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Throughout an organism’s early development, variations
in physiology and behaviours may have long lasting
consequences on individual life histories. While a large
part of variation in critical life-history transitions remains
unexplained, a significant proportion may be caused by early
gender effects as part of gender-specific life histories shaped
by sexual selection. In this study, we investigated the presence
of early gender effects on the timing of emergence from gravel
and the energetic status of brown trout (Salmo trutta) early
stages. To investigate this question, individual measures of
emergence timing, metabolic rate and energetic content were
coupled for the first time with the use of a recent genetic
marker for sdY (sexually dimorphic on the Y-chromosome), a
master sex-determining gene. Our results show that gender
does not influence the energetic content of emerging juveniles
or their emergence timing. These findings suggest that gender
differences may appear later throughout salmonid life history
and that selective pressures associated with the critical period
of emergence from gravel may shape early life-history traits
similarly in both males and females.

1. Introduction

In salmonids, the timing of the first ontogenetic niche shift is
a strong determinant of subsequent survival and growth [1].
Previous research has revealed that the timing of emergence
is highly variable both among and within clutch [2,3] and is
related to individual energetic status (interaction between energy
stores and energetic requirements), as individuals with high
metabolic requirements emerge earlier with higher energy stores
[3]. However, a large part of the variability in emergence timing
remains unexplained and further research into the potential
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causes of such behavioural variations at a critical period of the salmonid life cycle is required. A likely
candidate responsible for the observed variability in this key life-history transition is sexual dimorphism
on emergence behaviour. In fish, sexual dimorphism accounts for a significant part of intraspecific
variation in life-history traits observed in natural populations [4], which can be determined in early
ontogeny [5,6].

Sexual dimorphism originates from gender differences in phenotype-fitness relationships
(e.g. fecundity, competition, survivorship [4,7-10]) and the proximate cause can be differences in the
acquisition, processing and allocation of energetic resources between males and females (e.g. [10]).
However, evidence for gender effects on energetic status during early development is scarce in teleosts,
and only gender differences in body weight gain were observed in Chinook salmon and Japanese eel
larvae [11,12] before sexual differentiation. Sexual size dimorphism has been observed only in juvenile
immature masu salmon [5]. These sexual differences, when they arise, are correlated to distinct habitat
use and diets [13], which seems to result from differences in energy allocation and requirements [5,13,14].
In maturing or adult fish, sexual dimorphism is well documented. Gender differences in size and age
at maturity and reproduction are commonly observed in salmonids [8,10,13,15] and depend on early
growth and energy stores [16].

Emergence timing is related to energetic status [3] and conditions subsequent growth [1,6,17] in
salmonids, which conditions age at maturity [16]. In addition, emergence corresponds to the onset of
sexual differentiation in several salmonids [18,19]. Therefore, early gender effects on energetic status are
likely candidates responsible for the observed behavioural variability at this key life-history transition,
and may affect the timing of the first ontogenetic niche shift. Such early gender effects may have long
lasting effects on traits targeted by sexually antagonistic selection, and lead to sexual dimorphism [20]
and the observed variability of reproductive strategies in this genus.

Gender differences in energetic status have been related to the sexual dimorphism throughout
ontogeny in salmonids. However, evidence for early development is scarce. This lack of knowledge
is a consequence of (i) sexual status being difficult to determine at an early stage in many species
and (ii) mechanisms responsible for sex determination being diverse in fish (e.g. genetic, temperature,
behaviour [21]), and when sex is genetically determined the genes involved in sex determination are
often unknown.

This study investigates early gender effects on energetic status and emergence behaviour in brown
trout (Salmo trutta). To challenge the hypothesis of early gender differences on energetic status
influencing the timing of emergence, recently developed methods that measure individual energetic
status in brown trout early stages [3,22] were used. The study also takes advantage of the recent discovery
of a conserved master sex-determining gene in salmonids [23,24], which allows the development of
accurate molecular sexing approaches [24] that can be applied on early life stages. Using these two
approaches make it possible to investigate the presence of early gender effects on a key life-history trait,
energetic status, and the potential sex bias in emergence timing, the first critical ontogenetic niche shift
in the brown trout life cycle.

2. Material and methods
2.1. Data

Experimental individuals originate from an artificial crossing with 12 females sampled in the River
Bertiz, a tributary of the River Bidassoa in Northern Spain (43.161° N, 1.609° W) on 8 December 2008. On
the day of capture, adults were measured for size and weight, their age was determined by scalimetry
and eggs were hand stripped and fertilized using sperm from four males (table 1). Adults were returned
to the river after the artificial crossing procedure. Eggs were then transported to a hatchery and incubated
until 2 February 2009, when 50 larvae from each female were put in separate emergence boxes (four
replicates per female) randomly placed in an artificial stream [15]. Emergence boxes were equipped
with emergence traps allowing the capture of emerging juveniles each day of the emergence period.
Throughout the emergence period, owing to limitations imposed by the experimental device (number of
respirometry chambers), up to eight individual emerging juveniles were randomly selected each day, to
be measured for metabolic rate (MR) and energetic content using elemental analysis [15] (N =157 over
the entire emergence period lasting 25 days, between 8 and 18 juveniles per female). Emerging juveniles
were kept for 24 h at 11°C (+0.1°C) under dim light for acclimatization and then placed in respirometry
chambers of an intermittent flow respirometer [25]. Oxygen consumption (in mm3 O) as a proxy for
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Table 1. Life-history traits of parental fish.

ID sex fork length (mm) weight (g) age

A M 335 425 5+
....... G 5+
,,,,, (M3183536+
....... ; M3052966+
..... s 4+
...... 2F2601854+
,,,,, 3F2361625+
...... 4F2802455+
g o e A +
...... 6F2491996+
,,,,,, 7F2542023+
...... T 6+
...... g 3036+
,,,,, 10F50012547+
...... 11F3263906+
..... e 7+

MR was measured over a 24 h period at 11°C (£0.1°C). Because MR is strongly related to body mass,
relative MR was used throughout the analysis. Relative MR was expressed as the difference between the
observed MR and the expected MR calculated from least-square linear regression of MR on dry weight
after double logarithmic transformation. Therefore, fish with higher than expected MR for their weights
have positive relative MR and fish with lower than expected MR have negative relative MR [26,27].

After MR measurement, juveniles were measured for size and weight, killed (see Ethics), and dried
for 24h at 60°C. After being placed for 24h in desiccators over silica gel, dry weight was measured
to the nearest 107 g and juveniles were individually homogenized in an agate mortar for elemental
analysis. Elemental analysis was performed with a FlashEA 1112 elemental analyser (Thermo Finnigan,
Italy). A sample of 4 mg was collected for each individual in order to determine the percentage of carbon,
hydrogen, nitrogen, sulfur and oxygen (CHNSO) per milligram of dry weight. CHNSO composition was
then converted to relative energetic content (calmg~! dry weight) using the formula:

_ 83C + 344(H-0.1250) + 255
- 1000 ’

Relative energetic content (calmg ')

where C, H, O and S refer to the percentages of carbon, hydrogen, oxygen and sulfur in a sample,
respectively. After CHNSO analysis, individual samples were kept dehydrated for further genetic
analysis as the sex marker was not available at the time of MR and CHNSO analyses.

2.2. Genetic analysis

In 2012, genomic DNA was extracted from individual samples used for CHNSO analyses. A first primer
pair was designed based on the Salmo trutta sdY (sexually dimorphic on the Y-chromosome) male-
specific gene (GenBank accession number: JF826019.1), which has been shown to efficiently identify
genetic males as this sex-determining gene is only present in males [23,24,28]. It generates a male-specific
amplification product of approximately 170 bp DNA in the genus Salmo. An additional autosomal
amplification product serves as a positive control for the polymerase chain reaction (PCR) amplification.
This positive control is derived from the eye-specific lactate dehydrogenase sequence gene (GenBank
accession numbers AF488539 and AJ277710) and generates an amplification product of approximately
1kb. This method can also detect DNA degradation over time, which did not happen in our case.
Details concerning multiplex PCR amplification were described in the electronic supplementary material,
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Supplemental Experimental Procedures. The genotyping assay thus allowed the effective identification
of males (two bands) and females (one band).

2.3. Statistical analysis

Statistical analyses were performed with the freeware R v. 2.1.1. First, deviation of sex ratio (calculated
as the proportion of males in the sample, grouped binary data [29]) from the binomial distribution was
tested with a x? goodness-of-fit test, on the residual deviance of a generalized linear model with binomial
error and no explanatory variables [29]. Departure from a population-wide sex ratio of 0.5 (balanced sex
ratio) was tested using an exact binomial test. Influence of emergence timing on sample sex ratio was
then investigated using a generalized linear model with binomial error (and logit link function), sex
as the dependent variable and emergence day as the independent variable; each daily data point was
weighted by sample size.

Sex effects on individual body mass, body length, energetic content and relative MR were tested
using linear mixed models with one of the above listed variables as the dependent variable, sex
as a fixed effect and maternal identity as random effect to avoid pseudo-replication. To control for
difference in emergence date, emergence timing was used as a covariate in the models (first day of
emergence scored as 1). Length was log transformed to satisfy assumptions of linear mixed effects
models. Significance of factors in linear mixed effects models was examined by analyses of deviance
(type II Wald tests).

3. Results

Genetic sex typing was successfully performed for all samples except for two individuals due to
a lack of sufficient material to perform the analyses. Over the entire emergence period, sex ratio
followed a binomial distribution (goodness-of-fit test: x2=26.79, 9 d.f., p=0.22) and did not depart
from equilibrium (exact binomial test: sex ratio = 0.516, 95%CI: 0.435-0.597, p = 0.75). In addition, there
were no gender differences in emergence timing as sex ratio was not influenced by emergence date
(table 2). Gender had no influence on morphological traits as body dry weight (mean (&s.d.) for males:
18.97 (£3.6) mg, for females: 19.26 (£3.82) mg; figure 1a and table 2) and body length (mean (+s.d.) for
males: 25.32 (£0.99) mm, for females: 25.42 (£1.14) mm; figure 1b and table 2) did not differ between
males and females at emergence from gravel. Physiological traits were not influenced by gender either,
as no differences were observed in relative MR (mean (=+s.d.) for males: —0.0039 (£0.13), for females:
0.0042 (£0.13) mg; figure 1d and table 2) or mass-specific energy content at emergence from gravel (mean
(£s.d.) for males: 5.68 (£0.15) cal.mg dry weight, for females: 5.68 (+0.16) cal.mg dry weight; figure 1c
and table 2). However, all the traits (dry weight, length, relative MR and energy content) varied with
emergence date (table 2).

4. Discussion

In many previous studies, sex differences have been reported on: (i) the metabolism of closely related
salmonids (e.g. Onchorynchus mykiss) [30]; (ii) the growth rate of Atlantic salmon (Salmo salar) [31,32] and
Masou salmon (Onchorynchus masou) just after emergence [5]; and (iii) life histories (e.g. sex bias in habitat
use, dispersal, seaward migration) of brown trout [13,33] and brook trout (Salvelinus fontinalis) [34].
However, to our knowledge, no study has attempted to investigate the footprints of sexual dimorphism
as early in the life cycle as in this study. It is worth mentioning that negative results are generally not
published often [35], so it is not clear if this lack of information on sexual dimorphism at early stages
originates from unpublished negative results (where individual fish could be followed until sexual
differentiation), or the lack of investigation, notably due to technical limitations.

In this study, we were able to fill this gap by making use of the recently identified master sex-
determining gene, sdY, in salmonids [23,24], to track sex differences in brown trout early development.
This tool has proved useful to track potential physiological and behavioural sex differences in juvenile
brown trout. The results revealed no significant early effect of gender on energetic content, metabolism
or emergence timing. In fact, we could not find trends or patterns in the data that suggest that sex has
any effect on these traits at that stage.

Therefore, it appears that in the studied population, female brown trout do not allocate their resources
differently among sons and daughters as we did not find any difference between the energetic content
of males and females at the time of emergence. An alternative hypothesis would be that females provide
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Figure 1. Plots representing the relationships between (a) dry weight (mg), (b) body length, (c) energy content (cal), (d) relative MR and
emergence day for male and female brown trout juveniles at emergence. Filled circles and solid lines represent females; open symbols
and dotted lines represent males. Gender-specific lines are for graphical display only, no gender effects or gender x emergence day
interactions were significant.

sons and daughters with different energy stores and that different rate of energy use during incubation
leads to a similar energetic state at the time of emergence. However, this last hypothesis is unlikely
as no difference in energy use (i.e. MR) has been observed at the time of emergence. Furthermore,
because neither energetic status nor emergence timing is influenced by sex, mechanisms that trigger
sexual dimorphism during ontogenesis must intervene later in the life cycle.

Despite some clues about early gender differences in gene expression [23], such dimorphism may
develop simultaneously with phenotypic sexual differentiation, which starts right after emergence in
salmonids (around 800° days in brown trout [18] and brook trout [19]) and, as such, after the period
considered in this study. Further studies should address these questions in other salmonids for which
sdY is expressed during early developmental stages [23]. A similar absence of sex differences on
physiology and behaviours at emergence in closely related taxa may confirm that dimorphism occurs
later throughout development, when hormonally mediated differentiation takes place.

The lack of early gender differences in the studied brown trout population may result from selective
pressures acting on phenotypes during the pre-emergence period affecting both males and females in
a similar way (e.g. selection for earlier emergence date, large body size) [1], and as a result may not
promote sex differences before emergence from gravel. Alternatively, evidence for early size dimorphism
in chinook salmon [11], a species known to display biased sex ratio related to sex differences in survival
[36], highlights the requirement for interspecific and inter-population comparisons to understand if
environmental gradients that promote gender-specific life histories (e.g. time spent at sea in anadromous
populations, intrasexual competition intensity, gender difference in survival) shape early life histories in
salmonids through early gender differences in energetic status and behaviour.
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