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RECURRENCE STATISTICS FOR THE SPACE OF INTERVAL EXCHANGE MAPS AND THE TEICHM ÜLLER FLOW ON THE SPACE OF TRANSLATION SURFACES

In this note we show that the transfer operator of a Rauzy-Veech-Zorich renormalization map acting on a space of quasi-Hölder functions is quasicompact and derive certain statistical recurrence properties for this map and its associated Teichmüller flow. We establish Borel-Cantelli lemmas, Extreme Value statistics and return time statistics for the map and flow. Previous results have established quasicompactness in Hölder or analytic function spaces, for example the work of M. Pollicott and T. Morita. The quasi-Hölder function space is particularly useful for investigating return time statistics. In particular we establish the shrinking target property for nested balls in the setting of Teichmüller flow. Our point of view, approach and terminology derive from the work of M. Pollicott augmented by that of M. Viana. Contents 1. Background and notation 2 1.1. Dynamical Borel-Cantelli Lemmas and other limit laws. 2 1.2. Interval Exchange Transformations 4 1.3. Rauzy-Veech induction and renormalisation 5

1. Background and notation 1.1. Dynamical Borel-Cantelli Lemmas and other limit laws. Let T : X → X be a measure-preserving transformation of a probability space (X, µ). We assume X is also a metric space equipped with a metric d. Dynamical Borel-Cantelli lemmas concern the following set of questions: suppose (A n ) is a sequence of sets such that n µ(A n ) = ∞, does T n (x) ∈ A n for infinitely many values of n for µ a.e. x ∈ X? One special example of this is the case where (A n ) is a nested sequence of balls about a point, a setting which is often called the shrinking target problem.

We let S n = n-1 j=0 1 A j •T j and E n = X S n dµ = n-1 j=0 µ(A j ). The property lim n→∞ Sn(x) En = 1 for µ a.e. x ∈ X is often called the Strong Borel-Cantelli (SBC) property in contrast to the Borel-Cantelli (BC) property that S n (x) is unbounded for µ a.e. x ∈ X.

In the setting of uniformly hyperbolic systems pioneering work has been done by W. Philipp [Ph], Kleinbock and Margulis [KM], Chernov and Kleinbock [CK] and Dolgopyat [Do] (for uniformly partially hyperbolic systems).

More recently dynamical Borel-Cantelli results have been proved for certain non-uniformly hyperbolic systems by example by Kim [Ki], Gouëzel [Go], Gupta et al [GNO] and Haydn et al [HNPV]. These works have also yielded some interesting counterexamples. In the context of flows, Maucourant [Mau] has proved the analogous Borel Cantelli property for nested balls in the setting of geodesic flows. Athreya [A] gives large deviation and quantitative recurrence results for the Teichmüller geodesic flow.

Related to Borel-Cantelli lemmas are logarithmic laws for the shrinking target problem. These results concern the asymptotic scaling behavior given by the limit lim r→0 τ r (x, y) µ (B r (y))

,

where τ r (x, y) = min{n : d(T n x, y) < r} and B r (y) is a ball of radius r about y ∈ X.

Of relevance to our setting is work of Masur [M2], who proved a logarithm type law for Teichmüller geodesic flow on the moduli space of quadratic differentials and work of Galatolo and Kim [GK] who obtain Borel-Cantelli like results for generic interval exchange transformations. Marchese [START_REF] Marchese | The Khinchin theorem for interval-exchange transformations[END_REF][START_REF] Marchese | Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow[END_REF] also obtained related results on the shrinking target problem for the Rauzy-Veech-Zorich algorithm, with applications to a generalization of the Khinchin theorem for interval exchange transformations.

Statistical properties of the Teichmüller flow and the Rauzy-Veech-Zorich map have been investigated thoroughly in recent years. Avila, Gouëzel and Yoccoz [AGY] have shown that the decay of correlations for the flow is exponentially fast for Hölder observables. The corresponding problem for the Rauzy-Veech-Zorich map has been studied by Bufetov and Avila in [B] and [AB], where the decay was proven to be exponential as well. The main ingredient of the proof of the latter result was the construction of a Young Tower [Y] with an exponential tail of return times. Building upon this fact and work of Melbourne and Nicol [MN05], Pollicott [Po] proved the almost sure invariance principle for Hölder observables, both for the flow and the map. The almost sure invariance principle is a strong reinforcement of the central limit theorem, which was previously established by Bufetov [B], and has several consequences, such as the law of iterated logarithm and the arcsine law. The large deviations principle for Hölder observables follows also directly from the existence of an exponential Young tower and results of Melbourne and Nicol [START_REF] Melbourne | Large deviations for nonuniformly hyperbolic systems[END_REF].

We also establish recurrence statistics such as Poisson limit laws and Extreme Value Laws (EVLs) for Teichmüller flow, but we leave the detailed description of these properties and results to Section 3.

1.2. Interval Exchange Transformations. In this section we synthesize the basic model described by Viana in [Vi] with the framework developed by Pollicott [Po] (see also [START_REF] Morita | Renormalized Rauzy inductions[END_REF]). Pollicott's short paper [Po] is a very clear account of the Rauzy-Veech-Zorich induction and renormalization from the viewpoint of hyperbolic dynamics. We begin by defining our dynamical systems. This starts with interval exchange transformations, in particular focussing on the formalism described by Viana. We then move to the Rauzy-Veech induction and renormalisation; the Zorich induction and renormalisation; and finally the Morita-Pollicott renormalisation. We will point out the minor differences with Pollicott's framework as we go along, but broadly speaking, the difference here is that our induced maps are first returns. We relate these dynamical systems to the Teichmüller flow on the space of translation surfaces later on.

Following [Vi, Chaper 1], let I ⊂ R be an interval and {I a : a ∈ A} a partition of I into intervals indexed by a finite alphabet A with d 2 symbols. An interval exchange transformation (IET) is a bijective map f = f (π,λ) : I → I which is a translation of each subinterval I a , preserves Lebesgue measure and is determined by the following combinatorial and metric data: (a) A pair π = (π 0 , π 1 ) of bijections π : A → {1, . . . , d} which describe the ordering of the subintervals I a before and after the action of f :

a 0 1 a 0 2 . . . a 0 d a 1 1 a 1 2 . . . a 1 d
where a ε j = π -1 ε (j) for ε ∈ {0, 1} and j ∈ {1, 2, . . . , d}. (b) A vector λ = (λ a ) a∈A of non-negative entries which represent the lengths of the subintervals (I a ) a∈A .

We have a more detailed description of the intervals I a above which will be useful later: for ε ∈ {0, 1}, let I πε a be the interval of length λ πε(a) in position π ε (a) in the interval [0, a λ a ], where 'position' means starting at zero and counting to the right.

The transformation p := π 1 • π -1 0 is called the monodromy invariant of the pair π = (π 0 , π 1 ). As Viana points out, we can always change our pair π = (π 0 , π 1 ) and rearrange the ordering of our lengths so that the resulting data π = (π 0 , π 1 ) and λ = (λ a ) a∈A represents the same IET as the one above, but with π 0 = id. Indeed, this is what is described in Pollicott's notes: moreover he always assumes that a λ a = 1. However, the setup described here gives a slightly more complicated, but more flexible way for us to describe later dynamics.

The IET can now be described more explicitly as a translation. For a ∈ A, define w a :=

{b:π 1 (b)<π 1 (a)} λ b - {b:π 0 (b)<π 0 (a)} λ b . Then f (π,λ) (x) = x + a w a • 1 Ia (x).
Later it will be useful to think of the translation vector w a as b∈A M ab λ b where the (a, b) entry of the matrix M is defined by

M ab =      +1 if π 1 (b) < π 1 (a) and π 0 (b) > π 0 (a), -1 if π 1 (b) < π 1 (a) and π 0 (b) < π 0 (a), 0 otherwise.
1.3. Rauzy-Veech induction and renormalisation. As is common for families of dynamical systems with parabolic-type behaviour, one way to proceed is to define a good renormalization scheme on the space of parameters. In this setting this was pioneered by Masur and Veech. Given a representative (π, λ) of an IET, for ε ∈ {0, 1}, let a(ε) denote the last symbol in the expression for π ε , i.e., a(ε

) = π -1 ε (d) = a ε d .
Assuming the generic situation where I a(0) and I a(1) have different lengths, we say that (π, λ) has type 0 if λ a(0) > λ a(1) , type 1 if λ a(0) < λ a(1) .

Now set

J = I \ f (π,λ) (I a(1) ) if (π, λ) has type 0, I \ I a(0) if (π, λ) has type 1.
(We 'cut off the loser between I a(0) and I a(1) '.) Then the Rauzy-Veech induction T0 is defined as the first return by f (π,λ) to J. Another way of describing this, from which the fact that we obtain an new IET of the form we started with (although with shorter total length of our intervals), is that T0 (π, λ) = (π , λ ) where, if (π, λ) is type 0 then

π 0 π 1 = a 0 1 . . . a 0 k-1 a 0 k a 0 k+1 . . . . . . a(0) a 1 1 . . . a 1 k-1 a(0) a(1) a 1 k+1 . . . a 1 d-1
and λ = (λ a ) a∈A for λ a = λ a for a = a(0), and λ a(0) = λ a(0) -λ a(1) .

Similarly, if (π, λ) is type 1 then

π 0 π 1 = a 0 1 . . . a 0 k-1 a(1) a(0) a 0 k+1 . . . a 0 d-1 a 1 1 . . . a 1 k-1 a 0 k a 0 k+1 . . . . . . a(1)
and λ = (λ a ) a∈A for λ a = λ a for a = a(1), and λ a(1) = λ a(1) -λ a(0) .

Remark 1.1. This transformation on the set of lengths in R A + can be expressed in terms of a matrix Θ given in (1.9) and (1.10) of [Vi] and which consists only of 0s and 1s: in fact λ = Θ -1 * (λ) where * denotes the transpose. Θ -1 is a non-negative matrix.

We are interested in the set of (π, λ) such that T0 is defined for all time. This occurs if and only if (π, λ) satisfies the Keane condition, which assumes that

f n (π,λ) (∂I a ) = ∂I b for all n 1 and a, b ∈ A with π 0 (b) = 1, where ∂I a is the left endpoint of the subinterval I a . Moreover, if (π, λ) satisfies the Keane condition then f (π,λ) is minimal (every f (π,λ) -orbit is dense). A pair π = (π 0 , π 1 ) is called reducible if there exists k ∈ {1, . . . , d-1} such that π 1 • π -1 0 ({1, . . . , k}) = {1, . . . , k}.
In this case, f (π,λ) splits into two IETs with simpler combinatorics. If π is not reducible, we say it is irreducible. It can be shown that if λ is rationally independent and π is irreducible then (π, λ) satisfies the Keane condition. Keane conjectured that for fixed irreducible π, the map f (π,λ) was uniquely ergodic for almostevery λ. This conjecture was proved independently by Masur [M1] and Veech [START_REF] Veech | Gauss measures for transformations on the space of interval exchange maps[END_REF]. The method of proof of Veech was based on a renormalization scheme.

Given a fixed d, as above, we define the Rauzy class R = R(π) of a pair π as the set of all pairs π for which there exist n 0, λ and λ with T n 0 (π, λ) = (π , λ ). They form a partition of the set of all pairs π. Thus we think of T0 acting on sets R × R A + . For d = 2 and d = 3 there is a unique Rauzy class, but for d 4 there is more than one. Again we refer the reader to [START_REF] Viana | Dynamics of interval exchange maps and Teichmüller flows[END_REF]Chapter 1] for a nice description of these.

The Rauzy-Veech renormalization map T 0 is simply the transformation T0 renormalised so that the total length of the resulting interval is 1: thus the multiplying factor is 1

1 -λ a(1-ε) when (π, λ) is type ε. That is T 0 (π, λ) = (π , λ ) where λ = λ 1-λ a(1-ε) . Thus T 0 acts on the (d -1) dimensional simplex ∆ = ∆ A := {λ = (λ 1 , . . . , λ d ) : λ i > 0, λ 1 + . . . + λ d = 1}.
We define |λ| = d j=1 λ j , then T 0 has the form

T 0 (π, λ) = π , Aλ |Aλ|
where A is a matrix with entries from the set {-1, 0, 1}.

Setting ∆ π,ε := λ ∈ ∆ A : λ a(ε) > λ a(1-ε) for ε ∈ {0, 1}, (1) 
T 0 : {π} × ∆ π,ε → {π } × ∆ is a bijection: a nice Markov property. This also implies that Θ is constant on each {π} × ∆ π,ε .
As in work of Veech [START_REF] Veech | Gauss measures for transformations on the space of interval exchange maps[END_REF] (see also Masur [M1]), T 0 has an absolutely continuous and invariant ergodic measure (acim) µ 0 , which is infinite. T 0 is not uniformly hyperbolic.

1.4. Zorich induction and renormalisation. Zorich produced accelerated versions of the Rauzy-Veech maps discussed above in order to improve the expansion properties of the system and ultimately to find absolutely continuous invariant probability measures. For this subsection we fix a Rauzy class R. Now take π = (π 0 , π 1 ) in this class and λ ∈ R A + satisfying the Keane condition. Then for each k 1 write (π k , λ k ) = T k 0 (π, λ) and let ε k denote the type of (π k , λ k ) and ε denote the type of (π, λ). Then n 1 = n 1 (π, λ) is defined as the smallest k such that ε k = ε and the Zorich induction is defined by T1 (π, λ) = T n 1 0 (π, λ). Similarly, the Zorich renormalisation T 1 : R × ∆ → R × ∆ is defined as T 1 = T n 1 0 . This map has a Markov partition into countably many domains. Indeed, let

∆ π,ε,n := {λ ∈ ∆ π,ε : ε 1 = • • • = ε n-1 = ε = ε n }. Then for each π ∈ R, T 1 : {π} × ∆ π,ε,n → {π n } × ∆ π n ,1-ε is a bijection. Moreover, λ n = c n Θ -n * (λ),
where c n > 0 and Θ -n * depends only on π, ε, n.

Let also ∆ = ∪ π∈R ∆ π,ε and ∆ 1-= ∪ π∈R ∆ π,1-ε .
Theorem 1.2 (Zorich). For a given Rauzy class R, T 1 has an absolutely continuous invariant probability measure µ 1 . Moreover, for ε ∈ {0, 1},

T 2 1 : ∆ → ∆ is mixing with respect to the restriction to ∆ of the measure 2µ 1 . Similarly

T 2 1 : ∆ 1-→ ∆ 1-ε is mixing with respect to 2µ 1 restricted to ∆ 1-.
As already noted above, T 1 (∆ ) = ∆ 1-, so the absolutely continuous invariant probability measure (acip) µ 1 is not mixing, but has two cyclic classes.

1.5. Morita-Pollicott renormalisation. Pollicott [Po] (following Morita [START_REF] Morita | Renormalized Rauzy inductions[END_REF]) considers a map T 2 derived from T 1 further by inducing by first return times on an element of a dynamical partition. T 2 has the advantage that it is a multidimensional piecewise expanding map. The setup in Pollicott [Po] is slightly different to that outlined here, but for most practical purposes, it is identical.

Recalling the definition of ∆ π,0 , ∆ π,1 from (1), let

P = {{π} × ∆ π,0 , {π} × ∆ π,1 : π ∈ R}
be the usual finite partition of R × ∆ and define for n 1

P n := n-1 k=0 T -k 1 P.
Pollicott's approach is to choose an n B > 1 and a partition element

B ∈ P n B such that B is the image of an inverse branch of T n B 1
which is a strict contraction (see also [START_REF] Viana | Dynamics of interval exchange maps and Teichmüller flows[END_REF]Corollary 1.21]). Define n 2 (π, λ) to be the first return time of (π, λ) ∈ B to B under T 1 , i.e.

n 2 (π, λ) = inf{k > 0 : T k 1 (π, λ) ∈ B}. Then T 2 : B → B is defined as the induced first return time map under T 1 , T 2 (π, λ) = T τ (λ,π) 1 (π, λ).
Remark 1.3. Note that for each element (π, λ) ∈ R × ∆, with λ satisfying the Keane condition, we can find such a B containing (π, λ).

The set B has a natural countable partition (B) . The density h B of µ 2 with respect to Lebesgue measure on B is strictly positive [START_REF] Pollicott | Statistical properties of the Rauzy-Veech-Zorich map[END_REF]Lemma 2.3] and analytic [START_REF] Pollicott | Statistical properties of the Rauzy-Veech-Zorich map[END_REF]Corollary 5.1.1]

Q = {B i } i∈I into sets on which n 2 (π, λ) is constant. The map T 2 : B i → B is a diffeomorphism for each i ∈ I [Mo2, Lemma 3.1]. B has a naturally defined T 2 -invariant measure, namely µ 2 := µ 1 | B µ 1
. Let Q n := n-1 k=0 T -k 2 Q.
We have the following expansion and distortion properties.

Proposition 1.4. [Po, Lemma 2.2] There exist C > 1 , θ > 1 and D 1 , D 2 such that for any n 1 and any x, y in the same element of Q n :

(1) d(T n 2 x, T n 2 y) Cθ n d(x, y);

(2) log

Jac(T n 2 )(x) Jac(T n 2 )(y) D 1 d(T n 2 x, T n 2 y); (3) 1 D 2 µ 2 (A)|Jac(T n 2 )(x)| D 2 for all x ∈ A ∈ Q n .
Remark 1.5. Since there exists c > 0 such that c -1 h B c, we can also state the above point (3) using Lebesgue measure m instead of µ 2 . (or more accurately, the product of the counting measure on R and Lebesgue measure on ∆, even though we will always refer to this measure as Lebesgue)

1.6. Gibbs-Markov maps and their transfer operators. The previous subsection motivates a more in depth study of the following class of maps.

Let (Y, d) be a compact metric space endowed with a probability measure m with full support. Let T : Y → Y be a nonsingular measurable map.

We will say that T is a Gibbs-Markov map if there exists a countable measurable partition

Q = {Y i } i∈I of Y such that, if we denote by Q n = n-1 k=0 T -k Q the dynamical partition of T n and by Jac(T n ) the jacobian of T n with re- spect to m ( i.e. m(T n A) = A Jac(T n ) dm for every subset A ⊂ Y on which T n is injective), we have (1) T n : Q → Y is a bimeasurable bijection; (2) d(T n x, T n y) Cθ n d(x, y); (3) log Jac(T n )(x) Jac(T n )(y)
Dd(T n x, T n y); for all n 1, all Q ∈ Q n and all x, y ∈ Q, where C, D > 0 and θ > 1 depend only on the map T .

It is well known such maps admit a spectral gap for their transfer operators on the space of Hölder functions. We will study spectral properties on a larger space which contains discontinuous functions, namely the Quasi-Hölder space, introduced by Keller [Kel] and Saussol [S]. We recall the relevant definitions and properties, and refer to the aforementioned references for more details. Y ). We define the oscillation of f on a Borel subset S ⊂ Y by osc(f, S) = ess sup S f -ess inf S f. We define

Let 0 > 0, 0 < α < 1 and f : Y → R lie in L 1 m ( 
|f | α := sup 0< 0 -α Y osc(f, B (x))dm(x) and let V α (Y ) := {f ∈ L 1 m (Y, R) : |f | α < ∞}.
This space is strictly larger than the space of Hölder functions of exponent α on Y and in particular contains characteristic functions of some measurable sets. If we define the norm

• α := | • | α + • L 1 m then V α (Y ) is a Banach space. Since Y is compact, the space V α (Y ) is compactly embedded in L 1 m (Y ). Furthermore, V α (Y ) embeds continuously into L ∞ m (Y ) and is a Banach algebra satisfying |f g| α |f | α g ∞ + f ∞ |g| α for all f, g ∈ V α (Y ).
Note also that while • α depends on the choice of 0 , the space V α (Y ) does not, and two different 0 give rise to two equivalent norms on V α .

Let P denote the transfer operator of T with respect to m. This is the L 1 adjoint of T with respect to L ∞ , i.e. Y P φ ψ dm

= Y φ ψ • T dm for all φ ∈ L 1 m (Y ) and ψ ∈ L ∞ m (Y ).
The operator P has the form

P φ(x) = i∈I φ(x i ) Jac(T )(x i )
,

where x i ∈ Y i satisfies T x i = x.
The next technical lemma will also prove useful later. In order to state it, we need some more notations. For Q ∈ Q n , denote I n,Q : Y → Q the inverse branch of the restriction of T n to Q. The transfer operator P n of T n has the form

P n φ(x) = Q∈Qn g n (I n,Q x)φ(I n,Q x),
where

g n = 1 Jac(T n ) .
Denote by M n,Q the operator defined on L 1 m (Y ) by

M n,Q φ(x) = g n (I n,Q x)φ(I n,Q x).
Lemma 1.6. There exists C > 0 such that for any n

1, Q ∈ Q n and φ ∈ V α (Y ), we have M n,Q φ L 1 m = Q |φ|dm and Y osc(M n,Q φ, B (x))dm(x) C Q osc(φ, B c n,Q (x))dm(x) + C Q |φ|dm, where c n,Q is the Lipschitz constant of I n,Q : Y → Q. Proof. The relation Y |M n,Q φ|dm = Q |φ|dm follows from a change of vari- ables. Observe that osc(M n,Q φ, B (x)) = osc(g n φ, I n,Q B (x)). Using [S, Proposi- tion 3.2 (iii)], we have for all x ∈ Y , osc(M n,Q φ, B (x)) osc(φ, I n,Q B (x)) sup I n,Q B (x)
g n +osc(g n , I n,Q B (x)) ess inf

I n,Q B (x)
|φ|.

By the distortion control of assumption 3, we have ess sup

I n,Q B (x) g n Cg n (I n,Q x)
and osc(g n , I n,Q B (x))

Cg n (I n,Q x) for some constant C > 0. We also have osc(φ, I n,Q B (x)) osc(φ, B c n,Q (I n,Q x)) and ess inf

I n,Q B (x) |φ| |φ(I n,Q x)|
for almost every x ∈ Y . Putting together all the above estimates, we get for almost every x,

osc(M n,Q φ, B (x)) Cosc(φ, B c n,Q (I n,Q x))g n (I n,Q x)+C |φ(I n,Q x)|g n (I n,Q x).
After integration over Y , a change of variables finishes the proof.

With this lemma, we can prove a Lasota-Yorke type inequality for T : Lemma 1.7. If 0 is sufficiently small then there exist 0 < η < 1 and ), it is sufficient to estimate |P n φ| α . We will next apply Lemma 1.6 to this operator, first noting that by assumption 2, c n,Q Cθ -n C, where θ > 1. Writing P n = Q∈Qn M n,Q and summing all the relations from Lemma 1.6, [START_REF] Saussol | Absolutely continuous invariant measures for multidimensional expanding maps[END_REF]Proposition 3.2 (i)] then implies that

C, D > 0 such that if φ ∈ V α (Y ) then for all n 0 P n φ α Cη n φ α + D Y |φ|dm. Proof. Since P n is a contraction on L 1 m (Y
Y osc(P n φ, B (x))dm(x) C Y osc(φ, B Cθ -n (x))dm(x) + C φ L 1 m C α θ -αn |φ| α + 1-α 0 φ L 1 m , for all 0 < 0 C = 1 , so that Cθ -n 0 and the bound Y osc(φ, B Cθ -n (x))dm(x) C α θ -αn |φ| α holds.
This shows

P n φ α, 1 Cθ -αn φ α, 0 + C φ L 1 m
, where we put the subscript 0 or 1 in the notation for the Quasi-Hölder norm to emphasize the fact it was defined using either 0 or 1 , and concludes the proof since the two norms . α, 0 and . α, 1 are equivalent.

Classical arguments then allow us to prove exponential decay of correlations in the Quasi-Hölder norm: Proposition 1.8. There exists an unique absolutely continuous probability measure µ which is T -invariant, and its density h belongs to V α (Y ). Furthermore, we have

(a) P n φ -Y φ dm h α Cθ n φ α ; (b) Y φ ψ • T n dµ -Y φ dµ Y ψ dµ Cθ n φ α ψ L 1 µ ,
for all n 1, for all φ ∈ V α and ψ ∈ L 1 (µ), for some constants C > 0 and θ < 1 which depend only on the map T .

Proof. Lemma 1.7 implies by Hennion's theorem [Hen] that P is quasicompact and has an essential spectral radius strictly less than 1 when acting on the space V α (Y ). To prove (a), it is then sufficient to prove that 1 is a simple eigenvalue of P , and that there is no other eigenvalue on the unit circle. Let then φ ∈ V α be an eigenvector of P for the eigenvalue λ ∈ C with |λ| = 1. From standard results, see for instance Aaronson [Aa], we know that P has an essential spectral radius strictly less than 1 when acting on the space of Lipschitz functions. This shows that φ is itself Lipschitz continuous, and then φ is a multiple of h and λ = 1.

We now prove point (b):

Y φ ψ • T n dµ - Y φ dµ Y ψ dµ = Y φh ψ • T n dm - Y φ dµ Y ψ dµ = Y P n (φh) - Y φh dm) h ψ dm. Then, Y φ ψ • T n dµ -Y φ dµ Y ψ dµ P n (φh) -( Y φh dm)h L ∞ m ψ L 1 m . By (a), we have that P n (φh) -( Y φh dm)h L ∞ m Cθ n φ α since V α (Y ) embeds into L ∞
m and is a Banach algebra. On the other hand, ψ L 1 m c -1 ψ L 1 µ where c = inf h is strictly positive by Lemma 4.4.1 in [Aa]. This proves (b).

Borel-Cantelli Lemmas

2.1. Borel-Cantelli lemmas for Gibbs-Markov maps. We first investigate Borel-Cantelli lemmas for the map T 2 . From Lemma 1.4, we know T 2 is a Gibbs-Markov map, so we will present general results for this class of maps.

Our result for Gibbs-Markov maps is a a fairly straightforward consequence of earlier work (see for example [START_REF] Kim | The dynamical Borel-Cantelli lemma for interval maps[END_REF]Theorem 2.1 ], [START_REF] Gupta | A Borel-Cantelli lemma for non-uniformly expanding dynamical systems[END_REF]Proposition 2.6]) and the description of their transfer operators we give in the previous subsection.

Proposition 2.1. Let T be a Gibbs-Markov map on the compact metric space (Y, d), as in the previous subsection, with absolutely continuous invariant measure µ. Let {φ n } be a sequence of positive functions on Y such that there exists a constant K > 0 with φ n α K for all n. Let E n = n j=1 µ(φ j ) and suppose E n is unbounded. Then

lim n→∞ 1 E n n j=1 φ j • T j (x) → 1 for µ a.e. x ∈ Y .
The proof of this proposition, given below, is an easy consequence of a Gal-Koksma type law. We formulate this law as a proposition of W. Schmidt [W1, W2] as stated by Sprindzuk [Sp]:

Proposition 2.2. Let (Ω, B, µ) be a probability space and let f k (ω), (k = 1, 2, . . .) be a sequence of non-negative µ measurable functions and g k , h k be sequences of real numbers such that 0

g k h k 1, (k = 1, 2, . . . , ). Suppose there exists C > 0 such that   m<k n (f k (ω) -g k )   2 dµ C m<k n h k ( * )
for arbitrary integers m < n. Then for any > 0

1 k n f k (ω) = 1 k n g k + O(θ 1/2 (n) log 3/2+ θ(n)) for µ a.e. ω ∈ Ω, where θ(n) = 1 k n h k . Proof of Proposition 2.1. In Proposition 2.2 take f k = φ k • T k , g k = h k = µ(φ k ) and calculate n i=m n j=i+1 φ j • T j φ i •T i dµ -µ(φ j )µ(φ i ) = n i=m n j=i+1 φ j • T j-i φ i -µ(φ j )µ(φ i ) n i=m n j=i+1 C 1 θ j-i φ j α φ i L 1 µ C 2 n i=m φ i L 1 µ .
The result follows immediately from Proposition 2.2.

Remark 2.3. For any measurable set A ⊂ Y , we have 1 A α m(A) + sup 0< 0 m(B (∂A)) α . Hence, any sequence of sets (A n ) such that for some 0 < α 1, sup n sup 0< 0 m(B (∂A n )) α < ∞
and n µ(A n ) = ∞ will satisfy the strong Borel-Cantelli property. In particular, the sequence does not need to be decreasing.

As a direct consequence, we get for the Morita-Pollicott renormalization map T 2 : B → B the strong Borel-Cantelli for any sequence of positive functions (f n ) on B bounded in the space V α (B) for some 0 < α 1, with n f n dµ 2 = ∞. Indeed, by Lemma 1.4, this map is Gibbs-Markov with respect to the partition Q = {B i } i∈I . This applies in particular to any sequences of balls (B rn (p n )) with n µ 2 (B rn (p n )) = ∞, since such sequences satisfy the condition of Remark 2.3 for α = 1.

2.2. Borel-Cantelli lemmas for a class of non-uniformly expanding maps. We now turn to investigate Borel-Cantelli lemmas for the Rauzy-Veech-Zorich renormalization map T 1 .

Remark 2.4. Note that by Haydn et al [START_REF] Haydn | A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems[END_REF]Theorem 6.

1] if {U n } is a sequence of balls in ∆ π,ε , ε ∈ {0, 1}, satisfying µ 1 (U n ) C n then T 2n 1 (p) ∈ U n i.o. for µ 1 a.e. p ∈ ∆ π,ε since (T 2 1 , R × ∆, µ 1
) has exponential decay of correlations for Lipschitz functions [AB]. We are interested in obtaining quantitative rates for this almost sure result.

We first proceed to identify a class of maps containing T 1 for which such results hold.

Let (X, d) be a bounded, locally compact and separable metric space, with a Borel finite positive measure m. Let T : X → X be a non-singular transformation for which m is ergodic.

Suppose there exists a compact subset Y ⊂ X with m(Y ) > 0 (without loss of generality, we can assume m(Y ) = 1) and a countable measurable partition Q = {Y i } i∈I of Y such that the first return time

r(y) = inf{n 1 : T n y ∈ Y } of T to Y is constant on each Y i ,
and the first return map T = T r : Y → Y is Gibbs-Markov with respect to the partition Q. We also assume the first return time is integrable with respect to m: Y r dm < ∞.

We will refer to such systems as non-uniformly expanding maps, even though more general definitions exist in the literature. Under these assumptions, there exists an unique absolutely continuous with respect to m probability measure µ which is T -invariant, and the system (X, T, µ) is ergodic. The existence follows directly from the existence of such a measure for the first return map T and the integrability of r, while the uniqueness is ensured by [START_REF] Aaronson | An introduction to infinite ergodic theory[END_REF]Theorem 1.5.6].

We will deduce a strong Borel-Cantelli property for decreasing sequences of functions supported in Y from our result for Gibbs-Markov maps and the following result of Kim [START_REF] Kim | The dynamical Borel-Cantelli lemma for interval maps[END_REF]Theorem 3.1]:

Theorem 2.5. Let (X, T, µ) be an ergodic measure-preserving transformation, and let T E : E → E be the first return map to a set E of positive µ-measure. Let (f n ) be a decreasing sequence of nonnegative functions supported in E such that

n f n dµ = ∞. If every subsequence (f n k ) with k f n k dµ = ∞ is strong Borel-Cantelli with respect to T E , then (f n ) is strong Borel-Cantelli with respect to T .
As an immediate corollary of Proposition 2.1 and Theorem 2.5, we get: Theorem 2.6. Let (X, T, µ) be a non-uniformly expanding system as described above, with induced set Y . Then any sequence

(f n ) of positive functions, supported in Y , bounded in V α (Y ) for some 0 < α 1, with n Y f n dµ = ∞, satisfies the strong Borel-Cantelli property.
As seen in subsection 1.5, the Rauzy-Veech-Zorich renormalization map is a non-uniformly expanding map, with induced set B. Since by Remark 1.3, for any p * = (π, λ) satisfying the Keane condition, we can find a good induced set B that contains p, we obtain:

Theorem 2.7. Let U n ⊂ R × ∆ be a decreasing sequence of balls, shrinking to a point p * which satisfies the Keane condition, such that

E n := n j=1 µ 1 (U j ) diverges. Then, for µ 1 almost every p ∈ R × ∆ 1 E n n j=1 1 U j • T j 1 (p) → 1.
Proof. Set f n = 1 Un . By the discussion above, for n large enough, f n will be supported in some fixed good induced set B. Since, as in Remark 2.3, (f n ) is bounded in V α (B), it follows from Theorem 2.6 that (f n ) is strong Borel-Cantelli with respect to T 1 .

Remark 2.8. This result remains true for any decreasing sequence of sets U n shrinking to a point p * as soon as the boundaries of these sets are sufficiently regular to ensure the condition of Remark 2.3 is satisfied.

We now consider more general, non necessarily decreasing, sequences of functions supported in the induced set Y . We will require additional properties for the non-uniformly expanding system, and we will see later they are satisfied by the Rauzy-Veech-Zorich map.

Firstly, we assume the system (X, T, µ) is mixing. This is the case if and only if gcd{r Y i : i ∈ I} = 1, see e.g. [Y2].

We set

C n = {r = n} ⊂ Y . This set is a disjoint union of elements of Q: we have C n = ∪ i∈In Y i , where I n = {i ∈ I : r Y i ≡ n}.
We will require there exists C > 0 and γ < 1 such that m(r > n)

Cγ n and c i Cγ n for all n 1 and all i ∈ I n , where

c i = c 1,Y i is the Lipschitz constant of I i = I 1,Y i : Y → Y i , the inverse branch of T restricted to Y i .
Under these assumptions, we have the following result for the decay of correlations of (X, T, µ) for observables supported in Y : Theorem 2.9. There exist 0 < κ < 1 and C > 0 such that for all φ ∈ V α (Y ) 

and all ψ ∈ L 1 (µ) supported in Y , X φ ψ • T n dµ - X φ dµ X ψ dµ Cκ n φ α ψ L 1 µ .
This theorem has the following corollary:

Corollary 2.10. Suppose {φ n } is a sequence of positive functions with sup- port in Y bounded in V α (Y ) with E n := n j=1 µ(φ j ) divergent.
Then

1 E n n j=1 φ j • T j (x) → 1 for µ a.e. x ∈ X.
Proof. We will use Proposition 2.2. Take

f k = φ k • T k and h k = g k = µ(φ k ).
A rearrangement of terms shows that it suffices to show

n i=m n j=i+1 µ(φ j • T j-i φ i ) -µ 1 (φ j )µ(φ i ) C n i=m µ(φ i ). But |µ(φ j • T j-i φ i ) -µ(φ j )µ(φ i )| Cκ j-i φ i L 1
µ which yields the result as j>i κ j-i is summable.

To prove Theorem 2.9, we will use operator renewal theory, in the spirit of Sarig [Sa] and Gouëzel [Go], even though in our situation of exponential tails for the return time, the proof will be easier.

Proposition 2.11. Let Q be a Banach space and suppose 1) and the eigenprojector Π satisfies ΠR (1)Π = γΠ for some γ = 1 and that

(R n ) n 1 is a sequence of bounded operators on Q. Assume that R n = O(θ n ) for some 0 < θ < 1. Hence R(z) = R n z n and R (z) = nR n z n-1 are well-defined operators on Q for z in the unit complex disc D. Assume 1 is a simple isolated eigenvalue of R(
I -R(z) is invertible for all z ∈ D \ {1}. Let V n = ∞ l=1 k 1 +...+k l =n R k l • . . . • R k 1 . Then V n is a bounded linear operator on Q and V n -1 γ Π = O(κ n ) for some 0 < κ < 1.
Proof. Since R n decays to 0 exponentially fast, the function R(z) = n R n z n is well defined and analytic on a disc centered at 0 and of radius r > 1. Since R(1) has 1 as a simple isolated eigenvalue, for all z in a small neighborhood of 1, R(z) has a dominating isolated eigenvalue λ(z), with associated spectral eigenprojector Π(z), where λ(z) and Π(z) depend analytically on z. Define S(z) = I-R(z) 1-z . We wish to prove that S(z) -1 admits an analytic extension on a disc of center 0 and radius r > 1. Since I -R(z) is invertible for any z ∈ D \ {1}, the only problem is the extention around 1. Recall that the set of invertible operators on a Banach space is open, and the inversion is an analytic map. By assumption, for any z ∈ D \ {1}, S(z) is invertible and we can write for z close enough to 1

S(z) -1 = 1 -z 1 -λ(z) Π(z) + (1 -z)(I -R(z)Q(z)) -1 Q(z),
where Q(z) = I -Π(z). Since λ(z) is analytic and not identically constant, this implies there exists a disc D(1, ) such that λ(z) = 1 for all z ∈ D(1, ) \ {1}. Hence, the first term of the sum admits an analytic extension to a punctured disc around 1. On the other hand, I -R(1)Q( 1) is invertible, so (I -R(z)Q(z)) -1 is well defined and depends analytically on z in D(1, ), with a possibly smaller . This shows that the second term of the sum admits also an analytic extension to D(1, ). By the step 9 of the proof of lemma 3.1 in [Go] , S(z) -1 can be extended continuously, and then analytically to the disc D(1, ), with S(1) -1 = 1 γ Π. Since I -R(z) is invertible for all z ∈ D \ {1} and the set D \ D(1, ) is compact, we obtain that S(z) -1 admits an analytic extension on a whole disc centered at zero with a radius r > 1. Hence S(z) -1 -S(1) -1

1-z = (I -R(z)) -1 -Π γ 1
1-z is analytic on the same disc. By the usual Cauchy integral formula, the coefficients of the Taylor expansion of this function around 0 decay exponentially fast, but these coefficients are given by V n -Π γ , whence the result.

Let L be the transfer operator associated to the non-uniformly expanding map T : X → X, defined for φ ∈ L 1 (m) by

Lφ(x) = T y=x φ(y) Jac(T )(y)
.

Let P be the transfer operator associated to the first return map T : Y → Y .

By the results of subsection 1.6, this operator admits a spectral gap on the space V α (Y ).

Let

R n φ := 1 Y L n (1 Cn φ) and V n φ := 1 Y P n (1 Y φ).
The linear operator R n corresponds to first returns to Y at time n while V n considers all points starting in Y which have returned to Y at time n, whether first return or not. The following renewal equation holds:

V n = ∞ l=1 k 1 +...+k l =n R k l • . . . • R k 1 .
We will show these operators satisfy the three required conditions to apply Proposition 2.11.

Lemma 2.12. There exists 0 < θ < 1 and C > 0 such that R n Cθ n .

Proof. We have

R n φ = i∈In φ(I i x) Jac( T )(I i x)
, whence R n = i∈In M 1,B i . Thus, by lemma 1.6, we have

R n φ L 1 m i∈In M 1,B i φ L 1 m = i∈In B i |φ| dm = Cn |φ| dm m(C n ) φ L ∞ m Cm(C n ) φ α , and 
osc(R n φ, B (x))dm(x) i∈In osc(M 1,B i φ, B (x))dm(x) C i∈In B i osc(φ, B c i (x))dm(x) + i∈In B i |φ| dm C Cn osc(φ, B c (n) (x))dm(x) + C Cn |φ| dm,
where c (n) = sup i∈In c i .

We have

Cn osc(φ, B c (n) (x))dm(x) B osc(φ, B c (n) (x))dm(x) (c (n) ) α α |φ| α (c (n) ) α α φ α and Cn |φ| dm m(C n ) φ L ∞ m Cm(C n ) φ α , whence |R n φ| α C((c (n) ) α + m(B n )) φ α
and similarly for R n φ α . Since c (n) et m(B n ) decay exponentially fast by assumption, one obtains that R n = O(θ n ) for some 0 < θ < 1.

Lemma 2.13. R(1) admits 1 as a simple isolated eigenvalue, and the corresponding eigenprojector is given by

Πφ = Y φ dm h Y µ(Y ) ,
where h Y is the restriction to Y of the density h of the measure µ (and then ) is the density of the absolutely continuous invariant probability for T ).

h Y µ(Y
Furthermore, we have ΠR (1)Π = Π µ(Y ) , so that γ in Proposition 2.11 is equal to 1 µ(Y ) .

Proof. We note that R(1) = P is the transfer operator of the Gibbs-Markov map T . Consequently, 1 is a simple isolated eigenvalue, and the corresponding eigenprojector is given by the desired formula.

We have

ΠR (1)Πφ = Y R (1)h Y dm µ(Y ) Y φ dm µ(Y ) h Y , whence γ = Y R (1)h Y dm µ(Y )
.

But Y R (1)h Y dm = n n Y P (1 Cn h Y ) dm = n n Cn h Y dm = n nµ(C n ) = Y r dµ = 1
by Kac's lemma, and we get γ = 1 µ(Y ) .

It remains to prove the aperiodicity condition:

Lemma 2.14. For all z ∈ D \ {1}, I -R(z) is invertible on V α (Y ).
Proof. We first establish a Lasota-Yorke inequality for the operator R(z).

Remark that

R(z) k = n 1 ,...,n k 1 z n 1 +...+n k R n k • . . . • R n 1 ,
and that

R n k • . . . • R n 1 = i 1 ∈In 1 ,...,i k ∈In k M k,Q I 1 ,...,I k , where Q I 1 ,...,I k ∈ Q k is defined by Q I 1 ,...,I k = Y i 1 ∩ T -1 Y i 2 ∩ . . . ∩ T -(k-1) Y i k .
Then, summing all the relations from Lemma 1.6 and noticing that |z| 1 and n 1 + . . .

+ n k k, we have R(z) k φ L 1 m C|z| k φ L 1 m and |R(z) k φ| α C|z| k θ -αk |φ| α + φ L 1
m , arguing as in the proof of Lemma 1.7. This shows that the spectral radius of R(z) is less than |z|, while the essential spectral radius of R(z) is strictly less than 1 if |z| = 1, by Hennion's theorem [Hen]. Thus, the problem reduces to prove that the relation R(z)φ = φ, with |z| = 1 and φ ∈ V α (Y ) implies that z = 1 or φ = 0.

Let |z| = 1 and φ ∈ V α (Y ) non-zero satisfying R(z)φ = φ, that is P (z r φ) = φ. By [Mo1, Proposition 1.1], we deduce that φ h Y • T = z r φ h Y .
Since (X, T, µ) is mixing, and hence weakly mixing, by Proposition 7.3 (see Appendix), we get that z = 1, concluding the proof.

Proof of Theorem 2.9. By lemmas 2.12, 2.13 and 2.14, we can apply Proposition 2.11 and get V n -µ(Y )Π

Cκ n , i.e.

V n φ - Y φ dm h Y α Cκ n φ α , for all φ ∈ V α (Y ). Let φ ∈ V α (Y ) and ψ ∈ L 1 (µ) supported in Y . We have X φ ψ • T n dm = X 1 Y L n (1 Y φ)ψ dm = Y (V n φ) ψ dm, Since Y V n (φ) ψdm - Y φ dm Y ψ dµ = Y V n φ - Y φ dm h Y ψ dm V n φ - Y φ dm h Y α Y |ψ| dm Cκ n φ α ψ L 1 m , we get X φ ψ • T n dm - Y φ dm Y ψ dµ Cκ n φ α ψ L 1 m Cκ n φ α ψ L 1 µ , as ψ L 1 m h -1 Y L ∞ |ψ L 1 µ C ψ L 1 µ , the density of µ being bounded from below on Y .
The theorem follows by taking φh Y for φ, using the fact that φh Y α h Y α φ α C φ α .

In order to apply Corollary 2.10 to the Rauzy-Veech-Zorich map, we need mixing, so we will rather consider the map G = T 2 1 restricted to ∆ , = 0, 1, which admits μ1 = 2µ 1 (. ∩ ∆ ) as an invariant measure. If the good induced set B is included in ∆ , then T 2 : B → B is the first return map of G to B, with associated return time ñ2 = n 2 2 . It has been shown by Avila and Bufetov [AB] that the measure of the set {n 1 = n} decays exponentially fast with n. To apply Corollary 2.10, it remains to prove the condition on the Lipschitz constants:

Lemma 2.15. The Lipschitz constant c i = c i,B i of I i : B → B i decays exponentially fast with n: there exist 0 < γ < 1 and C > 0 such that c i Cγ n for all n 1 and all i ∈ I n .

Proof. By Avila-Bufetov [AB], m(C n ) decays exponentially fast. The map I n : B → Y i is a composition of a linear map λ → Aλ followed by Aλ → Aλ |Aλ| 1 . A is a non-negative matrix and λ i λ j is bounded for all λ = (λ 1 , . . . , λ d ) in B. Hence 1 |Aλ| A > C > 0 for all λ ∈ B (this is an observation of Avila and Bufetov [START_REF] Avila | Exponential decay of correlations for the Rauzy-Veech-Induction map[END_REF]Page 9]). Furthermore |Aλ | 1 |Aλ| 1 < C for all λ, λ in B by Proposition 1.3. Thus the exponential decay of volume implies that at least one direction contracts exponentially under I n by a factor γ 1/d and hence all directions do, this implies L n C(γ

1 d ) n .
We can then conclude: Theorem 2.16. Suppose {φ n } is a sequence of positive functions with support in B, bounded in V α (B) with

E n := n j=1 μ1 (φ j ) divergent. Then 1 E n n j=1 φ j • G j (x) → 1 for µ 1 a.e. x ∈ ∆ .
This theorem applies in particular to sequences of characteristic functions of balls included in B.

Extreme Value Laws for T 1 and T 2 .

By expressing T 2 as a multidimensional piecewise expanding map with exponential decay of correlations with respect to a quasi-Hölder norm versus L 1 we are able to apply results on Extreme Value statistics for such systems. Let φ : B → R ∪ {+∞} be a function, strictly maximized at a point p 0 ∈ B, which is sufficiently regular that for large u the set {x ∈ B : φ(x) > u} corresponds to a topological ball centered at p 0 . Let

M n (x) := max{φ(x), φ • T 2 (x), . . . , φ • T n 2 (x)}.
The aim is to show that we have a non-degenerate limit law for M n , which we think of as a random variable. Since almost surely M n converges to φ(p 0 ), since µ 2 is ergodic, for such a law, we need to rescale our variable. To this end, for each t we define scaling constants

u n (t) by nµ 2 (φ > u n (t)) → t. For example, if φ(x) = -log d(x, p 0 ) then u n (t) = d -1 [log C(d) + log n -log t]
where C(d) is the constant giving the volume of the unit ball in d dimensional Euclidean space (if d is the dimension of B). In fact we may always write u n (t) in the form We say that we have an Extreme Value Law if the variable M n under scaling by u n converges to some non-degenerate distribution. For the classical application of these ideas to i.i.d. processes, see [LLR]. For more recent applications to dynamical systems, as we have here, see for example [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems, Ergodic Theory Dynam[END_REF][START_REF] Freitas | Hitting Time Statistics and Extreme Value Theory[END_REF][START_REF] Holland | Extreme value distributions for nonuniformly hyperbolic dynamical systems[END_REF].

u n (t) = u T 2 n (t) = g(t) a n + b n
There is a close connection between rare events point processes (REPP), extremes and hitting times. First we describe what we mean by a compound Poisson process. Let R be the ring of subsets of R + generated by the semiring of subsets of form [a, b) so that an element of J ∈ R has the form

J = ∪ n i=1 [a i , b i ). Definition. Let X 1 , X 2 , .
. ., be an iid sequence of random variables with common exponential distribution of mean 1 θ . Let D 1 , D 2 , . . . be another iid sequence of random variables, independent of X i and with distribution function η. We say that N is a compound Poisson process of intensity θ and multiplicity distribution function η if for every J ∈ R

N (J) = 1 J d ∞ i=1 D i δ X 1 +...+X i ,
where δ t is the Dirac measure at t. If P (D 1 = 1) = 1 then N is the standard Poisson distribution and for every t > 0 the random variable N ([0, t)) has a Poisson distribution of mean θt.

Remark 3.1. In our applications η will follow a geometric distribution of parameter θ ∈ (0, 1] and π(k) := P (D 1 = k) = θ(1 -θ) k for every integer k 0. In this case the random variable follows a Pólya-Aeppli distribution,

P (N ([0, t)) = k) = e -θt k i=1 θ i (1 -θ) k-i (θt) i i! k -1 i -1 . Define v T 2 n (t) := µ 2 (φ > u T 2 n ) -1 so that v T 2 n (t) ∼ n t . If J = ∪ n i=1 [a i , b i ) ∈ R and γ > 0, define γJ = ∪ n i=1 [γa i , γb i ) ∈ R.
We define the rescaled REPP N T 2 n as

N T 2 n (J) := j∈v T 2 n J∩N 0 1 (φ•T j 2 >u T 2 n ) . (2) 
EVLs and limit laws for N T 2 n for T 2 follow directly from [AFV, Proposition 3.3]. We state them here: Proposition 3.2. Suppose that p 0 satisfies the Keane condition. (1) If p 0 is not a periodic point for T 2 then µ 2 {M n u n (t)} → e -t and the REPP N T 2 n converges in distribution to a standard Poisson process N of intensity 1.

(2) If p 0 is a repelling periodic point of prime period k then µ 2 {M n u n (t)} → e -θt where θ = 1 -|Jac(DT -k 2 )(p 0 )| and the REPP N T 2 n converges in distribution to a compound Poisson process N with intensity θ and multiplicity distribution function η given by η(j) = θ(1 -θ) j for all integers j 0. Now define u T 1 n (t) to be so that nµ

1 (φ > u T 1 n ) → t as n → ∞. Then setting v T 1 n (t) := µ 1 (φ > u T 1 n (t)) -1
, we can define the REPP N T 1 n by changing all the appearances of T 2 in (2) to T 1 . We then have the following corollary.

Corollary 3.3. Suppose that p 0 satisfies the Keane condition. (1) If p 0 is not a periodic point for T 1 then µ 1 {M n u T 1 n (t)} → e -t and the REPP N T 1 n converges in distribution to a standard Poisson process N of intensity 1.

(2) If p 0 is a repelling periodic point of prime period k then µ 1 {M n u n (t)} → e -θt where θ = 1 -|Jac(DT -k 1 )(p 0 )| and the REPP N T 1 n converges in distribution to a compound Poisson process N with intensity θ and multiplicity distribution function η given by η(j) = θ(1 -θ) j for all integers j 0.

Observe that p 0 as above, that is the point where φ takes its maximum, we can choose our set B to contain p 0 , so that the result in Proposition 3.2 applies to the corresponding first return map T 2 . The proof that we can always pass from the result on the first return map (i.e., T 2 here) to the original case (i.e., for T 1 ), which is a simple generalisation of the main result in [HWZ], appears in [START_REF] Freitas | Dichotomies in extreme value laws for dynamical systems[END_REF]. Note that the second part was already proved in [START_REF] Freitas | The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics[END_REF].

Return and hitting time statistics.

In this section we consider a natural notion of recurrence which, as in [START_REF] Freitas | Hitting Time Statistics and Extreme Value Theory[END_REF], is analogous to the EVL perspective in the previous section. Suppose p 0 ∈ B and U n is a sequence of balls nested at p 0 . Let τ U (x) := min{n 1 :

T n 2 (x) ∈ U }. We say that T 2 has hitting time statistics to {U n } with distribution H(t) if lim n→∞ µ 2 x ∈ B : τ Un (x) t µ 2 (U n )) = H(t).
We say that T 2 has return time statistics to {U n } with distribution

H(t) if lim n→∞ 1 µ 2 (U n ) µ 2 x ∈ U n : τ Un (x) t µ 2 (U n )) = H(t).
There is a large body of literature on this topic: we refer the reader to [AG, HLV] and references therein for further information on this notion of asymptotic recurrence.

Results of [START_REF] Freitas | The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics[END_REF][START_REF] Haydn | Return-time statistics, Hittingtime statistics and Inducing[END_REF] show that in our setting if p 0 is not periodic then T 2 has exponential hitting and return time statistics i.e.

H(t) = H(t) = 1-e -t .
If however p 0 is periodic of period k then we may define θ =

1 |Jacp 0 T k 2 | . In this scenario by results of [FFT2] lim n→∞ µ 2 x ∈ B : τ Un (x) t µ 2 (U n )) = 1 -e -θt , while lim n→∞ 1 µ 2 (U n ) µ 2 x ∈ U n : τ Un (x) t µ 2 (U n )) = (1 -θ) + θ(1 -e -θt ).
Since T 2 is a first return of T 1 , the same limit laws hold for T 1 . This was proved in the case of typical points in [START_REF] Bruin | Return time statistics via inducing[END_REF]Theorem 2.1], for periodic points in [FFT2, Theorem 5]: it was then elegantly proved for all points in [HWZ]. Note that we can also extend these results to the point processes analogous to the REPP in the previous section.

The Teichmüller flow on the space of translation surfaces

In this section we relate the dynamical structures we described in Section 1 to the Teichmüller flow on the space of translation surfaces. We do not present any new results in this section. We will first introduce invertible versions R 0 , R 1 and R 2 of the maps presented in Section 1. The key fact we use is that these maps are first return maps for the flow to adapted cross sections, and give a clearer relation to the translation surfaces, which are represented as points in their phasespace.

5.1. Translation surfaces: the zippered rectangle construction. Given an irreducible pair π = (π 0 , π 1 ) and a length vector

λ ∈ R A + , let T + π denote the subset of vectors τ = (τ a ) a∈A ∈ R A such that π 0 (a) k τ a > 0 and π 1 (a) k τ α < 0 for 1 k d -1.
We say that τ has type 0 if the total sum a∈A τ a is positive and type 1 if the total sum is negative.

Next we will use the matrices M and intervals I πε a defined in Section 1.2. Then given π and τ ∈ T + π we define the height data by h := -Mτ . One can check that τ ∈ T + π implies that each element h a for a ∈ A is strictly positive. Now given (π, λ, τ ), for each a ∈ A we can define the rectangles

R π 0 a = I π 0 a × [0, h a ] ⊂ R 2 and R π 1 a = I π 1 a × [0, -h a ] ⊂ R 2 .
We can then form the translation surface M = M (π, λ, τ ) by identifying the top of each rectangle R π 0 a with the bottom of the corresponding rectangle R π 1 a and then 'zipping up' by making a natural identification of pairs of protruding sides of the rectangles: for more details see [START_REF] Viana | Dynamics of interval exchange maps and Teichmüller flows[END_REF]Chapter 2.7], [Yoc]. The area of M (π, λ, τ ) can be defined as area(π, λ, τ ) := λ • h = a∈A λ a h a . The structure here can be thought of as a Riemann surface with a non-zero holomorphic 1-form or equivalently, as a flat Riemannian metric on a surface with finitely many singularities of conical type and a parallel unit vector field.

Note that the underlying IET here is a first return map of the vertical flow on the translation surface to the interval [0

, a∈A λ a ]. Fix R a Rauzy class. Let Ĥ = Ĥ(R) := (π, λ, τ ) ∈ R × R A + × T + π .
We extend the Rauzy-Veech induction map T0 to a map R0 on Ĥ by R0 (π, λ, τ ) = (π , λ , τ ), where (π , λ ) = T0 (π, λ) and τ = Θ -1 * (τ ) (recall the description of Θ given in Remark 1.1). The height data h of (π , λ , τ ) can be expressed as h = Θ(h). Moreover, setting

R A π,ε := {λ ∈ R A + : (π, λ)
has type ε} and T π,ε := {τ ∈ T + π : τ has type ε}, it can be shown (see eg [START_REF] Viana | Dynamics of interval exchange maps and Teichmüller flows[END_REF]Chapter 2.7]) that: Every (π , λ , τ ) such that α∈A τ α = 0 has a unique preimage by R0 . (d) If R0 (π, λ, τ ) = (π , λ , τ ) then the areas of M (π, λ, τ ) and M (π , λ , τ ) are equal.

Proposition 5.1. (a) Θ -1 * sends T + π injectively inside T + π . (b) (Markov) R0 ({π} × R A π,ε × T + π ) = {π } × R A + × T π ,1-ε . (c)

Teichmüller flow.

The Teichmüller flow on Ĥ is defined as the induced action T = (T t ) t∈R : Ĥ → Ĥ of the diagonal subgroup e t 0 0 e -t for t ∈ R,

given by T t (π, λ, τ ) = (π, e t λ, e -t τ ). For c > 0 we define

H c := {(π, λ, τ ) ∈ Ĥ : |λ| = c}.
The trajectory of a point in Ĥ hits H c precisely once. We are looking for transformations from H c back to itself of the form R0 • T t for some t. Noticing that if (π , λ ) = R0 (π, λ) and (π, λ) is of type ε,

then |λ | = |λ| 1 - λ a(1-ε) |λ|
, we see that the relevant time t is

r 0 = r 0 (π, λ) := -log 1 - λ a(1-ε) |λ| where (π, λ) is of type ε.
That is to say, we are interested in the map from H c to itself given by R 0 = R0 • T r 0 : (π, λ, τ ) → R0 (π, e r 0 λ, e -r 0 τ ).

From now on we restrict ourselves to

H = H 1 .
Then we observe that the map above can actually be interpreted as an extension of the Rauzy-Veech renormalisation map T 0 since R 0 (π, λ, τ ) = (π , λ , τ ) = (T 0 (π, λ), τ ) where

(π , λ , τ ) = R0 (π, λ, τ ), λ = λ 1 -λ a(1-ε) , τ = τ (1 -λ a(1-ε) ).
The next result is [START_REF] Viana | Dynamics of interval exchange maps and Teichmüller flows[END_REF]Corollary 2.24] and [START_REF] Viana | Dynamics of interval exchange maps and Teichmüller flows[END_REF]Lemma 4.3].

Proposition 5.2. R 0 : H → H is an (almost everywhere) invertible Markov map and preserves the area of the corresponding translation surfaces. The standard volume form m H = dπdλ 1 dτ , where dλ 1 is the Lebesgue measure induced on ∆ A and dτ is the Lebesgue measure on T + π , is invariant under R 0 .

From now on, we will only consider translation surfaces of area 1, i.e. elements of the set

Ĥ(1) := {(π, λ, τ ) ∈ Ĥ : area(π, λ, τ ) = 1}.
This set is invariant under both the Teichmüller flow T = (T t ) t∈R and the invertible Rauzy-Veech induction R0 . We also set H (1) := Ĥ(1) ∩ H, which is invariant under the invertible Rauzy-Veech renormalization map R 0 .

We consider the pre-stratum obtained as the quotient of the fundamental domain {(π, λ, τ ) ∈ Ĥ(1) : 0 log |λ| r 0 (π, λ)} by the equivalence relation

T r 0 (π,λ) (π, λ, τ ) ∼ R 0 (π, λ, τ ) for all (π, λ, τ ) ∈ H (1) .
Since R 0 commutes with the flow, the latter induces a flow T = (T t ) t∈R on the pre-stratum, that we also call Teichmüller flow.

The map R 0 : H (1) → H (1) is then naturally identified with the Poincaré return map of this flow to the cross section H (1) . The volume form m H induces a volume form m H (1) on H (1) which is still invariant under R 0 . The key fact is that m H (1) gives finite mass to H (1) , a fact which was demonstrated by Veech [START_REF] Veech | Gauss measures for transformations on the space of interval exchange maps[END_REF]. 5.3. Recoded Teichmüller flow and inducing. The moves described above mean that R 0 can now be interpreted as the first return map of the Teichmüller flow to H (1) , and indeed it is convenient for us to redefine the flow as a suspension flow which is locally defined by T t (π, λ, τ, s) = (π, λ, τ, t + s) on the space

H r 0 (1) := (π, λ, τ, s) ∈ H (1) × R : 0 s r 0 (π, λ) / ∼
where (π, λ, τ, r 0 (π, λ)) ∼ (π , λ , τ , 0) and R 0 (π, λ, τ ) = (π , λ , τ ). We refer to r 0 as the roof function for this suspension flow.

A key fact in Proposition 5.1(b) is that given (π, λ, τ ) ∈ H (1) , if (π, λ) is of type ε, then τ is of type 1 -ε. So if the first k iterates (π j , λ j , τ j ) for j = 1, . . . , k of R 0 do not change the type of (π j , λ j ), then the types of (π j , λ j ) and τ j are different (ε and 1 -ε) for j ∈ {1, . . . , k}. So the first time k that the types of (π k , λ k ) and τ k are the same is the first time that (π k , λ k ) changes type. That is, exactly n 1 (π, λ). Therefore, setting Z := Z 0 ∪ Z 1 , where for ε ∈ {0, 1},

Z ε := (π, λ, τ ) ∈ H (1) : (π, λ
) and τ both have type ε , we define R 1 : Z → Z as the first return map by R 0 to Z. (We can do this with R1 on Ĥ too.) This map can be seen as an extension of the Rauzy-Veech-Zorich renormalisation map for the same reasons as for

R 0 : if R 1 (π, λ, τ ) = (π , λ , τ ), then T 1 (π, λ) = (π , λ
). Thus we can produce a new description of our Teichmüller flow.

We omit the description of this since we go straight to the description given by taking an adapted induced set B H (1) ⊂ Z and the first return map R 2 to B H (1) by T . This map will also be the first return map of R 0 to B H (1) . The choice of B in Section 1.5 was made in order to ensure uniform expansion for the first return map. Since we are now dealing with an invertible map, we will also need uniform contraction in the stable direction. We follow the construction of [AGY], and choose a good set B, which is the image of an inverse branch of T 0 . We refer to [START_REF] Avila | Exponential mixing of the Teichmüller flow[END_REF]Section 4.1.3] for the precise definition of B. This set can be written as

B = {π} × { Θ λ |Θ λ| : λ ∈ ∆ A }
, where Θ is a finite product of the matrices mentionned in Remark 1.1.

We then set B H

(1) = (B × T + B ) ∩ H (1)
, where T + B is defined by the relation Θ T + B = T π , and we consider the first return map R 2 of R 0 to B H (1) . This map can be written as a skew product over the first return map T 2 of T 0 to the set B, i.e. R 2 (π, λ, τ ) = (π , λ , τ ), where (π , λ ) = T 2 (π, λ), and τ depends on π, λ and τ .

The map R 2 preserves the renormalised restriction m B H (1) of m H (1) to B H (1) . By [START_REF] Avila | Exponential mixing of the Teichmüller flow[END_REF]Lemma 4.3], this map is a hyperbolic skew product over the uniformly expanding Markov map T 2 , in the sense of [START_REF] Avila | Exponential mixing of the Teichmüller flow[END_REF]Definition 2.5], and henceforth it admits exponential decay of correlations for Lipschitz observables: there exists C > 0 and 0 < α < 1 such that

φ ψ • R n 2 dm B H (1) -φ dm B H (1) ψ dm B H (1) Cα n φ Lip ψ Lip ,
for all φ, ψ ∈ Lip.

Since R 0 is the Poincaré return map of the flow T to the section H (1) , the map R 2 is itself the Poincaré return map of T to the section B H (1) . This gives a roof function r 2 : B H (1) → R + defined almost everywhere. Clearly, the roof function depends only on (π, λ), so we can reduce it to a roof function r 2 : B → R + . We define the suspension

B r 2 H (1) := (π, λ, τ, s) ∈ B H (1) × R : 0 s r 2 (π, λ) / ∼
where (π, λ, τ, r 2 (π, λ)) ∼ (π , λ , τ , 0) and R 2 (π, λ, τ ) = (π , λ , τ ). Again, we can redefine the flow T as a suspension flow on B r 2 H (1) given by T t (π, λ, τ, s) = (π, λ, τ, t + s), which preserves the measure µ T =

(m B H (1) ×m)| B r 2 H (1) (m B H (1) ×m)(B r 2 H (1)
) where m is the Lebesgue measure on R.

We now revert to a form which matches Pollicott's [Po] notes as well as corresponds to our sections above. Since the roof function depends only on (π, λ), we can project into a semi-flow by removing the τ parameter: then the actual flow can be reconstructed as the natural extension of what we have produced. Namely, we let

B r 2 := {(π, λ, s) ∈ B × R : 0 s r 2 (π, λ)} / ∼
where (π, λ, r 2 (π, λ)) ∼ (π , λ , 0) and T 2 (π, λ) = (π , λ ). Clearly T 2 is still a first return map to B. Later we will simplify notation further and write simply x = (π, λ).

The notation we use for the semi-flow is F t : B r 2 → B r 2 , defined locally by F t (x, u) = (x, u + t), with the relevant identifications i.e. (x, τ, r 2 (π, λ)) ∼ (T 2 (x), 0). The semi-flow F = {F t } t∈R preserves the acip µ F given by

µ F = (µ 2 × m)| B r 2 (µ 2 × m)(B r 2 ) = (µ 2 × m)| B r 2 r 2 dµ 2 ,
where µ 2 is the acip for T 2 and m is the Lebesgue measure on R.

Remark 5.3. Since T 2 is a first return map for T 0 , which in turn is a first return map for our Teichmüller semi-flow, any small ball in B r 2 is isomorphic to the corresponding ball in B r 0 . More precisely, this is true if our ball is contained in a strip {(x, t) : x ∈ B k , 0 t r 2 (x)} for some k.

Statistical properties of the Teichmüller flow

In this section we extend our Borel-Cantelli Lemmas and EVLs to the Teichmüller flow.

6.1. Borel-Cantelli Lemmas for the semi-flow. Here we will use ideas from the proof of [GNO, Theorem 2], primarily Step 1 of that proof. The main (obvious) difference is that we are dealing with continuous time.

Given a family of sets U = (U s ) s 0 set ψ = (ψ s ) s 0 where ψ s := 1 Us and

E t (U ) = E t (ψ) = t 0
ψ s dµ F ds. We say that U is a family of shrinking sets if s 1 < s 2 implies U s 2 ⊂ U s 1 . In this section we will prove that if U = (U s ) s 0 is a family of shrinking sets with some monotonicity condition and lim

t→∞ E t (U ) = ∞ then lim t→∞ 1 E t (U ) t 0 1 Us • F s (x, u) ds = 1 for µ F -a.e. (x, u) ∈ B r 2 .
This result is contained in Theorem 6.3; in particular, the smoothness condition is given there. We prove in the following subsection that this condition is indeed satisfied for a natural family of sets, namely nested balls.

Recall that B is partitioned (almost everywhere) into sets {B k } k . For i ∈ N 0 , define

B i k := (x, t) ∈ B k × R + : i t < min{i + 1, r 2 (x)} . So we can write B = ∪ k ∪ i B i
k almost everywhere. We will restrict our Borel-Cantelli Lemmas to these sets B i k , which will be sufficient to prove the general case. Indeed, we define the restricted indicator function

ψ B i k ,s := 1 Us∩B i k
and first study the recurrence properties of the family ψ B i k = (ψ B i k ,s ) s 0 . We do this by inducing, for which we need the right time scale. Since µ F is ergodic and r 2 dµ 2 < ∞, we immediately obtain the following lemma where r 2 := r 2 dµ 2 . Lemma 6.1. For each ε > 0 there exists T 0 and a set X ε,T ⊂ B r 2 such that (x, u) ∈ X ε,T and t T implies

1 t #{s ∈ [0, t) : F s (x, u) ∈ B} -r 2 < ε. Moreover, µ F (X ε,T ) → 1 as T → ∞. Now, for each ε ∈ R, we define the induced function on x ∈ B ψ n,B i k ,ε (x) := r 2 (x) 0 1 U n(r 2 +ε)+s • 1 B i k • F s (x, 0) ds, (3) 
and denote the family as

ψ B i k ,ε = (ψ n,B i k ,ε ) n . Note that ψ n,B i k ,ε (x)dµ 2 = r 2 µ F (U n(r 2 +ε) ∩ B i k ).
We will be able to compare the long-term behaviour of this function with different values of ε, and compare them all to the longterm behaviour of the flow. This is necessary as we sample at discrete times, and the nested balls are shrinking in continuous time.

We will use the following lemma, which is [START_REF] Gupta | A Borel-Cantelli lemma for non-uniformly expanding dynamical systems[END_REF]Lemma 4.2]. Lemma 6.2. Suppose that g : R + → R + is decreasing and ∞ i=0 g(i) = ∞. Then, (a) For all ε > 0 and all n 0,

(1+ε)n 0 g(t) dt n 0 g(t) dt 1 + ε. (b) lim n→∞ n 0 g(t) dt n-1 j=0 g(j) = 1. Theorem 6.3. Suppose that B i k is such that lim t→∞ t 0 µ F (U s ∩ B i k ) ds = ∞, i.e. lim t→∞ E t (ψ B i k ) = ∞. If there exists K > 0 and 0 < α 1 such that ψ n,B i k ,0 α < K for all n ∈ N 0 , then lim t→∞ 1 E t (ψ B i k ) t 0 1 Us∩B i k • F s (x, u) ds = 1 for µ F -a.e. (x, u) ∈ B r 2 .
Proof. We use the idea of Step 1 of the proof of [START_REF] Gupta | A Borel-Cantelli lemma for non-uniformly expanding dynamical systems[END_REF]Theorem 2]. We will show

lim t→∞ 1 E t (ψ B i k ) t 0 1 Us∩B i k • F s (x, 0) ds = 1 for µ 2 -a.e. (x, 0) ∈ B,
as then the proof for µ F -a.e. (x, u) ∈ B r 2 follows.

We already know from Proposition 2.1 that for µ 2 -a.e. x ∈ B,

n-1 j=0 ψ j,B i k ,0 (T j 2 x) E n (ψ B i k ,0 ) → 1 as n → ∞.
where

E n (ψ B i k ,0 ) := n-1 j=0 µ 2 ( ψj,B i k ,
). Lemma 6.2 controls the effect of this perturbation in the limit when we switch on the ε parameter in one of the occurrences of ψ n,B i k ,ε above which deals with the shrinking of the balls during the flow between returns to the base. Given x ∈ B, define q(n, x) as the integer for which r q(n,x) (x) n < r q(n,x)+1 (x) where r m (x) = r(x) + r(T 2 x) + . . . + r(T m-1 2 x). Observe that since, the difference of the integral of 1 Us∩B i k • F s (x, •) between times r q(n,x) (x) and n is made up by at most one passage through B i k which integrates to at most the length of B i k in the vertical direction, i.e., 1, we have

n 0 ψ B i k ,s • F s (x, 0) ds - q(n,x) 0 ψ B i k ,s • F s (x, 0) ds 1.
Hence this difference is uniformly bounded independently of x and n. The only time the integral of ψ B i k ,s along the F s -orbit of (x, 0) can be added to is when that orbit hits B i k . Correspondingly, the only time the sum of ψ n,B i k ,ε

along the (discrete) T 2 -orbit of (x, 0) can be added to is when the F s -orbit above T n 2 (x) hits B i k ∩ U (n(r 2 + )+s) before reaching its roof. Therefore the difference between the integral and the sum is essentially a matter of the scaling of the sets U s ∩ B i k (i.e., the discrepancy in the time scale s). So by Lemma 6.1, for all small ε > 0,

n-1 j=0 ψ j,B i k ,ε (T j 2 x) -ρ(x, ε) E q(n,x) (ψ B i k ,ε ) E q(n,x) (ψ B i k ,ε ) E q(n,x) (ψ B i k ,0 ) r q(n,x) 2 (x) 0 ψ B i k ,s • F s (x, 0) ds E q(n,x) (ψ B i k ,0 ) n-1 j=0 ψ j,B i k ,-ε (T j 2 x) + ρ(x, ε) E q(n,x) (ψ B i k ,-ε ) E q(n,x) (ψ B i k ,-ε ) E q(n,x) (ψ B i k ,0 )
for a small error term ρ(x, ε) independent of n. Then Lemmas 6.1 and 6.2 imply that lim n→∞ r q(n,x) 2 (x) 0

ψ B i k ,s • F s (x, 0) ds E q(n,x) (ψ B i k ,0 ) = lim n→∞ n 0 ψ B i k ,s • F s (x, 0) ds E q(n,x) (ψ B i k ,0 ) = 1.
To complete the proof of the proposition, as in Step 2 of the proof of [GNO, Theorem 2], we show that

lim n→∞ E n (ψ B i k ) E n/r 2 (ψ B i k ,0 ) = 1.
Notice that this is the one part where our proof is easier than theirs since the flow is a first return to the base (this also accounts for the fact that Step 3 of that proof is unnecessary here).

By Lemma 6.1, q(n, x) ∼ n r 2 . Hence

E n/r 2 (ψ B i k ,0 ) = n r 2 -1 j=0 B ψ j,B i k ,0 (y) dµ 2 (y) = n r 2 -1 j=0 B r 2 (y) 0 ψ B i k ,jr 2 +s • F s (y, 0) ds dµ 2 (y) ∼ n r 2 -1 j=0 µ F (U j(r 2 ) ∩ B i k ).
Applying Lemma 6.2 with a speeded up time variable, we obtain

n r 2 -1 j=0 µ F (U j(r 2 ) ∩ B i k ) ∼ n r 2 0 µ F (U sr 2 ∩B i k )r 2 ds, so a change of variables then gives E n/r 2 (ψ B i k ,0 ) ∼ E n (ψ B i k
), thus completing the proof. 6.2. An application of Theorem 6.3. One of the challenges in proving Borel-Cantelli lemmas when moving from the discrete system to the flow is that the induced characteristic functions are not, in general, characteristic functions. In this subsection we prove that characteristic functions of balls in the flow space induce observables which are sufficiently regular that we can apply Theorem 6.3 to them. In fact the averaging in the flow direction regularizes functions. If (z, u) ∈ B r 2 we let B η (z, u) denote a ball of radius η about (z, u) in the Euclidean metric d 1 ((z, u)

, (z , u )) = [(u-u ) 2 + d j=1 (z j -z j ) 2 ] 1 2
. It is clear from our proof below other Euclidean metrics may be used, for example d 2 ((z, u), (z , u )) = |u-u |+ d j=1 |z j -z j |. Theorem 6.4. Let δ(s) be a decreasing sequence. For µ F -a.e. (z, u)

∈ B r 2 setting U s = B δ(s) (z, u), if lim t→∞ E t (U ) = ∞ then lim t→∞ 1 E t (U ) t 0 1 Us • F s (x, v) ds = 1, for µ F -a.e. (x, v) ∈ B r 2
Proof. As before we define

ψ B i k ,s := 1 U δ(s) ∩B i k , where B i k := (x, t) ∈ B k × R + : i t < min{i + 1, r 2 (x)} .
For large s the ball B δ(s) (z, u) lies inside a fixed B i * k * for some specific k * , i * . Since we have freedom to induce on a set B placed anywhere in ∆ we need not worry about (z, u) lying on the boundary of a B i k .

For γ > 0 we also define the induced function

ψ n := ψ n,B i * k * ,γ (x) := r 2 (x) 0 1 U n(r 2 +γ)+s • 1 B * k * i • F(x, s) ds,
We have to show that there exists an α and a constant K such that ψ n α < K for all n.

It suffices to show that there exist α, K such that

-α B osc(ψ n , B (x)) dx < K for all n.
If δ(n(r 2 )) then osc(ψ n , B (x)) 2 . This is because for each y ∈ B (x),

r 2 (x) 0 1 U (n(r 2 +γ)+s) • 1 B i k • F(x, s) ds δ(|n(r 2 )|) .
So we need only consider the supremum over small < δ(n(r 2 )). The ball

B δ(s) (z, u) ⊂ B i * k * lies in a d + 1-dimensional Euclidean space. Its projection onto the d-dimensional space B is a ball B δ(s) (z) in B k * . If the distance of B (x) to B δ(s) (z)) is greater than 2 then either B (x) is in the exterior of B δ(s) (z) or B 2 (x) ⊂ B δ(s) (z).
In the first case B osc(ψ n , B (x)) = 0 as the flow starting in B (x) does not meet B δ(s) (z, u). In the second case i.e. B (x) is bounded away from the boundary of B δ(s) (z)) by , then the two parts of the boundary of B δ(s) (z, u) which project to B (x) may be written locally as graphs over B (x), the 'height' functions are given by s -u = δ(s) -d j=1 (t j -z j ) 2 and s -u = -δ(s) -d j=1 (t j -z j ) 2 respectively, where t = (t 1 , . . . , t d ) and z = (z 1 , . . . , z d ) are Euclidean coordinates in B. Here we are restricting to t satisfying n j=1 (t j -x j ) 2 < where x = (x 1 , . . . , x d ) is the center of B (x). Note that for both branches

| ∂s ∂t i | = 1 2 (δ(s) -d j=1 (t j -z j ) 2 ) -1 2 (2|t i -z i |). In particular since t satisfying n j=1 (t j -x j ) 2 < is bounded from the boundary of B δ(s) (z) by , i.e. (δ(s) -d j=1 (t j -z j ) 2 ) > we have | ∂s ∂t i | C √ for all i and hence the oscillation of ψ n over B (x) is O( √ ). Finally if B (x) is within 2 of the boundary of B δ(s) (z) then the oscillation of ψ n over B (x) is O(1) but the µ 2 measure of points x within a 2 neighborhood of the boundary of B δ(s) (z) is O( ).
Thus taking α = 1 2 there exists K such that

-1 2 B osc(ψ n , B (x)) dx < K
for all n.

6.3. Borel-Cantelli lemmas for the Teichmüller flow. In this section, we prove Borel-Cantelli lemmas for the Teichüller flow T seen as a suspension flow over the map R 2 : B H (1) → B H (1) with roof function r 2 .

We first prove a similar result for the map R 2 . Recall that this map preserves the measure m B H (1) and is a skew-product over the map T 2 : B → B, which preserves µ 2 . To simplify the notations, we set µ := µ 2 and μ := m B H (1) .

Proposition 6.5. Let (U n ) be a decreasing sequence of nested balls centered at a point

(x, τ ) ∈ B H (1) , with n μ(U n ) = ∞. Assume there exist C > 0 and γ > 0 such that μ(U n ) Cn -γ and (log n)µ(U n ) C for all n 0. Then the sequence (U n ) is strong Borel-Cantelli for R 2 .
Proof. We follow the proof of [START_REF] Zhang | Borel-Cantelli lemmas and extreme value theory for geometric Lorenz models[END_REF]Theorem 1.5

]. Let f k = 1 U k • R k
2 . We denote by E(.) the expectation operator with respect to μ. We trivialize B H (1) to a product via the natural diffeomorphism B H (1) → B × PT + B , where PT + B is the image of T + B in the projective space PR A . Let Π x and Π τ be the projections on the factors B and PT + B respectively. We denote by m 1 the Lebesgue measure on each factor, and by m 2 the product Lebesgue measure on B ×PT + B . The measure μ has a smooth density with respect to m 2 , which is bounded uniformly from above and below. Let E(.) be the expectation operator with respect to the measure μ.

For i < j, we calculate

E(f i f j ) = 1 U i • R i 2 1 U j • R j 2 dμ = 1 U i 1 U j • R j-i 2 dμ U i 1 ΠxU i 1 ΠxU j • Π x • R j-i 2 dm 2 m 1 (Π τ U i )m 1 (Π x U i ∩ T -(j-i) 2 Π x U j ) m 1 (Π τ U i )µ(Π x U i ∩ T -(j-i) 2 Π x U j ) m 1 (Π τ U i ) µ(Π x U i )µ(Π x U j ) + Cθ j-i µ(Π x U j ) m 1 (Π τ U i ) m 1 (Π x U i )m 1 (Π x U j ) + Cθ j-i m 1 (Π x U j ) (m 2 (U i )) 1 2 (m 2 (U i )) 1 2 (m 2 (U j )) 1 2 + Cθ j-i (m 2 (U j )) 1 2 (m 2 (U i )) 3 2 + θ j-i m 2 (U i ).
Throughout this calculation, we have used the fact that µ and μ have a density with respect to m 1 and m 2 respectively which are bounded uniformly from above and below, decay of correlations for T 2 given by Proposition 1.8 and the fact that there exists a constant K such that for all ball U , m 1 (U ) K(m 2 (U ))

1 2 .
So, using decay of correlations for R 2 and Lipschitz observables, we have

n j=i+1 (E(f i f j ) -E(f i )E(f j )) ( i+a log i j=i+1 + j>i+a log i )[E(f i f j ) -E(f i )E(f j )] (log i)(m 2 (U i )) 3 2 + m 2 (U i ) + j>i+a log i α j-i || fi || Lip || fj || Lip
where a will be chosen later and fi is a Lipschitz approximation to f i , satisfying m 2 (| fi -f i |)

1 i 2 and fi Lip i κ for some fixed κ. We are able to satisfy both conditions as m 2 (U i )

i -γ for some γ > 0. We have

(log i)(m 2 (U i ))
3 2 m 2 (U i ) and for a > 0 sufficiently large

j>i+a log i α j-i || fi || Lip || fj || Lip m 2 (U i ).
We have thus shown that

n i=m n j=i+1 (E(f i f j ) -E(f i )E(f j )) n i=m E(f i )
which implies the strong Borel-Cantelli property by Proposition 2.2. Remark 6.6. Note that the proof above does not use the assumption that the balls are nested, nor that they are balls just that they may be approximated by Lipschitz functions fi such that m 2 (| fi -f i |) 1 i 2 and fi Lip i κ for some fixed κ.

We now show that the (SBC) property for the map R 2 implies the SBC property for nested balls U t in the full suspension flow. Theorem 6.7. Let U = (U t ) t 0 be a family of shrinking balls in B r 2 H (1) , with µ T (U t ) t -γ for some γ > 0 and sup t 0 (log t)µ T (U t ) < ∞. Assume that

E t := E t (U ) = t 0 µ T (U s )ds diverges.
Then the family U is strong Borel-Cantelli for the flow: for µ T a.e. p ∈ B r 2 H (1) , 1 E t (U ) Proof. Note that the measure on the flow µ T is the product of the base measure and Lebesgue measure in the flow direction, so that dµ T = dμ × dt and that the projection Π, say, via flow lines of the balls U t in the suspension flow is a t-parametrized sequence of nested 'balls' C t in the Poincaré section Thus for μ a.e. p, (recall n is fixed) This proves the SBC property for nested balls in the full suspension flow.

6.4. Extreme Value Laws for the flow. We have established EVLs for sufficient regular observations on the dynamical system (T 2 , B, µ 2 ). We now consider EVLs for the flow F s : B r 2 → B r 2 . To do this we use [START_REF] Holland | Extreme value distributions for nonuniformly hyperbolic dynamical systems[END_REF]Theorem 2.6] which relates Extreme Value Theory for functions on the suspension of a base transformation to the Extreme Value statistics of observations on the base.

We start with some preliminary notation. Let r 2 = B r 2 (x)dµ 2 . Let φ : B r 2 → R ∪ {+∞} be a function, strictly maximized at a point (x 0 , u 0 ) ∈ B r 2 , which is sufficiently regular that for large r the set {(x, u) ∈ B r 2 : φ((x, u)) > r} corresponds to a topological ball centered at (x 0 , u 0 ). Let φ(x) = sup 0 u r 2 (x) φ((x, u)) and define u n (t) by the requirement that nµ 2 { φ > u n (t)} → t. Let M T (x, s) := max{φ(F s (x, u) : 0 s T }. As a consequence of [START_REF] Holland | Extreme value distributions for nonuniformly hyperbolic dynamical systems[END_REF]Theorem 2.6], Proposition 6.8. Suppose when we write u n (t) = g (t) an + b n the normalizing constants a n > 0 and b n satisfy: (2) If x 0 is a repelling periodic point of prime period k then µ{M T u [T /r 2 ] (t)} → e -θt where θ = 1 -|Jac(DT -k 2 )(p 0 )|.

The extreme value result for the Teichmüller flow T = (T t ) t∈R holds from combining [START_REF] Gupta | Extreme Value Distributions for some classes of Non-Uniformly Partially Hyperbolic Dynamical Systems[END_REF]Theorem 2.1] with [START_REF] Holland | Extreme value distributions for nonuniformly hyperbolic dynamical systems[END_REF]Corollary 2.3] (note that the proof for Gibbs Markov maps holds in any dimension as long as con formality holds) and [START_REF] Holland | Extreme value distributions for nonuniformly hyperbolic dynamical systems[END_REF]Theorem 2.6].

Appendix: Aperiodicity and weak mixing

Let (X, T, µ) be an ergodic measure-preserving dynamical system.

Definition. (X, T, µ) is weakly mixing if f • T = e it f for some non-zero f ∈ L 2 (µ) and t ∈ [0, 2π) implies that t = 0 and f is constant. Definition. We will say that the first return time is aperiodic if f • T = e itτ f for some non-zero f ∈ L 2 (µ Y ) and t ∈ [0, 2π) implies that t = 0 and f is constant. f Y is also non identically zero: otherwise, f would vanish on the set ∪ n 0 T -n Y , which by ergodicity is equal to X mod µ. Aperiodicity yields that t = 0, which means that f • T = f . Ergodicity implies that f is constant. Conversely, suppose that (X, T, µ) is weakly mixing and that f ∈ L 2 (µ Y ) is non identically zero and satisfies f • T = e itτ f . We first extend τ on the whole space X as being the first hitting time. By ergodicity, it is well defined µ-a.e. We then define f ∈ L 2 (µ) by f = e -itτ f • T τ . Since T τ (x) x belongs to Y for µ-a.e. x ∈ X by definition, f is well-defined. Our assumption on f implies that f and f coincide on Y , so that it is non identically zero. Now, we verify that f • T = e it f . Let x ∈ X with τ (x) > 1. Since τ is the first hitting time, we have τ (T x) = τ (x) -1. Hence, f (T x) = e -itτ (T x) f (T τ (T x) T x) = e it e -itτ (x) f (T τ (x) x) = e it f (x). If τ (x) = 1, which implies T x ∈ Y , we have by definition of f that f (x) = e -it f (T x) = e -it f (T x).

Weak mixing implies that t = 0 and f is constant. Since the restriction of f to Y is f , this shows that f is constant, and concludes the proof.

  for some function g(t) and sequence of constants a n , b n . In our example a n = d, g(t) = log C(d) -log t and b n = 1 d log n. where d is the dimension of B.

t 0 1

 0 Us (T t (p)) ds → 1.

  [i(r 2 -)], j))μ(C ([i(r 2 -)],j) ) [i(τ 1 + ), j))μ(C ([i(τ 1 + ],j) ) The sums L(T, n) := n j=1 T i=1 τ 1 ([i(r 2 -)], j))μ(C ([i(r 2 -)],j) ) and U (T, n) := n j=1 T i=1 τ 1 ([i(τ 1 + ), j))μ(C ([i(τ 1 + ],j)) are Riemann sums, and lim T →∞U (T,n) L(T,n) = κ(n) where κ(n) → 1 as n → ∞. Ũt,j )1 U t,j • T t (p)dt ∼ Ũt,j )1 U t,j • T t (p)dtwhere H(T ) ∼ G(T ) means lim T →∞ κ 2 (n) → 0 as n → ∞.

  x 0 is not a periodic point for T 2 then µ{M T u [T /r 2 ] (t)} → e -t .

Remark 7. 1 .

 1 This definition is equivalent to the classical one, stating that -k (A) ∩ B) -µ(A)µ(B) → 0 for any measurable sets A and B. See[START_REF] Walters | An introduction to ergodic theory[END_REF] Theorem 1.26] in the case where (X, T, µ) is invertible, and[START_REF] Kalikow | An outline of ergodic theory[END_REF] Theorem 664] or[START_REF] Einsiedler | Ergodic theory with a view towards number theory[END_REF] Theorem 2.36] for a proof of the equivalence valid in any case.Let Y ⊂ X be a subset of positive µ-measure. We denote by τ (y) the first return time of y ∈ Y to Y :τ (y) = min{n 1 : T n y ∈ Y }.We then define the first return map T : Y → Y by T = T τ . It preserves the normalisation µ Y of the restriction to Y of the measure µ and is ergodic with respect to it.

Remark 7. 2 .

 2 By [Mo1, Proposition 1.1], the relation f • T = e itτ f is equivalent to L(e itτ f ) = f , where L is the transfer operator of T with respect to the measure µ Y .Proposition 7.3. The first return time is aperiodic if and only if (X, T, µ) is weakly mixing.Proof. Suppose first that the first return time is aperiodic and let f ∈ L 2 (µ) non-zero and t ∈ [0, 2π) such that f • T = e it f . We easily verify that the restrictionf Y of f to Y satisfies f Y • T = e itτ f Y : f Y ( T y) = f (T τ (y) y) = e itτ (y) f (y) = e itτ (y) f Y (y).
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 B H (1). The dynamics of the return map to B H (1) is given by the skew-product map R 2 : B H (1) → B H (1) . The flow (T t ) is rectifiable in a sufficiently small neighborhood of the balls U t . Let k(p) be the time that T t (p) returns to B H (1) for the k-th time under T , where p ∈ B H (1) . or μ a.e. p ∈ B H (1) ,

r 2 dμ := r2

We fix an integer n and discretize C t into disjoint sets C t,j , j = 1 to n, of roughly equal μ measure and define Ũt,j := {q ∈ U t : Πq ∈ C t,j }. Hence C t,j lie in B H (1) while Ũt,j lies in the full suspension flow B r 2 H (1) .

We consider two sequences of sets C α,t,j and C β,t,j in the suspension flow defined by flow lines through C t,j of constant length τ 1 (t, j) and τ 2 (t, j) such that for each Ût,j , C α,t,j ⊂ Ût,j ⊂ C β,t,j and moreover for each j, t > 0, µ T (C β,t,j ) -µ T (C α,t,j ) e(n)µ T ( Ût,j ) where e(n) → 0 as n → ∞. We can ensure this as the boundary of Ũt,j consists of two manifolds, each a smooth graph over C t,j .

Hence

Recall k(p) denotes the k-th return time to B H (1) of a point p ∈ B H (1) under the flow T t so that T k(p) = R k 2 (p). By the ergodic theorem given > 0 for μ a.e. p there exists k * ( )(p) such that k(r 2 -) k(p) k(r 2 + ) for all k > k * ( ).

We fix and n. For each j, the sequences of sets, indexed by k, (C [k(r 2 + )],j ) and (C [k(r 2 -)],j ) both have the (SBC) property for R 2 :

, where E (k,j, ,+) := k i=1 μ(C [i(r 2 + )],j ) and similarly for (C ([k(r 2 -)],j) ). Indeed, this follows from Proposition 6.5 since

Furthermore, for sufficiently large t, once R k 2 (p) enters C t,j its trajectory spends a length of flow time between τ 1 ([k(r 2 -)], j) and τ 2 ([k(r 2 + )], j) in the sets ( Ũt,j ).