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The Space industry, as several other real-time industries, is assessing the use of multicore processors as their main computing platform. While multicore processors bring the potential of integrating several software (mixed-criticality) functions, their use also brings some challenges. In particular, tasks running in multicores may experience high contention delays when accessing multicores' shared resources. This makes that the load that a task puts on shared resources impacts the Execution Time Bounds 1 (ETBs) derived for other corunning tasks. In this paper we focus on the Cobham Gaisler NGMP -acknowledged as one of the multicore processors currently assessed by the European Space Agency for its future missions -for which we propose a measurement-based approach to bound contention interference. Given a task τ , instead of providing ETBs for the highest contention that any set of corunners can generate -already shown to be potentially high -our approach provides bounds that factor in the number of requests contenders generate regardless of how they align with τ 's requests. This provides a good balance between ETBs accuracy and independence from the corunners, since our approach only requires controlling the number of requests each task makes to the shared resources.

I. INTRODUCTION

Real-Time Embedded systems are facing an increase in their performance demands across several domains, such as space, avionics and automotive, as a way to provide more value-added functionality. In the space domain, computing power requirements and the amount of data to be handled by on-board software is rising [START_REF] West | NASA Study on Flight Software Complexity[END_REF] due to the fact that space missions are becoming more autonomous. In this context, multicore processors can provide the performance required, while enabling the consolidation of applications2 subject to different criticality levels, resulting in an overall reduction in power, space and weight. In the space domain the Next Generation Microprocessor (NGMP) architecture [START_REF] Gaisler | [END_REF], whose latest implementation is the GR740 [START_REF] Gaisler | Quad Core LEON4 SPARC V8 Processor -GR740-UM-DS-D1 -Data Sheet and Users Manual[END_REF], is an architecture considered by the European Space Agency (ESA) for its future missions.

Multicores also bring their specific issues to the real-time domain among which contention in the access to hardware shared resources is one of the most prominent [START_REF] Cazorla | Multicore OS benchmarks[END_REF]. Uncontrolled contention makes that the execution time and Execution Time Bounds (ETB) derived for a task depend on the load its corunner tasks put on hardware shared resources, thus affecting time composability [START_REF] Puschner | Towards composable timing for real-time software[END_REF], which states that the ETB derived for a task in isolation should not be affected by the rest of the tasks running on the system. Time composability is a premise in many real-time designs since it enables (in the timing domain) incremental development and verification in integrated systems such as Integrated Modular Avionics, IMA [START_REF]Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations[END_REF] in avionics. During system development, time composability enables incrementally integrating applications without the need of regression tests to validate the timing properties of already-integrated applications, which heavily reduces integration costs. During operation, time composability enables updating functions and their associated software without the need for re-analyzing and re-qualifying the system. This is specially beneficial in domains like space where systems may operate during dozens of years and whose functionality is usually updated after deployment.

In a time-anomaly [START_REF] Reineke | A definition and classification of timing anomalies[END_REF] free system, time composability can be achieved by modeling at analysis time a scenario in which each access that the task under analysis (τ ) makes to a hardware shared resource suffers the highest contention possible. For instance, in the case of a round-robin bus accessed by N c cores this is equivalent to assuming that each request suffers maximum contention from each of the remaining N c -1 cores. That is, the single-access maximum (contention) delay, or samd, corresponds to: samd = (N c -1) × L bus [START_REF] Akesson | Predator: a predictable SDRAM memory controller[END_REF] where L bus is the maximum bus latency for a single request. The resulting ETB estimate in this scenario is fully time composable since it accounts for the maximum load that corunner tasks of τ can put (at operation time) on the target resource. This, though, comes at the cost of inflated ETB estimates (e.g. up to more than 5x times in a 4-core processor as reported in [START_REF] Fernandez | Assessing the suitability of the NGMP multi-core processor in the space domain[END_REF]). Tighter ETB estimates can be obtained by adjusting the bounds to the actual load that corunner tasks put on the target resource, which can be abstracted with an arrival curve [START_REF] Schranzhofer | Timing analysis for resource access interference on adaptive resource arbiters[END_REF]. However, time-composability is lost since the ETB for a task becomes dependent on its particular corunners. This confronts industry with the choice of time-composable inflated estimates or tighter non time-composable estimates.

In this paper we use measurement-based timing analysis, which a large fraction of safety-related systems resort on [START_REF] Wilhelm | The worst-case execution-time problem overview of methods and survey of tools[END_REF] -including the space industry. We propose a contentionprediction model that captures the effect of contention in the NGMP shared resources. For a given task, τ , our model enables deriving both fully time-composable bounds to the contention delay suffered by τ or partially time-composable bounds [START_REF] Fernandez | Seeking timecomposable partitions of tasks for cots multicore processors[END_REF] which depend on the number of requests generated by τ 's corunner tasks, N req , but not on how they align with τ 's requests. Derived bounds are valid for different corunner tasks as long as they generate at most N req requests.

Our approach is motivated by the fact that, while the number of requests that a task generates can be bound with existing tools like Rapita System's Verification Suite (RVS) [START_REF]Rapita Verification Suite[END_REF], how τ 's and its corunners' requests interleave is hard, if at all possible, to measure and control. Hence, instead of predicting request interleaving, our approach derives contention delays for the worst-possible time-alignment of requests. The main contributions of this paper are as follows:

1) We make an in-depth analysis of the hardware shared resources in the NGMP, the way in which requests interact and the delay they may suffer on those resources.

2) We present a prediction model for the contention delay in the bus and the memory controller in the NGMP. Our model, which depends on the time requests take to access shared resources, deals with the case when there are several types of accesses to a resource and each type causes and suffers a different delay depending on the contending accesses. For instance, in the processor AMBA AHB bus, loads missing in the L2 take shorter than loads hitting in L2. We show how our model handles this case.

3) We evaluate our proposal in a solid setup comprising the GR740 implemented in a FPGA. Our proposal provides tighter ETBs than the fully time-composable proposal in [START_REF] Fernandez | Assessing the suitability of the NGMP multi-core processor in the space domain[END_REF], since it adapts to the contenders' load on shared resources in a still partially time-composable and friendly way.

The rest of this paper is organized as follows: Section II presents the related work. Section III provides information on the GR740. Section IV details our prediction model. Section V assesses the accuracy of our model. Finally, Section VI presents the main conclusions of this paper.

II. RELATED WORK

Contention on the access to hardware shared resources has been thoroughly studied in the state of the art. A taxonomic summary of the relevant works can be found in [START_REF] Fernandez | Contention in multicore hardware shared. resources: Understanding of the state of the art[END_REF]. Several techniques propose means to upper-bound, during the analysis phase of the system, the samd that a task may suffer on the bus or in memory. In that line, hardware support has been proposed (though not yet implemented in any architecture we are aware of) to artificially delay each request a given τ does by samd cycles [START_REF] Paolieri | Hardware support for WCET analysis of hard real-time multicore systems[END_REF][13] [START_REF] Shah | Measurement based WCET analysis for multi-core architectures[END_REF]. Other approaches derive samd by using a software-only approach: τ is run against a set of resource stressing kernels that put high load on the resource [START_REF] Fernandez | Assessing the suitability of the NGMP multi-core processor in the space domain[END_REF][9] making τ 's requests suffer high contention delays.

Other techniques like those in [START_REF] Rosen | Bus access optimization for predictable implementation of real-time applications on multiprocessor systems-on-chip[END_REF] for buses rely on detailed information about resource access latencies and arbitration policies to derive samd. Other works, due to lack of information in the processor documentation derive samd from measurements and feed it into static timing analysis. In particular [START_REF] Nowotsch | Multi-core interference-sensitive WCET analysis leveraging runtime resource capacity enforcement[END_REF] applies this approach to analyze the impact of contention in the P4080. samd can also be derived for memory with [START_REF] Paolieri | Timing effects of DDR memory systems in hard realtime multicore architectures: Issues and solutions[END_REF] [START_REF] Akesson | Predator: a predictable SDRAM memory controller[END_REF] or without [START_REF] Kim | Bounding memory interference delay in cots-based multicore systems[END_REF] hardware support.

In this paper we follow the theoretical approach in [START_REF] Fernandez | Resource usage templates and signatures for COTS multicore processors[END_REF] that proposes a methodology to obtain the resource access 'profile' of a given task that defines the use of resources that the task makes on a target shared resource. That profile is used to derive the contention tasks suffer and generate when accessing that resource. In this work, which is a collaboration of endusers in the Space domain (Airbus Defence and Space and ESA), hardware technology providers (Cobham Gaisler) and a research institution (Barcelona Supercomputing Center) we assess the benefits of such an approach on a real platform, the GR740 addressing issues related to NGMP specific arbitration policies and access types to the different resources.

Finally, is it worth mentioning that with few exceptions [START_REF] Slijepcevic | Time-analysable non-partitioned shared caches for real-time multicore systems[END_REF][3], cache partitioning is the common solution in the context of CRTES due to the complexity of estimating ETB accurately on top of shared caches. In the case of the GR740, hardware support exists for way-partitioning the L2 cache. We enable this hardware feature in our experiments.

III. NGMP

The NGMP is being assessed as the processing platform by the ESA in its future missions. The NGMP is a quadcore processor system-on-chip based on the LEON4 SPARC V8 architecture [START_REF] Gaisler | [END_REF] connected by a shared on-chip AHB processor bus to a shared L2 cache and memory, see Figure 1. The NGMP comprises 16 Performance Monitoring Counters (PMC) that can be configured with different events, providing support to measure access counts such in a way that it facilitates the implementation of our prediction model, more details are provided in Section IV-C. This section provides details on some aspects related to the contention in the access to NGMP's shared resources.

A. AHB Processor Bus

The AMBA AHB bus connects cores to the L2 cache and the I/O bridges 3 . The first consideration to make in the case of the bus is that there are different types of requests that can generate different inter-task contention: bus reads (loads) that Fig. 1: Block diagram of the main elements of the NGMP either hit (l2h) or miss (l2m) on the L2 cache and bus writes (stores) that either hit (s2h) or miss (s2m) on the L2 cache. These accesses behave differently because hits hold the bus while they are served. Instead, misses wait on a miss queue and are split, i.e. the L2 cache releases the bus while processing the miss, so that other cores can use the bus. In the NGMP, the AMBA AHB bus implements round-robin arbitration.

B. L2 Cache

In our experiments we use the master-index feature of the NGMP that partitions the L2 assigning one L2 cache way to each core. Hence, a given core suffers no contention interference in the L2 due to other cores' evictions.

Each of the request types identified before (l2h, l2m, s2h and s2m) has its own L2 access latency. Interestingly, the latency of requests of the same type can be variable. That is, for each request type access there is a Best-Case (BC) and a Worst-Case (WC) latency. This jitter is caused by the type of previous requests, despite they belong to a different task and hence go to a different cache partition. Our model takes this effect into account by assuming that all latencies suffered on the experiments have the BC and when computing the contention bounds, we add a correcting value that adds for each L2 access the corresponding difference between the WC and the BC. This adds pessimism but its advantage is two-fold: it is a safe upperbound and it removes the need to track the sequence of accesses to determine their exact latency.

The WC and BC latencies are obtained from table 40 in [START_REF] Gaisler | Quad Core LEON4 SPARC V8 Processor -LEON4-N2X Data Sheet and Users Manual Version 2[END_REF] and are 8, 13, 6 and 7 for l2h, l2m, s2h and s2m respectively in WC and 5, 6, 0 and 0 for BC.

C. Memory Controller

The memory controller acts as an interface between the processor and the DRAM memory. We differentiate two types of request in the memory: read and write. According to the DRAM protocol, each request has a latency to be responded depending on whether it is a read or write request respectively. The latency it takes the memory to go back into idle state, once a request starts being processed, is fixed regardless of whether the request is read or write and corresponds to the time till a new request can be processed. For this paper, we assume that the memory controller behaves as a FIFO queue. This is a simplification that helps upper bounding the memory controller latency though it introduces some pessimism. Providing a more accurate model of the memory is part of our future work.

IV. PREDICTION MODELS

Our prediction models use measurement-based timing analysis techniques to derive a multicore ETB (ET B mc ) for a task τ i , given its ETB in isolation (ET B isol ). To that end, the models predict the total effect of contention in the access to the multicore hardware shared resources, called Contention Delay Bound (CDB), and add it to the ETB in isolation:

ET B mc = ET B isol + CDB (2) 
In order to derive CDB, we add the contribution of each hardware shared resource r, CDB r :

CDB = r∈R CDB r (3) 
To derive CDB r , we upper-bound the maximum latency that every access from τ i to r, n r i , may suffer from requests generated by τ i 's corunner tasks, referred to as c(τ i ).

CDB r for τ i assumes that each τ j ∈ c(τ i ) performs at most a given number of accesses (n r j ) to resource r. Therefore, ET B mc estimate for τ i is composable with any other task τ j ∈ c (τ i ) as long as it performs fewer accesses (n r j ) to the shared resource than τ j ∈ c(τ i ):

n r j ≤ n r j (4) 

A. Bus Prediction Model

The NGMP comprises three main shared resources in its data path: the bus, the L2 cache and memory. Since the L2 can be partitioned we do not consider contention of the different tasks in the L2. We start by predicting CDB bus for the bus and later apply the same approach for memory.

We explain three different ways of upper-bounding CDB bus , which present represent different trade-offs between information required, such as the number of accesses of each corunner task, and tightness of the produced bound.

A.1. Theoretical Upper-Bound Delay (UBD)

In this reference model, based on [START_REF] Paolieri | Hardware support for WCET analysis of hard real-time multicore systems[END_REF], we assume that every single τ i request is delayed by a request from each of the N c -1 contenders and that contending requests cause the highest delay, L bus . This is the maximum contention scenario in round-robin arbitration, where the upper-bound delay a request can suffer is given by:

samd = (N c -1) × L bus (5) 
Hence, for τ i with b i accesses to the bus, CDB bus is presented in Equation 6, where L bus is the maximum delay any interfered request can suffer from a single interfering request.

CDB bus = b i × samd = b i × (N c -1) × L bus (6) 
Since we have four different types of requests with different latencies: l l2h , l l2m , l s2h and l s2m :

L bus = max (l l2h , l l2m , l s2h , l s2m ) (7) 
This model is time-composable by definition because it assumes that all b i are interfered by i) the highest impact request from ii) all corunners. These two assumptions are sources of pessimism that enable full time-composability.

Interestingly in this model, the worst alignment among the requests of τ i and the requests of its corunners is assumed. In reality, it can be the case that some τ i requests become ready to be sent to the bus when its contenders requests have been partially processed so that each τ i request suffers a delay smaller than L bus . However, predicting how this alignment of requests can happen at operation time is hard (if at all possible). Any small shift in the execution of tasks can change it. Hence, this and the following models, provision time in CDB bus for the worst-case alignment of requests.

A.2. Single-type Model

Analogously to the previous model, the one presented in this section assumes that every corunners' request causes a delay of L bus on τ i . Unlike the previous model, this one takes into account that not all τ i requests might be interfered by one request of its corunner tasks. This usually happens when corunner tasks have fewer accesses than τ i .

Let b j be the number of accesses to the bus that each contender task τ j ∈ c(τ i ) performs. Given that tasks have different number of accesses, not all of them can interfere each other. In particular, for a given interfering task τ j running in core j, in the worst-case only the minimum between the number of accesses of τ i , b i , and the number of accesses of the interfering task, b j , suffer a contention delay of L bus . That is, no more than b i accesses can be interfered and no more than b j can interfere. In order to compute the contention on the bus for task τ i , we add the contribution of each interfering task τ j :

CDB bus = τj ∈c(τi) min (b i , b j ) × L bus (8) 

A.3. Multiple-type Model

The previous model assumes that each interfering request, i.e. those generated by c(τ i ), belongs to the worst-interfering type, hence generating L bus delay on τ i . However, corunner tasks generate requests of different types, each of which incurs a different interference on τ i . This model takes this into account and breaks down the number of requests of the corunners between l2h, l2m, s2h and s2m:

b j = b l2h j + b l2m j + b s2h j + b s2m j (9)
The order of these requests, from most interfering to less interfering is, l2h, l2m, s2h and s2m (see Section IV-C).

To compute the CDB bus , we pair each interfered request (those coming from τ i ) with the worst eligible interfering request available from each contending core. We start pairing the accesses with the most interfering type (l2h) until this interfering type is consumed. The remaining b i = max(0, b i -b l2h j ) requests from τ i are paired with the next interfering type (l2m). The remaining b i = max(0, b i -b l2m j ) with s2h and finally the remaining b i = max(0, b i -b s2h j ) with s2m. With this CDB bus is computed as follows:

CDB bus = τj ∈c(τi) [ min b i , b l2h j × l l2h + min b i , b l2m j × l l2m + min b i , b s2h j × l s2h + min b i , b s2m j × l s2m ] (10)
It is worth noting that the type of the requests generated by τ i are equally affected by each type of request of its corunner. That is, the interference is determined by the type of the request of the corunner task τ j only.

B. Memory Prediction Model

To compute CDB mem we apply the same models as for the bus. As explained in Section III, there are two different types of request in the memory, read and write. We assume a task τ i with m i requests to the memory and contender tasks τ j ∈ c(τ i ) with m j = m read j + m write j accesses to the memory each and

m i = max(0, m i -m read j
). The highest delay in memory is given by L mem = max (l read , l write ).

Under these constraints the theoretical Upper-Bound Delay model is given by: [START_REF] Fernandez | Seeking timecomposable partitions of tasks for cots multicore processors[END_REF] The model based on single request types is as follows:

CDB mem = m i × samd = m i × (N c -1) × L mem
CDB mem = τj ∈c(τi) min (m i , m j ) × L mem (12) 
The model based on multiple request types is as follows:

CDB mem = τj ∈c(τi) min m i , m read j × l read + min m i , m write j × l write (13) 
From previous discussions it follows that our model builds on two pieces of information: the latency each request uses each shared resource and the number of accesses performed by each task to each shared resource. We describe both in the following subsections.

C. Deriving Access Latencies

Bus. Our model uses as an input the time each request uses each shared resource, which correspond to the bus and memory in our reference architecture. For the bus, in the NGMP, our model requires deriving the bus usage latency of l2h, l2m, s2h and s2m4 . Since documentation typically does not provide this information, we derived it empirically.

To do so, first we executed a benchmark performing a given type of bus operations as the Task Under Analysis (tua), or interfered task; against a range of other benchmarks, or corunner tasks, performing all of them the same type of accesses (which may be a different type as for the tua). For instance, in one experiment the tua performs l2h accesses and the corunner tasks s2h accesses.

As a result of performing this process we reached the following three observations:

1) The execution time of the tua depends on the type of accesses performed by the corunner tasks. Thus, given a tua, its execution time may not be the same if corunners perform l2h, l2m, s2h or s2m accesses.

2) The impact of corunner tasks on the tua is linear with the number of corunners. Therefore, if the execution time of the tua in isolation (normalized) is 1, and it grows to 1+K when running against one corunner, then the execution time against C corunners can be upper bounded as 1 + C × K (further considerations on this matter can be found in [START_REF] Fernandez | Increasing confidence on measurement-based contention bounds for real-time round-robin buses[END_REF]). In the particular case where corunner tasks are run in all other cores, the execution time of the tua is:

1 + (N c -1) × K (14) 
3) The impact of interferences in the execution time of the tua is independent of the particular access type performed by the tua. Therefore, the execution time in isolation grows by (N c -1) × K when all corunners perform the same type of accesses (i.e. l2m), but K depends solely on the type of accesses of the corunners, not on the type of accesses of the tua. This can be explained because the interference on the AMBA AHB bus depends only on the arbitration time [START_REF] Jalle | AHRB: A high-performance time-composable amba ahb bus[END_REF], which in fact depends only on the time the higher priority corunners use the bus and not on the interfered request which is requesting the bus and has to wait the same amount of time regardless its particular access type. To infer the latencies we take as a reference the l2h benchmark that constantly accesses the L2 cache and hence the bus. Further since the benchmark always hits in L2, each request on the bus has a short turn-around time. This benchmark is executed as tua in a workload comprising 3 corunner benchmarks, which correspond to the 3 remaining cores. The corunners perform accesses of the same type to the bus continuously. Hence, there are 4 different workloads depending on the type of access performed by the other three corunners: l2h, l2m, s2h, s2m.

Figure 2 shows the measured execution time for all workloads. To infer the bus latencies, we divide the execution time overhead of the tua with respect to the execution time in isolation by the amount of contenders (3 in each case) and then Fig. 2: Execution time and ETB of l2h benchmark in different workloads divide these cycles by the amount of bus accesses performed by each contender. For instance, given an execution time of T isol for the tua in isolation and T l2h for the tua against 3 l2h corunners, the interference of an l2h access is obtained as follows where N req is the number of l2h requests performed by each corunner:

l l2h = T l2h -T isol (N c -1) × N req ( 15 
)
This way we obtain the number of interference cycles per bus access type: 9, 7, 1 and 1 for l l2h , l l2m , l s2h and l s2m respectively 4 . With these latencies we compute CDB bus with Equation 6and build the ET B prediction shown in Figure 2, which is computed using Equation 2.

Techniques to improve the confidence on derived bus latencies are proposed in [START_REF] Fernandez | Increasing confidence on measurement-based contention bounds for real-time round-robin buses[END_REF]. Part of our future work consists of integrating those methods on top of our model and compare them against our method to derive latencies. Nevertheless, our prediction models are compatible with any method to obtain the access latencies.

Memory. The approach followed to obtain memory latencies is analogous to that for bus latencies with some small differences. First, instead of using benchmarks accessing the bus, we use l2m as tua, which performs memory reads. As corunner tasks we use first 3 copies of a l2m benchmark, that generates memory reads. The latency of memory reads obtained in this case is 18 cycles. In the second experiment we use 3 copies of s2m as corunners. The latency of memory writes obtained is again 18 cycles because there is no difference between read and write operations in terms of memory interference since, in both cases, the timing is defined by the time to open and close the memory page or row, which is identical for both.

D. Deriving Access Counts

The NGMP provides 16 PMCs that can be configured with different events and can be measured using the commercially available tool GRMON2 [START_REF] Gaisler | GRMON2-User Manual Version 2[END_REF]. Among other events, we are interested in the per-core bus reads and writes (0x40 -0x50 in [START_REF] Gaisler | [END_REF]) and per-core L2 hits and misses (0x60 -0x61).

Bus. The total number of L2 accesses (i.e. hits and misses) corresponds to the number of bus accesses. However, there is no way to break down L2 hits/misses into reads and writes, i.e. it is not possible to determine exactly the number of l2h, l2m, s2h and s2m accesses.

In this scenario our approach is to estimate those values in the most pessimistic way: Given task τ j , we can obtain the number of L2 hits and misses, b h j and b m j , and the number of bus read and writes, which is equivalent to the number of L2 loads and stores, b l j and b s j . Our goal is to distribute b h j , b m j , b l j and b s j into b l2h j , b l2m j , b s2h j and b s2m j such that their total impact is maximized. For the l l2h , l l2m , l s2h and l s2m latencies in our reference architecture, the following equations maximize the impact. First, we assume the maximum amount of requests from the worst possible interfering request, i.e. l2h:

b l2h j = min(b l j , b h j ) (16) 
Then we subtract this value from b l j and b h j , obtaining b l j = max(0, b l j -b l2h j ) and b h j = max(0, b h j -b l2h j ), and repeat the algorithm with the next worst interferers, i.e. l2m, s2h and then s2m, with b s

j = max(0, b s j -b s2h j ) and b m j = max(0, b m j - b l2m j ), to obtain b l2m j , b s2h j and b s2m j . b l2m j = min(b l j , b m j ) (17) 
b s2h j = min(b s j , b h j ) (18) 
b s2m j = min(b s j , b m j ) (19) 
Once we have all accesses properly classified as l2h, l2m, s2h and s2h for each contending task τ j , we can proceed with the model described before.

Memory. Our current implementation does not provide access counters for the memory controller. Hence, the exact number of memory accesses cannot be obtained, even though L2 cache misses are known, since there is no way of accounting indirect memory accesses such as writes generated by evictions of dirty L2 lines. The actual number of memory accesses can either be estimated using the number of L2 misses, which is a lower bound of the memory accesses or estimated with the number of L2 misses and the number of bus writes, which is an upper bound.

E. Assumptions

Our model is based on the assumption that the number of accesses of a task is not affected by the contenders. This happens only if the L2 is partitioned, i.e. not shared. Otherwise, the number of accesses to the bus or memory for a task executed in isolation does not match those obtained when running along with other tasks.

Also our model assumes that no timing anomalies [START_REF] Reineke | A definition and classification of timing anomalies[END_REF] are present. Timing anomalies is an open research field, and is difficult to prove that a real processor is time anomaly free [START_REF] Lundqvist | Timing anomalies in dynamically scheduled microprocessors[END_REF]. Nevertheless, if timing anomalies can occur, they cannot trigger a domino effect by construction, i.e. it is a compositional architecture with constant-bounded effects according to the classification in [START_REF] Wilhelm | Memory hierarchies, pipelines, and buses for future architectures in time-critical embedded systems[END_REF]. In those architectures, which may experience timing anomalies but no domino effects, the impact of timing anomalies can be accounted for easily by counting how many times they can be triggered and padding ETBs by the product of this count and the maximum impact of one timing anomaly. This approach is fully in line with our prediction model that accounts for contention in shared resources. Further, note that our model has no impact on timing anomalies, which occur (or not) regardless of our model.

V. EXPERIMENTAL RESULTS

We evaluate our proposals on a real GR740 [START_REF] Gaisler | Quad Core LEON4 SPARC V8 Processor -GR740-UM-DS-D1 -Data Sheet and Users Manual[END_REF] FPGA prototype on a Xilinx ML510 board. We used the commercially available Cobham Gaisler GRMON2 [START_REF] Gaisler | GRMON2-User Manual Version 2[END_REF] debug monitor software to directly extract the PMC from the statistic unit of the GR740, without affecting execution. The model is directly constructed from the readings obtained in one execution of each task, i.e. no further post processing is required.

A. Bus and memory prediction models

Our first experiments put the shared resources under high pressure to test the tightness of the bounds obtained with the prediction model. To that end we use as reference applications a set of synthetic kernels [START_REF] Fernandez | Assessing the suitability of the NGMP multi-core processor in the space domain[END_REF] that inject constant high pressure either on the shared bus or on the shared memory. The Bus-Stressing Kernel, or bsk, comprises memory read and write requests that always miss the L1 and hit the L2, thus maximizing the traffic on the bus. This is done by having 5 memory accesses that access the same set of the L1 cache, thus exceeding its 4 ways. The same approach is used for the Memory-Stressing Kernel (msk) that comprises memory read requests that always miss on the L1 and also miss on the L2.

In all experiments we use one reference task (tua) and three tasks as corunners. In particular, as reference task on which ETB is to be derived we use bsk-ld-40% in which 40% of its instructions are loads that access the bus. As corunner tasks we use bsk whose frequency of access is 40% and 5%, i.e. 40% and 5% of the instructions are accesses to the bus. Those bsk used as corunners access the bus with requests of a different type across experiments: l2h, l2m, s2h, s2m and a mix, which consist of a l2h, a l2m and a s2h bsk together.

Figure 3a and Figure 3b show the result for bsk-ld-40% when the frequency of access of the contenders is 40% and 5% respectively. In both figures we show the ETB when using the UBD approach [START_REF] Fernandez | Assessing the suitability of the NGMP multi-core processor in the space domain[END_REF] or our approach with a single-type and four types of requests; and the observed execution time. In all cases, the predicted ETB estimates are above the observed execution time. The UBD model, since it assumes that every access of the task under analysis suffers samd, leads to the highest ETBs. Our model, that accounts only for the contention the task under analysis suffers, tightens the ETB. As presented in the previous sections, if the method is made aware of the request types and their associated latency (4 types of request) ETBs are further reduced.

In Figure 3b, the corunners make fewer accesses than in Figure 3a. For the UBD approach this has no impact since it only focuses on the number of requests of the task under analysis that remains the same. Instead, our models reduce ETBs since they effectively capture the fact that the corunners make fewer accesses. We performed the same experiment for the memory model, using msk-ld-40% as tua and corunners with 40% and 5% of memory accesses. In this case, the single type of request or multiple types of request models are equivalent, since read and writes to memory have exactly the same impact. The results are analogous to those obtained for the bus model. Therefore, we omitted the figures since they provide no further insights.

B. EEMBCs

As final evaluation we apply the whole prediction model with the EEMBC Autobench suite [START_REF] Poovey | Characterization of the EEMBC Benchmark Suite[END_REF] as reference applications. We run each EEMBC benchmark under a relatively high pressure scenario composed of two tasks, one continuously accessing the bus (bsk) and the second accessing the memory (msk). In this scenario, neither the bus nor the memory controller suffer the highest pressure, since that requires all remaining cores accessing simultaneously each resource [START_REF] Radojković | On the evaluation of the impact of shared resources in multithreaded cots processors in time-critical environments[END_REF].

No memory accesses. As presented in Section IV-D, there is not a specific PMC to measure the number of accesses to the memory. In order to cancel out the impact of this, in a first experiment we focus on the case in which the tua is run twice in a row and measurements are taken during the second run. Due to the small footprint of EEMBC Autobench, this results in almost zero misses in the second run. Under that assumption, we present the results of our model and UBD in Figure 4. Recall that in each workload we run one EEMBC benchmark executed and the two contenders presented above. Results are normalized w.r.t. the execution time of the EEMBC in the workload. We show the execution time in isolation, the execution time in the workload and the predicted ETB using the multiple type of requests prediction model for the bus and memory, as well as the UBD. We can clearly see that our prediction model reduces the pessimism of the UBD model by 67% being only 79% higher than the actual execution time. In Figure 3, the observed execution time is much closer to the prediction when compared with Figure 4. This is because the scenario in Figure 3 is designed to experience severe contention, whereas the scenario described here experiences much lower contention (far below the upperbounded contention).

General case. Our next step is to evaluate the natural case in which programs perform memory accesses. According to Section IV-D, we can estimate the access to the memory using the number of L2 misses. The number of L2 misses does not consider the dirty evictions that generate memory accesses. To take into account the dirty evictions into the memory accesses we can use either an optimistic lower bound based on the number of L2 misses or a pessimistic upper bound based on the number of L2 misses plus the bus writes. To that end, we build three scenarios:

• Pessimistic scenario. We assume that every write operation results in a dirty eviction, i.e. an access to memory. • Accurate scenario. In this case, from a simulation tool we derive the exact number of memory accesses. • Optimistic scenario. We disregard the dirty evictions and take the number of L2 misses as memory accesses.

Figure 5 shows the results obtained with our model under each of the previous scenarios and the observed execution time in the workload and isolation. These results provide a good estimate of the benefits of improving our reference design with a PMC that explicitly measures memory accesses. As expected the pessimistic scenario that considers all writes as dirty evictions is overly pessimistic. In particular it is 138% more pessimistic than the actual observed execution time. The accurate scenario in which we assume that the PMC for access count exists leads to very tight estimates, 64% more pessimistic than the actual observed execution time and less than 0.1% more pessimistic than the optimistic scenario. This is due to the small memory footprint of the EEMBC benchmark, that fit on the L2 cache. As a result, the number of dirty evictions is close to zero in most scenarios.

VI. CONCLUSIONS

In this paper we present a prediction model of the shared resource contention for the GR740 that takes into account the number of accesses and their type for a given task and its corunner tasks, which can be easily obtained with PMCs. The model abstracts (i.e. makes worst-case provisions) for the way in which requests interleave in time, which would challenge time composability since such time interleaving could easily change during operation.

Derived Execution Time Bounds (ETBs) are shown to be accurate and tighter than fully-time composable ETBs. Those derived estimates are valid for any workload in which the task runs as long as the number of accesses (per type) is smaller than those assumed at analysis. This provides a good balance between tightness and time composability.
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 3 Fig.3: ETB for each bus prediction model: UBD (fully time composable requests); And our approach with 1 and 4 request types.
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 4 Fig. 4: ETBs for EEMBC when assuming a no cache misses.
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 5 Fig. 5: ETBs for EEMBC under the optimistic, pessimistic and accurate scenarios.

We use Execution Time Bound (ETB) instead of Worst-Case Execution Time (WCET) estimate to refer to the upper-limits derived for tasks execution time in multicore. The reason is that WCET estimates, as they are commonly understood, establish a single value that upperbounds program's execution time under any circumstance. While this can be asserted for single-core simple architectures, this is not the case for multicores using more complex pipelines.

In this paper we use the terms application and task interchangeably.

In this work, we do not consider I/O related activities, which we assume managed at software level, so that only accesses to L2 interfere each other.

Please note that these latencies are not the same as those obtained in Section III-B for the L2 cache.
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