Two Qualitative Dynamics Semantics for SBGN Process Description Maps
Adrien Rougny, Christine Froidevaux, Loïc Paulevé

To cite this version:
Adrien Rougny, Christine Froidevaux, Loïc Paulevé. Two Qualitative Dynamics Semantics for SBGN Process Description Maps. CMSB’15, Sep 2015, Nantes, France. 2015. hal-01258943

HAL Id: hal-01258943
https://hal.science/hal-01258943
Submitted on 19 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Two Qualitative Dynamics Semantics for SBGN Process Description Maps

Adrien Rougny, Christine Froidevaux and Loïc Paulevé

Laboratoire de Recherche en Informatique, Orsay, FRANCE
UMR8623 Université Paris-Sud - CNRS
Contact: rougny@lri.fr

Context

- Larger and larger reaction networks modelling various biological processes (from databases, automatic inference)
- Standards to represent reaction networks: e.g. Systems Biology Graphical Notation Process Description language (SBGN-PD)
- Analysis of the dynamics to understand and control these processes

Motivations

- Qualitative semantics allows to capture important dynamical features (e.g. attractors, reachability) without numerical parameters
- Model SBGN-PD maps under qualitative semantics
 We propose two semantics formalized by asynchronous automata networks: the general semantics, together with a refinement called process conflicts, and the stories semantics

Asynchronous Automata Networks

General Semantics

<table>
<thead>
<tr>
<th>State transition graph:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[a_0 b_1 c_0 \rightarrow a_0 b_0 c_0]</td>
</tr>
<tr>
<td>[a_1 b_1 c_0 \rightarrow a_1 b_1 c_1]</td>
</tr>
<tr>
<td>[a_1 b_0 c_0 \rightarrow a_1 b_0 c_1]</td>
</tr>
</tbody>
</table>

Each chemical entity is modelled by one automaton

Refinement 1: Process Conflicts

Processes \(p \) and \(q \) cannot occur at the same time

Refinement 2: Stories Semantics

Story:

- accounts for successive transformations of a chemical entity
- a set of entities that cannot be present at the same time, i.e. that are mutually exclusive

Identification of stories:

- automatic computation
- relevance determined by expert knowledge

The stories semantics is a refinement of the general semantics driven by expert knowledge

Example: the AT\(_1\)R-induced network

Conclusion and Prospects

- Main features of SBGN-PD are supported
- The stories semantics is a refinement of the general semantics that:
 - models several chemical species with a unique variable
 - reduces the state space, increasing the scalability of the exhaustive computation of the dynamics
- The dynamics of SBGN-PD maps modelled under both semantics can be analyzed with state-of-the-art tools (PRISM, NuSMV . . .)

Ongoing work and prospects:

- Application to a large network, the E2F/RB pathway:
 - 153 out of 208 molecules in 28 stories
 - No. of automata reduced from 367 to 242
- Explore the relationship between the stories semantics and Boolean semantics applied to SBGN-AF maps