Average-case complexity of a branch-and-bound algorithm for maximum independent set, under the $\mathcal{G}(n,p)$ random model - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Average-case complexity of a branch-and-bound algorithm for maximum independent set, under the $\mathcal{G}(n,p)$ random model

Résumé

We study average-case complexity of branch-and-bound for maximum independent set in random graphs under the $\mathcal{G}(n,p)$ distribution. In this model every pair $(u,v)$ of vertices belongs to $E$ with probability $p$ independently on the existence of any other edge. We make a precise case analysis, providing phase transitions between subexponential and exponential complexities depending on the probability $p$ of the random model.

Dates et versions

hal-01258958 , version 1 (19-01-2016)

Identifiants

Citer

Nicolas Bourgeois, Rémi Catellier, T. Denat, V. Th. Paschos. Average-case complexity of a branch-and-bound algorithm for maximum independent set, under the $\mathcal{G}(n,p)$ random model. 2015. ⟨hal-01258958⟩
231 Consultations
0 Téléchargements

Altmetric

Partager

More