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Goodness-of-fit tests for log and exponential GARCH models

Christian Francq∗, Olivier Wintenberger†and Jean-Michel Zakoïan‡

Abstract

This paper studies goodness of fit tests and specification tests for an extension of the Log-

GARCH model which is both asymmetric and stable by scaling. A Lagrange-Multiplier test is

derived for testing the extended Log-GARCH against more general formulations taking the form

of combinations of Log-GARCH and Exponential GARCH (EGARCH). The null assumption of

an EGARCH is also tested. Portmanteau goodness-of-fit tests are developed for the extended

Log-GARCH. An application to real financial data is proposed.

Keywords: EGARCH, LM tests, Invertibility of time series models, log-GARCH, Portmanteau

tests, Quasi-Maximum Likelihood

Mathematical Subject Classifications: 62M10; 62P20

It is now widely accepted that, to model the dynamics of daily financial returns, volatility models

have to incorporate the so-called leverage effect.1 Among the various asymmetric GARCH processes

introduced in the econometric literature, E(xponential)GARCH and Log-GARCH models share

the property of specifying the dynamics of the log-volatility, rather than the volatility, as a linear

combination of past variables. One advantage of such specifications is to avoid positivity constraints

on the parameters, which complicate statistical inference of standard GARCH formulations. A

class of (asymmetric) Log-GARCH(p,q) models was recently studied by Francq, Wintenberger and

Zakoïan (2013) (FWZ). In this class, originally introduced by Geweke (1986), Pantula (1986) and

Milhøj (1987) (see Sucarrat, Grønneberg and Escribano (2015) for a more recent reference), the
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1This effect, typically observed on most stock returns series, means that negative returns have more impact on

the volatility than positive returns of the same magnitude.
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dynamics is defined by





ǫt = σtηt,

log σ2
t = ω +

∑q
i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i

+
∑p

j=1 βj log σ
2
t−j

(0.1)

where σt > 0 and (ηt) is a sequence of independent and identically distributed (iid) variables such

that Eη21 = 1.

One drawback of this model is that it is generally not stable by scaling. Indeed, if (ǫt) is a

solution of Model (0.1), the process (ǫ∗t ) defined by ǫ∗t = cǫt with c > 0 satisfies ǫ∗t = σ∗
t ηt with

σ∗2
t = ω∗

t−1 +
∑q

i=1

(
αi+1{ǫ∗t−i>0} + αi−1{ǫ∗t−i<0}

)
log ǫ∗2t−i +

∑p
j=1 βj log σ

∗2
t−j where

ω∗
t−1 = log c2


1−

p∑

j=1

βj −
q∑

i=1

(
αi+1{ǫ∗

t−i
>0} + αi−1{ǫ∗

t−i
<0}
)



is not constant (except in the symmetric case where αi+ = αi− for all i). It is important that

a volatility model be stable by scaling.2 The standard log-GARCH has the stability by scaling

property, but is not able to capture the leverage effect.

In this paper, we will consider an extension of Model (0.1) which is both stable by scaling and

asymmetric. Our main foci concern specification tests of this model and the comparison with the

EGARCH model. The latter formulation, introduced by Nelson (1991), appears as a widely used

competitor of the Log-GARCH in applications. As we will see, the two models display very similar

properties and their volatility dynamics may coincide. However, the Log-GARCH and EGARCH

models are not equivalent from a statistical point of view. In particular, it is obvious to invert

the Log-GARCH model, i.e. to express the volatility as an explicit function of the past returns,

whereas the EGARCH(1,1) is invertible only under strong restrictions on the parameters. This is

a major drawback for the statistical inference of the second specification, see Wintenberger (2013)

and FWZ. However, the two models are not compatible for a same series and one has to discuss if

one specification is more likely to fit the data at hand than the other. It is therefore of interest to

develop testing procedures for one specification against the other. This constitutes the main aim of

the present paper.

2Indeed, as remarked by a referee, a practitioner is essentially faced by three choices: (a) leave returns untrans-

formed, i.e. set c = 1, (b) express returns in terms of percentages, i.e. set c = 100, or (c) express returns in terms of

basis points, i.e. set c = 10, 000. Clearly, it is desirable that the dynamics of the volatility model be not affected by

the choice of c.
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The remainder of the paper is organized as follows. Section 1 introduces the extended Log-

GARCH model and discusses its similarities with the EGARCH. It also provides strict stationarity

conditions. Section 2 studies the asymptotic properties of the quasi-maximum likelihood (QML)

estimator. Section 3 considers testing the null assumption of a Log-GARCH against more general

formulations including the EGARCH. Section 4 considers the reverse problem, in which the null

assumption is the EGARCH model. In Section 5, Portmanteau goodness-of-fit tests are developed

for the Log-GARCH. Section 6 compares the Log-GARCH and EGARCH models for series of

exchange rates.

1 Extended Log-GARCH model

Consider the Asymmetric and stable by Scaling Log-GARCH (AS-Log-GARCH) model of order

(p, q), defined by




ǫt = σtηt,

log σ2
t = ω +

∑q
i=1 ωi−1{ǫt−i<0} +

∑p
j=1 βj log σ

2
t−j

+
∑q

i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i,

(1.1)

where ω and the components of the vectors ω− = (ω1−, . . . , ωq−)′, α+ = (α1+, . . . , αq+)
′,

α− = (α1−, . . . , αq−)′, and β = (β1, . . . , βp)
′ are real coefficients, which are not a priori subject to

positivity constraints, under the same assumptions on (ηt) as in Model (0.1). The main features

of the asymmetric Log-GARCH(p, q) model - volatility which is not bounded below, persistence of

small values, power-aggregation - continue to hold in this extended version. We refer the reader

to FWZ for details. Contrary to Model (0.1), the extended formulation (1.1) is stable by scaling.

Moreover, this model leads to a different interpretation of the usual leverage effect.

1.1 News Impact Curves

Compared to model (0.1), the AS-Log-GARCH model (1.1) contains additional asymmetry pa-

rameters. Through the introduction of the coefficients ωi−, Model (1.1) allows for an asymmetric

impact of the past positive and negative returns on the log-volatility which does not depend on their

magnitudes. For instance, consider the AS-Log-ARCH(1) model with α1+ = α1− = α. We have

σ2
t = e

ω+ω1−1{ǫt−1<0}(ǫ2t−1)
α.

If ω1− > 0, a decrease of the price, whatever its amplitude, will increase the volatility by a scaling

factor eω1− . In the limit case where α = 0, the volatility takes only two values depending only on
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Figure 1: News Impact Curves: σt as a function of ǫt−1 in (1.2). The parameter ω is set to 0. The top

graphs are obtained for τ = 0, the left graphs for ω
−

= 0, the right graphs and the bottom left graph for

α = 0.8.

the sign (not the size) of the past return. Now we turn to the second leverage effect. If α1+ = α

and α1− = α+ τ with τ > 0, we have

σ2
t = e

ω+ω1−1{ǫt−1<0}(ǫ2t−1)
α(ǫ2t−1)

τ1{ǫt−1<0} . (1.2)

The effect of a large negative return (ǫt−1 < −1) is an increase of volatility, but the effect may

be reversed for very small returns. For small but not too small returns, this effect is balanced by

the presence of the scaling factor eω1− . To summarize, the AS-Log-GARCH is in fact capable of

detecting two types of leverage: one type where the leverage effect depends on the magnitude of

negative return, and one type in which it does not. The so-called News Impact Curves, displaying

σt as a function of ǫt−1, are provided in Figure 1.

1.2 Similarities with the EGARCH dynamics

The dynamics of the logarithm of the volatility of the EGARCH(p, ℓ) model is provided by the

recursion

log σ2
t = ω̃ +

p∑

j=1

β̃j log σ
2
t−j +

ℓ∑

k=1

γk+η̃
+
t−k + γk−η̃

−
t−k, (1.3)
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where the innovations η̃t are iid random variables such that Eη̃21 = 1, with the notation x+ =

max{x, 0} and x− = max{−x, 0}. If one substitutes log σ2
t−i + log η2t−i for log ǫ2t−i in (1.1), the

probabilistic structures of the two classes of models seem similar. More precisely, we have the

following result.

Proposition 1.1 (i) For any EGARCH process ǫ̃t = σtη̃t satisfying (1.3) with Ees0|η̃1 | < ∞ for

some s0 > 0, there exists a AS-Log-GARCH process ǫt = σtηt satisfying (1.1), with the same

volatility process σt and ηt measurable with respect to η̃t.

(ii) Conversely, there exist AS-Log-GARCH processes ǫt = σtηt for which there is no EGARCH

process ǫ̃t = σtη̃t with the same volatility process σt and η̃t measurable with respect to ηt.

Proof: Let us prove (i). For simplicity of notation, we assume that ǫ̃t = σtη̃t follows the first

order EGARCH(1, 1) model, and we drop the indexes i, j and k. Let the Log-GARCH(1,1) process

ǫt = σtηt satisfying (1.1) with the parameters α := α+ = α− 6= 0, ω+αc+ = ω̃, ω− = −α(c−− c+),

and α + β = β̃, and the noise ηt = e
c+
2 e

γ+
2α

|η̃t|1η̃t≥0 − e
c−
2 e

γ−
2α

|η̃t|1η̃t<0, with constants c+ and c− to

be chosen later. The Log-GARCH volatility then satisfies

log σ2
t = ω + ω−1ηt−1<0 + α log η2t−1 + (α+ β) log σ2

t−1

= ω̃ + (γ+1η̃t−1>0 + γ−1η̃t−1<0)|η̃t−1|+ β̃ log σ2
t−1,

which is the equation satisfied by the volatility of the EGARCH(1,1) model. It then suffices to

choose α such that γ+/α < s0 and γ−/α < s0, and then c+ and c− such that Eη2t = 1.

Now we turn to (ii). Let (ǫt) denote any AS-Log-GARCH process satisfying (1.1), with α1+ 6=
α1−, and sufficiently general so that the support of the law of log σ2

t−1 contains at least three different

values. Also assume that log η2t−1 has a finite variance. We proceed by contradiction. Suppose there

exists an EGARCH process satisfying ǫ̃t = σtη̃t with η̃t = f(ηt) for some measurable function f .

We thus have

log σ2
t = ω + ω−1ηt−1<0 +

(
α1+1{ǫt−1>0} + α1−1{ǫt−1<0}

)
log η2t−1

+
(
α1+1{ǫt−1>0} + α1−1{ǫt−1<0}

)
log σ2

t−1 +

p∑

j=1

βj log σ
2
t−j

= ω̃ + (γ+1η̃t−1>0 + γ−1η̃t−1<0)|η̃t−1|+ β̃ log σ2
t−1

+

p∑

j=1

β̃j log σ
2
t−j +

ℓ∑

k=2

γk+η̃
+
t−k + γk−η̃

−
t−k,

which entails

a(ηt−1) = bt−2 + c(ηt−1) log σ
2
t−1
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where bt−2 denotes a variable belonging to σ-field Ft−2 generated by the ηt−2−j with j ≥ 0. We

have

0 = var{a(ηt−1)− bt−2 − c(ηt−1) log σ
2
t−1|Ft−2}

= var{a(ηt−1)}+ log2 σ2
t−1var{c(ηt−1)} − 2 log σ2

t−1cov{a(ηt−1), c(ηt−1)},

from which it follows that log σ2
t−1 takes at most two values. This contradicts the above assumptions.

2

This proposition allows to complete the interpretation of the two types of leverage effects in

the AS-Log-GARCH. The coefficients ω0,i− produce the leverage effect of the EGARCH volatility,

i.e. an asymmetry depending on the amplitude of the innovations η̃t−i. On the opposite, the

EGARCH model cannot capture the asymmetric effect induced by the coefficients α0,i−, α0,i+ and

the amplitude of the returns ǫt−i. Thus, the class of the Log-GARCH models generates a richer

class of volatilities than the EGARCH.

1.3 Strict stationarity

We now show that the introduction of a time varying intercept in the log-volatility of Model (1.1)

does not modify the strict stationarity conditions of the Log-GARCH model. The study being

very similar to that of the Log-GARCH model (0.1) in FWZ, details are omitted. Let ωt = ω +
∑q

i=1 ωi−1{ǫt−i<0}. Because coefficients equal to zero can always be added, it is not restrictive to

assume p > 1 and q > 1. Let the vectors

ǫ+t,q = (1{ǫt>0} log ǫ
2
t , . . . , 1{ǫt−q+1>0} log ǫ

2
t−q+1)

′ ∈ R
q,

ǫ−t,q = (1{ǫt<0} log ǫ
2
t , . . . , 1{ǫt−q+1<0} log ǫ

2
t−q+1)

′ ∈ R
q,

zt = (ǫ+t,q, ǫ
−
t,q, log σ

2
t , . . . , log σ

2
t−p+1)

′ ∈ R
2q+p,

bt =
(
(ωt + log η2t )1{ηt>0},0

′
q−1, (ωt + log η2t )1{ηt<0},0

′
q−1, ωt,0

′
p−1

)′ ∈ R
2q+p,

and the matrix

Ct =




1{ηt>0}α
′
+ 1{ηt>0}α

′
− 1{ηt>0}β

′

Iq−1 0q−1 0(q−1)×q 0(q−1)×p

1{ηt<0}α
′
+ 1{ηt<0}α

′
− 1{ηt<0}β

′

0(q−1)×q Iq−1 0q−1 0(q−1)×p

α′
+ α′

− β′

0(p−1)×q 0(p−1)×q Ip−1 0p−1




.
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Model (0.1) is rewritten in matrix form as

zt = Ctzt−1 + bt.

Let γ(C) be the top Lyapunov exponent of the sequence C = {Ct, t ∈ Z},

γ(C) = lim
t→∞

1

t
E (log ‖CtCt−1 . . .C1‖) = inf

t≥1

1

t
E(log ‖CtCt−1 . . .C1‖).

It can be noted that the sequence (Ct, bt) is only strictly stationary and ergodic (not iid) but this

property suffices to extend the proof of Theorem 2.1 in FWZ.

Theorem 1.1 Assume that E log+ | log η20 | < ∞. A sufficient condition for the existence of a

strictly stationary solution to the AS-Log-GARCH model (1.1) is γ(C) < 0. When γ(C) < 0, there

exists only one stationary solution, which is non anticipative and ergodic.

It follows that the presence of the coefficients ωi− does not modify the stationarity condition.

2 QML estimation of the AS-Log-GARCH model

We turn to the inference of the AS-Log-GARCH model. Let ǫ1, . . . , ǫn be observations of the sta-

tionary solution of (1.1), where θ = (ω,ω′
−,α

′
+,α

′
−,β

′)′ is equal to an unknown value θ0 belonging

to some parameter space Θ ⊂ R
d, with d = 3q+ p+1. A QMLE of θ0 is defined as any measurable

solution θ̂n of

θ̂n = arg min
θ∈Θ

Q̃n(θ), (2.1)

with

Q̃n(θ) = n−1
n∑

t=r0+1

ℓ̃t(θ), ℓ̃t(θ) =
ǫ2t

σ̃2
t (θ)

+ log σ̃2
t (θ),

where r0 is a fixed integer and log σ̃2
t (θ) is recursively defined by log σ̃2

t (θ) = ω +
∑q

i=1

(
αi+ log ǫ2t−i1{ǫt−i>0} + (ωi− + αi− log ǫ2t−i)1{ǫt−i<0}

)
+
∑p

j=1 βj log σ̃
2
t−j(θ), for t = 1, 2, . . . , n,

using initial values for ǫ0, . . . , ǫ1−q, σ̃
2
0(θ), . . . , , σ̃

2
1−p(θ). We assume that these initial values are

such that there exists a real random variable K independent of n satisfying

sup
θ∈Θ

∣∣log σ2
t (θ)− log σ̃2

t (θ)
∣∣ < K, a.s. for t = q − p+ 1, . . . , q, (2.2)

where σ2
t (θ) is defined by

Bθ(B) log σ2
t (θ) = ω +O−

θ (B)1{ǫt<0} +A+
θ (B)1{ǫt>0} log ǫ

2
t

+A−
θ (B)1{ǫt<0} log ǫ

2
t , (2.3)
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where B is the the lag operator and, for any θ ∈ Θ, A+
θ (z) =

∑q
i=1 αi,+z

i, A−
θ (z) =

∑q
i=1 αi,−zi,

and Bθ(z) = 1 −∑p
j=1 βjz

j and O−
θ (z) =

∑q
i=1 ωi−zi. By convention, A+

θ (z) = 0, A−
θ (z) = 0 and

O−
θ (z) = 0 if q = 0, and Bθ(z) = 1 if p = 0. Theorem 1.1 shows that a strict stationarity condition

of the Log-GARCH can be obtained from the behaviour of the sequence C. As in FWZ, it can be

shown that moment conditions can be obtained by constraining the matrix

At =


 µ1(ηt−1) . . . µr−1(ηt−r+1) µr(ηt−r)

Ir−1 0r−1


 , (2.4)

where r = max(p, q) and µi(ηt) = αi+1{ηt>0} + αi−1{ηt<0} + βi with the convention αi+ = αi− = 0

for i > p and βi = 0 for i > q. The spectral radius of a square matrix A is denoted by ρ(A). For

any vector or matrix A, we denote by Abs(A) the matrix whose elements are the absolute values

of the corresponding elements of A.

The following assumptions will be used to establish the strong consistency and asymptotic

normality of the QMLE.

A1: θ0 ∈ Θ and Θ is compact.

A2: γ {C} < 0 and ∀θ ∈ Θ, |Bθ(z)| = 0 ⇒ |z| > 1.

A3: the support of η0 contains at least two positive values and two negative values, Eη20 = 1

and E| log η20 |s0 < ∞ for some s0 > 0.

A4: If p > 0 and q > 1, there is no common root to the polynomials O−
θ0
(z), A+

θ0
(z), A−

θ0
(z)

and Bθ0
(z). Moreover (ω0−,α0+,α0−) 6= 0 and |ω0q−||α0q+||α0q−|+ |β0p| 6= 0 if p > 0.

A5: E
∣∣log ǫ2t

∣∣ < ∞.

A6: θ0 ∈
◦
Θ and κ4 := E(η40) < ∞.

A7: There exists some s0 > 0 such that E exp(s0| log η20 |) < ∞ and ρ {ess supAbs(A1)} < 1,

where A1 is defined by (2.4).

In the case p = q = 1, omitting the index i, Assumption A2 simplifies to the conditions |α0+ +

β0|a|α0− + β0|1−a < 1, where a = P (η0 > 0), and |β| < 1,∀θ ∈ Θ (see FWZ, Example 2.1).

Let ∇Q = (∇1Q, . . . ,∇dQ)′ and HQ = (H1.Q
′, . . . ,Hd.Q

′)′ be the vector and matrix of the

first-order and second-order partial derivatives of a function Q : Θ → R.

8



Theorem 2.1 (Asymptotic properties of the QMLE) Let (θ̂n) be a sequence of QMLE satis-

fying (2.1), where (ǫt) is the stationary solution of the AS-Log-GARCH model (1.1) with parameter

θ0. Under the assumptions (2.2) and A1-A5, θ̂n → θ0 a.s. as n → ∞. If, moreover, A6-A7 hold

we have
√
n(θ̂n − θ0)

d→ N (0, (κ4 − 1)J−1) as n → ∞, where J = E[∇ log σ2
t (θ0)∇ log σ2

t (θ0)
′] is a

positive definite matrix and
d→ denotes convergence in distribution.

Proof: The proof is similar to those of Theorems 4.1-4.2 of FWZ. We will only show the identifia-

bility of the extended model, that is,

σ2
1(θ) = σ2

1(θ0) a.s. ⇒ θ = θ0.

Note that if the left-hand side holds, by stationarity we have log σ2
t (θ) = log σ2

t (θ0) for all t. From

the equality (2.3) we then have, almost surely,
{
O−

θ (B)

Bθ(B)
−

O−
θ0
(B)

Bθ0
(B)

}
1{ǫt<0} +

{
A+

θ (B)

Bθ(B)
−

A+
θ0
(B)

Bθ0
(B)

}
1{ǫt>0} log ǫ

2
t

+

{
A−

θ (B)

Bθ(B)
−

A−
θ0
(B)

Bθ0
(B)

}
1{ǫt<0} log ǫ

2
t =

ω0

Bθ0
(1)

− ω

Bθ(1)
.

Throughout the paper let Rt denote any generic random variable, whose value can be modified from

one line to the other, which is measurable with respect to σ ({ηu, u ≤ t}). If

O−
θ (B)

Bθ(B)
6=

O−
θ0
(B)

Bθ0
(B)

or
A+

θ (B)

Bθ(B)
6=

A+
θ0
(B)

Bθ0
(B)

or
A−

θ (B)

Bθ(B)
6=

A−
θ0
(B)

Bθ0
(B)

, (2.5)

there exists a non null (c+, c−, d−) ∈ R
3, such that

d−1ηt<0 + c+1{ηt>0} log ǫ
2
t + c−1{ηt<0} log ǫ

2
t +Rt−1 = 0 a.s.

This is equivalent to the two equations

(
c+ log η2t + c+ log σ2

t +Rt−1

)
1{ηt>0} = 0 a.s.

and
(
d− + c− log η2t + c− log σ2

t +Rt−1

)
1{ηt<0} = 0 a.s.

Note that if an equation of the form a log x21{x>0} + b1{x>0} = 0 admits two positive solutions

then a = 0. This result, A3, and the independence between ηt and (σ2
t , Rt−1) imply that c+ = 0

and Rt−1 = 0. Similarly we obtain c− = 0. Plugging c+ = c− = 0 in the equations above yields

c+ = c− = d− = 0 that is a contradiction. We conclude that (2.5) cannot hold true, and the

conclusion follows from A4. 2
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3 Test of AS-Log-GARCH

In this section, we are interested in testing the AS-Log-GARCH specification against more general

formulations, including both the Log-GARCH and the EGARCH models. For our testing problem,

we therefore introduce the general model





ǫt = σtηt,

log σ2
t = ω0 +

∑q
i=1 ω0,i−1{ǫt−i<0}

+
∑q

i=1

(
α0,i+1{ǫt−i>0} + α0,i−1{ǫt−i<0}

)
log ǫ2t−i

+
∑p

j=1 β0j log σ
2
t−j +

∑ℓ
k=1 γ0,k+η

+
t−k + γ0,k−η

−
t−k.

(3.1)

Let ϑ0 = (θ′
0,γ

′
0)

′ where γ0 = (γ01,+, γ01,−, . . . , γ0ℓ,−)′ and θ0 is as in Section 2.

We wish to test the hypothesis that, in (3.1),

Hγ
0 : γ0 = 02ℓ×1 against Hγ

1 : γ0 6= 02ℓ×1.

In the time series literature, similar testing problems are solved by a standard test, using for

example the Wald, Lagrange-Mutiplier (LM) or Likelihood-Ratio (LR) principle. See among others

Luukkonen, Saikkonen and Teräsvirta (1988), Francq, Horváth and Zakoïan (2010).

A difficulty, in the present framework, is that we do not have a consistent estimator of the

parameter ϑ0. Two problems arise to prove that the QMLE is consistent. First, the stationarity

conditions of Model (3.1) are unknown. Second, due to the presence of the |ηt−k|’s, it seems

extremely difficult to obtain invertibility conditions allowing to write log σ2
t (ϑ) (where ϑ denotes

any parameter value) as a function of the observations.

To circumvent these problems, we propose a LM approach. Denote by ϑ̂
c

n the constrained (by

Hγ
0 ) estimator of ϑ0, defined by

ϑ̂
c

n = (θ̂
′
n,01×2ℓ)

′

where θ̂n is the QMLE of the AS-Log-GARCH parameters defined in (2.1).

For any ϑ in Θ× R
2ℓ, define log σ̃2

t (ϑ) recursively, for t = 1, 2, . . . , n, by

log σ̃2
t (ϑ) = ω +

q∑

i=1

ωi−1{ǫt−i<0} +
q∑

i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i

+

p∑

j=1

βj log σ̃
2
t−j(ϑ) +

ℓ∑

k=1

(γk+ǫ
+
t−k + γk−ǫ

−
t−k)e

− 1

2
log σ̃2

t−k
(ϑ),

using positive initial values for ǫ20, . . . , ǫ
2
1−max(q,ℓ), σ̃

2
0(ϑ), . . . , , σ̃

2
1−max(p,ℓ)(ϑ). The random vector
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∂
∂ϑ log σ̃2

t (ϑ) satisfies

∂

∂ϑ
log σ̃2

t (ϑ) = −1

2

ℓ∑

k=1

(γk+ǫ
+
t−k + γk−ǫ

−
t−k)e

− 1

2
log σ̃2

t−k
(ϑ) ∂

∂ϑ
log σ̃2

t−k(ϑ)

+

p∑

j=1

βj
∂

∂ϑ
log σ̃2

t−j(ϑ) +




1

1−t−1,q

ǫ+t−1,q

ǫ−t−1,q

σ̃2
t−1,p(ϑ)

η̃t−1(ϑ)




,

where

σ̃2
t,p(ϑ) = (log σ̃2

t (ϑ), . . . , log σ̃
2
t−p+1(ϑ))

′,

η̃t(ϑ) = (ǫ+t e
− 1

2
log σ̃2

t (ϑ), ǫ−t e
− 1

2
log σ̃2

t (ϑ), . . . , ǫ−t−ℓ+1e
− 1

2
log σ̃2

t−ℓ+1
(ϑ))′.

With a slight abuse of notation we write σ̃2
t (ϑ) = σ̃2

t (θ) when ϑ = (θ′,01×2ℓ)
′, that is when ϑ

satisfies Hγ
0 . Similarly, to avoid introducing new notations we still define the criterion function by

Q̃n(ϑ) = n−1
n∑

t=r0+1

ℓ̃t(ϑ), where ℓ̃t(ϑ) =
ǫ2t

σ̃2
t (ϑ)

+ log σ̃2
t (ϑ).

To derive a LM test, we need to find the asymptotic distribution of

1√
n

n∑

t=1

∂

∂ϑ
ℓ̃t(ϑ̂

c

n) =


 0d×1

Sn := 1√
n

∑n
t=1(1− η̂2t )ν̂t


 , ν̂t = B−1

θ̂n
(B)η̂t−1

where η̂t = ǫt/σ̃t(θ̂n) for t ≥ 1, η̂t = 0 for t ≤ 0, and η̂t = (η̂+t , η̂
−
t , . . . , η̂

−
t−ℓ+1)

′. Note that the

nullity of the first d components of the score follows from the definition of ϑ̂
c

n as a maximizer of

the quasi-likelihood in the restricted model. The invertibility of the lag polynomial B
θ̂n
(B) follows

from A2.

The following quantities are used to define the LM test statistic. Recall that ∇ denotes the

differentiation operator with respect to the components of θ. Let

Ĵ 11 =
1

n

n∑

t=1

ν̂tν̂
′
t −
(
1

n

n∑

t=1

ν̂t

)(
1

n

n∑

t=1

ν̂ ′
t

)
, κ̂4 − 1 =

1

n

n∑

t=1

(1− η̂2t )
2,

Ĵ =
1

n

n∑

t=1

∇ log σ̃2
t (θ̂n)∇′ log σ̃2

t (θ̂n), Ω̂ =
1

n

n∑

t=1

ν̂t∇′ log σ̃2
t (θ̂n),

Ĵ 12 = −
{
Ω̂−

(
1

n

n∑

t=1

ν̂t

)(
1

n

n∑

t=1

∇′ log σ̃2
t (θ̂n)

)}
Ĵ−1 = Ĵ

′
21,
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and

Î = Ĵ 11 + Ω̂Ĵ−1Ω̂
′
+ Ĵ 12Ω̂

′
+ Ω̂Ĵ 21.

To derive the test, we need to slightly reinforce A3 concerning the support of the distribution of ηt.

A8: The support of η0 contains at least three positive values and three negative values.

Theorem 3.1 (Asymptotic distribution of the LM test under Hγ
0 ) Under the assumptions

of Theorem 2.1 (thus under Hγ
0 ) and A8, the matrix Î converges in probability to a positive definite

matrix I and we have

LMγ
n = (κ̂4 − 1)−1S′

nÎ
−1

Sn
d→ χ2

2ℓ

where χ2
2ℓ denotes the chi-square distribution with 2ℓ degrees of freedom.

Denoting by χ2
ℓ (α) the α-quantile of the chi-square distribution with ℓ degrees of freedom, the AS-

Log-GARCH(p, q) model (1.1) is then rejected at the asymptotic level α when
{
LMγ

n > χ2
2ℓ(1− α)

}
.

Proof: For any ϑc = (θ′,01×2ℓ)
′ ∈ Θ × {0}2ℓ, let ηt(θ) = ǫt

σt(θ)
, ηt(θ) =

(η+t (θ), η
−
t (θ), . . . , η

−
t−ℓ+1(θ))

′, νt(θ) = B−1
θ (B)ηt−1(θ) and let η̃t(θ), η̃t(θ), ν̃t(θ) denote the corre-

sponding quantities when σt(θ) is replaced by σ̃t(θ). Let also

Sn(θ) =
1√
n

n∑

t=1

{1− η2t (θ)}νt(θ), S̃n(θ) =
1√
n

n∑

t=1

{1− η̃2t (θ)}ν̃ t(θ).

Let Sn,i denote the i-th component of Sn = S̃n(θ̂n), for i = 1, . . . 2ℓ. A Taylor expansion gives, for

some θ∗ between θ̂n and θ0,

Sn,i = S̃n,i(θ0) +
1√
n

∂S̃n,i

∂θ′ (θ∗)
√
n(θ̂n − θ0). (3.2)

Recall that J = E[∇ log σ2
t (θ0)∇ log σ2

t (θ0)
′] and define

J =


 J 11 J 12

J 21 J 22


 , where J 11 = Var{νt(θ0)}, J 22 = J−1

J 12 = J ′
21 = −Cov{νt(θ0),∇ log σ2

t (θ0)}J−1,

and

I = J 11 +ΩJ−1Ω′ +J 12Ω
′ +ΩJ 21,

where Ω = E{ν t(θ0)∇′ log σ2
t (θ0)}. Let Ωi = E{νt,i(θ0)∇′ log σ2

t (θ0)}, where νt,i(θ0) denotes the

i-th component of νt(θ0), for i = 1, . . . 2ℓ.
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The advanced result is obtained by showing the following intermediate steps: under Hγ
0 , as

n → ∞,

i) sup
θ∈V(θ0)

∥∥∥Sn(θ)− S̃n(θ)
∥∥∥→ 0, sup

θ∈V(θ0)

1√
n

∥∥∥∥∥
∂Sn

∂θ′ (θ)−
∂S̃n

∂θ′ (θ)

∥∥∥∥∥→ 0,

in probability,

ii)


 Sn(θ0)

√
n(θ̂n − θ0)


 d→ N (0, (κ4 − 1)J ),

iii) There exists a neighborhood of V(θ0) of θ0, such that, for i = 1, . . . , ℓ

E sup
θ∈V(θ0)

∥∥H
[
{1− η2t (θ)}B−1

θ (B)|ηt−i(θ)|
]∥∥ < ∞,

iv)
1√
n

∂Sn,i

∂θ′ (θ∗) → Ωi, in probability as n → ∞,

v) I is non-singular.

We will use the following Lemma, whose proof is similar to that of Lemma 4.2 in FWZ and is thus

omitted.

Lemma 3.1 Under the assumptions of Theorem 2.1, for any m > 0 there exists a neighborhood V
of θ0 such that E[supV(σ

2
t /σ

2
t (θ))

m] < ∞ and E[supV | log σ2
t (θ)|m] < ∞.

To prove the first convergence in i), note that

∥∥∥Sn(θ)− S̃n(θ)
∥∥∥ ≤ 1√

n

n∑

t=1

|1− η2t (θ)| ‖νt(θ)− ν̃t(θ)‖

+
1√
n

n∑

t=1

|η̃2t (θ)− η2t (θ)| ‖ν̃t(θ)‖ = S1(θ) + S2(θ).

We will show that there exist K > 0 and ρ ∈ (0, 1), such that for almost all trajectories and for all

θ ∈ Θ, ∣∣∣∣
1

σ2
t (θ)

− 1

σ̃2
t (θ)

∣∣∣∣ ≤
Kρt

σ2
t (θ)

. (3.3)

Similarly to the proof of (7.8) in FWZ, it can be shown that

sup
θ∈Θ

1

t
log

∣∣∣∣
1

σ2
t (θ)

− 1

σ̃2
t (θ)

∣∣∣∣ ≤
a1t
t

+ a2t,

where E|a1t| < ∞ and lim supt→∞ a2t = log ρ̃ for some ρ̃ ∈ (0, 1). We thus have

1

t
log σ2

t (θ)

∣∣∣∣
1

σ2
t (θ)

− 1

σ̃2
t (θ)

∣∣∣∣ ≤
log σ2

t (θ)

t
+

a1t
t

+ a2t.

13



The first term in the right-hand side converges a.s. to zero as a consequence of Lemma 7.2 in FWZ

and E supθ∈Θ | log σ2
t (θ)| < ∞, which follows from A5. Thus (3.3) is established. Then we obtain

|η̃2t (θ)− η2t (θ)| = ǫ2t

∣∣∣∣
1

σ̃2
t (θ)

− 1

σ2
t (θ)

∣∣∣∣ ≤ ǫ2t
Kρt

σ2
t (θ)

.

Lemma 3.1 and the cr and Hölder inequalities entail that for sufficiently small s ∈ (0, 1), there exists

a neighborhood V of θ0 such that

E sup
θ∈V(θ0)

Ss
2(θ) ≤ K

ns/2

n∑

t=1

ρstE

[
|ηt|2s sup

θ∈V(θ0)

{
σ2s
t

σ2s
t (θ)

‖ν̃t(θ)‖s
}]

≤ K

ns/2

n∑

t=1

ρst → 0

as n → ∞. This entails supθ∈V(θ0) S2(θ) = oP (1). Similarly, we have supθ∈V(θ0) S1(θ) = oP (1). The

first convergence in i) follows and the second one is obtained by the same arguments.

To prove ii), note that


 Sn(θ0)

√
n(θ̂n − θ0)


 =

1√
n

n∑

t=1

(1− η2t )


 νt(θ0)

−J−1∇ log σ2
t (θ0)


+ oP (1).

The convergence in distribution thus follows from the central limit theorem for martingale differ-

ences.

To prove iii), write B−1
θ (B) =

∑∞
j=0 cj(θ)B

j. We have

H{ηt(θ)} = ηt(θ)

[
1

4
∇ log σ2

t (θ)∇′ log σ2
t (θ)−

1

2
H{log σ2

t (θ)}
]
,

H{1− η2t (θ)} = η2t (θ)
[
−∇ log σ2

t (θ)∇′ log σ2
t (θ) +H{log σ2

t (θ)}
]
.

It follows that, dropping temporarily the term "(θ)" to lighten the notation,

H{1− η2t }cj |ηt−i−j |

= η2t {−∇ log σ2
t∇′ log σ2

t +H log σ2
t }cj |ηt−i−j |

+{1− η2t }{Hcj}|ηt−i−j |

+{1− η2t }cj |ηt−i−j |{
1

4
∇ log σ2

t∇′ log σ2
t −

1

2
H log σ2

t }

+η2t {∇ log σ2
t∇′cj +∇cj∇′ log σ2

t }|ηt−i−j |

−1

2
η2t {∇ log σ2

t∇′ log σ2
t−i−j +∇ log σ2

t−i−j∇′ log σ2
t }|ηt−i−j |cj

−1

2
{1− η2t }{∇cj∇′ log σ2

t−i−j +∇ log σ2
t−i−j∇′cj}|ηt−i−j |.
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In view of Lemma 3.1, since ηt(θ) = ηtσt(θ0)/σt(θ), because ∇ log σ2
t (θ) admits moments of any

order, and using the Hölder inequality, the conclusion follows.

To prove iv), consider the following Taylor expansion about θ0

1√
n

∂Sn,i

∂θ
(θ∗) =

1√
n

∂Sn,i

∂θ
(θ0) +

1√
n

∂2Sn,i

∂θ∂θ′ (θ
∗)(θ∗ − θ0)

where θ∗ is between θ∗ and θ0. The a.s. convergence of θ∗ to θ0, iii) and the ergodic theorem

imply that, for i = 2k + 1 and for some neighborhood of θ0

lim sup
n→∞

∥∥∥∥
1√
n

∂2Sn,i

∂θ∂θ′ (θ
∗)

∥∥∥∥

≤ lim sup
n→∞

1

n

n∑

t=1

sup
θ∈V(θ0)

∥∥∥∥
∂2

∂θ∂θ′ {1− η2t (θ)}B−1
θ (B)η+t−k−1(θ)

∥∥∥∥

= E sup
θ∈V(θ0)

∥∥∥∥
∂2

∂θ∂θ′ {1− η2t (θ)}B−1
θ (B)η+t−k−1(θ)

∥∥∥∥ < ∞.

The same argument obviously applies for i = 2k and the conclusion follows.

To prove v), in view of (3.2), it suffices to show that J is non-singular. Suppose there exist

x = (xi) ∈ R
2ℓ and y ∈ R

d such that

x′νt(θ0) + y′J−1∇ log σ2
t (θ0) = 0, a.s.

Recall that, in view of (2.3),

∇ log σ2
t (θ0) = B−1

θ0
(B)

(
1,1−

′

t−1,q, ǫ
+′

t−1,q, ǫ
−′

t−1,q,σ
2′
t−1,p(θ0)

)′
.

Letting z = J−1y = (zi), we find that, x1η
+
t−1 + x2η

−
t−1 + z21{ηt−1>0} + z2+q1{ηt−1>0} log ǫ

2
t−1 +

z2+2q1{ηt−1<0} log ǫ
2
t−1 = Rt−2, a.s. Conditionally on ηt−1 > 0 we thus have

x1ηt−1 + z2 + z2+q log η
2
t−1 + z2+q log σ

2
t−1 = Rt−2, a.s.

By A8, we find x1 = z2+q = 0. By conditioning on ηt−1 < 0, we similarly get x2 = z2+2q = 0. Thus

z21{ηt−1>0} = Rt−2, a.s., from which we deduce z2 = Rt−2 = 0 a.s. Proceeding by induction, we

show that x = 0 and z = 0. Finally, y = 0 and the invertibility of J is established.

It follows from Steps i)-v) and (3.2) that

Sn

d→ N (0, (κ4 − 1)I).

It can also be shown that Î → I and κ̂4 → κ4 in probability, from which the conclusion follows. 2
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4 Test of EGARCH(1,1)

In this section, we consider testing the EGARCH(1,1) specification in the framework of Model (3.1)

with p = ℓ = 1. For convenience, we reparameterize it as follows





ǫt = σtηt,

log σ2
t = ω0 +

∑q
i=1 ω0,i−1{ǫt−i<0} + γ0ηt−1 + δ0|ηt−1|+ β0 log σ

2
t−1

+
∑q

i=1

(
α0,i+1{ǫt−i>0} + α0,i−1{ǫt−i<0}

)
log ǫ2t−i.

(4.1)

Let ϑ0 = (ζ ′0,α
′
0)

′ where ζ0 = (ω0, γ0, δ0, β0)
′ and α0 = (ω′

0−,α
′
0+,α

′
0−)

′. The vector ζ0 is assumed

to belong to some compact parameter set Ξ ⊂ R
4.

We will derive a LM approach to test the hypothesis that, in (4.1),

Hα
0 : α0 = 0 against Hα

1 : α0 6= 0.

Assuming that |β0| < 1, there exists a stationary solution to Model (4.1) under Hα
0 , obtained from

the MA(∞) representation

log σ2
t = ω0(1− β0)

−1 +
∞∑

k=1

βk−1
0 {γ0ηt−k + δ0|ηt−k|}.

An important difficulty in the estimation of the EGARCH(1,1) model is that invertibility is not

trivial. Invertibility is required to write σ̃2
t (ζ), to be defined below, in function of the observations

ǫt for any ζ = (ω, γ, δ, β)′. Wintenberger (2013) obtained the following sufficient condition for

continuous invertibility of the EGARCH(1,1): the compact set Ξ is included in R×{δ ≥ |γ|} ×R
+

and ∀ζ ∈ Ξ,

E

[
log

(
max

[
β,

1

2
(γǫ0 + δ|ǫ0|) exp

{
− ω

2(1− β)

}
− β

])]
< 0. (4.2)

Notice that this condition depends on the distribution of the observations (ǫt).

Denote by ϑ̂
c

n the constrained (by Hα
0 ) estimator of ϑ0, defined by

ϑ̂
c

n = (ζ̂
′
n,01×3q)

′

where ζ̂n is the QMLE of the EGARCH parameters defined by

ζ̂n = arg min
ζ∈Ξ

Q̃n(ζ),

with

Q̃n(ζ) = n−1
n∑

t=r0+1

ℓ̃t(ζ), ℓ̃t(ζ) =
ǫ2t

σ̃2
t (ζ)

+ log σ̃2
t (ζ),
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where r0 is a fixed integer and log σ̃2
t (ζ) is recursively defined by

log σ̃2
t (ζ) = ω + γη̃t−1(ζ) + δ|η̃t−1(ζ)|+ β log σ̃2

t−1(ζ), η̃t−1(ζ) = ǫt−1/σ̃t−1(ζ)

using initial values for ǫ0, σ̃
2
0(ζ). For any ζ ∈ Ξ, the continuous invertibility condition (4.2) allows

to define the sequence (σ2
t (ζ))t∈Z by

log σ2
t (ζ) = ω + γηt−1(ζ) + δ|ηt−1(ζ)|+ β log σ2

t−1(ζ), ηt−1(ζ) = ǫt−1/σt−1(ζ).

We introduce the following assumption.

A9: ζ0 ∈
◦
Ξ, E(η40) < ∞ and E{β0 − 1

2 (γ0η0 + δ0 |η0|)}2 < 1.

The following result was established by Wintenberger (Theorem 6, 2013).

Theorem 4.1 (Asymptotics of the QMLE for the EGARCH(1,1)) For any compact subset

Ξ of R × {δ ≥ |γ|} × R
+ satisfying (4.2), almost surely ζ̂n → ζ0 as n → ∞ under Hα

0 .

If, in addition, A9 holds, we have
√
n(ζ̂n − ζ0)

d→ N (0, (κ4 − 1)V−1) as n → ∞, where

V = E[∇ log σ2
t (ζ0)∇ log σ2

t (ζ0)
′] is a positive definite matrix.

Now, turning to Model (4.1), we still denote by log σ̃2
t (ϑ) the variable recursively defined, for any

ϑ in Ξ× R
3q and t = 1, 2, . . . , n, by

log σ̃2
t (ϑ) = ω +

q∑

i=1

ωi−1{ǫt−i<0} + (γǫt−1 + δ|ǫt−1|)e−
1

2
log σ̃2

t−1
(ϑ)

+β log σ̃2
t−1(ϑ) +

q∑

i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i,

using positive initial values for ǫ0, . . . , ǫ1−q, σ̃
2
0(ϑ).

For any ϑ = (ζ ′,01×3q)
′, the random vector D̃t(ϑ) =

∂
∂α log σ̃2

t (ϑ) satisfies

D̃t(ϑ) = Ũt−1(ϑ)D̃t−1(ϑ) +
(
1−

′

t−1,q, ǫ
+′

t−1,q, ǫ
−′

t−1,q

)′
(4.3)

where Ũt−1(ϑ) = −1
2 {(γǫt−1 + δ|ǫt−1|)} e−

1

2
log σ̃2

t−1
(ϑ) + β.

Similar to what was accomplished for the Log-GARCH, we will derive the asymptotic distribu-

tion of

1√
n

n∑

t=1

∂

∂ϑ
ℓ̃t(ϑ̂

c

n) =


 04×1

Tn := 1√
n

∑n
t=1(1− η̂2t )D̃t(ϑ̂

c

n)


 ,
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where η̂t = ǫt/σ̃t(ϑ̂
c

n). Let κ̂4 − 1 = n−1
∑n

t=1(1− η̂2t )
2,

K̂11 =
1

n

n∑

t=1

D̃t(ϑ̂
c

n)D̃t(ϑ̂
c

n)
′ −
(
1

n

n∑

t=1

D̃t(ϑ̂
c

n)

)(
1

n

n∑

t=1

D̃t(ϑ̂
c

n)
′
)
,

V̂ =
1

n

n∑

t=1

∇ log σ̃2
t (ϑ̂

c

n)∇′ log σ̃2
t (ϑ̂

c

n), Ψ̂ =
1

n

n∑

t=1

D̃t(ϑ̂n)∇′ log σ̃2
t (ϑ̂

c

n),

K̂12 = −
{
Ψ̂−

(
1

n

n∑

t=1

D̃t(ϑ̂n)

)(
1

n

n∑

t=1

∇′ log σ̃2
t (ϑ̂

c

n)

)}
V̂−1 = K̂

′
21,

and

L̂ = K̂11 + Ψ̂V̂−1Ψ̂
′
+ K̂12Ψ̂

′
+ Ψ̂K̂21.

Theorem 4.2 (Asymptotic distribution of the LM test under Hα
0 ) Under the assumptions

of Theorem 4.1 (including A9), and under Hα
0 the matrix L̂ converges in probability to a positive

definite matrix L and we have

LMα
n = (κ̂4 − 1)−1T′

nL̂
−1

Tn
d→ χ2

3q.

Proof: See the supplementary document. 2

5 Portmanteau goodness-of-fit tests

Portmanteau tests based on residual autocorrelations are routinely employed in time series analysis,

in particular for testing the adequacy of an estimated ARMA(p, q) model (see Box and Pierce (1970),

Ljung and Box (1979) and McLeod (1978) for the pioneer works, and see Li (2004) for a reference

book on the portmanteau tests). The intuition behind these portmanteau tests is that if a given

time series model with iid innovations ηt is appropriate for the data at hand, the autocorrelations

of the residuals η̂t should not be to far from zero.

For an ARCH-type model such as Model (0.1), the portmanteau tests based on residual autocor-

relations are irrelevant because we have η̂t = (σt/σ̂t)ηt and any process of the form ǫt = σ∗
t ηt, with

σ∗
t independent of σ ({ηu, u < t}), is a martingale difference, and thus is uncorrelated. For ARCH-

type models, Li and Mak (1994) and Ling and Li (1997) proposed portmanteau tests based on the

autocovariances of the squared residuals. Berkes, Horváth and Kokoszka (2003) developed a sharp

analysis of the asymptotic theory of these portmanteau tests in the standard GARCH framework

(see also Theorem 8.2 in Francq and Zakoïan, 2011). Escanciano (2010) developed diagnostic tests

for a general class of conditionally heteroskedastic time series models. Carbon and Francq (2011)
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considered the portmanteau tests for the APARCH models. Recently, Leucht, Kreiss and Neumann

(2015) proposed a consistent specification test for GARCH(1,1) models based on a test statistic of

Cramér-von Mises type. The Log-GARCH model is not covered by these works.

To test the null hypothesis

H0 : the process (ǫt) satisfies Model (1.1),

define the autocovariances of the squared residuals at lag h, for |h| < n, by

r̂h =
1

n

n∑

t=|h|+1

(η̂2t − 1)(η̂2t−|h| − 1), η̂2t =
ǫ2t
σ̂2
t

,

where σ̂t = σ̃t(θ̂n). For any fixed integer m, 1 ≤ m < n, consider the statistic r̂m = (r̂1, . . . , r̂m)′ .

Define the m× d matrix K̂m whose row h, for 1 ≤ h ≤ m, is the transpose of

K̂m(h, ·) = 1

n

n∑

t=h+1

(η̂2t−h − 1)∇ log σ̃2
t (θ̂n). (5.1)

The following assumption is marginally milder than A8.

A10: The support of η0 contains at least three positive values or three negative values.

Theorem 5.1 (Adequacy test for the AS-Log-GARCH(p, q) model) Under H0, the as-

sumptions of Theorem 2.1 and A10, the matrix D̂ = (κ̂4 − 1)2Im − (κ̂4 − 1)K̂mĴ
−1

K̂
′
m converges

in probability to a positive definite matrix D and we have

nr̂′mD̂
−1

r̂m
d→ χ2

m.

Proof: See the supplementary document. 2

The same result could be established for testing adequacy of an EGARCH(1,1), under A10 and

the assumptions of Theorem 4.1. As usual in portmanteau tests, the choice of m impacts the power

of the test. A large m is likely to offer power for a large set of alternatives. Conversely, choosing m

too large may reduce the power for a specific assumption, in particular because the autocovariances

will be poorly estimated for large lags.

6 An application to exchange rates

In the supplementary document, we investigate the empirical size and power of the LM and port-

manteau tests by means of Monte Carlo simulation experiments. We now consider returns series
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of the daily exchange rates of the American Dollar (USD), the Japanese Yen (JPY), the British

Pound (BGP), the Swiss Franc (CHF) and Canadian Dollar (CAD) with respect to the Euro. The

observations cover the period from January 5, 1999 to January 18, 2012, which corresponds to 3344

observations. The data were obtained from the web site http://www.ecb.int/stats/exchange/

eurofxref/html/index.en.html.

It may seem surprising to investigate asymmetry models for exchange rate returns, while the

conventional view is that leverage is not relevant for such series. However, many empirical studies

(e.g. Harvey and Sucarrat (2014)), show that asymmetry/leverage is relevant for exchange rates,

especially when one currency is more liquid or more attractive than the other. It may also be worth

mentioning the sign of the effect depends on which currency appears in the denominator of the

exchange rate.

Table 1 displays the estimated AS-Log-GARCH(1,1) and EGARCH(1,1) models for each series.

In order to have two models with the same number of parameters, which facilitates their compar-

ison, we imposed α = α1+ = α1− in the AS-Log-GARCH model (see the complementary file for

unrestricted estimation of the AS-Log-GARCH(1,1)). The estimated models are rather similar over

the different series. In particular, for the two models and all the series, the persistence parameter

β is very high. For all the estimated AS-Log-GARCH models, except the GBP, the value of ω−

is significantly positive, which reflects the existence of a leverage effect. The leverage effect is also

visible in the EGARCH models, because the estimated value of γ is negative, except again for

the GBP. Comparing the estimated coefficients ω− and γ with their estimated standard deviations

(given in parentheses), the evidence for the presence of a leverage effect is however often weaker

in the EGARCH than in the Log-GARCH model. The two models having the same number of

parameters, it makes sense to prefer the model with the higher likelihood, given by the last column

of Table 1 in bold face. According to this criterion, the Log-GARCH(1,1) is preferred for the USD

and GBP series, whereas the EGARCH(1,1) is preferred for the 3 other series.

Even if, for a given series, a model produces a better fit than the other candidate, this does not

guarantee its relevance for that series. We thus assess the models by means of the two adequacy

tests studied in the present paper. Tables 2 and 3 display the p-values of the portmanteau and LM

tests for testing the null of a AS-Log-GARCH(1,1) (without assuming α = α1+ = α1−) and the null

of an EGARCH(1,1). The p-values smaller than 0.01 are printed in light face. The two tests clearly

reject the AS-Log-GARCH(1,1) model for the series JPY, CHF and CAD. The portmanteau tests

also clearly reject the EGARCH(1,1) model for the series CHF, and they also find some evidence
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against the EGARCH(1,1) model for the series JPY, GPD and CAD. The LM tests finds strong

evidence against the EGARCH(1,1), for all the series except CAD. Using the two adequacy tests,

one can thus arguably reject the EGARCH(1,1) for all the series. Out-of-sample prediction exercises,

presented in the supplementary document, confirm the general superiority of the AS-Log-GARCH

over the EGARCH model for fitting and predicting these series.

To summarize our empirical investigations, the AS-Log-GARCH(1,1) model seems to be relevant

for the USD and GBP series, whereas none of the two models is suitable for the 3 other series.

7 Conclusion

The EGARCH and AS-Log-GARCH models do not require any a priori restriction on the parameters

because the positivity of the variance is automatically satisfied. This is often consider as the

main advantage of such models, by comparison with other GARCH-type formulations designed to

capture the leverage effect. In empirical applications, the EGARCH model is clearly preferred by

the practitioners, the Log-GARCH model being rarely considered. The conclusions of our study are

not in accordance with this predominance. First, we noted that the two models may produce the

same volatility process, though they do not produce the same returns process. Second, it is now

well known that invertibility of the EGARCH requires stringent non explicit conditions. If such

conditions are neglected, results obtained from the statistical inference may be dubious. Third, the

adequacy tests developed in this paper show that the two volatility models are not interchangeable

for a given series. Finally, our estimation results on real exchange rate data do not allow to validate

the EGARCH model for any of the series under consideration. For the AS-Log-GARCH model,

the conclusions are mixed: two over six series passed all adequacy tests, and the out-of-sample

performance is generally superior than that of the EGARCH.
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Currency m
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Table 3: The p-values of the LM adequacy tests.

Currency ℓ or q

1 2 3 4 5 6 7 8 9 10 11 12
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GBP 0.902 0.767 0.481 0.474 0.421 0.550 0.581 0.613 0.627 0.704 0.655 0.679

CHF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CAD 0.895 0.004 0.002 0.002 0.002 0.001 0.002 0.005 0.008 0.015 0.023 0.034

EGARCH(1,1)
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Goodness-of-fit tests for log and exponential GARCH models:

complementary results

This document contains additional results, in particular illustrations and proofs, that have been

removed from the main document to save place.

A Illustration to Lemma 1.1

Note that, in Lemma 1.1 for the symmetric case (when γ := γ+ = γ−), one can take α = α+ =

α− = γ, ω = ω̃ + α logEe|η̃1|, β = β̃ − γ and

ηt =
e

|η̃1|
2√

Ee|η̃1|
sign(η̃t).

Note also that, there is a linear relation between log(η20) and η̃0 for η̃0 ≥ 0, and another linear

relation for η̃0 < 0. The tail of ηt is thus heavier than that of η̃t. This implies that the tails of the

Log-GARCH process εt = σtηt are less impacted by the tails of the volatility process than those

of the EGARCH process ε̃t = σtη̃t, leading to possibly less temporal dependence. To illustrate

this point, we plot in Figure 2 trajectories of Log-GARCH(1,1) and EGARCH(1,1) processes with

the same symmetric log volatility process and η0 following a standard gaussian distribution. The

trajectories have the same periods of high volatilities but the EGARCH(1,1) trajectory looks more

blurry when the volatility is low.

B Monte Carlo experiments

To assess the ability of the adequacy tests to distinguish the two models, we made the following

numerical illustrations. We generated N = 1, 000 independent simulations of length n = 1, 000 and

n = 4, 000 of a Log-GARCH(1,1) model with parameter θ0 = (0.01, 0.02, 0.04, 0.05, 0.95) and an

EGARCH(1,1) model with parameter ζ0 = (−0.15,−0.08, 0.12, 0.95), both with ηt ∼ N (0, 1). The

values of the parameters θ0 and ζ0 are close to those estimated on the real series of the next section.

On each simulated series, we applied 4 adequacy tests: the LM and portmanteau tests for the null

of a Log-GARCH(1,1) and for the null of an EGARCH(1,1).

Table 4 displays the empirical relative frequencies of rejection over the N replications for the

3 nominal levels α = 1%, 5% and 10%, when the DGP is the Log-GARCH(1,1) model. Table 5
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Figure 2: Symmetric Log-GARCH(1,1) and EGARCH(1,1) with the same volatility process ω = 0.2, α = 0.2

and β = 0.95. The top two panels display the sample paths of the return processes. The bottom two panels

display the sample paths of the squared return processes and the volatilities (in red).
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Figure 3: Exchange rate and return USD/EURO, from January 5, 1999 to January 18, 2012.

displays the same empirical relative frequencies of rejection when the DGP is the EGARCH(1,1)

model. Recall that, for a random sample of size 1,000, the empirical relative frequency of rejection

should vary respectively within the intervals [0.3; 1.9], [3.3; 6.9] and [7.6; 12.5] with probability 0.99

under the assumption that the true probabilities of rejection are respectively 1%, 5% and 10%.

Tables 4 and 5 show that, as expected the error of first kind is better controlled when n = 4, 000

than when n = 1, 000, both with the LM and portmanteau tests. The powers of the two tests

are quite satisfactory when the null is the Log-GARCH(1,1) model. Even for the sample size

n = 1, 000, the two tests are able to clearly reject the Log-GARCH(1,1) model when the DGP is the

EGARCH(1,1). For the the null of an EGARCH(1,1), the two tests are less powerful. For testing

the two null assumptions, the LM test is slightly more powerful for small values of l (say l ≤ 4)

whereas the portmanteau test works slightly better with relatively large values of m (say m ≥ 7).

C Complement to the exchange rates study

Figure 3 represents the level and return series of the USD to Euro daily exchange rate. Table 6 is

the analogue of the top panel of Table 1, but for the unrestricted AS-Log-GARCH(1,1).

We also performed out-of-sample predictions of 845 new squared returns, corresponding to the

period from January 19, 2012 to May 14, 2015. As loss function we use either
(
ǫ2t − σ̂2

t

)2
,
∣∣ǫ2t − σ̂2

t

∣∣,
(
log ǫ2t/σ̂

2
t

)2
, or

∣∣log ǫ2t/σ̂2
t

∣∣. Averaging over the 845 observations, we obtain respectively the Mean
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Table 4: Portmanteau and LM adequacy tests of the Log-GARCH(1,1) and EGARCH(1,1) models when

the DGP is a Log-GARCH(1,1) model.

ℓ or q

1 2 3 4 5 6 7 8 9 10 11 12

Lagrange-Multiplier test for the adequacy of the Log-GARCH(1,1)

n = 1000 α = 1% 2.2 3.0 2.6 2.7 3.0 3.2 3.6 3.6 3.7 3.3 3.2 3.2

α = 5% 4.8 6.4 6.3 6.5 6.5 7.2 7.4 8.0 8.3 8.8 9.0 8.7

α = 10% 7.6 9.3 9.9 10.2 12.0 11.8 11.8 12.3 13.1 13.1 13.8 13.2

Portmanteau test for the adequacy of the Log-GARCH(1,1)

n = 1000 α = 1% 2.5 2.7 2.8 3.0 3.2 3.6 3.3 3.8 3.9 3.7 3.9 4.0

α = 5% 7.1 7.3 6.7 7.3 7.6 6.9 7.5 7.5 7.2 7.3 7.2 6.8

α = 10% 12.1 13.0 12.2 12.4 13.1 12.4 13.0 12.4 12.6 11.4 11.7 11.9

Lagrange-Multiplier test for the adequacy of the EGARCH(1,1)

n = 1000 α = 1% 99.9 99.9 99.8 99.8 99.8 99.8 99.7 99.7 99.7 99.7 99.7 99.7

α = 5% 100 100 99.9 99.9 99.8 99.9 99.9 99.9 99.9 99.8 99.8 99.8

α = 10% 100 100 100 100 99.9 100 99.9 100 100 100 100 100

Portmanteau test for the adequacy of the EGARCH(1,1)

n = 1000 α = 1% 82.2 94.0 96.1 97.7 98.0 98.4 98.8 99.1 99.1 99.2 99.2 99.4

α = 5% 93.4 95.9 97.5 98.2 98.4 98.6 99.1 99.2 99.3 99.4 99.4 99.4

α = 10% 96.0 97.6 98.0 98.4 98.7 98.9 99.2 99.3 99.4 99.5 99.5 99.5

Lagrange-Multiplier test for the adequacy of the Log-GARCH(1,1)

n = 4000 α = 1% 1.3 1.3 1.5 2.1 2.2 2.3 2.3 2.3 2.3 2.2 2.4 2.3

α = 5% 2.8 4.4 4.6 4.9 5.3 5.6 6.3 6.4 6.3 5.6 6.3 6.4

α = 10% 4.9 6.8 8.3 8.4 8.5 9.8 10.6 11.6 11.1 11.5 11.3 10.9

Portmanteau test for the adequacy of the Log-GARCH(1,1)

n = 4000 α = 1% 2.0 1.9 2.9 2.6 2.7 3.4 3.2 3.3 3.3 3.3 3.1 3.1

α = 5% 5.0 5.6 6.5 6.8 7.1 6.8 7.1 7.5 6.7 7.1 7.5 7.1

α = 10% 10.4 10.4 10.8 11.0 11.8 11.9 11.5 12.0 11.2 11.4 11.7 11.8

Lagrange-Multiplier test for the adequacy of the EGARCH(1,1)

n = 4000 α = 1% 100 100 100 100 100 100 100 100 100 100 100 100

α = 5% 100 100 100 100 100 100 100 100 100 100 100 100

α = 10% 100 100 100 100 100 100 100 100 100 100 100 100

Portmanteau test for the adequacy of the EGARCH(1,1)

n = 4000 α = 1% 99.4 99.9 100 100 100 100 100 100 100 100 100 100

α = 5% 99.7 99.9 100 100 100 100 100 100 100 100 100 100

α = 10% 99.8 99.9 100 100 100 100 100 100 100 100 100 100
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Table 5: As Table 4, but when the DGP is an EGARCH(1,1) model.

q or m

1 2 3 4 5 6 7 8 9 10 11 12

Lagrange-Multiplier test for the adequacy of the Log-GARCH(1,1)

n = 1000 α = 1% 12.7 10.6 11.1 9.2 8.3 8.8 10.1 9.1 8.4 9.0 8.2 8.0

α = 5% 24.7 22.6 22.1 21.6 20.8 20.7 20.9 22.2 21.6 20.6 19.4 18.8

α = 10% 32.8 30.2 31.5 30.2 31.3 30.9 29.6 30.4 29.9 29.3 27.8 27.5

Portmanteau test for the adequacy of the Log-GARCH(1,1)

n = 1000 α = 1% 5.5 9.1 10.5 11.9 13.6 15.1 16.7 17.2 18.5 18.6 19.3 20.4

α = 5% 13.7 19.3 21.7 25.1 27.5 28.2 29.8 30.8 32.0 32.0 33.7 32.8

α = 10% 20.2 26.9 32.2 33.7 36.8 38.2 40.2 42.1 40.9 40.4 40.9 42.0

Lagrange-Multiplier test for the adequacy of the EGARCH(1,1)

n = 1000 α = 1% 0.7 0.9 1.1 1.1 1.1 1.4 1.1 1.1 1.3 0.7 0.7 1.0

α = 5% 3.7 4.1 5.1 4.6 5.7 5.5 5.1 5.3 5.1 4.9 4.9 5.5

α = 10% 7.2 8.7 8.7 9.8 10.9 10.7 11.6 10.3 10.2 10.1 10.5 9.6

Portmanteau test for the adequacy of the EGARCH(1,1)

n = 1000 α = 1% 1.2 1.3 1.5 1.6 2.6 2.4 2.4 2.6 2.6 2.9 3.3 3.4

α = 5% 6.1 6.2 7.1 6.8 7.2 7.0 8.1 8.7 8.6 7.9 8.2 8.6

α = 10% 11.1 11.9 12.6 12.6 13.4 13.6 13.8 14.6 13.9 13.9 13.7 13.6

Lagrange-Multiplier test for the adequacy of the Log-GARCH(1,1)

n = 4000 α = 1% 59.4 52.9 47.3 45.9 44.5 43.9 40.2 39.9 38.9 39.0 38.2 38.3

α = 5% 76.8 70.8 67.1 68.1 65.3 64.0 62.6 61.5 60.9 59.5 59.9 60.0

α = 10% 84.3 79.6 76.6 76.0 74.2 74.5 73.6 71.8 72.0 70.7 70.7 70.0

Portmanteau test for the adequacy of the Log-GARCH(1,1)

n = 4000 α = 1% 24.0 33.6 46.5 54.6 60.1 64.2 67.5 68.4 71.0 70.8 72.1 73.6

α = 5% 39.8 54.8 64.0 71.7 76.1 79.3 81.0 83.2 83.3 84.2 85.3 85.7

α = 10% 51.1 64.6 73.8 80.1 83.1 86.6 86.6 88.2 88.6 89.7 90.8 91.0

Lagrange-Multiplier test for the adequacy of the EGARCH(1,1)

n = 4000 α = 1% 0.6 0.7 0.8 0.3 0.5 0.2 0.9 0.4 0.7 0.8 1.0 0.8

α = 5% 2.2 3.6 4.0 4.0 3.6 4.1 4.8 4.3 4.7 4.4 4.5 3.7

α = 10% 4.5 6.4 7.5 7.6 7.5 8.0 9.2 9.2 9.3 9.4 8.8 8.6

Portmanteau test for the adequacy of the EGARCH(1,1)

n = 4000 α = 1% 1.5 1.6 1.4 1.3 1.3 1.2 1.3 1.6 1.5 1.5 1.2 1.6

α = 5% 6.1 6.1 6.1 6.0 5.6 5.1 5.6 6.0 5.7 5.6 5.6 5.1

α = 10% 11.4 11.1 11.3 11.8 11.7 11.7 11.2 10.2 11.0 10.9 10.6 10.2
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Table 6: Unrestricted AS-Log-GARCH(1,1) model fitted by QMLE on daily returns of exchange

rates.

Currency ω̂ ω̂− α̂+ α̂− β̂ Log-Lik

USD 0.008 (0.011) 0.03 (0.011) 0.022 (0.005) 0.019 (0.005) 0.971 (0.005) -0.102

JPY -0.016 (0.017) 0.121 (0.016) 0.023 (0.006) 0.052 (0.007) 0.949 (0.007) -0.343

GBP 0.038 (0.015) -0.014 (0.016) 0.031 (0.006) 0.027 (0.006) 0.965 (0.006) 0.547

CHF -0.135 (0.027) 0.339 (0.027) 0.003 (0.006) 0.054 (0.007) 0.967 (0.005) 1.539

CAD 0.015 (0.011) 0.011 (0.011) 0.023 (0.005) 0.018 (0.005) 0.970 (0.006) -0.170

Table 7: p-values of the Diebold-Mariano (1995) test for the null that the two models have the same

forecast accuracy against the alternative that the EGARCH forecasts are less accurate than those

of the Log-GARCH.

USD JPY GBP CHF CAD

MSE 0.0410 0.8131 0.6873 0.1070 0.7373

MAE 0.0000 0.0013 0.0322 0.0479 0.1720

Log-MSE 0.0000 0.0012 0.0494 0.0000 0.0702

Log-MAE 0.0000 0.0064 0.1490 0.0000 0.4524

Squared forecast Errors (MSE), the Mean Absolute forecast Errors (MAE), the MSE of the log-

squared returns (log-MSE) and the MAE of the log-squared returns (log-MAE). For the volatility

prediction σ̂2
t , we used either the Log-GARCH(1,1) or the EGARCH(1,1), both estimated on the

initial 3344 observations. Table 7 shows that the Dielbold-Mariano tests (see Dielbold and Mariano

(1995)) often reject the null that the two forecasts are equally accurate in average in favor of the

alternative that the EGARCH(1,1) produces less accarate forecasts than the Log-GARCH(1,1),

except for the CAD series for which the null can not be rejected.

To summarize our empirical investigations, the Log-GARCH(1,1) model seems to be relevant

for the USD and GBP series, whereas none of the two models is suitable for the 3 other series.
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D Proof of Theorem 4.2

For any ϑ = (ζ ′,01×3q)
′, let Tn(ζ) =

1√
n

∑n
t=1{1 − η2t (ζ)}Dt(ζ) where Dt(ζ) =

∂
∂α log σ2

t (ζ) and

let T̃n(ζ) =
1√
n

∑n
t=1{1 − η̃2t (ζ)}D̃t(ζ), where ηt(ζ) = ǫt/σt(ζ) and η̃t(ζ) = ǫt/σ̃t(ζ).

Define

K =


 K11 K12

K21 K22


 , where K11 = Var{Dt(ζ0)}, K22 = V−1

K12 = K′
21 = Cov{Dt(ζ0),∇ log σ2

t (ζ0)}V−1,

and

L = K11 +ΨV−1Ψ′ +K12Ψ
′ +ΨK21

where Ψ = E{Dt(ζ0)∇′ log σ2
t (ζ0)}. Let Ψi = E{Dt,i(ζ0)∇′ log σ2

t (ζ0)}, where Dt,i(ζ0) denotes

the i-th component of Dt(ζ0), for i = 1, . . . 3q, t ≥ 0. Let Tn,i(ζ) denote the i-th component of

Tn(ζ).

The first step of the proof is similar to the one of the proof of Theorem 3.1. Let Tn,i denote the

i-th component of Tn = T̃n(ζ̂n), for i = 1, . . . 2ℓ. A Taylor expansion gives, for some ζ∗ between

ζ̂n and ζ0,

Tn,i = T̃n,i(θ0) +
1√
n

∂T̃n,i

∂ζ
(ζ∗)

√
n(ζ̂n − ζ0).

We cannot follow the same steps of proof as in Theorem 3.1 because of the lack of moments

in the EGARCH(1,1) model for values of ζ satisfying (4.2), see He et al. (2002). However, using

the approach of Straumann and Mikosch (2006) refined in Wintenberger (2013), there exist K > 0,

ρ ∈ (0, 1) and a compact neighborhood V(ζ0) such that

sup
ζ∈V(ζ0)

|σ̃2
t (ζ)− σ2

t (ζ)| ≤ Kρt, a.s.

Moreover, the process σ̃t(ζ) is lower bounded by ω/(1−β) > 0 under (4.2). By a Lipschitz argument,

we then obtain

sup
ζ∈V(ζ0)

∣∣∣∣
1

σ̃2
t (ζ)

− 1

σ2
t (ζ)

∣∣∣∣ ≤ Kρt, a.s.

By an application of Lemma 2.1 in Straumann and Mikosch (2006), it yields to the first assertion

(i) below. It remains to show the three last assertions (ii)-(iv) that are sufficient to prove Theorem
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4.2:

i) sup
ζ∈V(ζ0)

∥∥∥Tn(ζ)− T̃n(ζ)
∥∥∥→ 0, sup

ζ∈V(ζ0)

1√
n

∥∥∥∥∥
∂Tn

∂ζ
(ζ)− ∂T̃n

∂ζ
(ζ)

∥∥∥∥∥→ 0,

almost surely,

ii)


 Tn(ζ0)

√
n(ζ̂n − ζ0)


 d→ N (0, (κ4 − 1)K),

iii)
1√
n

∂Tn,i

∂ζ
(ζ∗) → Ψi, almost surely, where ζ∗ is between ζ̂n and ζ0,

v) L is non-singular.

To prove ii), we use that

 Tn(ζ0)

√
n(ζ̂n − ζ0)


 =

1√
n

n∑

t=1

(1− η2t )


 Dt(ζ0)

−V−1∇ log σ2
t (ζ0)


+ oP (1).

The convergence in distribution thus follows from the central limit theorem for martingale differ-

ences.

The proof of iii) relies on an almost sure uniform argument applied to ∂Tn/∂ζ(ζ) on some

neighborhood of ζ0. As ζ∗ converges almost surely to ζ0, step i) ensures that

1√
n

∣∣∣∣∣
∂Tn

∂ζ
(ζ∗)−

∂T̃n

∂ζ
(ζ0)

∣∣∣∣∣→ 0 a.s.

Thus, the result will follow from the ergodic theorem applied to (∇Tn(ζ0)) if Ψ is finite. Indeed,

the linear stochastic recurrent equation (4.3) when ζ = ζ0 takes a simple form with a Lipschitz

coefficient equals to β0 − 1
2(γ0ηt + δ0|ηt|). Under A9, one can use a contractive argument in L2 to

prove that E{Dt,i(ζ0)
2} < ∞, i = 1, . . . , 3q. The same argument was already used in Wintenberger

(2013) to prove that E{∇′ log σ2
t (ζ0)∇ log σ2

t (ζ0)} < ∞. Thus, the finiteness of Ψi is derived from

the Cauchy-Schwarz inequality and step iii) follows.

Let us prove step iv). Suppose there exist x = (xi) ∈ R
3q and y ∈ R

4 such that

x′Dt(ζ0) + y′V−1∇ log σ2
t (ζ0) = 0. (D.1)

Let z′ = y′V−1. In view of (4.3) we have

∇ log σ2
t (ζ0) = Ut−1(ζ0)∇ log σ2

t−1(ζ0) +
(
1, ǫt−1, |ǫt−1|, log σ2

t−1(ζ0)
)′
,

Dt(ζ0) = Ut−1(ζ0)Dt−1(ζ0) +
(
1−

′

t−1,q, ǫ
+′

t−1,q, ǫ
−′

t−1,q

)′
.

By stationarity, it follows from (D.1) that

x′
(
1−t−1,q, ǫ

+
t−1,q, ǫ

−
t−1,q

)′
+ z′ (1, ǫt−1, |ǫt−1|, log σ2

t−1(ζ0)
)′

= 0, a.s. (D.2)
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It follows that, with notations already used,

x11{ηt−1<0} + xq+1 log ǫ
2
t−11{ηt−1<0} + x2q+1 log ǫ

2
t−11{ηt−1>0}

+z1 + z2ηt−1σt−1(ζ0) + z3|ηt−1|σt−1(ζ0) + z4 log σ
2
t−1(ζ0) = Rt−2. (D.3)

Thus, conditioning on ηt−1 < 0 we find

x1 + xq+1 log η
2
t−1 + z1 + (z2 + z3)ηt−1σt−1(ζ0) + (z4 + xq+1) log σ

2
t−1(ζ0) = Rt−2.

By arguments already used, in view of Assumption A8 this entails xq+1 = z2 + z3 = 0. By

conditioning on ηt−1 > 0 we find x2q+1 = z2 − z3 = 0 and (D.3) reduces to

x11{ηt−1<0} + z1 + z4 log σ
2
t−1(ζ0) = Rt−2.

The sign of ηt−1 being independent of σ ({ηu, u ≤ t− 2}) we also have x1 = 0. Turning back to (D.3),

we get x21{ηt−2<0} + xq+2 log ǫ
2
t−21{ηt−2>0} + x2q+2 log ǫ

2
t−21{ηt−2<0} + z1 + z4 log σ

2
t−1(ζ0) = Rt−3.

Because log σ2
t−1(ζ0) = ω0 + γ0ηt−2 + δ0|ηt−2|+ β0 log σ

2
t−2(ζ0) we get, for ηt−2 < 0,

x2 + x2q+2 log η
2
t−2 + z1 + z4(ω0 + (γ0 − δ0)ηt−2) = R∗

t−3.

By arguments already used, we deduce that x2q+2 = z4 = 0. By conditioning on ηt−2 > 0, we get

xq+2 = 0 and thus x2 = 0. Proceeding similarly we show that all the components of x are equal

to zero. Using (D.2), we thus have z1 = 0. We have shown that, in (D.1), x = 0 and y = 0 which

entails that L is non-singular. 2

E Proof of Theorem 5.1

Introduce the vector rm = (r1, . . . , rm)′ where

rh = n−1
n∑

t=h+1

stst−h, with st = η2t − 1 and 0 < h < n.

Let st(θ) (respectively s̃t(θ)) be the random variable obtained by replacing ηt by ηt(θ) = ǫt/σt(θ)

(respectively η̃t(θ) = ǫt/σ̃t(θ)) in st. Let rh(θ) (respectively r̃h(θ)) be obtained by replacing

ηt by ηt(θ) (respectively η̃t(θ)) in rh. The vectors rm(θ) = (r1(θ), . . . , rm(θ))′ and r̃m(θ) =

(r̃1(θ), . . . , r̃m(θ))′ are such that rm = rm(θ0) and r̂m = r̃m(θ̂n).

We first study the asymptotic impact of the unknown initial values on the statistic r̂m.

We have st(θ)st−h(θ) − s̃t(θ)s̃t−h(θ) = at + bt with at = {st(θ)− s̃t(θ)} st−h(θ) and bt =
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s̃t(θ) {st−h(θ)− s̃t−h(θ)}. A straightforward adaptation of the proof of (3.3) shows that the right-

hand side can be replaced by Kρt in this inequality. Thus, we have

|at| ≤ Kρtǫ2t

(
σ2
t−h

σ2
t−h(θ)

η2t−h + 1

)
.

Lemma 3.1 and the cr and Hölder inequalities entail that for sufficiently small s∗ ∈ (0, 1), there

exists a neighborhood V of θ0 such that

E

∣∣∣∣∣
1√
n

n∑

t=1

sup
θ∈V

|at|
∣∣∣∣∣

s∗

≤ Kn−s∗/2
n∑

t=1

ρts
∗ → 0

as n → ∞. It follows that n−1/2
∑n

t=1 supθ∈V |at| = oP (1). The same convergence holds for bt and

for the derivatives of at and bt. We then obtain

√
n ‖rm − r̃m(θ0)‖ = oP (1), sup

θ∈V

∥∥∇r′m(θ)−∇r̃′m(θ)
∥∥ = oP (1). (E.1)

We now show that the asymptotic distribution of
√
nr̂m is a function of the joint asymptotic

distribution of
√
nrm and of the QMLE. Using (E.1) and the consistency of θ̂n, Taylor expansions

of the components of rm(·) around θ̂n and θ0 shows that

√
nr̂m =

√
nr̃m(θ0) +

[
∇r̃′m(θ∗)

]′√
n(θ̂n − θ0)

=
√
nrm +

[
∇r′m(θ∗)

]′√
n(θ̂n − θ0) + oP (1)

where the h-th row of the matrix
[
∇r̃′m(θ∗)

]′
is the transpose of ∇r̃h(θ

∗
h) for some θ∗

h between θ̂n

and θ0. In Section 7.11 of FWZ, we have shown the existence of moments of all order for log σ2
t (θ)

and their derivatives at any order, uniformly in θ ∈ V for some neighborhood V of θ0. Together

with Lemma 3.1, this implies that

E sup
θ∈V

∣∣∣∣
∂2st(θ)st−h(θ)

∂θi∂θj

∣∣∣∣ < ∞ for all i, j ∈ {1, . . . , d}.

Using these inequalities, the assumption Eη4t < ∞, and the almost sure convergence of θ∗
h to θ0,

Taylor expansions and the ergodic theorem yield

∇rh(θ
∗
h) = ∇rh(θ0) + oP (1) → ch := E {st−h∇st(θ0)} = −E

{
st−h∇ log σ2

t (θ0)
}
.

Note that ch is the almost sure limit of (5.1). Let Km be the m× d matrix whose h-th row is c′h.

We have shown that

√
nr̂m =

√
nrm +Km

√
n(θ̂n − θ0) + oP (1). (E.2)
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We now derive the asymptotic distribution of
√
n(rm, θ̂n − θ0). Note that

rm =
1

n

n∑

t=1

stst−1:t−m + oP (1) where st−1:t−m = (st−1, . . . , st−m)′.

With this notation, we have Km = −Est−1:t−m∇′ log σ2
t (θ0). We have seen in the proof of Theorem

3.1 that
√
n
(
θ̂n − θ0

)
= −J−1 1√

n

n∑

t=1

(1− η2t )∇ log σ2
t (θ0) + oP (1).

The central limit theorem applied to the martingale difference

{(
st∇′ log σ2

t (θ0), sts
′
t−1:t−m

)′
;σ (ηu, u ≤ t)

}

then shows that

√
n


 θ̂n − θ0

rm


 =

1√
n

n∑

t=1

st


 J−1∇ log σ2

t (θ0)

st−1:t−m


+ oP (1)

L→ N



0,


 (κ4 − 1)J−1 Σ

θ̂nrm

Σ′
θ̂nrm

(κ4 − 1)2Im





 , (E.3)

where

Σ
θ̂nrm

= (κ4 − 1)J−1E∇ log σ2
t (θ0)s

′
t−1:t−m = −(κ4 − 1)J−1K′

m.

Using together (E.2) and (E.3), we obtain

√
nr̂m

L→ N (0,D) , D = (κ4 − 1)2Im − (κ4 − 1)KmJ−1K ′
m.

We now show that D is invertible. Assumption A3 entails that the law of η2t is non degenerated.

We thus have κ4 > 1, and it remains to show the invertibility of

(κ4 − 1)Im −KmJ−1K′
m = EVV′, V = s−1:−m +KmJ−1∇ log σ2

0(θ0).

If this matrix were singular then there would exist λ = (λ1, . . . , λm)′ such that λ 6= 0 and

λ′V = λ′s−1:−m + µ′∇ log σ2
0(θ0) = 0 a.s., (E.4)

with µ′ = λ′KmJ−1. Note that

∇ log σ2
t (θ) =

p∑

j=1

βj∇ log σ2
t−j(θ) +

(
1,1−t−1,qǫ

+
t−1,q, ǫ

−
t−1,q,σ

2
t−1,p(θ)

)′
, (E.5)

11



Equation (E.4) gives

λ′V = λ1η
2
−1 + µ21η−1<0 + µ2+q1η−1>0 log ǫ

2
−1 + µ2+2q1η−1<0 log ǫ

2
−1 +R−2. (E.6)

Thus (E.4) entails the two equations

1η−1>0

{
λ1η

2
−1 + µ2+q log η

2
−1 +R−2

}
= 0 a.s. (E.7)

and

1η−1<0

{
λ1η

2
−1 + µ2+2q log η

2
−1 +R−2

}
= 0 a.s. (E.8)

Note that an equation of the form ax2 + b log |x| + c = 0 cannot have more than 2 positive roots

or more than 2 negative roots, except if a = b = c = 0. By Assumption A10, Equations (E.7) and

(E.8) thus imply λ1 = 0. We thus also have µ2+q = µ2+2q = 0 and it follows from (E.6) that µ2 = 0.

Given that λ1 = µ2 = µ2+q = µ2+2q = 0, (E.4) and (E.5) now give

λ′V = λ2η
2
−2 + µ31η−2<0 + µ3+q1η−2>0 log ǫ

2
−2 + µ3+2q1η−2<0 log ǫ

2
−2

+µ3+3q log σ
2
−1 +R−3 = 0. (E.9)

Since

log σ2
−1 = ω + ω1−R−31η−2<0 + α1+1η−2>0(log η

2
−2 +R−3)

+α1−1η−2<0(log η
2
−2 +R−3) +R−3,

we have the two equations

1η−2>0

{
λ2η

2
−2 + (µ3+q + µ3+3qα1+) log η

2
−2 +R−3

}
= 0 a.s.

and

1η−2<0

{
λ2η

2
−2 + (µ3+2q + µ3+3qα1−) log η

2
−2 +R−3

}
= 0 a.s.

By Assumption A10, we obtain

λ2 = µ3+q + µ3+3qα1+ = µ3+2q + µ3+3qα1− = 0.

In view of (E.9), it follows that µ3 = 0. By iterating the previous arguments, it can be shown that

λ1 = · · · = λm = 0 which leads to a contradiction. The non-singularity of D follows. The proof of

the convergence D̂ → D in probability (and even almost surely) as n → ∞ is omitted. 2
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