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Diagonal reduction algebra and reflection equation

We describe the diagonal reduction algebra D(gl n ) of the Lie algebra gl n in the R-matrix formalism. As a byproduct we present two families of central elements and the braided bialgebra structure of D(gl n ).

Introduction

Reduction algebras were introduced in [START_REF] Mickelsson | Step algebras of semi-simple subalgebras of Lie algebras[END_REF][START_REF] Asherova | Projection operators for simple Lie groups. II. General scheme for construction of lowering operators. The groups SU(n) (Russian)[END_REF] for a study of representations of a Lie algebra with the help of the restriction to the space of highest weight vectors with respect to a reductive subalgebra g. In an abstract setting, for an associative algebra A which contains U(g) as a subalgebra and satisfies certain finiteness conditions, the corresponding reduction algebra is the double coset (2) equipped with a nontrivial multiplication (3).

This associative multiplication, defined with the help of the extremal projector of Asherova-Smirnov-Tolstoy [AST], can be also described [K] by means of the so called universal dynamical twist J. This twist gives rise to a solution of the universal dynamical Yang-Baxter equation [ABRR].

The diagonal reduction algebra D(g) is a particular case, associated to the diagonal embedding of U(g) into U(g) ⊗ U(g), of reduction algebras. The algebra D(g) acts in the space of highest weight vectors of the tensor product of two representations of g, considered as the representation of g. In [START_REF] Khoroshkin | Diagonal reduction algebras of gl type; Funktsional[END_REF][START_REF] Khoroshkin | Structure constants of diagonal reduction algebras of gl type[END_REF] we presented a list of ordering defining relations for natural generators of the diagonal reduction algebra D(gl n ) of the Lie algebra gl n .

The main goal, proposition 4.1 of this paper, is to relate the algebra D(gl n ) to the R-matrix formalism. We exhibit a matrix L of certain generators of the algebra D(gl n ) such that the defining relations can be collected into the operator equation usually called the reflection equation.

To this end we study and use the reduction algebras Diff h (n, N) of algebras of differential operators in nN variables, which we call the algebras of h-deformed differential operators. These reductions were used in [KN] for the representation theory of Yangians. The algebras Diff h (n, N) are closely related, by means of the generalized Harish-Chandra isomorphism [KNV], to "relative Yangians" of A. Joseph [J] and "family algebras" of A. A. Kirillov [Kr].

In Section 3 we introduce a distinguished set of Heisenberg type generators of the algebras Diff h (n, N) and write down the defining relations for them. It turns out that the relations admit the R-matrix form, with the well-known solution R of the dynamical Yang-Baxter equation. Next we exhibit homomorphisms from the diagonal reduction algebra D(gl n ) to Diff h (n, N) (h-analogues of the "oscillator representations"), which lead to the presentation of D(gl n ) by means of the reflection equation.

The description of the algebra D(gl n ) as the reflection equation algebra has many advantages. As an application we find two natural families of central elements of D(gl n ) expressed as "quantum" traces of powers of L-operators, see Section 4.2. Also, the Rmatrix formalism reveals the braided bialgebra structure of D(g), see Section 4.3.

The modules over the algebra D(g) and the braided tensor structure on certain categories of D(g)-modules we study in a forthcoming publication.

Reduction algebras

In this section we recall the definition and some basic properties of reduction algebras. We restrict ourselves to reduction algebras related to general linear Lie algebra gl n which we denote further by g. Let e ij , i, j = 1, . . . , n, be the standard generators of the Lie algebra g, with the commutation relations [e ij , e kl ] = δ jk e il -δ il e kj .

(1)

We use the notation h and n ± for the Cartan and two opposite nilpotent subalgebras of g; h i denotes the element e ii ∈ h, and ε i the elements in h * , so that ε i (h j ) := δ i,j ;

h ij := h i -h j ∈ h and hi := h i -i, hij = hi -
hj are the elements of U(h). We define Ū(h) to be the ring of fractions of the commutative ring U(h) with respect to the multiplicative set of denominators, generated by the elements (h ij + k) -1 , k ∈ Z; and Ū(g) to be the ring of fractions of the universal enveloping algebra U(g) with respect to the same set of denominators.

1. Let A be an associative algebra which contains U(g) as a subalgebra, and the adjoint action of g on A is locally finite. In particular A is a U(g)-bimodule with respect to the multiplication by elements from U(g) on the left and on the right. Assume in addition that A is free as the left U(h)-module and the adjoint action of U(h) is semisimple. Let Ā be the localization Ā = A ⊗ U(h) Ū(h). The double coset space

à := n -Ā\ Ā/ Ān + (2)
equipped with a natural associative multiplication ⋄ , see e.g. [START_REF] Khoroshkin | Mickelsson algebras and Zhelobenko operators[END_REF] for details, is usually called the reduction (double coset) algebra. The multiplication ⋄ is described by the prescription

x ⋄ y = x P y , ( 3 
)
where P is the extremal projector [AST]. The projector P belongs to a certain extension of Ū(g), satisfies the properties

x P = P y = 0 for x ∈ n + , y ∈ n -, P = 1 mod n -Ū(g), P = 1 mod Ū(g)n + , P 2 = P .
and can be given by the explicit multiplicative formula [AST]. Alternatively, one can find representatives x ∈ Ā and ỹ ∈ Ā of coset classes x and y, such that x belongs to the normalizer of the left ideal Ān + , or ỹ belongs to the normalizer of the right ideal n -Ā. Then x ⋄ y is the image in the coset space à of the product x • ỹ.

In the sequel the algebra A is free as the left U(g)-module with respect to the multiplication by elements of U(g) on the left, and this U(g)-module is generated by a linear space V , invariant with respect to the adjoint action (which is supposed to be locally finite) of the Lie algebra g. In this case the reduction algebra is the free left Ū(h)-module, generated by V , see [START_REF] Zhelobenko | Representations of reductive Lie algebras[END_REF][START_REF] Khoroshkin | Mickelsson algebras and Zhelobenko operators[END_REF]. Note also that the construction of the double coset space à does not use the multiplication in A but the U(g)-bimodule structure on A only. We denote sometimes by : x : the image in à of the element x ∈ Ā. This notation is useful to distinguish between the multiplication • in the algebra A and the multiplication ⋄ in the reduction algebra Ã.

2. The Weyl group of the root system of g is the symmetric group S n . Let σ 1 , . . . , σ n-1 be the generators of S n ; σ i corresponds to the permutation (i, i + 1). The group S n acts on vector spaces h * and h, so that σ i (h j ) = h σ i (j) and σ i (ε j ) = ε σ i (j) . These actions are related by λ(σ(h)) = σ -1 (λ)(h), σ ∈ S n , h ∈ h and λ ∈ h * . The action of S n on h extends to the action of a cover Sn of the group S n by automorphisms of the Lie algebra g. We denote by the same symbols σ i the following automorphisms of the algebra U(g):

σ i (x) := Ad exp(e i,i+1 ) Ad exp(-e i+1,i ) Ad exp(e i,i+1 ) (x) , so that σ i (e kl ) = (-1) δ ik +δ il e σ i (k)σ i (l) .
Let ρ = -n k=1 kε k . Then the shifted action • of the group S n on the vector space h * is defined by setting

σ • λ := σ(λ + ρ) -ρ . (4) 
With the help of (4) we induce the action • of S n on the commutative algebra U(h) by regarding the elements of this algebra as polynomial functions on h * . We have

σ • hk = hσ(k) , σ • hij = hσ(i)σ(j) .
We also use the following notation for shift automorphisms of the rings U(h) and Ū(h). For any α ∈ h * and any element f ∈ Ū(h) denote by f [α] the image of f under the shift automorphism Ū(h) → Ū(h), defined by the rule h → h + (α, h). In particular,

h i [ε j ] = h i + δ ij .
3. Assume now that the action of Sn on U(g) extends to the action by automorphisms of the algebra A. For any i = 1, ..., n -1 define the map qi :

A → Ã by qi (x) = k≥0 (-1) k k! êk i,i+1 (σ i (x)) e k i+1,i k j=1 ( hi,i+1 -j) -1 (5) 
Here êi,i+1 (x) = [e i,i+1 , x] is the adjoint action of e i,i+1 on x. The image of the sum n -A + An + of the ideals is a subspace of n -Ā + Ān + , see [Zh], so the formula (5) defines the map, denoted by the same symbol qi : n -A \ A/An + → Ã. The map qi satisfies the relations qi

(hx) = (σ i • h)q i (x), qi (xh) = qi (x)(σ i • h) (6)
for any h ∈ U(h) and x ∈ A. The use of (6) extends the map qi : n -A \ A/An + → Ã to the map qi : Ã → Ã. The maps qi satisfy the braid group relations [Zh] and are automorphisms of the reduction algebra Ã, see [START_REF] Khoroshkin | Mickelsson algebras and Zhelobenko operators[END_REF].

3 Algebra of h-deformed differential operators

Reduction of the algebras of differential operators

There is a homomorphism ψ : U(g) → Diff(n) of the algebra U(g) to the algebra of polynomial differential operators in n variables x 1 , . . . , x n . The image of e ij ∈ U(g) is

ψ(e ij ) = x i ∂ j . (7) 
Denote by Diff h (n) the reduction algebra of Diff(n) ⊗ U(g) with respect to the diagonal embedding of U(g). We call Diff h (n) algebra of h-deformed differential operators (the explicit definition, given below, makes it clear that this algebra admits a well-defined limit hij → ∞ for i < j and h1 > h2 > • • • > hn in which it becomes the usual algebra of differential operators with polynomial coefficients).

The algebra Diff h (n) is generated over Ū(h) by the classes of x i and ∂ j , which we denote by the same symbols. These elements are subject in Diff h (n) to quadratic-linear relations over Ū(h), which we now describe.

These relations can be computed directly. However, almost all the required information can be found in the description of the reduction algebra of U(gl n+1 ) with respect to U(gl n ) (this description is a basic step in the derivation of the Gelfand-Tsetlin basis in [Zh]). Indeed, the generators e i,n+1 and e n+1,i , i = 1, . . . , n, of the corresponding double coset algebra form the bases of the fundamental representation ω and its dual ω * with respect to the adjoint representation of g = gl n . The elements x i and ∂ i form the same bases of ω and ω * , the only difference is that the commutators [e i,n+1 , e n+1,j ] belong to the Cartan subalgebra of gl n+1 while [x i , ∂ j ] = δ ij . Thus, by [START_REF] Zhelobenko | Representations of reductive Lie algebras[END_REF]4.5.3], we have

x i ⋄ x j = α ij x j ⋄ x i , ∂ j ⋄ ∂ i = α ij ∂ i ⋄ ∂ j , i < j, x i ⋄ ∂ j = ∂ j ⋄ x i i = j, x i ⋄ ∂ i = j β ij ∂ j ⋄ x j + µ i . (8) 
Here

α ij = hij + 1 hij , β ij = 1 1 -hij ϕ j [ε j ] ϕ i with ϕ j = k:k>j hjk hjk -1 , (9) 
and µ i are the elements of Ū(h) which are to be determined by another argument.

Lemma 3.1 We have

µ i = -ϕ -1 i .
Proof. Note first that µ n = -1. Indeed, since ∂ n is a highest weight vector with respect to the adjoint action of U(g) on Diff(n),

x n ⋄ ∂ n =: x n ∂ n :=: ∂ n x n : -1.
On the other hand, the products ∂ j ⋄ x j are equal to sums m a m : ∂ m x m : with some a m ∈ Ū(h) and do not contain a constant term. Thus

µ n = -1 = -ϕ -1 n .
For the derivation of other µ j we use the Zhelobenko automorphisms qi .

It is not difficult to check that qi

(x i ) = -x i+1 hi,i+1 hi,i+1 -1 , qi (x i+1 ) = x i , qi (x j ) = x j , j = i, i + 1, qi (∂ i+1 ) = ∂ i hi,i+1 hi,i+1 -1 , qi (∂ i ) = -∂ i+1 , qi (∂ j ) = ∂ j , j = i, i + 1. ( 10 
)
Now we apply the automorphism qn-1 to the already known identity

x n ⋄ ∂ n = j β n,j ∂ j ⋄ x j -1.
We get the relation

hn-1,n hn-1,n -1 x n-1 ⋄ ∂ n-1 = j qn-1 β n,j ∂ j ⋄ x j -1.
Taking into account the last line in (8), we rewrite this relation in the form

x n-1 ⋄ ∂ n-1 = j β n-1,j ∂ j ⋄ x j - hn-1,n -1 hn-1,n , which implies that µ n-1 = - hn-1,n -1 hn-1,n = -ϕ -1 n-1 .
Next we apply qn-2 to the identity

x n-1 ⋄ ∂ n-1 = j β n-1,j ∂ j ⋄ x j -ϕ -1 n-1 and find that µ n-2 = -ϕ -1
n-1 and then further

µ i = -ϕ -1 i for all i.
The last line in (8) can be now rewritten as

x i ⋄ ∂ i = j 1 1 -hij ∂ j ϕ j ⋄ x j ϕ -1 i -ϕ -1 i ,
which suggests the change of variables

∂j := ∂ j ϕ j . (11) 
In the new variables the relations ( 8) and ( 10) look as follows:

x i ⋄ x j = hij + 1 hij x j ⋄ x i , i < j, ∂i ⋄ ∂j = hij -1 hij ∂j ⋄ ∂i , i < j, x i ⋄ ∂j = ∂j ⋄ x i , i < j; x i ⋄ ∂j = hij ( hij -2) ( hij -1) 2 ∂j ⋄ x i , i > j, x i ⋄ ∂i = j 1 1 -hij ∂j ⋄ x j -1, (12) qi (x i ) = -x i+1 hi,i+1 hi,i+1 -1 , qi (x i+1 ) = x i , qi (x j ) = x j , j = i, i + 1, qi ( ∂i ) = - hi,i+1 -1 hi,i+1 ∂i+1 , qi ( ∂i+1 ) = ∂i , qi ( ∂j ) = ∂j , j = i, i + 1. (13)
We have other sets of Heisenberg type generators in the algebra Diff h (n). Set

ϕ ′ j = k:k<j hjk hjk -1 , (14) 
and put ∂j :

= ∂ j ϕ ′ j -1 . ( 15 
)
Arguments parallel to that of Lemma 3.1 show that

x i ⋄ x j = hij + 1 hij x j ⋄ x i , i < j, ∂i ⋄ ∂j = hij -1 hij ∂j ⋄ ∂i , i < j, ∂j ⋄ x i = x i ⋄ ∂j , i > j, ∂j ⋄ x i = hij ( hij -2) ( hij -1) 2 x i ⋄ ∂j , i < j, ∂i ⋄ x i = j 1 1 + hij x j ⋄ ∂j + 1. ( 16 
)
and the same as in ( 13) coefficients in the action of Zhelobenko automorphisms. Alternatively, we can leave the variables ∂ j unchanged and rescale the variables x j . For the variables xj := ϕ j x j and ∂ j we get the relations of the form ( 12) with the reversed inequalities between i and j in first two lines of the relations (12); for the variables xj := ϕ ′ j -1 x j and ∂ j we get the relations of the form ( 16) with the reversed inequalities between i and j in first two lines of relations (16).

Polarized form of relations

1. The first line of ( 12) can be written in the following polarized form:

x i ⋄ x j = 1 hij x i ⋄ x j + h2 ij -1 h2 ij x j ⋄ x i , i < j, x i ⋄ x j = 1 hij x i ⋄ x j + x j ⋄ x i , i > j , ( 17 
) ∂i ⋄ ∂j = - 1 hij ∂i ⋄ ∂j + h2 ij -1 h2 ij ∂j ⋄ ∂i , i < j, ∂i ⋄ ∂j = - 1 hij ∂i ⋄ ∂j + ∂j ⋄ ∂i , i > j . (18) 
Rewrite ( 17), ( 18) and the last two lines in (12) in an operator form2 

x i ⋄ x j = Rij kl x k ⋄ x l , ∂i ⋄ ∂j = Rlk ji ∂k ⋄ ∂l , x i ⋄ ∂j = Tik jl ∂k ⋄ x l -δ i j , (19) 
where Rij kl and Tik jl are matrix coefficients of operators R, T :

C n ⊗ C n → Ū(h) ⊗ C n ⊗ C n . Their nonzero values are Rij ij = 1 hij , i = j, Rij ji =      h2 ij -1 h2 ij , i < j, 1, i ≥ j (20) Tij ij = - 1 hij -1 , i = j, Tji ij =    hij ( hij + 2) ( hij + 1) 2 , i < j, 1, i ≥ j (21)
Note the following identity:

Tkl ij [-ε l ] = Rlk ji . (22) 
Similarly, the relations ( 16) can be presented in an operator form as

x i ⋄ x j = Rij kl x k ⋄ x l , ∂i ⋄ ∂j = Rlk ji ∂k ⋄ ∂l , ∂j ⋄ x i = Ŝik jl x l ⋄ ∂k + δ i j , (23) 
where the non-zero elements of Ŝ are

Ŝij ij = 1 hij + 1 , Ŝij ji =      1 , i > j hij ( hij -2) ( hij -1) 2 , i < j (24)
2. The relations in the last two lines of ( 16) can be obtained in another way, by inverting the last relation in ( 19). Let Ψ be the skew inverse to T (see e.g. [O], section 4.1.2 for details of the R-matrix technique needed here), that is,

Ψik jl Tlm kn = δ i n δ m j . (25) 
Multiplying the relation

x l ⋄ ∂k = Tlm kn ∂m ⋄ x n -δ l k
by Ψik jl from the left and contracting repeated indices, we get the relation ∂j

⋄ x i = Ψik jl x l ⋄ ∂k + Ψik jk . ( 26 
)
The relations ( 11), ( 15), and the last two lines of ( 16) imply that

∂i = ∂i (Q - i ) -1 = Q + i ∂i , (27) 
where

Q ± i = k:k =i hik ± 1 hik , Q - j [ε j ] Q + j = 1 , (28) 
and

Ψij ij = Q + i Q - j 1 hij + 1 , Ψij ji =      1 , i < j ( hij -1) 2 hij ( hij -2) , i > j (29)
Comparing ( 26) and the last line in ( 16) we conclude that

Ψik jk = Q + i δ i j . (30) Define operators Q ± : C n → C n by (Q ± ) i j = Q ± j δ i j .
Then the relation ( 30) can be rewritten as

Tr 2 Ψ12 = Q + 1 .
Here the lower index specifies the number of the copy of the space C n in which the corresponding operator acts nontrivially. For example, Q + 1 stands for the operator Q + acting in the first copy and Tr 2 means the contraction of indices in the second copy.

Reflection equation and copies

To lighten the notation, in the formulation of statements, the matrix multiplication of matrices with entries in a reduction algebra is written without the symbol ⋄ (which is always assumed).

Set Li

j := x i ⋄ ∂j ∈ Diff h (n).
Proposition 3.2 The matrix L satisfies the reflection equation

R12 L1 R12 L1 -L1 R12 L1 R12 = R12 L1 -L1 R12 . ( 31 
)
Proof. Consider the monomial x i 1 ⋄ x i 2 ⋄ ∂j 1 ⋄ ∂j 2 . Reorder it in two ways. The first way:

x i 1 ⋄ x i 2 ⋄ ∂j 1 ⋄ ∂j 2 = Ri 1 i 2 kl x k ⋄ x l ⋄ ∂j 1 ⋄ ∂j 2 = Ri 1 i 2 kl x k ⋄ Tln j 1 m ∂n ⋄ x m ⋄ ∂j 2 - Ri 1 i 2 kl δ l j 1 x k ⋄ ∂j 2 = k,l,m,n Ri 1 i 2 kl x k • ∂n ⋄ Tln j 1 m [-ε n ]x m ⋄ ∂j 2 - Ri 1 i 2 kj 1 x k ⋄ ∂j 2 = Ri 1 i 2 kl Lk n ⋄ Rnl j 1 m Lm j 2 - Ri 1 i 2 kj 1 Lk j 2 .
The second way of reordering:

x i 1 ⋄ x i 2 ⋄ ∂j 1 ⋄ ∂j 2 = x i 1 ⋄ x i 2 ⋄ Rmn j 2 j 1 ∂n ⋄ ∂m = Rmn j 2 j 1 [-ε i 1 -ε i 2 ]x i 1 ⋄ Ti 2 t nk ∂t ⋄ x k ⋄ ∂m - Rmn j 2 j 1 [-ε i 1 -ε i 2 ]δ i 2 n x i 1 ⋄ ∂m = Rmn j 2 j 1 [-ε i 1 -ε i 2 ] Ti 2 t nk [-ε i 1 ]x i 1 ⋄ ∂t ⋄ x k ⋄ ∂m - Rmi 2 j 2 j 1 [-ε i 1 -ε i 2 ]x i 1 ⋄ ∂m = t,k,m,n x i 1 ⋄ ∂t ⋄ Ti 2 t nk [-ε t ]x k ⋄ ∂m Rmn j 2 j 1 [-ε t -ε i 2 + ε k -ε m ] - m x i 1 ⋄ ∂m Rmi 2 j 2 j 1 [-ε m -ε i 2 ] = t,k,m,n Li t Ti 2 t nk [-ε t ] ⋄ Lk m Rmn j 2 j 1 [-ε t -ε i 2 + ε k -ε m ] - m Li 1 m Rmi 2 j 2 j 1 [-ε m -ε i 2 ] .
Matrix elements Rij kl and Tij kl are nonzero only if i = k and j = l, or i = l and j = k. We can thus replace the shift by ε t + ε i 2 in the last displayed line with the shift by ε n + ε k .

Besides, the matrix coefficient Rmn j 2 j 1 depends only on the difference h n -h m and is invariant with respect to the shift by ε m + ε n . Using the relation ( 22) we rewrite the result as Let now Diff(n, N) be the algebra of differential operators in nN variables x iα , i = 1, . . . , n, α = 1, . . . , N. There is a homomorphism

x i 1 ⋄ x i 2 ⋄ ∂j 1 ⋄ ∂j 2 = Li 1 t Ri 2 t kn ⋄ Lk m Rmn j 2 j 1 - Li 1 m Rmi 2 j 2 j 1 ( 
ψ N : U(g) → Diff(n, N). The image of e ij ∈ U(g) is ψ(e ij ) = α x iα ∂ jα . ( 33 
)
Denote by Diff h (n, N) the reduction algebra of Diff(n, N) ⊗ U(g) with respect to the diagonal embedding of U(g). The algebra Diff h (n, N) is generated over Ū(h) by the classes of all x iα and ∂ jβ , which we denote by the same symbols. Denote

∂jβ = ∂ jβ ϕ j . ( 34 
)
The calculations from Sections 3.1 and 3.2 can be repeated for any N. The result is Proposition 3.3 The elements x iα and ∂jβ satisfy the following relations

x iα ⋄ x jβ = Rij kl x kβ ⋄ x lα , ∂iα ⋄ ∂jβ = Rlk ji ∂kβ ⋄ ∂lα , x iα ⋄ ∂jβ = Rki lj [ε l ] ∂kβ ⋄ x lα -δ α β δ i j . (35) 
The same proof as that of proposition 3.2 shows that the combinations

Li j := α x iα ⋄ ∂jα (36)
satisfy the same reflection equation. We formulate this assertion in the separate proposition.

Proposition 3.4 The matrix L, defined in (36) satisfies the reflection equation

R12 L1 R12 L1 -L1 R12 L1 R12 = R12 L1 -L1 R12 . ( 37 
)
Remark. Equally well one can define the grassmanian version of h-deformed differential operators, the reduction of the algebra U(g) ⊗ C[ξ iα , d jβ ] where ξ iα are anti-commuting variables and d jβ grassmanian derivatives in them. The defining relations differ by the following sign changes:

ξ iα ⋄ ξ jβ = - Rij kl ξ kβ ⋄ ξ lα , diα ⋄ djβ = - Rlk ji dkβ ⋄ dlα , ξ iα ⋄ djβ = - Rki lj [ε l ] dkβ ⋄ xi lα -δ α β δ i j . (38) 
Here djβ := d jβ ϕ j . Then the operator L with entries Li j := α ξ iα ⋄ djα satisfies the same reflection equation (37).

R-matrix and its skew inverse

Using the first relation in ( 35) we can reorder a monomial x iα ⋄ x jβ ⋄ x kγ , α = β = γ = α, as a combination of monomials of the form x •γ ⋄ x •β ⋄ x •α in two ways, as (x iα ⋄ x jβ ) ⋄ x kγ or as x iα ⋄ (x jβ ⋄ x kγ ). The ordered products form a basis in the reduction algebra (see [START_REF] Khoroshkin | Diagonal reduction algebras of gl type; Funktsional[END_REF], section 2) so the two ways of reordering lead to the same result. This implies certain compatibility conditions for the operator R which are formulated in the following Proposition.

Proposition 3.5 The operator R is a solution of the dynamical Yang-Baxter equation

a,b,u Rij ab Rbk ur [-ε a ] Rau mn = a,b,u Rjk ab [-ε i ] Ria mu Rub nr [-ε m ] . ( 39 
)
This solution has already appeared several times in different contexts (see e.g. [I, ES] and references therein).

In addition, the operator R satisfies the relations

R2 = Id C n ⊗C n , ( 40 
) R21 = RT | h →-h, (41) 
where ( R21 ) ik jl := Rki lj and ( RT ) ik jl := Rjl ik and

Q + i [-ǫ i ] Q + k [-ǫ i -ǫ k ] Rik jl = Rik jl Q + j [-ǫ j ] Q + l [-ǫ j -ǫ l ] ,
which is an immediate consequence of

Q - j Q - i [-ǫ j ] = Q - i Q - j [-ǫ i ] .
The operators Ψ, Ŝ and R are related by

Ψik jl = Q + i [ǫ k -ǫ l ] Ŝik jl (Q + l ) -1 [-ǫ l ] , (42) 
Ŝij kl = Rij kl [ǫ k ] . (43) 
By (41

), Ψ21 = ΨT | h →-h so Ψam an = ( Ψ21 ) ma na = ( ΨT | h →-h) ma na = ( Ψ| h →-h) na ma = Q + n | h →-hδ n m = Q - n δ m n , (44) 
or Tr 1 Ψ12 = Q - 2 . It follows from (25) together with (30) and ( 44

) that a Q - a [-ǫ m ] Rma na = δ m n , (45) 
a Q + a [ǫ m ] Ram an = δ m n .
Remark. The reordering of the monomial

( ∂iα ⋄ ∂jβ ) ⋄ ∂kγ = ∂iα ⋄ ( ∂jβ ⋄ ∂kγ )
leads to a compatibility condition for the operator R which is equivalent to the same dynamical Yang-Baxter equation for R.

The reordering of any of the monomials

(x iα ⋄ x jβ ) ⋄ ∂kγ = x iα ⋄ (x jβ ⋄ ∂kγ ), (x iα ⋄ ∂jβ ) ⋄ ∂kγ = x iα ⋄ ( ∂jβ ⋄ ∂kγ ), α = β = γ = α,
similarly leads to a compatibility condition for the operator R which (in each case) now is equivalent to the dynamical Yang-Baxter equation for R together with the equality (40). The verification of this statement uses the fact that the matrix element R ij kl can be nonzero only if i = k and j = l, or i = l and j = k.

4 Diagonal reduction algebra

R-matrix presentation

The diagonal reduction algebra D(g) is by definition the reduction algebra of A = U(g) ⊗ U(g) with respect to the diagonal embedding of U(g). Let e

(1)

ij and e

(2) ij be the standard generators e ij of the Lie algebra g in the first and the second tensor components. Denote by s i j the generators of the diagonal reduction algebra defined as the images in D(g) of e

(1) ij . In other words, s i j = P e

(1) ij P . We will also need another set of generators s ′ i j = P e

(2) ij P . The elements s i j and s ′ i j are related by

s i j + s ′ i j = h i δ i j . (46) 
In addition to the elements ϕ j , defined in (9), we need, for any j = 1, . . . , n, and m > j, the following elements of Ū(h):

ϕ jm = k:j<k<m
hjk hjk -1 .

The description of the algebra D(g) in terms of generators s i j -s ′ i j was given in [START_REF] Khoroshkin | Diagonal reduction algebras of gl type; Funktsional[END_REF][START_REF] Khoroshkin | Structure constants of diagonal reduction algebras of gl type[END_REF]. Here we suggest another presentation. Let L i j , i, j = 1, . . . , n, be the following elements of D(g):

L i j :=    s i j ϕ j , i = j s i j - m:m>i s m m 1 him ϕ im ϕ j , i = j (47)
The elements L i j are linear combinations of s k l with the triangular transition matrix. Thus L i j generate D(g) as the algebra over Ū(h).

Proposition 4.1 Elements L i j ∈ D(g) satisfy quadratic-linear relations collected in reflection equation

R12 L 1 R12 L 1 -L 1 R12 L 1 R12 = R12 L 1 -L 1 R12 . ( 48 
)
The relations (48) form a complete list of defining relations over the field of fractions of Ū(h).

It is plausible that the relations (48) form a complete list of defining relations over the ring Ū(h) itself. Proof of proposition 4.1 is based on the properties of homomorphisms of the diagonal reduction algebra D(g) to Diff h (n, N) and the proposition 3.4.

Using the map ψ, see ( 33), we define a homomorphism

ψ 1 := ψ ⊗ 1 : U(g) ⊗ U(g) → Diff(n, N) ⊗ U(g). ( 49 
)
The map ψ 1 sends the diagonal g to the diagonal g and thus defines the homomorphism ψ1 : D(g) → Diff h (n, N).

Lemma 4.2 The map ψ1 sends the generator

L i j ∈ D(g) to the element Li j ∈ Diff h (n, N), (see(36)) ψ1 (L i j ) = Li j .
Proof of proposition 4.1. The statement of proposition 4.1 follows from proposition 3.4, lemma 4.2 and the injectivity of the map ψ for N ≥ n (consider the map ψ as the tangent map for the group action GL n × Mat n×N → Mat n×N ; for N = n we obtain the classical isomorphism of U(g) with the ring of right invariant differential operators on GL n ⊂ Mat n×n ).

In particular, for N ≥ n the map ψ1 is injective on the subspace of D(g), generated by polynomials in L i j of degree not bigger than two. This proves that the relations (48) are satisfied. In [START_REF] Khoroshkin | Diagonal reduction algebras of gl type; Funktsional[END_REF], we presented a complete list of relations for the generators s i j -s ′ i j of the algebra D(g). These are ordering relations of degree at most two in these generators. This means, in particular, that the number of linearly independent over Ū(h) quadratic monomials in these generators equals the number of ordered quadratic monomials in n 2 generators. Since the transition to the generators L i j has a triangular form, the relations are of degree at most two on generators L i j and the number of linearly independent quadratic monomials in L i j is as before. Therefore it is left to prove the completeness of relations (48) in degree at most two. To show this we write the relations (48) in the form Z A c µ A ( h) = linear in L i j terms, where {Z A } is the set of quadratic monomials in L i j . In the asymptotic regime h1 > h2 > • • • > hn and hij → ∞ for i < j these relations are well defined and become

Z A c µ A (∞) = linear in L i j terms.
Indeed, in this limit the matrix R12 turns into the permutation matrix P 12 so the relations (48) turn into the standard defining relations for the Lie algebra g,

Λ 2 Λ 1 -Λ 1 Λ 2 = P 12 (Λ 1 -Λ 2 ) .
By general deformation arguments, rk c µ A ( h) ≥ rk c µ A (∞). Hence the number of linearly independent quadratic monomials for generic h is not bigger than that in the limit. But in both cases, for generic h and asymptotically, this number equals the number of ordered (for any linear order) quadratic monomials in L i j . Proof of lemma 4.2. Denote by : x iα ∂ jα : the image of the element x iα ∂ jα ⊗1 ∈ Diff(n, N)⊗ U(g) in the reduction algebra Diff h (n, N). Due to the definitions of elements L i j , Li j and of the map ψ 1 it is sufficient to establish the equalities

x iα ⋄ ∂jβ =    : x iα ∂ jβ : ϕ j , i = j : x iα ∂ jβ : - m:m>i : x mα ∂ mβ : 1 him ϕ im ϕ j , i = j (50) 
for fixed α and β and then sum them up over α = β = 1, . . . , N. First we note that

x nα ⋄ ∂ iβ =: x nα ∂ iβ : and x iα ⋄ ∂ nβ =: x iα ∂ nβ : (51) 
for any i = 1, . . . , n. This is because x nα and ∂ nβ are respectively lowest and highest weight vectors with respect to the adjoint action of the diagonal U(g):

[x nα , e ji ] = 0 , [e ij , ∂ nβ ] = 0 for any i < j, so that x nα P ∂ iβ =: x nα ∂ iβ : and x iα P ∂ nβ =: x iα ∂ nβ : in the double coset space Diff h (n, N).

Next we apply Zhelobenko operator qn-1 to both sides of equality

x nα ⋄ ∂ jβ =: x nα ∂ jβ : , j = n -1, n.
We have, using (10) and homomorphism property of Zhelobenko operators,

qn-1 (x nα ⋄ ∂ jβ ) = qn-1 (x nα) ) ⋄ qn-1 (∂ jβ ) = x n-1,α ⋄ ∂ jβ , j = n -1, n.
On the other hand, we can apply qn-2 to : x n-1,α ∂ nβ : as to elements of the adjoint representation of g, see [KO2, eq. (4.5)]

qn-1 (:

x nα ∂ jβ ) =: x n-1,α ∂ j,β :
. This implies, due to (51), the equality

x n-1,α ⋄ ∂ jβ =: x n-1,α ∂ jβ : for j = n -1.
Proceeding further with application of other Zhelobenko automorphisms qi we obtain similarly

x iα ⋄ ∂ jβ =: x iα ∂ jβ : for i = j . (52) 
Due to (34) this is equivalent to the first line of (50). For the derivation of the rest of the relations (50) we employ the action of the Zhelobenko operators on the elements : x iα ∂ iβ : (no sum in i). Note that the sum x iα ∂ iβ + x i+1,α ∂ i+1,β is invariant with respect to the adjoint action of the sl 2 -subalgebra generated by e ii+1 and e i+1i , while the difference x i,α ∂ iβ -x i+1,α ∂ i+1,β spans the zero weight subspace of the three-dimensional representation of this sl 2 -subalgebra, with the highest weight vector x iα ∂ i+1,β . This implies the relations qi :

x iα ∂ iβ : = -: x iα ∂ iβ : 1 hi,i+1 -1 + : x i+1,α ∂ i+1,β : hi,i+1 hi,i+1 -1 , qi : x i+1,α ∂ i+1,β : =: x iα ∂ iβ : hi,i+1 hi,i+1 -1 -: x i+1,α ∂ i+1,β : 1 hi,i+1 -1 . (53) 
Besides, qi :

x jα ∂ jβ : =: x jα ∂ jβ : for j = i, i + 1. ( 54 
)
On the other hand, by (10) we have qi

x iα ⋄ ∂ iβ = qi x iα ⋄ qi (∂ iβ ) = x i+1,α hi,i+1 hi,i+1 -1 ⋄ ∂ i+1,β = x i+1,α ⋄ ∂ i+1,β hi,i+1 + 1 hi,i+1 , qi x i+1,α ⋄ ∂ i+1,β = qi x i+1,α ⋄ qi (∂ i+1,β ) = x i ⋄ ∂ i hi,i+1 hi,i+1 -1 . ( 55 
)
We apply qn-1 to both sides of the equality x n ⋄ ∂ n =: x n ∂ n :. Using ( 53) and ( 55) we get

x n-1,α ⋄ ∂ n-1,β hn-1,n hn-1,n -1 =: x n-1,α ∂ n-1,β : hn-1,n hn-1,n -1 -: x nα ∂ nβ : 1 hn-1,n -1 ,
which implies the equality

x n-1,α ⋄ ∂ n-1,β =: x n-1,α ∂ n-1,β : -: x nα ∂ nβ : 1 hn-1,n . ( 56 
)
Applying qn-2 to (56) we get

x n-2,α ⋄ ∂ n-2,β hn-2,n-1 hn-2,n-1 -1 =: x n-2,α ∂ n-2,β : hn-2,n-1 hn-2,n-1 -1 -: x n-1,α ∂ n-1,β : 1 hn-2,n-1 -1 -: x nα ∂ nβ : 1 hn-2,n , which gives x n-2,α ⋄ ∂ n-2,β =: x n-2,α ∂ n-2,β -x n-1,α ∂ n-1,β 1 hn-2,n-1 -x nα ∂ nβ hn-2,n-1 -1 hn-2,n-1 hn-2,n
: .

Proceeding further we obtain for any i ≤ n the relation

x iα ⋄ ∂ iβ =: x iα ∂ iβ : - m>i 1 him ϕ im : x mα ∂ mβ : (57) 
This is precisely the second line of (50).

Note. Due to the realization L i j → x iα ⋄ ∂jα , the action of the automorphisms qi on the generators L i j can be directly read off the formulas (13). In particular, the action on the diagonal generators is standard, qi (L j j ) = L σ i (j)

σ i (j) .

Central elements

1. Let Λ be a n × n matrix with noncommutative entries belonging to some Ū(h)bimodule, such that the weight of Λ i j equals ε i -ε j , that is, hk Λ i j = Λ i j ( hk + δ i k -δ j k ). Assume that Λ verifies the reflection equation

R12 Λ 1 R12 Λ 1 -Λ 1 R12 Λ 1 R12 = R12 Λ 1 -Λ 1 R12 .
Proposition 4.3 For any nonnegative integer N the elements tr (Λ N Q -) commute with Λ i j for all i and j.

This immediately implies

Corollary 4.4 For any nonnegative integer N the elements tr (L N Q -) are central in the algebra D(g).

Proof of proposition 4.3. The defining relation

( R12 Λ 1 R12 -R12 )Λ 1 = Λ 1 ( R12 Λ 1 R12 -R12 ) implies that ( R12 Λ 1 R12 -R12 )Λ N 1 = Λ N 1 ( R12 Λ 1 R12 -R12
) for any non-negative integer N, or, using (40),

Λ 1 R12 Λ N 1 R12 -Λ N 1 R12 = R12 Λ N 1 R12 Λ 1 -R12 Λ N 1 . (58) 
Let Tr (h)2 be the linear map from the space of tensors Ξ i 1 i 2 j 1 j 2 to the space of tensors Υ i 1 j 1 such that Tr (h)2 (Ξ)

i 1 j 1 = (Q -) u v [-ǫ i 1 ]Ξ i 1 v j 1 u
. This is the h-analogue of the R-matrix trace in the second space. We calculate Tr (h)2 of each term of (58).

• The image of the expression Λ 1 R12 Λ N 1 R12 under the map Tr (h)2 is u,a,b,c,d

Q - u [-ǫ i 1 ] Λ i 1 c (Λ N ) a b Rcu ad [ǫ a -ǫ b ] Rbd j 1 u = u,a,b,c,d Λ i 1 c (Λ N ) a b Rcu ad [ǫ a -ǫ b ] Rbd j 1 u Q - u [ǫ a -ǫ b -ǫ c ]
which we rewrite, using ( 25) and ( 42), as = a,b,c

Λ i 1 c (Λ N ) a b Q - a [ǫ a -ǫ b ] δ b a δ c j 1 = Λ i 1 j 1 Tr (Λ N Q -) . • The image of R12 Λ N 1 R12 Λ 1 is u,a,b,d,f (Λ N ) a b Q - u [-ǫ i 1 + ǫ a -ǫ b ] Ri 1 u ad [ǫ a -ǫ b ] Rbd f u Λ f j 1 ,
which, using again ( 25) and ( 42), equals = a,b,f

(Λ N ) a b Q - a δ b a δ i 1 f Λ f j 1 = Tr (Λ N Q -) Λ i 1 j 1 . • The image of R12 Λ N 1 is u,a Q - u [-ǫ i 1 ] Ri 1 u au (Λ N ) a j 1 .
Thus, by (45),

Tr (h)2 ( R12 Λ N 1 ) = Λ N 1 . • The image of Λ N 1 R12 is u,a Q - u [-ǫ i 1 ] (Λ N ) i 1 a Rau j 1 u = (Λ N ) i 1 a Q - u [-ǫ a ] Rau j 1 u
and we again obtain Λ N 1 . Combining these calculations we find that the application of the map Tr (h)2 to the relation (58

) gives ΛTr (Λ N Q -) = Tr (Λ N Q -)Λ as stated. Notes. 1. Tr (L N Q -) = Tr (Q -L N ) since the diagonal elements of L N have weight 0.
2. The reflection equation ( 48) admits shifts L i j → L i j +const • δ i j . 3. Tr Q + = Tr Q -= n. Indeed, with the explicit form (29) of the tensor Ψ, the relation ( 30) is

j 1 1 + hij Q - j = 1 for any i .
Write this relation for gl n+1 , with indices in the range {0, 1, . . . , n}, for i = 0:

n l=1 h0l -1 h0l + n j=1 1 h0l Q - j = 1
(here Q - j corresponds to gl n ). Decomposing into a power series in h-1 0 and comparing coefficients at 1 h0 we find Tr Q

-= n. Since Q - a | h →-h = Q + a , we have Tr Q + = n as well.
2. The images, in the reduction algebra, of e

(2) ij satisfy the same relations as the images of e

(1) ij . We have therefore another set of generators of D(g)

L ′ i j =    s ′ i j ϕ j , i = j s ′ i j - m:m>i s ′ m m 1 him ϕ im ϕ j , i = j (59)
which satisfy the same algebra

R12 L ′ 1 R12 L ′ 1 -L ′ 1 R12 L ′ 1 R12 = R12 L ′ 1 -L ′ 1 R12 .
Using (46), one can check that the matrices L and L ′ are related by

L ′ + L = H .
Here H is the operator C n → Ū(h) ⊗ C n with matrix coefficients

H i j := ( hj + n)δ i j .
By proposition 4.3, for any nonnegative integer N the elements Tr (L ′N Q -) are central in the algebra D(g).

Substituting into the reflection equation the expression for L ′ in terms of L we find

R12 H 1 R12 H 1 -H 1 R12 H 1 R12 = R12 H 1 -H 1 R12 , (60) R12 L 1 R12 H 1 + R12 H 1 R12 L 1 -L 1 R12 H 1 R12 -H 1 R12 L 1 R12 = 2 R12 L 1 -2 L 1 R12 .
Note that the latter equality (one can check it directly) holds for any matrix L whose matrix element L i j has the weight ε i -ε j . Presumably the center is generated by the elements Tr (L N Q -) and Tr (L ′N Q -).

Notes. 1. The center of the algebra of h-deformed differential operators is non-trivial. It is described in [HO].

2. The relation (60) shows that the assignment L → H is a realization of the reflection equation algebra (48).

Braided bialgebra structure

Consider the Ū(h)-bimodule D(g) ⊗Ū (h) D(g). The elements M i j generate the first copy of D(g) and Mi j generate the second copy. These elements satisfy the relations R12

M 1 R12 M 1 -M 1 R12 M 1 R12 = R12 M 1 -M 1 R 12 , R12 M1 R12 M1 -M1 R12 M1 R12 = R12 M1 -M1 R 12 . (61) 
We impose the commutation relation

R12 M 1 R12 M1 = M1 R12 M 1 R12 . ( 62 
)
By virtue of the dynamical Yang-Baxter equation, with this setting, the Ū(h)-bimodule D(g) ⊗Ū (h) D(g) becomes the associative algebra, which we denote by D(g) ⊚ D(g).

In other words, D(g)⊚D(g) is the associative algebra over Ū(h), generated by elements M i j and Mi j of weight ε i -ε j subject to the defining relations ( 61)-( 62). It is isomorphic to D(g) ⊗Ū (h) D(g) as a Ū(h)-bimodule. In a similar fashion we define the product ⊚ of three and more copies of D(g). The coproduct (63) is clearly coassociative. We have therefore defined the braided bialgebra structure on D(g).

The coproduct (63) has a natural interpretation in terms of differential operators. Divide the interval {1, 2, . . . , N} into two subintervals, {1, 2, . . . , ν} and {ν + 1, 2, . . . , N} for an arbitrary ν, 1 ≤ ν < N. Then M i j → ν α=1 x iα ⋄ ∂jα and Mi j → N α=ν+1 x iα ⋄ ∂jα is a realization of the algebra D(g) ⊚ D(g) while L i j → N α=1 x iα ⋄ ∂jα is a realization of the algebra D(g).

Appendix. Basic relations for n = 2 Denote h = h12 = h 1 -h 2 +1. The defining relations between different copies of generators in the algebra Diff h (2, 2), see ( 35), look as follows:

x 1 ⋄ x ′ 2 = 1 h x ′ 1 ⋄ x 2 + h2 -1 h2 x ′ 2 ⋄ x 1 , ∂1 ⋄ ∂′ 2 = - 1 h ∂′ 1 ⋄ ∂2 + h2 -1 h2 ∂′ 2 ⋄ ∂1 , x 2 ⋄ x ′ 1 = x ′ 1 ⋄ x 2 - 1 h x ′ 2 ⋄ x 1 , ∂2 ⋄ ∂′ 1 = ∂′ 1 ⋄ ∂2 + 1 h ∂′ 2 ⋄ ∂1 , x i ⋄ x ′ i = x ′ i ⋄ x i , ∂i ⋄ ∂′ i = ∂′ i ⋄ ∂i , i = 1, 2, x 1 ⋄ ∂′ 2 = ∂′ 2 ⋄ x 1 , x 2 ⋄ ∂′ 1 = h( h + 2) ( h + 1) 2 ∂′ 1 ⋄ x 2 , x 1 ⋄ ∂′ 1 = ∂′ 1 ⋄ x 1 + 1 1 - h ∂′ 2 ⋄ x 2 -1, x 2 ⋄ ∂′ 2 = 1 1 + h ∂′ 1 ⋄ x 1 + ∂′ 2 ⋄ x 2 -1.
Here the elements {x 1 , x 2 , ∂1 , ∂2 } belong to the first copy and the elements {x ′ 1 , x ′ 2 , ∂′ 1 , ∂′ 2 } belong to the second copy.

The ordering form of the relations (48) is

L 1 1 L 1 2 = h -3 h -2 L 1 2 L 1 1 + 1 h -2 L 1 2 L 2 2 + L 1 2 , L 2 2 L 1 2 = h -3 ( h -2)( h + 1) L 1 2 L 1 1 + ( h -1) 2 ( h -2)( h + 1) L 1 2 L 2 2 - h -1 h + 1 L 1 2 , L 1 1 L 2 1 = ( h + 1) 2 ( h -1)( h + 2) L 2 1 L 1 1 - h + 3 ( h -1)( h + 2) L 2 1 L 2 2 - h + 1 h -1 L 2 1 , L 2 2 L 2 1 = - 1 h + 2 L 2 1 L 1 1 + h + 3 h + 2 L 2 1 L 2 2 + L 2 1 , L 1 1 L 2 2 = L 2 2 L 1 1 , L 1 2 L 2 1 = L 2 1 L 1 2 - 1 h(L 1 1 -L 2 2 ) 2 + L 1 1 -L 2 2 .
The central elements of Corollary 4.4 have the form

h -1 h (L N ) 1 1 + h + 1 h (L N ) 2 2 .

Lemma 4. 5

 5 The matrix M + M satisfies the reflection equation (48D(g) → D(g) ⊚ D(g) of algebras.

  For instance, D(g) ⊚ D(g) ⊚ D(g) is generated by M i j , Mi j and Mi j , with the defining relations (61)-(62) and, in addition,R12 M1 R12 M1 -M1 R12 M1 R12 = R12 M1 -M1 R 12 , R12 M 1 R12 M1 = M1 R12 M 1 R12 , R12 M1 R12 M1 = M1 R12 M1 R12 .

Unless the opposite is stated, we adopt the Einstein convention: if a tensor index appears in an expression twice, once as an upper index and once as a lower index, the summation over this index is assumed.
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