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FRACTIONAL-ORDER DIFFUSION FOR IMAGE RECONSTRUCTION
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In this paper, a general framework based on fractional-order partial differential equations allows to solve image reconstruction problems. The algorithm presented in this work combines two previous notions: a fractional derivative implementation by Discrete Fourier Transform and the edge detection by topological gradient. The purpose of the paper is to extend some existing results in image denoising problem with fractional-order diffusion equations and presents new results in image inpainting. The results emphasize the importance of particular fractional-orders.

INTRODUCTION

Our purpose is to minimize the following functional:

F α (u) = c 1 2 ∇ α u 2 L 2 (Ω) + Lu -v 2 E ( 1 
)
where α represents the order of the derivative with a finite L 2 norm (i.e minimization in the H 2α ≡ W 2α,2 space functions with α > 0), L is a linear observation operator and the space E corresponds to L 2 (Ω) in the restoration case and L 2 (Ω\ω) in the inpainting case with ω ⊂ Ω is an unkwown subset.

The main idea of this paper is to use fractional derivatives for the regularization term instead of integer derivatives. In the last 30 years, fractional calculus began to shift from pure mathematics formulations to applications in various fields including biology, physics and mechanics. In particular in the image processing field [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF][START_REF] Cuesta | Image processing by means of a linear integro-differential equation[END_REF][START_REF] Didasa | Regularity and scalespace properties of fractional high order linear filtering[END_REF], the nonlocal properties of fractional differential-based approaches appear to give better results than traditional integral-based algorithms.

The minimization of the functional (1) is equivalent to consider the associated Euler-Lagrange equation:

(∇ α ) * • (c∇ α u) + L * Lu = L * v in Ω, ∇ α u • n = 0 on ∂Ω. ( 2 
)
where n is the external normal to the boundary ∂Ω and L * the adjoint operator of L.

In [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF], Bai and Feng use fractional derivatives for image denoising with an iterative process. However, the computing time remains a major drawback of their method and the first contribution of this paper proposes an efficient algorithm able to solve this issue. Whereas in [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF], the diffusion coefficient c(x), which depends on the space variable, evolves during the iterative process, we propose to fix it and reconstruct the image in one iteration using the topological gradient information [START_REF] Belaid | Image restoration and edge detection by topological asymptotic expansion[END_REF][START_REF] Auroux | Image processing by topological asymptotic expansion[END_REF][START_REF] Larnier | Edge detection and image restoration with anisotropic topological gradient[END_REF]. The second contribution is related to the fact that the algorithm is also able to solve inpainting problems.

Section 2 recalls a way to calculate fractional derivative using Fourier transform. Section 3 is dedicated to edge detection by topological gradient method. In Section 4, our image reconstruction algorithm is presented. Section 5 compares the numerical results in image denoising with the Bai and Feng's algorithm, and some denoising and inpainting applications are performed and compared with other established methods involving partial differential equations.

FRACTIONAL DERIVATIVES

This section recalls the implementation of the fractional order gradient from Bai and Feng [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF]. For the next, let D α ≡ ∇ α be the fractional operator having the same structure as the gradient operator, that is

D α u = ∇ α u = (D α
x u, D α y u). The computation of fractional derivative is given for the discrete image domain where it is assumed that u has m × m pixels. This domain consists of uniformly spaced points starting at (0, 0), with u(x, y) = u(x∆x, y∆y) for x, y = 0, . . . , m -1, where the grid size is chosen so that ∆x = ∆y = 1. The following definition of two-dimensional Discrete Fourier Transform (2D-DFT) is used

F (u)(w 1 , w 2 ) = 1 m 2 m-1 x,y=0 u(x, y) exp -i2π w 1 x + w 2 y m .
Using the gradient approximation with the finite difference, it is possible to write the relation

F (u -T x u) = K 1 x F (u) where K 1 x = diag 1 -exp -i2π w1 m
is a diagonal operator and T x a translation operator with periodic boundary conditions, T x u(x, y) = u(x -1, y). We have

D α x u = F -1 (K α x F (u)) , (3) 
where

K α x = diag 1 -exp -i2π w1 m α .
In order to use a centred difference scheme to compute the fractional derivative, a translation of D α

x is made by α 2 . The fractional derivative takes the following form

Dα x u = D α x u x + α 2 , y , (4) 
where u is the interpolation of u outside the discrete set of points of the image. As a correspondence of this equivalence (4) it is possible to write the following relation:

Dα x u = F -1 Kα x F (u) , (5) 
where

Kα x = diag 1 -exp -i2π w1 m α exp iπα w1 m .

The adjoint operator Dα *

x is defined as follows:

Dα * x u = F -1 Kα * x F (u) . (6) 

TOPOLOGICAL GRADIENT

The information about the edges is determined with α = 1.

The minimization of F 1 (u), Equation ( 1), is equivalent to the problem of finding u ∈ H 1 (Ω) such that

-∇ • (c∇u) + L * Lu = L * v in Ω, ∂ n u = 0 on ∂Ω, (7) 
where ∂ n denotes the normal derivative to ∂Ω. At a given point x 0 ∈ Ω, a small isolated crack σ ρ is inserted and σ ρ = x 0 +ρσ(n) where σ(n) is a unit line segment, n is a unit vector normal to the crack and ρ > 0 is the length of the crack. Let Ω ρ = Ω\σ ρ be the perturbed domain. The perturbed solution

u ρ ∈ H 1 (Ω ρ ) satisfies      -∇ • (c∇u ρ ) + L * Lu ρ = L * v in Ω, ∂ n u ρ = 0 on ∂Ω, ∂ n u ρ = 0 on σ ρ . (8) 
The edge detection method consists in looking for a crack σ such that the energy j(ρ) = J ρ (u ρ ) = 1 2 Ωρ |∇u ρ | 2 is as small as possible, see [START_REF] Belaid | Image restoration and edge detection by topological asymptotic expansion[END_REF]. This amounts to saying that the energy outside the edges is as small as possible.

The cost function j has the following asymptotic expansion

j(ρ) -j(0) = ρ 2 g(x 0 , n) + o(ρ 2 ), (9) 
where the topological gradient g is given by

g(x 0 , n) = -πc(∇u 0 (x 0 )•n)(∇p 0 (x 0 )•n)-π|∇u 0 (x 0 )•n| 2 . ( 10 
)
The solution of the adjoint problem

-∇ • (c∇p 0 ) + L * Lp 0 = -∂ u J 0 (u 0 ) in Ω, ∂ n p 0 = 0 on ∂Ω, (11) 
is p 0 that, together with u 0 , is calculated in the initial domain without cracks. The edges are located at points where the topological gradient is the most negative.

ALGORITHM

In order to reduce the discontinuities across the image border due to the periodization, the image is reflected symmetrically across the border in the same way as [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF].

The aim is to solve the following equation:

Dα * x c x Dα x u + Dα * y c y Dα y u + u = v (12) 
In order to obtain a diffusion function in the vertical and horizontal directions, the definition of the topological gradient g (10) can be simplified as:

g x (x) = -πc∂ 1 u 0 (x)∂ 1 p 0 (x) -π(∂ 1 u 0 (x)) 2 , g y (x) = -πc∂ 2 u 0 (x)∂ 2 p 0 (x) -π(∂ 2 u 0 (x)) 2 . ( 13 
)
Algorithm 1 solve the image reconstruction problem (1) Input: v, c 0 , and δ. Output: u 1: Initialization: c i = c 0 , i is x or y.

2: Compute u 0 and p 0 , solutions of the direct [START_REF] Wang | Image quality assessment : From error visibility to structural similarity[END_REF] and adjoint (11) problems. 3: Compute g x and g y given by Equations (13). The algorithms were coded in MATLAB. The reconstructions are compared using Peak Signal to Noise Ratio (PSNR) expressed in dB and the Structural SIMilarity (SSIM) [START_REF] Wang | Image quality assessment : From error visibility to structural similarity[END_REF].

4: Set c i (x) = if g i (x) < δ, c 0 exp ((g i (x) -δ)/|δ|) otherwise.

NUMERICAL RESULTS

Table 1 provides a comparison between Bai and Feng algorithm [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF] and Algorithm 1, the images are corrupted by an additive Gaussian noise of standard deviation σ. When σ = 15, the diffusion coefficient c 0 and the threshold δ are c 0 = 1.3, δ = -300 for the Lena and Peppers images and c 0 = 1, δ = -300 for the Boat image. When σ = 25, the diffusion coefficient c 0 and the threshold δ are c 0 = 2, δ = -300 for the Boat and Peppers images and c 0 = 2.5, δ = -400 for the Lena image. The same diffusion coefficient c 0 and the threshold δ are applied to all α to emphasize the fractional order influence. One can remark that for each image, the PSNR and SSIM values have one peak located most generally near 1.5 and 1.75. Figure 1 shows the reconstructions obtained with σ = 15 and α = 1.5.

Table 2 compares the CPU relative to restoration processes for α = 1 and 1.5 carried out for Bai and Feng's algorithm [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF] and for Algorithm 1. The tests have been made on the same computer with MATLAB. Our algorithm needs a shorter computing time to achieve similar quality results.

A comparison is made in Table 3 with the results of Algorithm 1 with α = 1.5 and two denoising algorithms. The first Table 1. Image denoising with Bai and Feng algorithm [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF] and with Algorithm 1.

Fig. 1. From left to right, the noisy image with σ = 15, the reconstructions with respectively Bai and Feng's algorithm [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF] and Algorithm 1, the fractional order α is equal to 1.5.

From top to bottom, the Lena, Boat and Peppers images. one, the Rudin-Osher-Fatemi algorithm solves the problem using a method based on total variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. The second one uses an algorithm proposed by Weickert [START_REF] Weickert | Anisotropic Diffusion in Image Processing[END_REF]. One can note that the best quality in PSNR and SSIM are obtained with the fractional derivative denoising algorithm. Figure 2 presents the results of the Boat image. A comparative study of inpainting reconstruction methods has been performed. In this experiment, the diffusion coefficient c 0 and the threshold δ are respectively equal to 0.1 and -500. Table 4 presents the results of different numerical schemes. The first one uses the approximation of a Laplace equation with homogeneous boundary conditions. The second one is based on total variation minimization; it uses the split Bregman method improved by Goldstein and Osher [START_REF] Goldstein | The split Bregman method for L1 regularized problems[END_REF]. Figure 3 presents the results on the Lena image from Table 4. 

CONCLUSION

This work proposes new applications of fractional-order partial differential equations in image processing. Our studies led to proposing a general reconstruction algorithm that incorporates the fractional derivative implementation from [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF] and the edge detection by topological gradient from [START_REF] Belaid | Image restoration and edge detection by topological asymptotic expansion[END_REF]. Concerning denoising, better results are obtained with an order α which is fractional rather than integer. The interesting values for the fractional order α seem to be around 1.5 and 1.75. It corroborates previous results [START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF]. Contrary to existing iterative processes with a fractional order, the algorithm presented here is non iterative. It gives similar results for a shorter computer time and can be used to solve inpainting problems. The comparison with state-of-the-art methods involving partial differential equations showed better results in terms of quality.
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 5 Using the Fourier transform and the centred scheme, solve the equation Dα * x c x Dα x u + Dα * y c y Dα y u + u = v.

Fig. 2 .

 2 Fig.2. From left to right and up to down, the noisy Boat image, the reconstruction with respectively Algorithm 1, Rudin-Osher-Fatemi's algorithm[START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] and Weickert's algorithm[START_REF] Weickert | Anisotropic Diffusion in Image Processing[END_REF].

Fig. 3 .

 3 Fig. 3. From left to right and up to down, the reconstruction with respectively Algorithm 1, Laplace equation and total variation regularization [10].

Table 2 .

 2 CPU for Bai and Feng's algorithm[START_REF] Bai | Fractional-order anisotropic diffusion for image denoising[END_REF] and for our algorithm with α = 1 and 1.5 applied on the noisy Boat image with σ = 25.

	Boat	BFα=1 Algoα=1 BFα=1.5 Algoα=1.5
	PSNR	27.35	28.17	28.22	28.44
	SSIM	712	732	743	794
	CPU (s)	940	45	1820	70

Table 3 .

 3 Comparison of different denoising algorithms.

Table 4 .

 4 Comparison of different inpainting algorithms with 80% unknown pixels.

		Lena	Boat	Peppers
	Method	PSNR / SSIM PSNR / SSIM PSNR / SSIM
	Algoα=1.5	30.12 / 863	26.84 / 767	27.84 / 888
	Laplacian	28.31 / 854	26.46 / 771	26.48 / 868
	TV [10]	27.48 / 830	25.35 / 735	25.81 / 851