounded and in
every maximal play of A, all states are in a final state.

However, not all actions are controllable by processes, and
we assume that A is partitioned in A = Ac ⊔ Ae where Ac
is the set of controllable actions and Ae the set of environment
actions. Intuitively, processes cannot prevent their environment to
play actions in Ae, while they can forbid some of the actions that
are in Ac.

The choice of actions by processes is not made one of all at the
beginning of the play, it is dynamic and at every step, a process p
can choose a new set of actions, depending on the information p
has on the play.

This information of a process p on a play u is assumed to be
the p-view ∂p(u): intuitively two processes cannot communicate
together unless they synchronize on a common action and in this
case they exchange as much information about the play as they
want, which allows them to compute a common p-view of the play,
common indeed because for every a-prime play ua ∈ plays(A),

∀p, q ∈ dom(a), ∂p(ua) = ∂q(ua) = ua .

We adopt a modern terminology and call the automaton A
together with the partition A = Ac ⊔ Ae a distributed game, or

simply a game in this paper, in which the processes play distributed
strategies, defined as follows.

Definition 3 (Distributed strategy). A distributed strategy σp for

process p ∈ P in the game A is a mapping σp : A∗ → 2A such
that for every u ∈ A∗,

Ae ⊆ σp(u) ,

σp(u) = σp(∂p(u)) .

A distributed strategy in A is a tuple σ = (σp)p∈P where each σp

is a strategy of process p.
A play u = a1 · · · an is a σ-play if u ∈ plays(A) and for every

i ∈ 1..n and every p ∈ dom(ai), ai ∈ σp(a1 · · · ai). A σ-play is
maximal if it is not the strict prefix of another σ-play.

Our goal is to synthesize winning strategies, which ensure that
the game terminates and all processes are in final state.

Definition 4 (Winning strategy). A strategy σ is winning if the set
{|u| | u is a σ-play} is bounded and for every maximal σ-play u,

Q(u) ∈ Πp∈PFp .

Actually, not all winning strategies are equivalent, we prefer
those which have small duration, in the following sense.

Definition 5 (Duration of a strategy). The duration dur(σ) of a
strategy σ is an integer in N∪ {∞} defined as follows. If the set of
σ-plays is infinite then dur(σ) = ∞. Otherwise

dur(σ) =
∑

u maximal σ-play

|u|

The distributed synthesis problem asks, given a game G =
(A, Ac,Ae), whether there the game is winning, in the sense where
there is a winning strategy in G. If yes such a strategy should be
computed.

We do not know whether the distributed synthesis problem is
solvable in the general case, but we know it is decidable when the
game is a broadcast game.

2.4 Threads and broadcast games

The notion of broadcast game relies on the notion of B-broadcast
of a prime trace, with B ⊆ A.

Intuitively, a broadcast is a prime play in a strategy such that the
maximal action of the play and the associated information about
the play can be broadcasted in priority to a pool of processes using
a poll of actions B such that no action outside B is performed by
a process of the pool in parallel of the maximal action. In other
words, the process of the pool keep playing exclusively actions in
B until they receive the information. Formally, a B-broadcast is a
prime play whose last action is in B and such that every parallel
play is either a B-thread or is independent of B.

Definition 6 (σ-broadcast). Let B ⊆ A a subset of actions. We say
that a prime play u is a B-broadcast if u ∈ A∗B and for every play
uv such that v is prime,

(uv is prime) ∨ (v I B) ∨ (v ∈ B
∗) . (18)

We say that a prime σ-play u is a B-broadcast in σ if (18) holds
for every σ-play uv such that v is prime.

The first clause in the disjonction (18) can be reformulated in
several ways.

Proposition 1. Let B ⊆ A and a, b ∈ A and u, v ∈ A∗ such that
u is a-prime and v is b-prime. Then the following conditions are

4 2016/1/19

equivalent:

(uv is b-prime) ⇐⇒ ¬(a I v)

⇐⇒ a ⊑ ∂b(av)

⇐⇒ u ⊑ ∂b(uv) .

Proof. We prove one by one all implications from the bottom to the
top and finally the implication from the very top to the very bottom.
Assume (u ⊑ ∂b(uv)) then according to (15) (a ⊑ ∂b(av)).
Assume a I v then in particular a I b and ∂b(av) = ∂b(v) = v
because v is b-prime thus (a 6⊑ ∂b(av)). Assume ¬(a I v). Then
av is b-prime according to (10) thus uv is b-prime according to (9).
Assume uv is b-prime then uv = ∂b(uv) thus u ⊑ ∂b(uv).

The proof of our main theorem is by induction on the set of
actions, and relies on inductive decompositions of the alphabet A.

Definition 7 (Inductive decomposition of A). Let A be an alphabet
equipped with a reflexive and symmetric dependency relation D ⊆
A × A. For every B ⊆ A we denote GB = (B,D ∩ B × B)
the induced graph on (A,D). An inductive decomposition of A is a

collection C ⊆ 2A × 2A such that for every connected component
A′ of GA, ∃C′, (A′, C′) ∈ C and ∀(B,C) ∈ C,

C ⊆ B (19)

GC is a clique (20)

∀ connected component B
′

of GB\C , ∃C
′
, (B′

, C
′) ∈ C (21)

We can now introduce our decidable class of games, broad-
cast games. The notion is defined so that decidability results
of (Gastin et al. 2004; Madhusudan et al. 2005; Genest et al. 2013)
can be retrieved quite easily, as will be done in the next section.
However to our opinion the main contribution of the paper are the
notions of useless threads and shortcuts introduced in section 4.

Definition 8 (Broadcast games). Let N ∈ N and C an inductive
decomposition of A. A game G is a (N, C)-broadcast game if for
every (B,C) ∈ C and every u, v1, . . . vN ∈ A∗ such that

uv1v2 · · · vN is a play (22)

∀i ∈ 1..N, vi ∈ B
∗
C , (23)

A(v1) = A(v2) = · · · = A(vN) (24)

∀i ∈ 1..N, uv1v2 · · · vi is a prime play , (25)

there exists (B′, C′) ∈ C and j ∈ 1..N such that B′ ⊆ B such
that uv1v2 · · · vj is a B′-broadcast.

Let C ⊆ 2A × 2A then G is a (N, C)-broadcast game if it is a
(N, (B,C))-broadcast game for every (B,C) ∈ C.

A game G is a N -broadcast game if there exists an inductive
decomposition C of A such that G is a (N, C)-broadcast game.

A game G is a broadcast game if there exists N ∈ N such that
G is a N -broadcast game.

Being a broadcast game is a decidable property.

Proposition 2. It is decidable whether a game G is a broadcast
game. In case G is a broadcast-game then there exists N ≤
Πp∈P|Qp| such that G is a N -broadcast game.

Proof. Let M = Πp∈P|Qp|. Let C be an inductive decomposition
of A and (B,C) ∈ C. A standard argument of automata theory
shows that a game is a (N, (B,C))-broadcast game for N > M
if and only if it G satisfies the conditions in Definition 8 when
N = M and u as well as each vi has length less than M .

Let Ib = {a ∈ A | a I b} and IB = {a ∈ A | a I C}. Then we
prove that a b-primary play u is a B-broadcast if and only if there

does not exist a prime play v ∈ A∗ such that uv is a play and

v 6∈ I
∗
b (26)

v 6∈ B
∗

(27)

v 6∈ I
∗
B . (28)

The conjonction of these three conditions is indeed equivalent to
the opposite of (18), since according to Proposition 1,

(uv is prime) ⇐⇒ ¬(v I b) ⇐⇒ (v 6∈ I
∗
b).

Again, a standard pumping argument shows that if there exists
v ∈ A∗ which satisfies (60), (61) and (62) and such that uv is a
play then v can be chosen of length at most 3M .

Thus, the proposition holds since whether G is a broadcast game
or not can be decided by enumerating all N ≤ M and every
inductive decomposition C of A and for each of those, enumerating
all u, v0, · · · , vN of length less than M , and for those which
satisfies the conditions in Definition 8, enumerating all i ∈ 1..N
and words w of length less than 3M such that uv0 · · · viw is a play
and check whether (60), (61) and (62) are satisfied with u replaced
by uv0 · · · vi and v replaced by w. If a witness is found then G is
not a broadcast game, otherwise G is a broadcast game.

2.5 Main result

We can now state our main result.

Theorem 1. Whether a distributed game is a winning broadcast
game is decidable.

The algorithm consists in enumerating all possible strategies
whose plays have length less than some computable bound. This
upper-bound, which is quite large, is defined by (75) in Section 4
which gives the proof of this theorem. Before this proof, we provide
some examples and applications in the next section.

3. Examples of N -broadcast games

In this section we provide several examples of N -broadcast games,
and according to (1), each of them is an example of a decidable
class of systems for the distributed synthesis problem.

The first two classes are connectedly communicating games and
series-parallel games whose decidability was already known. The
present paper provides an alternate proof to these results. The third
example are acyclic games whose decidability was already known
in the case where all actions are local or binary. The fourth example
is the class of triangulated games and the special case of three-
player games.

3.1 Connectedly communicating games are broadcast games

Connectedly communicating games have been introduced (Madhusudan et al.
2005) under the name of connectedly communicating processes,
and the authors did establish the decidability of the MSO theory
of the corresponding event structure, which implies that controller
synthesis is decidable.

A game is connectedly communicating if it is k-communicating
for some k ∈ N, which holds if in every play, if a process q never
plays while process p plays k times, then p and q will stay forever in
separate threads. Formally, for a play u and a process p we denote
|u|p the number of letters of u whose domain contains p. Then a
game is k-communicating for some k ∈ N if for every processes
p, q ∈ P and play uvw in G,

((|v|p ≥ k)∧(|v|q = 0)∧w prime) =⇒ (|w|p = 0∨|w|q = 0) .

Every k-communicating game is a k-broadcast game. For every
set of processes Q ∈ P we denote

AQ = {a ∈ A | dom(a) ⊆ Q} .

5 2016/1/19

Let

C = {(AQ, Aq ∩AQ) | Q ⊆ P, q ∈ Q} .

Then C is clearly an inductive decomposition of A.
We show that G is a (k, C)-broadcast game. Let u ∈ A∗ and

v1, . . . , vk ∈ A∗
Q such that uv1 · · · vN is a play, A(v1) = A(v2) =

· · · = A(vN) ∀i ∈ 1..N, vi ∈ B∗ and uv1 · · · vi is prime for every
i. Let Q′ = ∪a∈A(v1) dom(a). Then we show that uv1 · · · vk is a

A′
Q-broadcast. Since A(vi) = A(v1) for each i, then p ∈ Q′,

|v1 · · · vk|p ≥ k and for each p ∈ P \ Q′, |v1 · · · vk|p = 0. Thus
by definition of k-communicating game, for every prime play w
such that uv1 · · · vkw is a play,

(∀p ∈ Q
′
, |w|p = 0) ∨ (∀p ∈ P \Q′

, |w|p = 0) .

In the case where ∀p ∈ Q′, |w|p = 0 then ∀p ∈ Q′, p I w thus
w I AQ′ . In the case where ∀p ∈ P \Q′, |w|p = 0, then w ∈ A∗

Q′ .
This shows that uv1 · · · vk is an AQ′ broadcast.

Finally, every connectedly communicating game is a broadcast
game.

3.2 Series-parallel games are 1-broadcast games

A series-parallel game is a game such that the dependence graph
(A,D) of the alphabet A is a co-graph i.e. it belongs to the
smallest class of graphs containing singletons and closed un-
der parallel product and complementation. Series-parallel games
were proved decidable in (Gastin et al. 2004), for a different setup
than ours: in the present paper we focus on process-based control
while (Gastin et al. 2004) was focusing on action-based synthesis.
Actually action-based control is more general than process-based
control, see (Muscholl et al. 2008) for a proof.

Any series-parallel game is a 1-broadcast game. We define
inductively for every co-graph (A,D) an inductive decomposition
C(A,D) as follows. If A is a singleton then C(A,D) = {(A,A)}.
If A is not a singleton then A can be partitioned into A0 and A1

such that, denoting D0 = D ∩ A0 × A0 and D1 = D ∩A1 × A1

both induced subgraphs (A0, D0) and (A1, D1) are co-graphs and

either D = D0 ∪D1 (29)

or D = D0 ∪D1 ∪A0 ×A1 . (30)

C(A,D) = {(B, {b}) | b ∈ B ∧GB is connected }.

Let C0 and C1 the two inductive decompositions associated with
(A0, D0) and (A1, D1) respectively The definition of C(A,D)
depends whether we are in case (29) or (30). In case (29) holds
we define

C(A,D) = C0 ∪ C1 ,

and in case (30) holds we define

C(A,D) = C0 ∪ C1

∪ {(A1 ∪B1, {b}) | B1 ⊆ A1 ∧ b ∈ B1}.

Then C(A,D) is an inductive decomposition. In case of a par-
allel product (29), this comes from the fact that every subset of A
connected in GA is either included in A0 or in A1 thus since C0

and C1 are inductive decomposition, C also is. In case of a serial
product (30), then the only connected component of GA is A and
again the properties are inherited inductively.

If the alphabet of a game G is a co-graph (A,D) then G
is a (1, C(A,D))-broadcast game because the following property
holds, independently of which game G is played:

∀(B, {b}) ∈ C(A,D), ∃(B′
, {b′}) ∈ C(A,D)

such that B
′ ⊆ B and ∀uvw ∈ A

∗
,

((v ∈ B
′∗
b
′ ∧ uv is prime ∧ w is prime)

=⇒ (v I w ∨ w ∈ (B′)∗ ∨ uvw is prime)). (31)

We prove (31) by induction on the co-graph A. Assume induc-
tively that the property holds when A = A0 or A = A1.

In case of a parallel product (29), every prime trace is either in
A∗

0 or A∗
1. Without loss of generality assume that uv ∈ A∗

0. Then
either w ∈ A∗

1 or w ∈ A∗
1. In the first case w I v. In the second case

uvw ∈ A∗
0 thus (29) holds according to the inductive hypothesis.

Assume now we are in the case of a serial product (30) and let
(B, {b}) ∈ C. If (B, {b}) ∈ C0 ∪ C1, we choose (B′, {b′}) =
(B, {b}). Otherwise we choose (B′, {b′}) = (A′

0, {b
′}) where A′

0

is a connected component of GA0 and b′ ∈ A′
0.

We distinguish between three cases whether (A(w) ∩ A0 6=
∅ ∧ A(w) ∩ A1 6= ∅) or w ∈ A∗

0 or w ∈ A∗
1. In the first case

since either b′ ∈ A0 or b′ ∈ A1 then according to (30) ¬(w I a)
thus according to (10), uvw is prime. In the second case, w ∈ A∗

0.
If b ∈ A1 then ¬(b′ I w) thus uvw is prime according to (10). If
b′ ∈ A0 then by definition of C (B, {b′}) ∈ C0 and B ⊆ A0 thus
v ∈ A∗

0. Since vw ∈ A∗
0 we can apply inductively (31) for u = ǫ,

then (v Iw∨w ∈ B∗∨vw is prime). In case vw is prime then uvw
is as well because uv is prime thus (31) holds. In the third case,
w ∈ A∗

1. If b′ ∈ A0 then ¬(b′ I w) thus uvw is prime according
to (10). If b′ ∈ A1 then necessarilly by choice of (B′, {b′}),
(B′, {b′}) ∈ C1, thus v ∈ A∗

1. Since vw ∈ A1 we can apply
inductively (31) for u = ǫ and (v I w ∨ w ∈ B∗ ∨ vw is prime).
Again, in case vw is prime then uvw is as well because uv is prime
thus (31) holds.

Finally, according to (31), every series-parallel game is a 1-
broadcast game.

3.3 Acyclic games are 1-broadcast games

Intuitively, an acyclic game as defined in (Genest et al. 2013) is a
game where processes are arranged as a tree and actions are either
local or synchronize a father and his son. Formally, the processes
are arranged as a tree TP = (P, EP), and each action is either a
local action whose domain is a singleton or a binary synchronizing
action such that dom(a) = {p, q} and (p, q) ∈ EP i.e. q is the
father of p in the process tree.

We extend the definition of (Genest et al. 2013) to the case of
non-binary actions, and we assume that:

∀a ∈ A,dom(a) is connected in TP, (32)

in other words if an action synchronizes two processes p1, p2 it
synchronizes as well all processes on the shortest path from p1 to
p2 in Tp.

As a consequence, in an acyclic game for every process p,
information from a descendant of p to an ascendant of p has to
flow through p. Formally for every prime play u = a1 · · · an and
process p, if dom(u) =

⋃n

i=1 dom(ai) contains both an ascendant
and a descendant of p, it contains p as well.

We associate with every acyclic game, an inductive decom-
position C such that G is a (1, C)-broadcast game. for a process
p, we denote Tp the subtree of TP rooted at p and we denote
Bp = ∪q∈TpAa. Then

C = {(Bp, Ap | p ∈ P} .

Then C is obviously an inductive decomposition.
We show that any game G with alphabet A is a (1, C)-broadcast

game. Let (Bp, Ap) ∈ C and u, v ∈ A∗ such that uv ∈ A∗
pBp

and uv is prime. Let b ∈ Ap be the last letter of v such that v si
b-prime. Then for every prime w ∈ A∗,

w I v ∨ w ∈ B
∗
p ∨ uvw is prime. (33)

We distinguish between three cases, depending on the set dom(w)
of processes that are involved in w. First assume that p ∈ dom(w).
Then since b ∈ Ap, then ¬(b I w) thus according to Proposition 1
uvw is prime and (33) holds. Now assume p 6∈ dom(w). Since w

6 2016/1/19

is prime, dom(w) is a connected set of nodes of TP. Thus in the
case where p 6∈ dom(w) then either all processes in dom(w) or
no process in dom(w) belong to the subtree Tp. In the first case,
w ∈ B∗

p by definition of Bp. In the second case, w I Bp. Finally,
(33) holds in all cases.

Consequently, all acyclic games with arbitrary actions are 1-
broadcast games.

3.4 Three player games are 1-broadcast games

Any 3-player game G with processes {1, 2, 3} is a 1-broadcast
game. We order the actions A with a total order � such that for
every a, b ∈ A, a ≺ b whenever |dom(a)| < |dom(b)| or
|dom(a)| = |dom(b)| and max dom(a) < max dom(b). Then
we define

C = {(B, {b}) | (B ⊆ A) ∧ (b = max
�

B)},

which is clearly an inductive decomposition.
We show that any game G with alphabet A is a (1, C)-broadcast

game. Let (B, {b}) ∈ C and uv ∈ A∗ such that uv is prime and
uv ∈ B∗b. Let w ∈ A∗ such that w is prime. We show

(w I B ∨ w ∈ B
∗ ∨ uvw is prime). (34)

According to Proposition 1, if uvw is not prime then b I w, which
we assume now. If |dom(b)| = 3 then b I w implies w = ǫ thus
w ∈ B∗. If |dom(b)| = 2 then b I w implies |dom(w)| = 1,
thus all letters of w are �-inferior to b hence w ∈ B∗ and (33)
holds. If |dom(b)| = 1 then b is a local action of a process p and
since b = max� B then by choice of �, ∀c ∈ B, |dom(c)| ≤ 1
i.e. there are only local actions in B. Since A(v) = B and v is
prime then B = {b} because two local actions are either equal or
independent. Then, since w I b then w I C thus (34) holds.

Consequently, all 3-player games are 1-broadcast games.

3.5 Triangulated games are 1-broadcast games

A triangulated game is a game where processes are arranged as an
undirected graph GP = (P, EP) such that all simple cycles in the
graph have length 3, and moreover we assume that

∀a ∈ A,dom(a) is connected in GP. (35)

This definition is inspired by (Diekert and Muscholl 1996).
We build by induction an inductive decomposition C(P) of A

such that GP is a (1, C(P))-broadcast game. Since all simple cycles
have length 3 in GP, then either GP is disconnected or GP has three
vertices or there exists a vertex p ∈ P whose removal disconnects
GP. If GP is disconnected then let P1, . . . ,Pj be the connected
components and let

C(P) =

j
⋃

i=1

C(Pi) .

If GP has three vertices then let C(P) be defined like in the previous
subsection. Finally, if for some process p ∈ P the removal of p from
GP disconnects GP into several components P1, . . . ,Pj . Then we
define:

C(P) =

Ap ∪
⋃

q∈P1

Aq, Ap

∪

j
⋃

i=2

C(Pi) .

If one of the Pi is a three player game then we give number 3 to the
vertex connecting Pi to p and C(Pi) is build using 3 has the leading
vertex.

Then C is obviously an inductive decomposition.
Moreover, it has the following extra property: for every con-

nected subset X ⊆ P such that X is a connected subset of GP, and

for every (B,Ap) ∈ C,

(X ∩ dom(B) 6= ∅) =⇒ (p ∈ X ∨X ⊆ dom(B)). (36)

We show that any game G with alphabet A is a (1, C)-broadcast
game. In the case where GP is disconnected, this is equivalent to
showing that for each i ∈ 1..j, the game game Gi restricted to Pi

is a (1, C)-broadcast game, which is obvious.
In the case where GP has three processes, this was proved in the

previous subsection.
Now assume GP can be disconnected by removing process p.

Let (B,C) ∈ C and u, v ∈ A∗ such that uv ∈ B∗Aq and uv is
prime. Let b ∈ Aq be the last letter of v such that v is b-prime.
Then for every prime w ∈ A∗, we show that

w I v ∨ w ∈ B
∗
p ∨ uvw is prime. (37)

Assume first that (B,C) ∈ CPi for some set Pi of three pro-
cesses. Then since w is prime, dom(w) is connected, thus either
dom(w) does contains the leader of Pi or w I Pi. Moreover the
projection w′ of w on ∪q∈PiAq has property (34). So either B con-
tains the leader of Pi and then uvw is prime, or B does not and
w′

I B thus w I B. This implies (37).
Otherwise (B,C) is of the form (B,Aq) ∈ C. Let u, v ∈ A∗

such that uv ∈ B∗Aq and uv is prime. Let b ∈ Aq be the last letter
of v such that v is b-prime.

First assume that q = p. If p ∈ dom(w) then ¬(b I w) thus
according to Proposition 1 uvw is prime and (37) holds. Otherwise
assume p 6∈ dom(w). Since w is prime, dom(w) is a connected set
of nodes of GP thus dom(w) is included in a connected component
of Gp−p and there exists i ∈ 1..j such that dom(w) ⊆ Pi. If i = 1
then w ∈ B∗ thus (37) holds. If i 6= 1 then w I B thus (37) holds
as well.

Now, assume q 6= p. Then by definition of C, dom(v) ⊆ Pi

for some i ∈ 2..j and B = Aq ∪ ∪r∈PiAr. Since w is prime,
X = dom(w) is a connected subset of GP thus we can apply
property (36) hence either q ∈ dom(w) in which case w has a
letter in Aq and uvw is prime or dom(w) ⊆ Pi in which case
w ∈ B∗ or dom(w) ∩ Pi = ∅ in which case w I v. In all three
cases (37) holds.

Consequently, all triangulated games with arbitrary actions are
1-broadcast games.

3.6 Other examples

Other examples that are hybrid between triangulated games and
connectedly communicating games can be designed.

4. Proof of the main theorem

The proof is easy to sketch, but harder to implement because dis-
tributed systems are not so easy to handle. For every subset of ac-
tions C ⊆ A, we compute inductively a bound KA such that any
winning strategy which has an A-thread of duration more than KA

can be simplified in a shorter winning strategy by removing a use-
less thread from the strategy. This operation is called a shortcut,
and has to be carefully done so that the new object is still a dis-
tributed strategy.

A shortcut in a strategy consists in forgetting some part of the
play.

Definition 9 (Shortcut). Let x, y ∈ A∗ such that xy is a σ-play.
Let φ : A∗ → A∗ be the mapping:

φx,y(u) =

{

u if x 6⊑ u

xyv if u = xv ,
(38)

Then the (x, y, σ)-shortcut is the mapping σx,y : A∗ → A∗

defined by:

σx,y = σ ◦ φx,y .

7 2016/1/19

The mapping φx,y is well-defined since according to (2), there
is a unique v such that u = xv.

There is a priori no reason in general for σx,y to be a distributed
strategy. For that we need extra conditions on the pair x, y and we
introduce the notion of useless thread.

Definition 10 (Threads). Let B ⊆ A. A B-thread is a pair (u, v) ∈
A∗ × A∗ such that uv is a play and v ∈ B∗. A B-thread of a
strategy σ is a B-thread (u, v) of G such that uv is a σ-play.

Definition 11 (Useless thread). Let σ be a strategy. A useless
thread in σ is a B-thread (x, y) such that there exists b ∈ B with
the following properties:

x and xy are b-prime, (39)

x and xy are B-broadcasts in σ, (40)

every process p ∈ P has the same state in x and xy, (41)

∀p ∈ P,∀v ∈ B
∗
, (v I b) =⇒ (σ(xv) = σ(xyv)) . (42)

Taking a shortcut of a useless thread in a distributed strategy
makes sense because the result is still a distributed strategy.

Lemma 2. Let (x, y) a useless thread in a distributed strategy σ.
Then the (x, y, σ)-shortcut σx,y is a distributed strategy.

Proof. We denote τ = σx,y = σ ◦ φx,y the (x, y, σ)-shortcut. To
prove that τ is a distributed strategy, we take any process p ∈ P

and u ∈ A∗ and prove that

τp(u) = τp(∂p(u)) .

By definition of v and the shortcut τ , τp(u) = τp(xv) = σp(xyv)
and since σ is a distributed strategy σp(xyv) = σp(∂p(xyv)), thus
it is enough to prove:

σp(∂p(xyv)) = τp(∂p(xv)). (43)

We distinguish between three cases.
First case: assume (x 6⊑ u ∧ x 6⊑ ∂p(u)). Then τp(u) =

σp(u) = σp(∂p(u)) = τp(∂p(u)), where the first and third
equality hold by definition of a shortcut, and the second equality
holds because σ is a distributed strategy. Thus (43) holds in the
first case.

Second case: assume x ⊑ ∂p(u). Since ∂p(u) ⊑ u this implies
x ⊑ u, hence there exists w ∈ A∗ such that u = xw. We start with
proving

∂p(xyv) = xy ∂p(v) . (44)

Since x ⊑ ∂p(xw), (11) implies

∂p(xw) = x∂p(w) . (45)

Since (x, y) is a useless thread, acccording to (39), both x and xy
are b-prime. Since moreover ∂p(xw) = x ∂p(w) we can apply (15)
twice and get first ∂p(bw) = b ∂p(w) and then (44). Now that (44)
is proved we can conclude the second case:

σp(∂p(xyw)) = σp(xy ∂p(w)) (46)

= τp(x∂p(w)) (47)

= τp(∂p(xw)) , (48)

where (46) comes from (44), (47) hold by definition of shortcuts
and τ , and (48) comes from (45). Thus (43) holds in the second
case.

We are now left with the third and last case:

x 6⊑ ∂p(u) ∧ x ⊑ u, (49)

which we assume until the end of the proof. Then u = xv for some
v ∈ A∗.

We first take care of the special case where ∂p(v) = ǫ Then
v I p according to (4) thus ∂p(xyv) = ∂p(xy). Hence,

σp(∂p(xyv)) = σp(∂p(xy)) (50)

= σp(xy) (51)

= τp(x) (52)

= σp(x) (53)

= σp(∂p(x)) (54)

= σp(∂p(xv)) (55)

= τp(∂p(xv)) , (56)

where (50) and (55) hold because v I p, (51) and (54) hold because
σp is a distributed strategy, (52) holds by definition of τ , (53) holds
because (x, y) is a useless thread and according to (42), (56) holds
by definition of τ and because by hypothesis x 6⊑ ∂p(u). This
shows that (43) holds when ∂p(v) = ǫ.

Now assume that ∂p(v) 6= ǫ (and we keep assuming (49) as
well). Since (x, y) is a useless thread in σ, then according to (40),
x is a B-broadcast in σ. We can apply the definition of a B-
brodcast to x∂p(v) because ∂p(v) is prime according to (17), and
x∂p(v) is a σ-play because it is a prefix of the σ-play xv. Thus
by definition of broadcasts and Proposition 1, one of the three
following properties holds:

x ⊑ ∂p(x∂p(v)) (57)

or ∂p(v) ∈ B
∗

(58)

or ∂p(v) I B . (59)

Since x 6⊑ ∂p(x∂p(v)) by hypothesis, (57) is not possible and we
are left with the two other cases (58) and (59).

We assume first that (59) holds. Since ∂p(v) 6= ǫ, it implies that
p I B. Since (x, y) is a B-thread then y ∈ B∗ thus p I y. We can
conclude the proof of (43) in the case where (59) holds:

σp(∂p(xyv)) = σp(∂p(xy ∂p(v))) (60)

= σp(∂p(x ∂p(v)y)) (61)

= σp(∂p(x ∂p(v))) (62)

= σp(∂p(xv)) (63)

= τp(∂p(xv)) , (64)

where (60) and (63) hold according to (14), (61) holds because
∂p(v) IB and y ∈ B∗, (62) holds because p I y, and (64) holds by
definition of τp, since by hypothesis x 6⊑ ∂p(u) and u = xv. This
proves (43) in the case where (59) holds.

Now we are left with the case where (58) holds, i.e. ∂p(v) ∈ B∗

(and we keep assuming ∂p(v) 6= ǫ and (49) as well). We first
establish

∂p(v) ∈ (B \ {b})∗. (65)

Since by hypothesis x 6⊑ ∂p(xv) and x is b-prime then according
to (15), b 6⊑ ∂p(bv) thus according to (10), b I ∂p(v) which
implies (65). Since (x, y) is a useless thread in σ, we can apply (42)
to ∂p(v) hence

σp(x ∂p(v)) = σp(xy ∂p(v)) . (66)

Finally,

σp(∂p(xyv)) = σp(∂p(xy ∂p(v))) (67)

= σp(xy ∂p(v)) (68)

= σp(x∂p(v)) (69)

= σp(∂p(x ∂p(v))) (70)

= σp(∂p(xv)) (71)

= τp(∂p(xv)), (72)

8 2016/1/19

where equalities (67) and (71) hold according to (14), equali-
ties (68) and (70) hold because σ is a distributed strategy, (69)
comes from (66), and finally (72) is by definition of τ and because
by hypothesis x 6⊑ ∂p(xv). This terminates the proof of (43) in the
last case.

As a consequence, τ is a distributed strategy.

Taking shortcuts of useless threads is really useful for making
winning strategies smaller: it transforms a winning distributed strat-
egy into another, shorter, winning distributed strategy.

Lemma 3. Let (x, y) a useless thread in a winning distributed
strategy σ. Then the (x, y, σ)-shortcut σx,y is a winning distributed
strategy as well, and

dur(σx,y) < dur(σ) . (73)

Moreover for every v ∈ A∗,

xv is a σx,y-play ⇐⇒ xyv is a σ-play. (74)

Proof. We denote τ = σx,y = σ ◦ φx,y the (x, y, σ)-shortcut.
We first prove property (74). Let xv ∈ A∗ be a τ -play, we prove

that xyv is a σ-play by induction on v. When v = ǫ then xy is a σ-
play because by hypothesis (x, y) is a thread. For the inductive step,
assume xyv is a σ-play, let c ∈ A such that xvc is a τ -play, and let
us prove that xyvc is a σ-play. Since xvc is a τ -play, c ∈ τp(xv)
for every p ∈ dom(c). Thus by definition of τ , c ∈ σp(xyv) for
every p ∈ dom(c) hence xyvc is a σ-play by definition of σ-plays.

Now we prove that τ is winning. Since σ is winning, the set of
σ-plays is finite. According to property (74) and the definition of
τ , every τ -play is either a σ-play or is a subword of a σ-play thus
K is also an upper bound on the length of τ -plays, hence every
maximal τ -play is finite. Let u be a maximal τ -play. If x 6⊑ u then
u is a maximal σ-play and since σ is winning u is a winning play.
Assume now that x ⊑ u and u = xw. According to (74), since
xw is a maximal τ -play, xyw is a maximal σ-play, and since σ is
winning, all processes are in a final state xyw. Since (x, y) is a
useless shell, (41) states that all processes are in the same state in
x and xy, and since transitions are deterministic, all processes are
in the same state in xw and xyw. So finally all processes are in a
final state in xw. Thus τ is winning.

Now we prove property (73). According to (74), the mapping
φx,y used to define τ = σx,y in (38) maps maximal τ -plays to
maximal σ-plays. Moreover, according to (2), Φ is an injection,
and by definition it preserves the length on {u | x 6⊑ u} and
increases the length of |y| on {u | x ⊑ u}. This shows that
len(σ) ≥ len(τ) + q · |y| where q is the number of maximal τ -
plays prefixed by x. Since x is a τ -play, q ≥ 1. According to (39),
y 6= ǫ thus we get property (73).

This terminates the proof of Lemma 3.

There is a limit on the length of threads of a strategy, such that
above this limits useless threads start appearing in the strategy. An
upper bound on this limit is KA, which is computed as follows.

With every B ⊆ A we associate a constant KB ∈ N as follows.
According to Ramsey theorem, for every m,n ∈ N, there exists a
constant R(m,n) such that every undirected complete graph with
at least R(m,n) vertices whose edges are labelled with m different
colors contains a monochromatic clique of size n. Then we define
inductively K∅ = 0 and

KB = |Q| ·
(

1 +K
′)

(

1+R

(

|Q|P×2|A|(|B|−1)K
′

×2|B|,2N

))

,
(75)

where K′ =
∑

(B′,C′)∈C,B′(B
KB′ .

Next lemma states that in a (N, C)-broadcast game, very long
strategies have useless threads.

Lemma 4. Let σ be a distributed strategy of a (N, C)-broadcast
game. Assume that for some (B,C) ∈ C, σ has a B-thread of
length more than KB . Then there is a useless thread in σ.

Proof. Without losing generality, we can choose B-minimal for the
inclusion so that for every B′-thread in σ with (B′, C′) ∈ C for
some C′ has length less than KB′ .

By hypothesis there exists (B,C) ∈ C and a prime σ-play uv

such that A(v) = B and | v |≥ KB

|Q|
.

We factorize v along the occurences of C:

v = v0c0v1c1 · · · vncnvn+1 with vi ∈ (B \ C)∗ ,

and for 0 ≤ i ≤ n+ 1, denote

zi = v0c0v1c1 · · · vici .

We can choose the factorization such that each zi is prime. The
existence of such a factorization is shown by induction on n, for the
base case, i.e. n = 1, if v0 = ∂c0(v0)v

′ then v = ∂c0(v0)c0v
′v1

is a suitable factorization. The induction step uses the same trick
and the fact that GC is a clique so the ci do not commute with each
other and (10) applies recursively.

For every 0 ≤ i ≤ n, we denote

qi = (qp,i)p∈P the states of processes after play uzi,

Pi = {w ∈ (B \ C)∗ | uziciw is a σ-play} ,

And for every 0 ≤ i, j ≤ n,

Ti,j = (ci, qi, (σ(uziciw))w∈Pi , A(vicivi+1ci+1 · · · vjcj))

We establish an upper bound on the lengths of traces in Pi.
Let B \ C = B1 ∪ . . . ∪ Bj the decomposition of B \ C into
connected components of GB\C . Then by definition of a recursive
decomposition of A, for every i ∈ 1..j there exists (Bi, Ci) ∈ C.

Let

K
′ =

j
∑

k=1

KBk
.

Then

∀k ∈ 1..j, ∀w ∈ Pk, |w| ≤ K
′

because each w ∈ Pi it is the union of parallel threads whose
alphabet is included in one of the Bk .

Thus Ti,j can take at most m = |A|×|Q|P×2|A|(B−1)K
′

×2|B|

different values. Each vi has length at most K′ thus since |v| ≥
KB

|Q| = (1+K′)1+R(m,2N) then n ≥ R(m, 2N) and by definition

of Ramsey numbers, there are indices 0 ≤ i1 < i2 < . . . < i2N ≤
n such that:

∀0 ≤ k < l ≤ 2N,Tik,il = Ti1,i2 . (76)

For every k ∈ 1..2N , let

wk = vikcikvik+1cik+1 · · · vik+1−1cik+1−1 ∈ B
∗
.

Then each of the σ-plays (uw0w1 · · ·wi)i∈1..2N is prime. More-
over (76) guarantees A(wi) = A(w0) and all wi are b = ci1 -
prime. Let B′ = A(w0) then b ∈ B′ and B′ ⊆ B.

Then there exists B′′ ⊆ B′ and 1 ≤ k1 ≤ N < k2 ≤ 2N such
that both uw0 · · ·wk and uw0 · · ·wl are B′′-broadcasts in σ. This
is by definition of a (N, C)-broadcast game, applied consecutively
to w1 · · ·wN and wN+1 · · ·w2N .

Let x = uw0 · · ·wk and y = wk+1 · · ·wl. Then (x, y) is a use-
less thread in σ, with the pair (B′′, b) as a witness. Properties (39)
and (40) are satisfied by choice of x and y. Property (41) holds be-
cause of (76). Property (42) hold because of (76), and because by
hypothesis GC is a clique and b ∈ C thus ∀c ∈ C,¬(b I c) thus
((w I b) ∧ (w ∈ (B{b})∗)) implies w ∈ (B \ C)∗.

This terminates the proof of the lemma.

9 2016/1/19

Proof of Theorem 1. Let σ be a winning strategy of minimal dura-
tion. By minimality, according to Lemma 3, strategy σ does not
contain any useless thread. Let (A1, . . . , Aj) the connected com-
ponents of (A,D). Then since C is an inductive decomposition, for
every i ∈ 1..j there exists (Ai, Ci) ∈ C. Thus by Lemma 4, every

play of σ has length less than
∑j

i=1 KAj . There is a finite number
of distributed strategies with this property, and for each such strat-
egy σ, there is a simple algorithm that checks whether σ is winning
or not: look non-deterministically for a losing play consistent with
σ. Thus the existence of a winning strategy is decidable.

5. Conclusion

We have presented a theorem that unifies several known decidabil-
ity results for distributed games, and presented new examples of
distributed games for which the existence of a winning strategy is
decidable.

The decidability of distributed synthesis in the general case is
still open to our knowledge, even in the simple case of ring games
where GP is a simple cycle of length 5.

References

V. Diekert and A. Muscholl. A note on Métivier’s construction of asyn-
chronous automata for triangulated graphs. Fundamenta Informaticae,
25(3):241–246, 1996.

V. Diekert and G. Rozenberg. The Book of Traces.
World Scientific, 1995. ISBN 9789810220587. URL
https://books.google.co.uk/books?id=vNFLOE2pjuAC .

B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Logic in

Computer Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE

Symposium on, pages 321–330. IEEE, 2005.

P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal
memory are decidable for series-parallel systems. In FSTTCS 2004:

Foundations of Software Technology and Theoretical Computer Science,
24th International Conference, Chennai, India, December 16-18, 2004,

Proceedings, pages 275–286, 2004. doi: 10.1007/978-3-540-30538-5
23. URL http://dx.doi.org/10.1007/978-3-540-30538-5_23 .

B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Asyn-
chronous games over tree architectures. In Automata, Lan-

guages, and Programming - 40th International Colloquium, ICALP

2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, pages
275–286, 2013. doi: 10.1007/978-3-642-39212-2 26. URL
http://dx.doi.org/10.1007/978-3-642-39212-2_26 .

P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of con-
nectedly communicating processes. In FSTTCS 2005: Foundations of
Software Technology and Theoretical Computer Science, 25th Inter-

national Conference, Hyderabad, India, December 15-18, 2005, Pro-

ceedings, pages 201–212, 2005. doi: 10.1007/11590156 16. URL
http://dx.doi.org/10.1007/11590156_16 .

A. Muscholl, I. Walukiewicz, and M. Zeitoun. A look at
the control of asynchronous automata. 2008. URL
http://www.labri.fr/perso/anca/Publications/mwz08thiagu.pdf .

A. Pnueli and R. Rosner. Distributed reactive systems are hard to syn-
thesize. In Foundations of Computer Science, 1990. Proceedings., 31st

Annual Symposium on, pages 746–757. IEEE, 1990.

P. J. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1):81–98, 1989.

W. Zielonka. Notes on finite asynchronous automata. ITA, 21(2):99–135,
1987.

10 2016/1/19

https://books.google.co.uk/books?id=vNFLOE2pjuAC
http://dx.doi.org/10.1007/978-3-540-30538-5_23
http://dx.doi.org/10.1007/978-3-642-39212-2_26
http://dx.doi.org/10.1007/11590156_16
http://www.labri.fr/perso/anca/Publications/mwz08thiagu.pdf

	Introduction
	Definitions and basic properties
	Mazurkiewicz traces
	Processes and automata
	Strategies and games
	Threads and broadcast games
	Main result

	Examples of N-broadcast games
	Connectedly communicating games are broadcast games
	Series-parallel games are 1-broadcast games
	Acyclic games are 1-broadcast games
	Three player games are 1-broadcast games
	Triangulated games are 1-broadcast games
	Other examples

	Proof of the main theorem
	Conclusion

