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Abstract—The Space industry, as several other real-time in-
dustries, is assessing the use of multicore processors as their
main computing platform. While multicore processors bring the
potential of integrating several software (mixed-criticality) func-
tions, their use also brings some challenges. In particular, tasks
running in multicores may experience high contention delays
when accessing multicores’ shared resources. This makes that the
load that a task puts on shared resources impacts the Execution
Time Bounds1 (ETBs) derived for other corunning tasks. In this
paper we focus on the Cobham Gaisler NGMP – acknowledged
as one of the multicore processors currently assessed by the
European Space Agency for its future missions – for which we
propose a measurement-based approach to bound contention
interference. Given a task τ , instead of providing ETBs for
the highest contention that any set of corunners can generate
– already shown to be potentially high – our approach provides
bounds that factor in the number of requests contenders generate
regardless of how they align with τ ’s requests. This provides a
good balance between ETBs accuracy and independence from
the corunners, since our approach only requires controlling the
number of requests each task makes to the shared resources.

Index Terms—WCET, multicore, COTS, real-time

I. INTRODUCTION

Real-Time Embedded systems are facing an increase in
their performance demands across several domains, such as
space, avionics and automotive, as a way to provide more
value-added functionality. In the space domain, computing
power requirements and the amount of data to be handled by
on-board software is rising [30] due to the fact that space
missions are becoming more autonomous. In this context,
multicore processors can provide the performance required,
while enabling the consolidation of applications2 subject to
different criticality levels, resulting in an overall reduction
in power, space and weight. In the space domain the Next
Generation Microprocessor (NGMP) architecture [5], whose
latest implementation is the GR740 [6], is an architecture

1We use Execution Time Bound (ETB) instead of Worst-Case Execution
Time (WCET) estimate to refer to the upper-limits derived for tasks execution
time in multicore. The reason is that WCET estimates, as they are commonly
understood, establish a single value that upperbounds program’s execution
time under any circumstance. While this can be asserted for single-core simple
architectures, this is not the case for multicores using more complex pipelines.

2In this paper we use the terms application and task interchangeably.

considered by the European Space Agency (ESA) for its future
missions.

Multicores also bring their specific issues to the real-time
domain among which contention in the access to hardware
shared resources is one of the most prominent [2]. Uncon-
trolled contention makes that the execution time and Execution
Time Bounds (ETB) derived for a task depend on the load
its corunner tasks put on hardware shared resources, thus
affecting time composability [21], which states that the ETB
derived for a task in isolation should not be affected by the
rest of the tasks running on the system. Time composability
is a premise in many real-time designs since it enables (in
the timing domain) incremental development and verification
in integrated systems such as Integrated Modular Avionics,
IMA [26] in avionics. During system development, time
composability enables incrementally integrating applications
without the need of regression tests to validate the timing prop-
erties of already-integrated applications, which heavily reduces
integration costs. During operation, time composability en-
ables updating functions and their associated software without
the need for re-analyzing and re-qualifying the system. This
is specially beneficial in domains like space where systems
may operate during dozens of years and whose functionality
is usually updated after deployment.

In a time-anomaly [24] free system, time composability
can be achieved by modeling at analysis time a scenario in
which each access that the task under analysis (τ ) makes
to a hardware shared resource suffers the highest contention
possible. For instance, in the case of a round-robin bus
accessed by Nc cores this is equivalent to assuming that
each request suffers maximum contention from each of the
remaining Nc− 1 cores. That is, the single-access maximum
(contention) delay, or samd, corresponds to:

samd = (Nc − 1)× Lbus (1)

where Lbus is the maximum bus latency for a single request.
The resulting ETB estimate in this scenario is fully time
composable since it accounts for the maximum load that
corunner tasks of τ can put (at operation time) on the target
resource. This, though, comes at the cost of inflated ETB



estimates (e.g. up to more than 5x times in a 4-core processor
as reported in [12]). Tighter ETB estimates can be obtained by
adjusting the bounds to the actual load that corunner tasks put
on the target resource, which can be abstracted with an arrival
curve [27]. However, time-composability is lost since the ETB
for a task becomes dependent on its particular corunners. This
confronts industry with the choice of time-composable inflated
estimates or tighter non time-composable estimates.

In this paper we use measurement-based timing analysis,
which a large fraction of safety-related systems resort on [31]
– including the space industry. We propose a contention-
prediction model that captures the effect of contention in
the NGMP shared resources. For a given task, τ , our model
enables deriving both fully time-composable bounds to the
contention delay suffered by τ or partially time-composable
bounds [11] which depend on the number of requests gen-
erated by τ ’s corunner tasks, Nreq, but not on how they
align with τ ’s requests. Derived bounds are valid for different
corunner tasks as long as they generate at most Nreq requests.

Our approach is motivated by the fact that, while the number
of requests that a task generates can be bound with existing
tools like Rapita System’s Verification Suite (RVS) [23], how
τ ’s and its corunners’ requests interleave is hard, if at all
possible, to measure and control. Hence, instead of predicting
request interleaving, our approach derives contention delays
for the worst-possible time-alignment of requests. The main
contributions of this paper are as follows:

1) We make an in-depth analysis of the hardware shared
resources in the NGMP, the way in which requests interact
and the delay they may suffer on those resources.

2) We present a prediction model for the contention delay in
the bus and the memory controller in the NGMP. Our model,
which depends on the time requests take to access shared
resources, deals with the case when there are several types
of accesses to a resource and each type causes and suffers
a different delay depending on the contending accesses. For
instance, in the processor AMBA AHB bus, loads missing in
the L2 take shorter than loads hitting in L2. We show how our
model handles this case.

3) We evaluate our proposal in a solid setup comprising the
GR740 implemented in a FPGA. Our proposal provides tighter
ETBs than the fully time-composable proposal in [12], since
it adapts to the contenders’ load on shared resources in a still
partially time-composable and friendly way.

The rest of this paper is organized as follows: Section II
presents the related work. Section III provides information
on the GR740. Section IV details our prediction model. Sec-
tion V assesses the accuracy of our model. Finally, Section VI
presents the main conclusions of this paper.

II. RELATED WORK

Contention on the access to hardware shared resources has
been thoroughly studied in the state of the art. A taxonomic
summary of the relevant works can be found in [8]. Several
techniques propose means to upper-bound, during the analysis

phase of the system, the samd that a task may suffer on the bus
or in memory. In that line, hardware support has been proposed
(though not yet implemented in any architecture we are aware
of) to artificially delay each request a given τ does by samd
cycles [18][13][28]. Other approaches derive samd by using
a software-only approach: τ is run against a set of resource
stressing kernels that put high load on the resource [12][9]
making τ ’s requests suffer high contention delays.

Other techniques like those in [25] for buses rely on
detailed information about resource access latencies and ar-
bitration policies to derive samd. Other works, due to lack
of information in the processor documentation derive samd
from measurements and feed it into static timing analysis. In
particular [17] applies this approach to analyze the impact of
contention in the P4080. samd can also be derived for memory
with [19][1] or without [15] hardware support.

In this paper we follow the theoretical approach in [10] that
proposes a methodology to obtain the resource access ‘profile’
of a given task that defines the use of resources that the task
makes on a target shared resource. That profile is used to
derive the contention tasks suffer and generate when accessing
that resource. In this work, which is a collaboration of end-
users in the Space domain (Airbus Defence and Space and
ESA), hardware technology providers (Cobham Gaisler) and
a research institution (Barcelona Supercomputing Center) we
assess the benefits of such an approach on a real platform, the
GR740 addressing issues related to NGMP specific arbitration
policies and access types to the different resources.

Finally, is it worth mentioning that with few excep-
tions [29][3], cache partitioning is the common solution in
the context of CRTES due to the complexity of estimating
ETB accurately on top of shared caches. In the case of the
GR740, hardware support exists for way-partitioning the L2
cache. We enable this hardware feature in our experiments.

III. NGMP

The NGMP is being assessed as the processing platform
by the ESA in its future missions. The NGMP is a quad-
core processor system-on-chip based on the LEON4 SPARC
V8 architecture [5] connected by a shared on-chip AHB
processor bus to a shared L2 cache and memory, see Figure 1.
The NGMP comprises 16 Performance Monitoring Counters
(PMC) that can be configured with different events, providing
support to measure access counts such in a way that it
facilitates the implementation of our prediction model, more
details are provided in Section IV-C. This section provides
details on some aspects related to the contention in the access
to NGMP’s shared resources.

A. AHB Processor Bus

The AMBA AHB bus connects cores to the L2 cache and
the I/O bridges3. The first consideration to make in the case
of the bus is that there are different types of requests that can
generate different inter-task contention: bus reads (loads) that

3In this work, we do not consider I/O related activities, which we assume
managed at software level, so that only accesses to L2 interfere each other.



Fig. 1: Block diagram of the main elements of the NGMP

either hit (l2h) or miss (l2m) on the L2 cache and bus writes
(stores) that either hit (s2h) or miss (s2m) on the L2 cache.
These accesses behave differently because hits hold the bus
while they are served. Instead, misses wait on a miss queue and
are split, i.e. the L2 cache releases the bus while processing
the miss, so that other cores can use the bus. In the NGMP,
the AMBA AHB bus implements round-robin arbitration.

B. L2 Cache

In our experiments we use the master-index feature of
the NGMP that partitions the L2 assigning one L2 cache
way to each core. Hence, a given core suffers no contention
interference in the L2 due to other cores’ evictions.

Each of the request types identified before (l2h, l2m, s2h and
s2m) has its own L2 access latency. Interestingly, the latency
of requests of the same type can be variable. That is, for each
request type access there is a Best-Case (BC) and a Worst-Case
(WC) latency. This jitter is caused by the type of previous
requests, despite they belong to a different task and hence
go to a different cache partition. Our model takes this effect
into account by assuming that all latencies suffered on the
experiments have the BC and when computing the contention
bounds, we add a correcting value that adds for each L2 access
the corresponding difference between the WC and the BC.
This adds pessimism but its advantage is two-fold: it is a safe
upperbound and it removes the need to track the sequence of
accesses to determine their exact latency.

The WC and BC latencies are obtained from table 40 in [7]
and are 8, 13, 6 and 7 for l2h, l2m, s2h and s2m respectively
in WC and 5, 6, 0 and 0 for BC.

C. Memory Controller

The memory controller acts as an interface between the
processor and the DRAM memory. We differentiate two types
of request in the memory: read and write. According to the
DRAM protocol, each request has a latency to be responded
depending on whether it is a read or write request respectively.
The latency it takes the memory to go back into idle state,
once a request starts being processed, is fixed regardless of

whether the request is read or write and corresponds to the
time till a new request can be processed. For this paper,
we assume that the memory controller behaves as a FIFO
queue. This is a simplification that helps upper bounding
the memory controller latency though it introduces some
pessimism. Providing a more accurate model of the memory
is part of our future work.

IV. PREDICTION MODELS

Our prediction models use measurement-based timing anal-
ysis techniques to derive a multicore ETB (ETBmc) for a
task τi, given its ETB in isolation (ETBisol). To that end,
the models predict the total effect of contention in the access
to the multicore hardware shared resources, called Contention
Delay Bound (CDB), and add it to the ETB in isolation:

ETBmc = ETBisol + CDB (2)

In order to derive CDB, we add the contribution of each
hardware shared resource r, CDBr:

CDB =
∑
r∈R

CDBr (3)

To derive CDBr, we upper-bound the maximum latency
that every access from τi to r, nri , may suffer from requests
generated by τi’s corunner tasks, referred to as c(τi).
CDBr for τi assumes that each τj ∈ c(τi) performs at most

a given number of accesses (nrj ) to resource r. Therefore,
ETBmc estimate for τi is composable with any other task
τ ′j ∈ c′(τi) as long as it performs fewer accesses (n′rj ) to the
shared resource than τj ∈ c(τi):

n′rj ≤ nrj (4)

A. Bus Prediction Model

The NGMP comprises three main shared resources in its
data path: the bus, the L2 cache and memory. Since the L2 can
be partitioned we do not consider contention of the different
tasks in the L2. We start by predicting CDBbus for the bus
and later apply the same approach for memory.

We explain three different ways of upper-bounding
CDBbus, which present represent different trade-offs between
information required, such as the number of accesses of each
corunner task, and tightness of the produced bound.

A.1. Theoretical Upper-Bound Delay (UBD)
In this reference model, based on [18], we assume that

every single τi request is delayed by a request from each of
the Nc − 1 contenders and that contending requests cause the
highest delay, Lbus. This is the maximum contention scenario
in round-robin arbitration, where the upper-bound delay a
request can suffer is given by:

samd = (Nc − 1)× Lbus (5)



Hence, for τi with bi accesses to the bus, CDBbus is
presented in Equation 6, where Lbus is the maximum delay any
interfered request can suffer from a single interfering request.

CDBbus = bi × samd = bi × (Nc − 1)× Lbus (6)

Since we have four different types of requests with different
latencies: ll2h, ll2m, ls2h and ls2m:

Lbus = max (ll2h, ll2m, ls2h, ls2m) (7)

This model is time-composable by definition because it
assumes that all bi are interfered by i) the highest impact
request from ii) all corunners. These two assumptions are
sources of pessimism that enable full time-composability.

Interestingly in this model, the worst alignment among the
requests of τi and the requests of its corunners is assumed.
In reality, it can be the case that some τi requests become
ready to be sent to the bus when its contenders requests have
been partially processed so that each τi request suffers a delay
smaller than Lbus. However, predicting how this alignment
of requests can happen at operation time is hard (if at all
possible). Any small shift in the execution of tasks can change
it. Hence, this and the following models, provision time in
CDBbus for the worst-case alignment of requests.

A.2. Single-type Model
Analogously to the previous model, the one presented in

this section assumes that every corunners’ request causes a
delay of Lbus on τi. Unlike the previous model, this one takes
into account that not all τi requests might be interfered by
one request of its corunner tasks. This usually happens when
corunner tasks have fewer accesses than τi.

Let bj be the number of accesses to the bus that each
contender task τj ∈ c(τi) performs. Given that tasks have
different number of accesses, not all of them can interfere
each other. In particular, for a given interfering task τj running
in core j, in the worst-case only the minimum between the
number of accesses of τi, bi, and the number of accesses of
the interfering task, bj , suffer a contention delay of Lbus. That
is, no more than bi accesses can be interfered and no more
than bj can interfere. In order to compute the contention on
the bus for task τi, we add the contribution of each interfering
task τj :

CDBbus =
∑

τj∈c(τi)

min (bi, bj)× Lbus (8)

A.3. Multiple-type Model
The previous model assumes that each interfering request,

i.e. those generated by c(τi), belongs to the worst-interfering
type, hence generating Lbus delay on τi. However, corunner
tasks generate requests of different types, each of which
incurs a different interference on τi. This model takes this
into account and breaks down the number of requests of the
corunners between l2h, l2m, s2h and s2m:

bj = bl2hj + bl2mj + bs2hj + bs2mj (9)

The order of these requests, from most interfering to less
interfering is, l2h, l2m, s2h and s2m (see Section IV-C).

To compute the CDBbus, we pair each interfered request
(those coming from τi) with the worst eligible interfering
request available from each contending core. We start pairing
the accesses with the most interfering type (l2h) until this inter-
fering type is consumed. The remaining b′i = max(0, bi−bl2hj )
requests from τi are paired with the next interfering type (l2m).
The remaining b′′i = max(0, b′i − bl2mj ) with s2h and finally
the remaining b′′′i = max(0, b′′i − bs2hj ) with s2m. With this
CDBbus is computed as follows:

CDBbus =
∑
τj∈c(τi)[ min

(
bi, b

l2h
j

)
× ll2h +

min
(
b′i, b

l2m
j

)
× ll2m +

min
(
b′′i , b

s2h
j

)
× ls2h +

min
(
b′′′i , b

s2m
j

)
× ls2m] (10)

It is worth noting that the type of the requests generated by
τi are equally affected by each type of request of its corunner.
That is, the interference is determined by the type of the
request of the corunner task τj only.

B. Memory Prediction Model

To compute CDBmem we apply the same models as for the
bus. As explained in Section III, there are two different types
of request in the memory, read and write. We assume a task τi
with mi requests to the memory and contender tasks τj ∈ c(τi)
with mj = mread

j +mwrite
j accesses to the memory each and

m′i = max(0,mi −mread
j ). The highest delay in memory is

given by Lmem = max (lread, lwrite).
Under these constraints the theoretical Upper-Bound Delay

model is given by:

CDBmem = mi × samd = mi × (Nc − 1)× Lmem (11)

The model based on single request types is as follows:

CDBmem =
∑

τj∈c(τi)

min (mi,mj)× Lmem (12)

The model based on multiple request types is as follows:

CDBmem =
∑

τj∈c(τi)

min
(
mi,m

read
j

)
× lread +

min
(
m′i,m

write
j

)
× lwrite (13)

From previous discussions it follows that our model builds
on two pieces of information: the latency each request uses
each shared resource and the number of accesses performed
by each task to each shared resource. We describe both in the
following subsections.

C. Deriving Access Latencies

Bus. Our model uses as an input the time each request uses
each shared resource, which correspond to the bus and memory
in our reference architecture. For the bus, in the NGMP, our
model requires deriving the bus usage latency of l2h, l2m, s2h



and s2m4. Since documentation typically does not provide this
information, we derived it empirically.

To do so, first we executed a benchmark performing a
given type of bus operations as the Task Under Analysis
(tua), or interfered task; against a range of other benchmarks,
or corunner tasks, performing all of them the same type of
accesses (which may be a different type as for the tua). For
instance, in one experiment the tua performs l2h accesses and
the corunner tasks s2h accesses.

As a result of performing this process we reached the
following three observations:

1) The execution time of the tua depends on the type of
accesses performed by the corunner tasks. Thus, given a
tua, its execution time may not be the same if corunners
perform l2h, l2m, s2h or s2m accesses.

2) The impact of corunner tasks on the tua is linear with
the number of corunners. Therefore, if the execution
time of the tua in isolation (normalized) is 1, and it
grows to 1+K when running against one corunner, then
the execution time against C corunners can be upper
bounded as 1 + C × K (further considerations on this
matter can be found in [9]). In the particular case where
corunner tasks are run in all other cores, the execution
time of the tua is:

1 + (Nc − 1)×K (14)

3) The impact of interferences in the execution time of
the tua is independent of the particular access type
performed by the tua. Therefore, the execution time in
isolation grows by (Nc − 1) × K when all corunners
perform the same type of accesses (i.e. l2m), but K
depends solely on the type of accesses of the corunners,
not on the type of accesses of the tua. This can be
explained because the interference on the AMBA AHB
bus depends only on the arbitration time [14], which
in fact depends only on the time the higher priority
corunners use the bus and not on the interfered request
which is requesting the bus and has to wait the same
amount of time regardless its particular access type.

To infer the latencies we take as a reference the l2h
benchmark that constantly accesses the L2 cache and hence
the bus. Further since the benchmark always hits in L2,
each request on the bus has a short turn-around time. This
benchmark is executed as tua in a workload comprising 3
corunner benchmarks, which correspond to the 3 remaining
cores. The corunners perform accesses of the same type to
the bus continuously. Hence, there are 4 different workloads
depending on the type of access performed by the other three
corunners: l2h, l2m, s2h, s2m.

Figure 2 shows the measured execution time for all work-
loads. To infer the bus latencies, we divide the execution time
overhead of the tua with respect to the execution time in
isolation by the amount of contenders (3 in each case) and then

4Please note that these latencies are not the same as those obtained in
Section III-B for the L2 cache.

Fig. 2: Execution time and ETB of l2h benchmark in different
workloads

divide these cycles by the amount of bus accesses performed
by each contender. For instance, given an execution time of
Tisol for the tua in isolation and Tl2h for the tua against 3
l2h corunners, the interference of an l2h access is obtained as
follows where Nreq is the number of l2h requests performed
by each corunner:

ll2h =

⌈
Tl2h − Tisol

(Nc − 1)×Nreq

⌉
(15)

This way we obtain the number of interference cycles per
bus access type: 9, 7, 1 and 1 for ll2h, ll2m, ls2h and ls2m
respectively4. With these latencies we compute CDBbus with
Equation 6 and build the ETB prediction shown in Figure 2,
which is computed using Equation 2.

Techniques to improve the confidence on derived bus laten-
cies are proposed in [9]. Part of our future work consists of
integrating those methods on top of our model and compare
them against our method to derive latencies. Nevertheless, our
prediction models are compatible with any method to obtain
the access latencies.

Memory. The approach followed to obtain memory laten-
cies is analogous to that for bus latencies with some small dif-
ferences. First, instead of using benchmarks accessing the bus,
we use l2m as tua, which performs memory reads. As corunner
tasks we use first 3 copies of a l2m benchmark, that generates
memory reads. The latency of memory reads obtained in this
case is 18 cycles. In the second experiment we use 3 copies
of s2m as corunners. The latency of memory writes obtained
is again 18 cycles because there is no difference between read
and write operations in terms of memory interference since,
in both cases, the timing is defined by the time to open and
close the memory page or row, which is identical for both.

D. Deriving Access Counts

The NGMP provides 16 PMCs that can be configured with
different events and can be measured using the commercially
available tool GRMON2 [4]. Among other events, we are
interested in the per-core bus reads and writes (0x40 - 0x50
in [5]) and per-core L2 hits and misses (0x60 - 0x61).

Bus. The total number of L2 accesses (i.e. hits and misses)
corresponds to the number of bus accesses. However, there is
no way to break down L2 hits/misses into reads and writes,



i.e. it is not possible to determine exactly the number of l2h,
l2m, s2h and s2m accesses.

In this scenario our approach is to estimate those values in
the most pessimistic way: Given task τj , we can obtain the
number of L2 hits and misses, bhj and bmj , and the number
of bus read and writes, which is equivalent to the number of
L2 loads and stores, blj and bsj . Our goal is to distribute bhj ,
bmj , blj and bsj into bl2hj , bl2mj , bs2hj and bs2mj such that their
total impact is maximized. For the ll2h, ll2m, ls2h and ls2m
latencies in our reference architecture, the following equations
maximize the impact. First, we assume the maximum amount
of requests from the worst possible interfering request, i.e. l2h:

bl2hj = min(blj , b
h
j ) (16)

Then we subtract this value from blj and bhj , obtaining b′lj =
max(0, blj− bl2hj ) and b′hj = max(0, bhj − bl2hj ), and repeat the
algorithm with the next worst interferers, i.e. l2m, s2h and then
s2m, with b′sj = max(0, bsj − bs2hj ) and b′mj = max(0, bmj −
bl2mj ), to obtain bl2mj , bs2hj and bs2mj .

bl2mj = min(b′lj , b
m
j ) (17)

bs2hj = min(bsj , b
′h
j ) (18)

bs2mj = min(b′sj , b
′m
j ) (19)

Once we have all accesses properly classified as l2h, l2m,
s2h and s2h for each contending task τj , we can proceed with
the model described before.

Memory. Our current implementation does not provide
access counters for the memory controller. Hence, the exact
number of memory accesses cannot be obtained, even though
L2 cache misses are known, since there is no way of ac-
counting indirect memory accesses such as writes generated
by evictions of dirty L2 lines. The actual number of memory
accesses can either be estimated using the number of L2
misses, which is a lower bound of the memory accesses or
estimated with the number of L2 misses and the number of
bus writes, which is an upper bound.

E. Assumptions

Our model is based on the assumption that the number
of accesses of a task is not affected by the contenders.
This happens only if the L2 is partitioned, i.e. not shared.
Otherwise, the number of accesses to the bus or memory for a
task executed in isolation does not match those obtained when
running along with other tasks.

Also our model assumes that no timing anomalies [24]
are present. Timing anomalies is an open research field, and
is difficult to prove that a real processor is time anomaly
free [16]. Nevertheless, if timing anomalies can occur, they
cannot trigger a domino effect by construction, i.e. it is
a compositional architecture with constant-bounded effects
according to the classification in [32]. In those architectures,
which may experience timing anomalies but no domino effects,
the impact of timing anomalies can be accounted for easily by
counting how many times they can be triggered and padding
ETBs by the product of this count and the maximum impact

of one timing anomaly. This approach is fully in line with
our prediction model that accounts for contention in shared
resources. Further, note that our model has no impact on
timing anomalies, which occur (or not) regardless of our
model.

V. EXPERIMENTAL RESULTS

We evaluate our proposals on a real GR740 [6] FPGA
prototype on a Xilinx ML510 board. We used the commer-
cially available Cobham Gaisler GRMON2 [4] debug monitor
software to directly extract the PMC from the statistic unit of
the GR740, without affecting execution. The model is directly
constructed from the readings obtained in one execution of
each task, i.e. no further post processing is required.

A. Bus and memory prediction models

Our first experiments put the shared resources under high
pressure to test the tightness of the bounds obtained with the
prediction model. To that end we use as reference applications
a set of synthetic kernels [12] that inject constant high pressure
either on the shared bus or on the shared memory. The
Bus-Stressing Kernel, or bsk, comprises memory read and
write requests that always miss the L1 and hit the L2, thus
maximizing the traffic on the bus. This is done by having 5
memory accesses that access the same set of the L1 cache,
thus exceeding its 4 ways. The same approach is used for the
Memory-Stressing Kernel (msk) that comprises memory read
requests that always miss on the L1 and also miss on the L2.

In all experiments we use one reference task (tua) and three
tasks as corunners. In particular, as reference task on which
ETB is to be derived we use bsk-ld-40% in which 40% of its
instructions are loads that access the bus. As corunner tasks we
use bsk whose frequency of access is 40% and 5%, i.e. 40%
and 5% of the instructions are accesses to the bus. Those bsk
used as corunners access the bus with requests of a different
type across experiments: l2h, l2m, s2h, s2m and a mix, which
consist of a l2h, a l2m and a s2h bsk together.

Figure 3a and Figure 3b show the result for bsk-ld-40%
when the frequency of access of the contenders is 40% and
5% respectively. In both figures we show the ETB when using
the UBD approach [12] or our approach with a single-type and
four types of requests; and the observed execution time. In all
cases, the predicted ETB estimates are above the observed
execution time. The UBD model, since it assumes that every
access of the task under analysis suffers samd, leads to the
highest ETBs. Our model, that accounts only for the contention
the task under analysis suffers, tightens the ETB. As presented
in the previous sections, if the method is made aware of the
request types and their associated latency (4 types of request)
ETBs are further reduced.

In Figure 3b, the corunners make fewer accesses than in
Figure 3a. For the UBD approach this has no impact since
it only focuses on the number of requests of the task under
analysis that remains the same. Instead, our models reduce
ETBs since they effectively capture the fact that the corunners
make fewer accesses.



(a) contenders-40%

(b) contenders-5%

Fig. 3: ETB for each bus prediction model: UBD (fully time
composable requests); And our approach with 1 and 4 request
types.

We performed the same experiment for the memory model,
using msk-ld-40% as tua and corunners with 40% and 5% of
memory accesses. In this case, the single type of request or
multiple types of request models are equivalent, since read and
writes to memory have exactly the same impact. The results
are analogous to those obtained for the bus model. Therefore,
we omitted the figures since they provide no further insights.

B. EEMBCs

As final evaluation we apply the whole prediction model
with the EEMBC Autobench suite [20] as reference applica-
tions. We run each EEMBC benchmark under a relatively high
pressure scenario composed of two tasks, one continuously
accessing the bus (bsk) and the second accessing the memory
(msk). In this scenario, neither the bus nor the memory
controller suffer the highest pressure, since that requires all
remaining cores accessing simultaneously each resource [22].

No memory accesses. As presented in Section IV-D, there
is not a specific PMC to measure the number of accesses to
the memory. In order to cancel out the impact of this, in a first
experiment we focus on the case in which the tua is run twice
in a row and measurements are taken during the second run.
Due to the small footprint of EEMBC Autobench, this results
in almost zero misses in the second run.

Fig. 4: ETBs for EEMBC when assuming a no cache misses.

Under that assumption, we present the results of our model
and UBD in Figure 4. Recall that in each workload we run
one EEMBC benchmark executed and the two contenders
presented above. Results are normalized w.r.t. the execution
time of the EEMBC in the workload. We show the execution
time in isolation, the execution time in the workload and the
predicted ETB using the multiple type of requests prediction
model for the bus and memory, as well as the UBD. We can
clearly see that our prediction model reduces the pessimism
of the UBD model by 67% being only 79% higher than the
actual execution time. In Figure 3, the observed execution
time is much closer to the prediction when compared with
Figure 4. This is because the scenario in Figure 3 is designed to
experience severe contention, whereas the scenario described
here experiences much lower contention (far below the upper-
bounded contention).

General case. Our next step is to evaluate the natural case
in which programs perform memory accesses. According to
Section IV-D, we can estimate the access to the memory using
the number of L2 misses. The number of L2 misses does not
consider the dirty evictions that generate memory accesses. To
take into account the dirty evictions into the memory accesses
we can use either an optimistic lower bound based on the
number of L2 misses or a pessimistic upper bound based on
the number of L2 misses plus the bus writes. To that end, we
build three scenarios:
• Pessimistic scenario. We assume that every write opera-

tion results in a dirty eviction, i.e. an access to memory.
• Accurate scenario. In this case, from a simulation tool

we derive the exact number of memory accesses.
• Optimistic scenario. We disregard the dirty evictions and

take the number of L2 misses as memory accesses.
Figure 5 shows the results obtained with our model under

each of the previous scenarios and the observed execution time
in the workload and isolation. These results provide a good
estimate of the benefits of improving our reference design with
a PMC that explicitly measures memory accesses.



Fig. 5: ETBs for EEMBC under the optimistic, pessimistic and
accurate scenarios.

As expected the pessimistic scenario that considers all
writes as dirty evictions is overly pessimistic. In particular it
is 138% more pessimistic than the actual observed execution
time. The accurate scenario in which we assume that the PMC
for access count exists leads to very tight estimates, 64%
more pessimistic than the actual observed execution time and
less than 0.1% more pessimistic than the optimistic scenario.
This is due to the small memory footprint of the EEMBC
benchmark, that fit on the L2 cache. As a result, the number
of dirty evictions is close to zero in most scenarios.

VI. CONCLUSIONS

In this paper we present a prediction model of the shared
resource contention for the GR740 that takes into account the
number of accesses and their type for a given task and its
corunner tasks, which can be easily obtained with PMCs. The
model abstracts (i.e. makes worst-case provisions) for the way
in which requests interleave in time, which would challenge
time composability since such time interleaving could easily
change during operation.

Derived Execution Time Bounds (ETBs) are shown to be
accurate and tighter than fully-time composable ETBs. Those
derived estimates are valid for any workload in which the task
runs as long as the number of accesses (per type) is smaller
than those assumed at analysis. This provides a good balance
between tightness and time composability.
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