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Goodness-of-fit tests for log and exponential GARCH models

CHRISTIAN FRANCQ! OLIVIER WINTENBERGER'AND JEAN-MICHEL ZAKOIAN?

Abstract

This paper studies goodness of fit tests and specification tests for an extension of the Log-
GARCH model which is both asymmetric and stable by scaling. A Lagrange-Multiplier test is
derived for testing the extended Log-GARCH against more general formulations taking the form
of combinations of Log-GARCH and Exponential GARCH (EGARCH). The null assumption of
an EGARCH is also tested. Portmanteau goodness-of-fit tests are developed for the extended
Log-GARCH. An application to real financial data is proposed.

Keywords: EGARCH, LM tests, Invertibility of time series models, log-GARCH, Portmanteau
tests, Quasi-Maximum Likelihood

Mathematical Subject Classifications: 62M10; 62P20

It is now widely accepted that, to model the dynamics of daily financial returns, volatility models
have to incorporate the so-called leverage effect.! Among the various asymmetric GARCH processes
introduced in the econometric literature, E(xponential) GARCH and Log-GARCH models share
the property of specifying the dynamics of the log-volatility, rather than the volatility, as a linear
combination of past variables. One advantage of such specifications is to avoid positivity constraints
on the parameters, which complicate statistical inference of standard GARCH formulations. A
class of (asymmetric) Log-GARCH(p,q) models was recently studied by Francq, Wintenberger and
Zakotan (2013) (FWZ). In this class, originally introduced by Geweke (1986), Pantula (1986) and
Milhgj (1987) (see Sucarrat, Grgnneberg and Escribano (2015) for a more recent reference), the

*CREST and University Lille 3 (EQUIPPE), BP 60149, 59653 Villeneuve d’Ascq cedex, France. E-Mail:

christian.francq@univ-lille3.fr
fUniversities of Paris 6 and Copenhagen, LSTA 4 Place Jussieu, 75005 Paris, France. E-Mail:

olivier.wintenberger@Qupmec.fr
iCorresponding author: Jean-Michel Zakoian, EQUIPPE (University Lille 3) and CREST, 15 boulevard Gabriel

Péri, 92245 Malakoff Cedex, France. E-mail: zakoian@ensae.fr, Phone number: 33.1.41.17.77.25.
IThis effect, typically observed on most stock returns series, means that negative returns have more impact on

the volatility than positive returns of the same magnitude.



dynamics is defined by

€t = O,
logof = w+ Y1 (aiylye, >0y + il ,<o1)loger (0.1)
+ Z§:1 B; log O't2_j
where oy > 0 and (7;) is a sequence of independent and identically distributed (iid) variables such
that En? = 1.
One drawback of this model is that it is generally not stable by scaling. Indeed, if () is a

solution of Model (0.1), the process (€;) defined by € = ce; with ¢ > 0 satisfies € = ofn with

of =wi + 31, <Oéz'+ L >0p + aifl{ezli<0}> log &2 + 32, Bjlog 07 where

q

p
wig=log? [1- 8-> (Oéi+1{e;;i>o} + Oéi—l{sggﬁo})
j=1

i=1
is not constant (except in the symmetric case where a;; = «;— for all 7). It is important that
a volatility model be stable by scaling.? The standard log-GARCH has the stability by scaling
property, but is not able to capture the leverage effect.

In this paper, we will consider an extension of Model (0.1) which is both stable by scaling and
asymmetric. Our main foci concern specification tests of this model and the comparison with the
EGARCH model. The latter formulation, introduced by Nelson (1991), appears as a widely used
competitor of the Log-GARCH in applications. As we will see, the two models display very similar
properties and their volatility dynamics may coincide. However, the Log-GARCH and EGARCH
models are not equivalent from a statistical point of view. In particular, it is obvious to invert
the Log-GARCH model, i.e. to express the volatility as an explicit function of the past returns,
whereas the EGARCH(1,1) is invertible only under strong restrictions on the parameters. This is
a major drawback for the statistical inference of the second specification, see Wintenberger (2013)
and FWZ. However, the two models are not compatible for a same series and one has to discuss if
one specification is more likely to fit the data at hand than the other. It is therefore of interest to
develop testing procedures for one specification against the other. This constitutes the main aim of
the present paper.

“Indeed, as remarked by a referee, a practitioner is essentially faced by three choices: (a) leave returns untrans-
formed, i.e. set ¢ =1, (b) express returns in terms of percentages, i.e. set ¢ = 100, or (c) express returns in terms of
basis points, i.e. set ¢ = 10,000. Clearly, it is desirable that the dynamics of the volatility model be not affected by

the choice of c.



The remainder of the paper is organized as follows. Section 1 introduces the extended Log-
GARCH model and discusses its similarities with the EGARCH. It also provides strict stationarity
conditions. Section 2 studies the asymptotic properties of the quasi-maximum likelihood (QML)
estimator. Section 3 considers testing the null assumption of a Log-GARCH against more general
formulations including the EGARCH. Section 4 considers the reverse problem, in which the null
assumption is the EGARCH model. In Section 5, Portmanteau goodness-of-fit tests are developed
for the Log-GARCH. Section 6 compares the Log-GARCH and EGARCH models for series of

exchange rates.

1 Extended Log-GARCH model

Consider the Asymmetric and stable by Scaling Log-GARCH (AS-Log-GARCH) model of order
(p,q), defined by

€t = Ot
logo? = w+ >l wily, <oy + Z?Zl B; log af_j (1.1)
+ 300 (i L0y + @il <0p) log €,
where w and the components of the vectors w_ = (wi—,...,we—), ar = (4,...,0q4),
a_ = (a—,...,aq-), and B8 = (B1,...,Bp) are real coefficients, which are not a priori subject to

positivity constraints, under the same assumptions on (7;) as in Model (0.1). The main features
of the asymmetric Log-GARCH(p, ¢) model - volatility which is not bounded below, persistence of
small values, power-aggregation - continue to hold in this extended version. We refer the reader
to FWZ for details. Contrary to Model (0.1), the extended formulation (1.1) is stable by scaling.

Moreover, this model leads to a different interpretation of the usual leverage effect.

1.1 News Impact Curves

Compared to model (0.1), the AS-Log-GARCH model (1.1) contains additional asymmetry pa-
rameters. Through the introduction of the coefficients w;_, Model (1.1) allows for an asymmetric
impact of the past positive and negative returns on the log-volatility which does not depend on their

magnitudes. For instance, consider the AS-Log-ARCH(1) model with a;4 = a3 = o. We have

2 wtwi-lg, <0172 o
op =€ feem1<0 (e 1)

If wi— > 0, a decrease of the price, whatever its amplitude, will increase the volatility by a scaling

factor e“'~. In the limit case where a = 0, the volatility takes only two values depending only on
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Figure 1: News Impact Curves: o; as a function of ;1 in (1.2). The parameter w is set to 0. The top
graphs are obtained for 7 = 0, the left graphs for w_ = 0, the right graphs and the bottom left graph for
a=0.8.

the sign (not the size) of the past return. Now we turn to the second leverage effect. If a;4 = «

and a1 = a+ 7 with 7 > 0, we have

of = T a0 (e (e )<, (1.2)

The effect of a large negative return (1 < —1) is an increase of volatility, but the effect may
be reversed for very small returns. For small but not too small returns, this effect is balanced by
the presence of the scaling factor e¥'~. To summarize, the AS-Log-GARCH is in fact capable of
detecting two types of leverage: one type where the leverage effect depends on the magnitude of
negative return, and one type in which it does not. The so-called News Impact Curves, displaying

o¢ as a function of €;_1, are provided in Figure 1.

1.2 Similarities with the EGARCH dynamics

The dynamics of the logarithm of the volatility of the EGARCH(p, ¢) model is provided by the

recursion ,

p
logo? = (:)+Z,8j log o7 +Z’Yk+ﬁt+_k + Vo1l (1.3)
=1 k=1



where the innovations 7; are iid random variables such that Eﬁ% = 1, with the notation z* =
max{z,0} and = = max{—=,0}. If one substitutes logo? . + logn? , for loger ; in (1.1), the
probabilistic structures of the two classes of models seem similar. More precisely, we have the

following result.

Proposition 1.1 (i) For any EGARCH process ¢ = oy satisfying (1.3) with Ee®l"| < oo for
some sg > 0, there exists a AS-Log-GARCH process €, = oy satisfying (1.1), with the same
volatility process oy and 1, measurable with respect to ny.

(i) Conversely, there exist AS-Log-GARCH processes €, = oy for which there is no EGARCH

process € = oty with the same volatility process oy and 7 measurable with respect to ny.

Proof: Let us prove (i). For simplicity of notation, we assume that & = oy7; follows the first
order EGARCH(1, 1) model, and we drop the indexes i, j and k. Let the Log-GARCH(1,1) process
€; = oy satisfying (1.1) with the parameters a:= a+ =a_ # 0, w+acy =@, w_ = —a(c_ —cy),
and o + 3 = B, and the noise 7, = e%e%mt'lfhzo — e%e;_;‘ﬁtllﬁt@, with constants c; and c_ to

be chosen later. The Log-GARCH volatility then satisfies

logo} = w+w ly_ <o+ alogn; |+ (a+B)logaf
= w+ (f)/+1ﬁt—1>0 + 7—1ﬁt71<0)’ﬁt—1’ + Blog 0'152717

which is the equation satisfied by the volatility of the EGARCH(1,1) model. It then suffices to
choose a such that v /a < sg and 7_/a < sg, and then ¢, and c_ such that En? = 1.

Now we turn to (ii). Let (¢;) denote any AS-Log-GARCH process satisfying (1.1), with a14 #
a1_, and sufficiently general so that the support of the law of log O't2_1 contains at least three different
values. Also assume that logn? ; has a finite variance. We proceed by contradiction. Suppose there
exists an EGARCH process satisfying € = oy with 7, = f(n;) for some measurable function f.

We thus have

logo} = wHw_ly_ <o+ (11l{q >0y +a1-1f ,<0p) logni
p
+ (a1+1{5t—1>0} + al—l{ét—1<0}) log 0'25271 + Z 5j log O'z?fj
j=1
= w+ (’7+177t—1>0 + 7717%—1<0)|ﬁt71| + BIOg Jt2—1
p ¢
+> Bilogop; + > Vel + Ve TT g
=1 k=2

which entails

a(ni—1) = by_a + c(ni—1)log o7,



where b;_s denotes a variable belonging to o-field F;_o generated by the n;_o_; with 7 > 0. We

have

0 = var{a(ni1)— b2 —c(ni—1)log 0371\]:15—2}
= var{a(p_1)} +log? o} yvar{c(ne_1)} — 2log o7 ycov{alne1), c(n-1)},

from which it follows that log O't2_1 takes at most two values. This contradicts the above assumptions.

a

This proposition allows to complete the interpretation of the two types of leverage effects in
the AS-Log-GARCH. The coefficients wg ;— produce the leverage effect of the EGARCH volatility,
i.e. an asymmetry depending on the amplitude of the innovations 7;_;. On the opposite, the
EGARCH model cannot capture the asymmetric effect induced by the coefficients g ;—, ag 4+ and
the amplitude of the returns ¢;_;. Thus, the class of the Log-GARCH models generates a richer
class of volatilities than the EGARCH.

1.3 Strict stationarity

We now show that the introduction of a time varying intercept in the log-volatility of Model (1.1)
does not modify the strict stationarity conditions of the Log-GARCH model. The study being
very similar to that of the Log-GARCH model (0.1) in FWZ, details are omitted. Let w; = w +
S wi—1ge,_, <0y Because coefficients equal to zero can always be added, it is not restrictive to

assume p > 1 and ¢ > 1. Let the vectors

e, = (esoploger, .. 1 . ,>oploger ,41) €RY,
€ (Liecoplog €7, e <o loger oy1) € RY,
zZ; = (e;fq, €.4- 108 o2,...,log J?,pﬂ)' € R%tP,
b = ((we+logn?) 10 04 1, (we +log 1)1y <oy. 01 wi, 05 )" € RHFP,

and the matrix

Loy Loyl Ly s018'
Ii1 04 O(g-1)xq O(g-1)xp
c, - L, <oy Ly <oy’ Li<0rB
0(-1)xq I,.1 04 O(—1)xp
o, o Jci
0(p-1)xq 0@p—1)xq I, 1 0y



Model (0.1) is rewritten in matrix form as
zy = Cizy_1 + by
Let 7(C) be the top Lyapunov exponent of the sequence C = {Cy,t € Z},
1 .1
v(C) = tlg?o ;E (log |ICCi—1...CH|) = g{ n E(log ||CCi—1...C1]|).

It can be noted that the sequence (Cy,b;) is only strictly stationary and ergodic (not iid) but this

property suffices to extend the proof of Theorem 2.1 in FWZ.

Theorem 1.1 Assume that Flog™ |log778| < oo. A sufficient condition for the existence of a
strictly stationary solution to the AS-Log-GARCH model (1.1) is v(C) < 0. When ~(C) < 0, there

exists only one stationary solution, which is non anticipative and ergodic.

It follows that the presence of the coefficients w;_ does not modify the stationarity condition.

2 QML estimation of the AS-Log-GARCH model

We turn to the inference of the AS-Log-GARCH model. Let €1, ..., €, be observations of the sta-
tionary solution of (1.1), where 8 = (w,w’_, &/ ,a’_,8')’ is equal to an unknown value 8 belonging
to some parameter space © C R? with d = 3¢+p+1. A QMLE of 6y is defined as any measurable

solution 5n of

~

6,, = arg min Q,,(9), (2.1)
6co
with
1 -
Qn(0)=n"" Y 4(0), (0)= F2(g) T 1087 (0),
t=ro+1

where 79 is a fixed integer and loga?(@) is recursively defined by loga?(0) = w +
S (ozzqr log e%_il{etﬂ.w} + (wi— + a;—log e?_i)1{€t7i<0}) +Z§:1 Bj log 5t2—j(9)a fort=1,2,...,n,
using initial values for eo,...,€1—4,04(0),... ,,5%_1)(9). We assume that these initial values are

such that there exists a real random variable K independent of n satisfying
sup [log o7 (0) —log o7 (0)| < K, as. fort=q—p+1,...,q, (2.2)
6co

where o?(0) is defined by

Bg(B)logof(0) = w+ Of (B)l{e, <oy +Ag(B)l{e, >0 log e

+Ag (B) 1, <0y log €, (2.3)

7



where B is the the lag operator and, for any 8 € ©, Af(z) = > 7 a; 42", Ag(2) = >, a; 2,
and Byg(z) =1 — ?:1 Bjzl and Op (2) = Y%, w;_z". By convention, A, (z) = 0, Ay (z) =0 and
Oy (2) =01if ¢ =0, and Bg(z) = 1 if p = 0. Theorem 1.1 shows that a strict stationarity condition
of the Log-GARCH can be obtained from the behaviour of the sequence C. As in FWZ, it can be

shown that moment conditions can be obtained by constraining the matrix

A, - Ml(ntfl) ,ur71(77t7r+1) Hr(ntfr) ’ (2,4)

Irfl 07’71

where r = max(p, q) and p;(n:) = ity s0) + i1y, <oy + Bi with the convention oy = a;— =0
for i > p and B; = 0 for i > g. The spectral radius of a square matrix A is denoted by p(A). For
any vector or matrix A, we denote by Abs(A) the matrix whose elements are the absolute values
of the corresponding elements of A.

The following assumptions will be used to establish the strong consistency and asymptotic

normality of the QMLE.
Al: 6y € © and O is compact.
A2: ~{C} <0 and VOe€O, |Bp(2)]=0=|z]>1.

A3: the support of 7y contains at least two positive values and two negative values, En(z] =1

and E|logn3|* < oo for some sy > 0.

A4: If p> 0 and ¢ > 1, there is no common root to the polynomials Oy (2), .A;O(z), Ag, (2)

and By, (z). Moreover (wo—, o+, 0-) # 0 and |wog—|[og+[|aog—| + [Bop| # 0 if p > 0.
A5: E ‘10ge%| < oo.
A6: 6y €6 and Ky = BE(ng) < oo.

AT:  There exists some so > 0 such that Eexp(so|logng|) < oo and p{esssup Abs(A;)} < 1,
where A; is defined by (2.4).

In the case p = ¢ = 1, omitting the index ¢, Assumption A2 simplifies to the conditions |y +
Bo|*|co— + Bol' 7@ < 1, where a = P (1o > 0), and |3| < 1,V0 € © (see FWZ, Example 2.1).
Let VQ = (V1Q,...,V4Q) and HQ = (H;.Q',...,H; Q") be the vector and matrix of the

first-order and second-order partial derivatives of a function @ : © — R.



Theorem 2.1 (Asymptotic properties of the QMLE) Let (§n) be a sequence of QMLE satis-
fying (2.1), where (€;) is the stationary solution of the AS-Log-GARCH model (1.1) with parameter
0y. Under the assumptions (2.2) and A1-A5, /én — 0y a.s. as n — oo. If, moreover, A6-AT hold
we have /n(6,, — 6;) 4 N(0, (kg —1)J71) as n — oo, where J = E[Vlog 02(00)V log 02(6y)'] is a

" . ) d o
positive definite matriz and — denotes convergence in distribution.

Proof: The proof is similar to those of Theorems 4.1-4.2 of FWZ. We will only show the identifia-
bility of the extended model, that is,

01(0) = 07(0g) a.s. = 6 =80

Note that if the left-hand side holds, by stationarity we have log 07(0) = log 02(0y) for all ¢t. From

the equality (2.3) we then have, almost surely,
Op(B) _ O9,(B) Ag(B) A5 (B) )
- 1 _ 0 1 1
{ Be(B)  Beg,(B) {er<0} T Bo(B) _ Bo,(B) {er>0} log €

Ag(B)  Ag,(B)
* { Bg (

wo w

1, loge? = — .
(B) B, B)} {er<0} 986 = Bo (1)~ Be(1)

Throughout the paper let R; denote any generic random variable, whose value can be modified from
one line to the other, which is measurable with respect to o ({n,,u < t}). If

Ogy(B)  AG(B) , Ag,(B)  Ay(B) , Ag,(B)

Boy(B) " Bo(B) ” Boy(B) ” Bo(B) ” Boy(B)’

Oy (B)
Bo(B)

- (2.5)

there exists a non null (cy,c_,d_) € R3, such that
d—1p,<0 + c4+1q,50) l0g € + c—1lgp, <oy log & +R1=0 as.
This is equivalent to the two equations
(c4 log n? +cylogo? + Ri 1) >0y =0 as.

and

(d— +c_log n? +c_logo? + Ri_1) i<y =0 as.

Note that if an equation of the form alog x21{x>0} + bl{z~0y = 0 admits two positive solutions
then a = 0. This result, A3, and the independence between 7; and (o7, R;_1) imply that ¢y = 0
and R;—; = 0. Similarly we obtain ¢_ = 0. Plugging ¢y = ¢ = 0 in the equations above yields
¢y = ¢ = d_ = 0 that is a contradiction. We conclude that (2.5) cannot hold true, and the

conclusion follows from A4. O



3 Test of AS-Log-GARCH

In this section, we are interested in testing the AS-Log-GARCH specification against more general
formulations, including both the Log-GARCH and the EGARCH models. For our testing problem,

we therefore introduce the general model

€t = Ot
logo? = wy+ > wo,i— e, <0}
+ 2201 (00,4 1500 + 00,1 _<0}) log €,
+ 30 Bojlog oFj + Yokey Yok T, + Y0k Ty

Let ¥ = (65,~()" where v5 = (901,45 %01,—, - - - s Yor,—)" and B is as in Section 2.

We wish to test the hypothesis that, in (3.1),
Hg : Y0 = Ogpx1  against  H{ : vy # Ogpx1.

In the time series literature, similar testing problems are solved by a standard test, using for
example the Wald, Lagrange-Mutiplier (LM) or Likelihood-Ratio (LR) principle. See among others
Luukkonen, Saikkonen and Terdsvirta (1988), Francq, Horvath and Zakoian (2010).

A difficulty, in the present framework, is that we do not have a consistent estimator of the
parameter ©¥y. Two problems arise to prove that the QMLE is consistent. First, the stationarity
conditions of Model (3.1) are unknown. Second, due to the presence of the |n._g|’s, it seems
extremely difficult to obtain invertibility conditions allowing to write logo?(19) (where 9 denotes
any parameter value) as a function of the observations.

To circumvent these problems, we propose a LM approach. Denote by @Z the constrained (by
H') estimator of ¥y, defined by

-~C

~
7911 — (ena 01><2€)I

where §n is the QMLE of the AS-Log-GARCH parameters defined in (2.1).

For any 9 in © x R%, define log 57(¥9) recursively, for t = 1,2,...,n, by

q q
logo;(9) = w+ Z wi—Lge, <oy + Z (@it (e, >0p + @i-1{e,_,<o0y) log i

i=1 i=1
P ¢ 1 2
~ _ “Llloes
+ Y Bilog Ty (9) + D (erel g+ -y )e 2T,
j=1 k=1
using positive initial values for €3,... ,e%_max(q 0 G3(9),...,, 5%_max(p 0 (9¥). The random vector

10



% log 52(19) satisfies

¢
? 1 —1log52 0 -
99 801 (0) = 52 Terely + ey )e 2 EE ) 1o 57 (9)
1
]'t_ l,q
6zrflq
+Zﬁjaﬂlog0t ](79)4' - ' s
ezﬁfl,q
a-152 1,p(19)
M1 (9)
where
a;,(9) = (logai(¥),...,logo7 .1 (0)),
(9 = (&e 3 log a7 (19),6;67%10g5t2(19),”.’ € pir€ —3 log?_ Z_H(ﬂ))/.

With a slight abuse of notation we write 62(9) = 2(0) when ¥ = (0’,0142,)’, that is when ¥
satisfies H. Similarly, to avoid introducing new notations we still define the criterion function by

2
€

i 0,(9), where £,(9) = + log 72(19).

t=ro+1 7t (9)

To derive a LM test, we need to find the asymptotic distribution of

0.5 Odx1 - 1

Vi Z Zh S,= Lyn e ) e
where 7y = €,/5¢(0y) for t > 1, 7, = 0 for t < 0, and 7, = (@7 5 _gy1)- Note that the
nullity of the first d components of the score follows from the definition of @2 as a maximizer of
the quasi-likelihood in the restricted model. The invertibility of the lag polynomial Bén(B ) follows
from A2.

The following quantities are used to define the LM test statistic. Recall that V denotes the
differentiation operator with respect to the components of 8. Let

- I~ - ~ 1 "
Ju = — ’/t’/:f_< ZW) (— 1/2), “4_1:52(1—77?)27
=1

~ =l 9
J = —ZVlogat 2V 10g 52(6,,), Q:E;Vtvllogaf(en),

~ ~ (1 G )1 PPN =45
g - o (50) (Emres) -2
t=1 t=1

11



and
~ ~ ~~ ~/ ~ ~/ ~ o~
I=Tu+QJ'Q +T1:9 + QT .
To derive the test, we need to slightly reinforce A3 concerning the support of the distribution of 7.

AS8: The support of 7y contains at least three positive values and three negative values.

Theorem 3.1 (Asymptotic distribution of the LM test under H{) Under the assumptions
of Theorem 2.1 (thus under H\ ) and A8, the matriz T converges in probability to a positive definite

matrizx L and we have

~—1
LMY = (Rs — 1)'S.Z S, % x%,

where X%Z denotes the chi-square distribution with 2¢ degrees of freedom.

Denoting by x7(«) the a-quantile of the chi-square distribution with ¢ degrees of freedom, the AS-
Log-GARCH(p, q) model (1.1) is then rejected at the asymptotic level @ when {LM) > x3,(1 — )} .
Proof: For any 9° = (0,01x2) € © x {0}* let n(0) = %, 1,(0)
(n}(0),n;(0),... My_11(0)), v1(0) = B, (B)n,_1(0) and let (), 7,(8),7(60) denote the corre-
sponding quantities when o4(0) is replaced by 04(0). Let also
1 n
S {1 -7 (0)}r4(8), Sl Z{l 7, (0)}7:(6).

7’L
t=1

Let S,,; denote the i-th component of S,, = §n(§n), for i =1,...2¢. A Taylor expansion gives, for

some 6, between /én and 6y,

Sn.i = Sn.i(00) + —=—=L(6,)v/1(6,, — 60). (3.2)
Recall that J = E[V log 02(0¢)V log 02(0¢)'] and define

T = Ju T , where  J11 = Var{vy(6p)}, Tzn=JI"

T2 T2
T2 = Th = —Cov{v(8y), Vieg o2 (60)}I L,

and

T=Tu+ QI+ T +QT,

where Q = E{v(00)V'logo?(00)}. Let ; = E{v1(00)V'logo?(00)}, where v4;(0y) denotes the
i-th component of v4(6y), for i = 1,...2¢.

12



The advanced result is obtained by showing the following intermediate steps: under H{, as

n — 0o,
~ 1 ||6s S

1) sup ||Sn(0)—S,(0)| — 0, sup —= ||[—(0) — —=(0)|| — 0,
) 0cV(60) ©) ( )H gev(go)\/ﬁ 09/( ) 89’( )

in probability,

S,.(6

i) A( o) N0, (ks — 1)),

Vn(6n — 6o)

iii) There exists a neighborhood of V(6g) of g, such that, for i =1,...,¢

E sup [[H[{1—n2(6)}B;"(B)lni(0)]]] < o<,
0cV(60)

108,
Jn 00’

v) Z is non-singular.

iv) (0.) — Q;, in probability as n — oo,

We will use the following Lemma, whose proof is similar to that of Lemma 4.2 in FWZ and is thus

omitted.

Lemma 3.1 Under the assumptions of Theorem 2.1, for any m > 0 there exists a neighborhood V

of 8o such that E[supy,(c?/c2(0))™] < oo and E[supy, |log 02(8)|™] < co.

To prove the first convergence in ), note that

|

- 1 « -
$:(0)-$,0) < - D11 i O)] [+(6) = (6)]

+% > 17 (8) = nf(0)]|74(8) | = S1(0) + Sa(6).
=1

We will show that there exist K > 0 and p € (0, 1), such that for almost all trajectories and for all
0 c 0o,

(3.3)

11 ‘ - Kpt
of(0) 07 (0)| ~ a7 (6)
Similarly to the proof of (7.8) in FWZ, it can be shown that

1
sup n log ‘ < % + aot,

0co
where E|aj¢| < oo and limsup,_, . agt = log p for some p € (0,1). We thus have

1

1 log o2
i log 0?(9) 0g0i(0) | au
o

— ‘< + — + ay.

- t t
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The first term in the right-hand side converges a.s. to zero as a consequence of Lemma 7.2 in FWZ

and E'supgeg | log 07(0)| < oo, which follows from A5. Thus (3.3) is established. Then we obtain

7(0) — 1 ()] = € | =

Lemma 3.1 and the ¢, and Holder inequalities entail that for sufficiently small s € (0, 1), there exists

a neighborhood V of 6 such that

K n
E sup 55(0) < )
0€V(0o) ? ns/? tZ:;

0.25
ml sup {+||ﬂt<e>||5}
0cv(00) L 075(0)
K - st
ns/2 Zp —0
t=1

as n — 0o. This entails supgey(g,) S2(8) = op(1). Similarly, we have supgey(g,) S1(6) = op(1). The
first convergence in ) follows and the second one is obtained by the same arguments.

To prove i), note that

Sn(eo) I/t(eo)

1 n
- 1—n? op(1).
V(0. — 60) 4z ;( " ~J~'Vlogo}(6) ot

The convergence in distribution thus follows from the central limit theorem for martingale differ-

ences.
To prove iii), write By (B) = >0 ¢j(0)B7. We have
1 2 / 2 1 2
H{n(0)) = n(0) | {VIogo?(0)V logo?(6) — JH{logo?(0)}
H{1 —07(0)} = 1;(6) [~Vlogoi(0)V'logo;(6) +H{loga(6)}] .
It follows that, dropping temporarily the term "(6)" to lighten the notation,
H{1 — 77152}Cj|77t7i7j|
= n2{-VlogoV'logo? + Hlog Jf}cj |N—i—j]
{1 — 1 H{He; Y]
{1 = 1Y i3 Vo o7V log F — SHlog o)
+n7{Vlog oiV'c; + Ve; V' log o7 Hne—ij|
—%U?{V log 07 V' logoj_;_; + Vlogop ; ;V'log o7 Hme—ijle;

1
—5{1 - nf}{VCjV' log Ut2—i—j + Vlog Ug—i—jvlcj}’nt—i—j‘-

14



In view of Lemma 3.1, since 7;(0) = n.0¢(00)/c+(0), because Vlogo?(0) admits moments of any
order, and using the Holder inequality, the conclusion follows.

To prove iv), consider the following Taylor expansion about 0y

1 0S, L 9Sn; 1 %S,

% 90 ( *):% 90 ( 0)+%8969/(0*)(0*_00)

where 0" is between 6, and 6y. The a.s. convergence of 8" to 6, i) and the ergodic theorem

imply that, for ¢ = 2k 4+ 1 and for some neighborhood of 8

H}Zi)a’; )

lim sup
n—ro0

< lim sup — Z sup
n—o0 T 7 0cV(8))
‘ 2

e 0~ HON )

= FE sup

1—
0V (60) 6980/ {

n?w)}Bel(B)n:_k_l(e)H .

The same argument obviously applies for ¢« = 2k and the conclusion follows.
To prove v), in view of (3.2), it suffices to show that J is non-singular. Suppose there exist

x = (z;) € R? and y € R? such that
x'vi(00) +y' I 'Viog o2 (6y) =0, as.
Recall that, in view of (2.3),
V log 03(90) = Beo (B) <1 1t_ 1,q° eztl,q’ et_fll,q’o-z%lfl,p(OO)>,'

Letting z = J™ly = (z), we find that, z1n, | + zam, | + 2210y, 01 + 224411, >0 log e+

2242 14n,_, <0y log 5?71 = R;_», a.s. Conditionally on 71— > 0 we thus have
T1M—1 + 22 + 2244 log 771:2—1 + 2244 log Jt2—1 =Ry 2, as.

By A8, we find x1 = 2244 = 0. By conditioning on 7;_1 < 0, we similarly get x2 = 22194 = 0. Thus
zoln,_1>0) = R; o, a.s., from which we deduce zo0 = R;_o =0 a.s. Proceeding by induction, we
show that x = 0 and z = 0. Finally, y = 0 and the invertibility of J is established.

It follows from Steps i)-v) and (3.2) that
Sn 5 N(0, (154 — 1)T).

It can also be shown that Z — Z and K4 — k4 in probability, from which the conclusion follows. O
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4 Test of EGARCH(1,1)

In this section, we consider testing the EGARCH(1,1) specification in the framework of Model (3.1)

with p = ¢ = 1. For convenience, we reparameterize it as follows

€t = Oth,
logo? = wo+ Yt woi-lie ;<01 +Y0m-1+ Solm-1] + Bologof (4.1)
+ 200 (@0, Lo >0 + @0,i- L <0}) log €.

Let 99 = (¢(, afy)’ where {5 = (wo,70, 00, 50)’ and ag = (wi_, atfy,, afy_)". The vector ¢, is assumed
to belong to some compact parameter set = C R*.

We will derive a LM approach to test the hypothesis that, in (4.1),
H§ :op =0 against H{':ag #0.

Assuming that |fp| < 1, there exists a stationary solution to Model (4.1) under H§*, obtained from

the MA(oo) representation

o0
logof = wo(l— Bo) ™ + > B85 {vom—r + dolm—rl}-
k=1

An important difficulty in the estimation of the EGARCH(1,1) model is that invertibility is not
trivial. Invertibility is required to write 57(¢), to be defined below, in function of the observations
et for any ¢ = (w,7,9,3)". Wintenberger (2013) obtained the following sufficient condition for
continuous invertibility of the EGARCH(1,1): the compact set Z is included in R x {§ > |y|} x R*
and V¢ € =,

E [log (max [5, + (7e0 + dleol) exp {—ﬁ} - ﬁ])] <. (42)

Notice that this condition depends on the distribution of the observations (e;).

Denote by @2 the constrained (by H§*) estimator of 9, defined by

~C

~
19n = (Cna 01><3q)/

where En is the QMLE of the EGARCH parameters defined by

En = arg min @n(c),

¢e=
with
€

3O =n" Y BO. Q) =
@n(¢) = t:%f@’ (0) = 525

2
t

+1log 57 (¢),
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where 7 is a fixed integer and log 52(¢) is recursively defined by

log 57 (¢) = w + Yi—1(C) + 0|7e—1(¢)| + Blog 57 1(¢),  Mh—1(C) = e1—1/5¢-1(¢)

using initial values for €y, 53(¢). For any ¢ € Z, the continuous invertibility condition (4.2) allows

to define the sequence (07(¢))tez by

log 07(¢) = w+m-1(¢) + 0lne—1 ()| + Blog o7 1(€),  m-1(¢) = er-1/0-1(C).-
We introduce the following assumption.
A9: ¢, eé, E(n}) < oo and E{By — 3 (om0 + do [no])}* < 1.
The following result was established by Wintenberger (Theorem 6, 2013).

Theorem 4.1 (Asymptotics of the QMLE for the EGARCH(1,1)) For any compact subset
Z of R x {6 > |y|} x R satisfying (4.2), almost surely ¢, — (o as n — oo under H§.
If, in addition, A9 holds, we have /n(C, — ¢o) 4 N0, (kg — 1)V™Y) as n — oo, where

V = E[Vloga?(¢y)Vlog 02(¢y)'] is a positive definite matriz.

Now, turning to Model (4.1), we still denote by log 5Z(¢9) the variable recursively defined, for any
9in ZxR¥andt=1,2,...,n, by

q
logg?(9) = w+ Y wilig <oy + (ver1 + Ole1])e 38T (®)
1=1
q

+B1log a7 1 (9) + Y (it lie,_ 50 + @i lie,_,<0p) loge;,
i=1

using positive initial values for €, ..., e1_q,o5(19).

For any 9 = (¢, 01x3,)’, the random vector D, (9) = -2 log 52(¥9) satisfies

~ ~ ~ ’ ’ 7 /
D) = Ta@Dia(®) + (171, 6710 € 14) (4.3)

where Up_1(9) = 1 {(ve—1 + dler—1])} e 21851 4 g,
Similar to what was accomplished for the Log-GARCH, we will derive the asymptotic distribu-

tion of

~ c 04x1
= Z _gt(ﬁn) - ~ ~cC ’
\/ﬁ t= 99 T, : ﬁ Z?:l(l - ﬁ?)Dt(ﬁn)



~C

where 7y = €¢;/5¢(19,,). Let Ky — 1 = n-! Z?:l(l — 7/7}2)2,
i — LS B@0B @) - (LB ) (LS By

n pa t n t n n t n n - t n )

g 1 n ~9 -~C / ~9 ~C feny 1

vV = E;Vlogat (0,)V'log 57 (9,), ¥ =—

= e B 1 TN Y
K2 = —{‘I’— (;;Dﬁ%)) <EZV108;U¢("971) = ICy1,

and

o~

L= 7/(\:11 + @V‘l\i/ + k\:lg\f’/ + \/I\’k\:m.

Theorem 4.2 (Asymptotic distribution of the LM test under H§*) Under the assumptions
of Theorem 4.1 (including A9), and under H* the matriz c converges in probability to a positive

definite matriz £ and we have
LM = (R — 1) 'T,L T, 52,

Proof: See the supplementary document. O

5 Portmanteau goodness-of-fit tests

Portmanteau tests based on residual autocorrelations are routinely employed in time series analysis,
in particular for testing the adequacy of an estimated ARMA (p, ¢) model (see Box and Pierce (1970),
Ljung and Box (1979) and McLeod (1978) for the pioneer works, and see Li (2004) for a reference
book on the portmanteau tests). The intuition behind these portmanteau tests is that if a given
time series model with iid innovations 7 is appropriate for the data at hand, the autocorrelations
of the residuals 7; should not be to far from zero.

For an ARCH-type model such as Model (0.1), the portmanteau tests based on residual autocor-
relations are irrelevant because we have 7, = (04/0¢)n: and any process of the form ¢; = o}n;, with
of independent of o ({ny,u < t}), is a martingale difference, and thus is uncorrelated. For ARCH-
type models, Li and Mak (1994) and Ling and Li (1997) proposed portmanteau tests based on the
autocovariances of the squared residuals. Berkes, Horvath and Kokoszka (2003) developed a sharp
analysis of the asymptotic theory of these portmanteau tests in the standard GARCH framework
(see also Theorem 8.2 in Francq and Zakoian, 2011). Escanciano (2010) developed diagnostic tests

for a general class of conditionally heteroskedastic time series models. Carbon and Francq (2011)
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considered the portmanteau tests for the APARCH models. Recently, Leucht, Kreiss and Neumann
(2015) proposed a consistent specification test for GARCH(1,1) models based on a test statistic of
Cramér-von Mises type. The Log-GARCH model is not covered by these works.

To test the null hypothesis

Hj : the process () satisfies Model (1.1),

define the autocovariances of the squared residuals at lag h, for |h| < n, by

Th = — E (M — 1)(77t—|h\ -1), = =3
n o
t=|h|+1
where 7, = 515(5”). For any fixed integer m, 1 < m < n, consider the statistic 7, = (71,...,7m)" .

Define the m x d matrix /Izm whose row h, for 1 < h < m, is the transpose of
Bo(h) =1 3 (20— )V Iog52@,) (5.1)
m " t=h+1 o e '

The following assumption is marginally milder than AS8.

A10: The support of 19 contains at least three positive values or three negative values.

Theorem 5.1 (Adequacy test for the AS-Log-GARCH(p, q) model) Under Hjy, the as-

~ . . e~ a1~
sumptions of Theorem 2.1 and A10, the matriz D = (kg —1)*1,, — (Ry — 1) K, J K;n converges
i probability to a positive definite matriz D and we have
~—1
nr,D T, 4 X2,
Proof: See the supplementary document. O

The same result could be established for testing adequacy of an EGARCH(1,1), under A10 and
the assumptions of Theorem 4.1. As usual in portmanteau tests, the choice of m impacts the power
of the test. A large m is likely to offer power for a large set of alternatives. Conversely, choosing m
too large may reduce the power for a specific assumption, in particular because the autocovariances

will be poorly estimated for large lags.

6 An application to exchange rates

In the supplementary document, we investigate the empirical size and power of the LM and port-

manteau tests by means of Monte Carlo simulation experiments. We now consider returns series
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of the daily exchange rates of the American Dollar (USD), the Japanese Yen (JPY), the British
Pound (BGP), the Swiss Franc (CHF) and Canadian Dollar (CAD) with respect to the Euro. The
observations cover the period from January 5, 1999 to January 18, 2012, which corresponds to 3344
observations. The data were obtained from the web site http://www.ecb.int/stats/exchange/
eurofxref/html/index.en.html.

It may seem surprising to investigate asymmetry models for exchange rate returns, while the
conventional view is that leverage is not relevant for such series. However, many empirical studies
(e.g. Harvey and Sucarrat (2014)), show that asymmetry /leverage is relevant for exchange rates,
especially when one currency is more liquid or more attractive than the other. It may also be worth
mentioning the sign of the effect depends on which currency appears in the denominator of the
exchange rate.

Table 1 displays the estimated AS-Log-GARCH(1,1) and EGARCH(1,1) models for each series.
In order to have two models with the same number of parameters, which facilitates their compar-
ison, we imposed a@ = a4 = ay_ in the AS-Log-GARCH model (see the complementary file for
unrestricted estimation of the AS-Log-GARCH(1,1)). The estimated models are rather similar over
the different series. In particular, for the two models and all the series, the persistence parameter
B is very high. For all the estimated AS-Log-GARCH models, except the GBP, the value of w_
is significantly positive, which reflects the existence of a leverage effect. The leverage effect is also
visible in the EGARCH models, because the estimated value of « is negative, except again for
the GBP. Comparing the estimated coefficients w_ and ~ with their estimated standard deviations
(given in parentheses), the evidence for the presence of a leverage effect is however often weaker
in the EGARCH than in the Log-GARCH model. The two models having the same number of
parameters, it makes sense to prefer the model with the higher likelihood, given by the last column
of Table 1 in bold face. According to this criterion, the Log-GARCH(1,1) is preferred for the USD
and GBP series, whereas the EGARCH(1,1) is preferred for the 3 other series.

Even if, for a given series, a model produces a better fit than the other candidate, this does not
guarantee its relevance for that series. We thus assess the models by means of the two adequacy
tests studied in the present paper. Tables 2 and 3 display the p-values of the portmanteau and LM
tests for testing the null of a AS-Log-GARCH(1,1) (without assuming o = 14 = a;-) and the null
of an EGARCH(1,1). The p-values smaller than 0.01 are printed in light face. The two tests clearly
reject the AS-Log-GARCH(1,1) model for the series JPY, CHF and CAD. The portmanteau tests
also clearly reject the EGARCH(1,1) model for the series CHF, and they also find some evidence
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against the EGARCH(1,1) model for the series JPY, GPD and CAD. The LM tests finds strong
evidence against the EGARCH(1,1), for all the series except CAD. Using the two adequacy tests,
one can thus arguably reject the EGARCH(1,1) for all the series. Out-of-sample prediction exercises,
presented in the supplementary document, confirm the general superiority of the AS-Log-GARCH
over the EGARCH model for fitting and predicting these series.

To summarize our empirical investigations, the AS-Log-GARCH(1,1) model seems to be relevant

for the USD and GBP series, whereas none of the two models is suitable for the 3 other series.

7 Conclusion

The EGARCH and AS-Log-GARCH models do not require any a priori restriction on the parameters
because the positivity of the variance is automatically satisfied. This is often consider as the
main advantage of such models, by comparison with other GARCH-type formulations designed to
capture the leverage effect. In empirical applications, the EGARCH model is clearly preferred by
the practitioners, the Log-GARCH model being rarely considered. The conclusions of our study are
not in accordance with this predominance. First, we noted that the two models may produce the
same volatility process, though they do not produce the same returns process. Second, it is now
well known that invertibility of the EGARCH requires stringent non explicit conditions. If such
conditions are neglected, results obtained from the statistical inference may be dubious. Third, the
adequacy tests developed in this paper show that the two volatility models are not interchangeable
for a given series. Finally, our estimation results on real exchange rate data do not allow to validate
the EGARCH model for any of the series under consideration. For the AS-Log-GARCH model,
the conclusions are mixed: two over six series passed all adequacy tests, and the out-of-sample

performance is generally superior than that of the EGARCH.
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Table 2: The p-values of the portmanteau adequacy tests.

Currency

UsD

GBP

USD
JPY 7
GBR 7

CAD?

5

6

7

8

AS-Log-GARCH(1,1)

10

11

12

0.031
0.029
0.020
0.000
0.000

0.095
0.000
0.014
0.000
0.000

0.194
0.000
0.012
0.000
0.000

0.039
0.000
0.012
0.000
0.000
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0.000
0.017
0.000
0.000
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0.000
0.033
0.000
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EGARCH(1,1)
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0.195
0.002
0.006
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0.052
0.013
0.003
0.020
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0.066
0.005
0.000
0.050

0.314
0.054
0.009
0.000
0.089

0.446
0.048
0.008
0.000
0.094

0.575
0.015
0.004
0.000
0.121

0.396
0.025
0.008
0.000
0.114

0.235
0.039
0.007
0.000
0.126

0.263
0.010
0.010
0.000
0.179

0.305
0.002
0.016
0.000
0.241

0.249
0.002
0.026
0.000
0.313

0.295
0.004
0.039
0.000
0.390
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Table 3: The p-values of the LM adequacy tests.

Currency

USD

GBP

Tsb?

CAD

)

lorq

6

7

8

AS-Log-GARCH(1,1)

10

11

12

0.895
0.761
0.902
0.000
0.895

0.951
0.080
0.767
0.000
0.004

0.818
0.000
0.481
0.000
0.002

0.932
0.000
0.474
0.000
0.002

0.884
0.000
0.421
0.000
0.002

0.852
0.000
0.550
0.000
0.001

EGARCH(1,1)

0.877
0.000
0.581
0.000
0.002

0.831
0.000
0.613
0.000
0.005

0.865
0.000
0.627
0.000
0.008

0.864
0.000
0.704
0.000
0.015

0.599
0.000
0.655
0.000
0.023

0.589
0.000
0.679
0.000
0.034

0.461
0.000
0.676
0.000
0.112

0.067
0.000
0.006
0.000
0.128

0.009
0.000
0.000
0.000
0.031

0.037
0.001
0.000
0.000
0.034

0.049
0.003
0.000
0.000
0.037

0.088
0.004
0.000
0.000
0.059

0.071
0.004
0.000
0.000
0.119

0.068
0.002
0.000
0.000
0.203
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0.004
0.000
0.000
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0.024
0.007
0.000
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0.001
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0.000
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0.000
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0.000
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0.409
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Goodness-of-fit tests for log and exponential GARCH models:

complementary results

This document contains additional results, in particular illustrations and proofs, that have been

removed from the main document to save place.

A Tllustration to Lemma 1.1

Note that, in Lemma 1.1 for the symmetric case (when v := v = 7_), one can take o = ay =
a_ =~,w=0+alogEeml g=p3—~and

71|

e 2 . -
= S1€1 .
Mt \/m g (Ut)

Note also that, there is a linear relation between log(n3) and 7y for 7o > 0, and another linear

relation for 79 < 0. The tail of 7; is thus heavier than that of 7j;. This implies that the tails of the
Log-GARCH process ¢; = o1 are less impacted by the tails of the volatility process than those
of the EGARCH process & = oy, leading to possibly less temporal dependence. To illustrate
this point, we plot in Figure 2 trajectories of Log-GARCH(1,1) and EGARCH(1,1) processes with
the same symmetric log volatility process and ng following a standard gaussian distribution. The
trajectories have the same periods of high volatilities but the EGARCH(1,1) trajectory looks more

blurry when the volatility is low.

B Monte Carlo experiments

To assess the ability of the adequacy tests to distinguish the two models, we made the following
numerical illustrations. We generated N = 1,000 independent simulations of length n = 1,000 and
n = 4,000 of a Log-GARCH(1,1) model with parameter 8y = (0.01,0.02,0.04,0.05,0.95) and an
EGARCH(1,1) model with parameter ¢, = (—0.15,—0.08,0.12,0.95), both with 7, ~ N (0,1). The
values of the parameters 6y and { are close to those estimated on the real series of the next section.
On each simulated series, we applied 4 adequacy tests: the LM and portmanteau tests for the null
of a Log-GARCH(1,1) and for the null of an EGARCH(1,1).

Table 4 displays the empirical relative frequencies of rejection over the N replications for the

3 nominal levels o = 1%, 5% and 10%, when the DGP is the Log-GARCH(1,1) model. Table 5
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Figure 2: Symmetric Log-GARCH(1,1) and EGARCH(1,1) with the same volatility process w = 0.2, « = 0.2
and 8 = 0.95. The top two panels display the sample paths of the return processes. The bottom two panels

display the sample paths of the squared return processes and the volatilities (in red).
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Figure 3: Exchange rate and return USD/EURQO, from January 5, 1999 to January 18, 2012.

displays the same empirical relative frequencies of rejection when the DGP is the EGARCH(1,1)
model. Recall that, for a random sample of size 1,000, the empirical relative frequency of rejection
should vary respectively within the intervals [0.3;1.9], [3.3;6.9] and [7.6;12.5] with probability 0.99
under the assumption that the true probabilities of rejection are respectively 1%, 5% and 10%.
Tables 4 and 5 show that, as expected the error of first kind is better controlled when n = 4,000
than when n = 1,000, both with the LM and portmanteau tests. The powers of the two tests
are quite satisfactory when the null is the Log-GARCH(1,1) model. Even for the sample size
n = 1,000, the two tests are able to clearly reject the Log-GARCH(1,1) model when the DGP is the
EGARCH(1,1). For the the null of an EGARCH(1,1), the two tests are less powerful. For testing
the two null assumptions, the LM test is slightly more powerful for small values of [ (say [ < 4)

whereas the portmanteau test works slightly better with relatively large values of m (say m > 7).

C Complement to the exchange rates study

Figure 3 represents the level and return series of the USD to Euro daily exchange rate. Table 6 is

the analogue of the top panel of Table 1, but for the unrestricted AS-Log-GARCH(1,1).

We also performed out-of-sample predictions of 845 new squared returns, corresponding to the

period from January 19, 2012 to May 14, 2015. As loss function we use either (e? — &?)2, |e% - &ﬂ,

(loge?/ 63)2, or |10g €2/ &,52‘. Averaging over the 845 observations, we obtain respectively the Mean



Table 4: Portmanteau and LM adequacy tests of the Log-GARCH(1,1) and EGARCH(1,1) models when
the DGP is a Log-GARCH(1,1) model.

{orq
1 2 3 4 5 6 7 8 9 10 11 12
Lagrange-Multiplier test for the adequacy of the Log-GARCH(1,1)
n=1000 o=1% 22 30 26 27 30 32 36 36 37 33 32 32
a=5% 48 64 63 65 65 72 74 80 83 88 9.0 87
a=10% 7.6 9.3 99 102 120 11.8 11.8 123 13.1 13.1 13.8 13.2
Portmanteau test for the adequacy of the Log-GARCH(1,1)
n=1000 o=1% 25 27 28 30 32 36 33 38 39 37 39 40
a=5% 7.1 7.3 6.7 7.3 7.6 6.9 7.5 7.5 7.2 7.3 7.2 6.8
a=10% 121 13.0 122 124 13.1 124 13.0 124 12,6 11.4 11.7 11.9
Lagrange-Multiplier test for the adequacy of the EGARCH(1,1)
n=1000 a=1% 999 999 99.8 99.8 99.8 99.8 99.7 99.7 99.7 99.7 99.7 99.7
a=5% 100 100 999 999 99.8 999 999 999 999 99.8 99.8 99.8
a=10% 100 100 100 100 99.9 100 99.9 100 100 100 100 100
Portmanteau test for the adequacy of the EGARCH(1,1)
n=1000 «a=1% 82.2 94.0 96.1 977 98.0 984 988 99.1 99.1 99.2 99.2 994
a=5% 934 959 975 982 984 986 99.1 99.2 993 994 994 994
a=10% 96.0 97.6 98.0 98.4 987 989 992 99.3 994 99.5 99.5 99.5

Lagrange-Multiplier test for the adequacy of the Log-GARCH(1,1)

n =4000 «=1% 1.3 1.3 1.5 2.1 2.2 2.3 2.3 2.3 2.3 2.2 2.4 2.3
a=5% 28 44 46 49 53 56 63 64 63 56 63 64
a=10% 49 68 83 84 85 98 106 116 11.1 11.5 11.3 109

Portmanteau test for the adequacy of the Log-GARCH(1,1)

n=4000 o=1% 20 19 29 26 27 34 32 33 33 33 31 31
a=5% 50 56 65 68 71 68 71 75 67 71 75 71
a=10% 104 104 108 110 11.8 119 11.5 12.0 11.2 11.4 11.7 11.8

Lagrange-Multiplier test for the adequacy of the EGARCH(1,1)

n=4000 o=1% 100 100 100 100 100 100 100 100 100 100 100 100
a=5% 100 100 100 100 100 100 100 100 100 100 100 100
a=10% 100 100 100 100 100 100 100 100 100 100 100 100

Portmanteau test for the adequacy of the EGARCH(1,1)

n=4000 ao=1% 994 999 100 100 100 100 100 100 100 100 100 100
a=5% 99.7 999 100 100 100 100 100 100 100 100 100 100

a=10% 99.8 99.9 100 100 100 100 100 100 100 100 100 100
4




Table 5: As Table 4, but when the DGP is an EGARCH(1,1) model.

qorm
1 2 3 4 5 6 7
Lagrange-Multiplier test for the adequacy of the Log-GARCH(1,1)
n=1000 oa=1% 127 106 11.1 9.2 8.3 8.8 10.1
a=5% 24.7 226 221 21.6 20.8 20.7 20.9
a=10% 32.8 30.2 31.5 30.2 313 309 29.6
Portmanteau test for the adequacy of the Log-GARCH(1,1)
n=1000 «oa=1% 5.5 9.1 105 11.9 13.6 15.1 16.7
a=5% 13.7 19.3 21.7 25.1 27.5 282 298
a=10% 20.2 26.9 322 33.7 36.8 382 40.2
Lagrange-Multiplier test for the adequacy of the EGARCH(1,1)
n=1000 oa=1% 0.7 0.9 1.1 1.1 1.1 1.4 1.1
a=5% 3.7 4.1 5.1 4.6 5.7 5.9 5.1
a=10% 72 87 87 9.8 109 10.7 11.6
Portmanteau test for the adequacy of the EGARCH(1,1)
n=1000 oa=1% 1.2 1.3 1.5 1.6 2.6 2.4 2.4
a=5% 6.1 6.2 7.1 6.8 7.2 7.0 8.1
a=10% 11.1 11.9 126 126 134 13.6 13.8

Lagrange-Multiplier test for the adequacy of the Log-GARCH(1,1)
n=4000 «o=1% 59.4 529 473 459 445 439 40.2
a=5% 768 70.8 67.1 681 653 640 62.6
a=10% 84.3 79.6 76.6 76.0 742 745 73.6
Portmanteau test for the adequacy of the Log-GARCH(1,1)
n=4000 o=1% 240 33.6 46.5 546 60.1 642 675
a=5% 398 548 640 71.7 76.1 79.3 81.0
a=10% 51.1 64.6 738 80.1 83.1 86.6 &6.6
Lagrange-Multiplier test for the adequacy of the EGARCH(1,1)
n=4000 o=1% 06 07 08 03 05 02 09
a=5% 2.2 3.6 4.0 4.0 3.6 4.1 4.8
a=10% 45 64 75 76 75 80 92
Portmanteau test for the adequacy of the EGARCH(1,1)
n=4000 o=1% 15 16 14 13 13 12 1.3
a=5% 6.1 61 61 60 56 51 56
a=10% 114 11.1 11.3 11.8 11.7 11.7 11.2
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Table 6: Unrestricted AS-Log-GARCH(1,1) model fitted by QMLE on daily returns of exchange

rates.
Currency @ w_ .y a_ E Log-Lik
USD 0.008 (0.011) 0.03 (0.011)  0.022 (0.005) 0.019 (0.005) 0.971 ( -0.102
JPY 0.016 (0.017)  0.121 (0.016) 0.023 (0.006) 0.052 (0.007) 0.949 ( -0.343
GBP 0.038 (0.015) -0.014 (0.016) 0.031 (0.006) 0.027 (0.006) 0.965 ( 0.547
CHF 0.135 (0.027)  0.339 (0.027) 0.003 (0.006) 0.054 (0.007) 0.967 ( 1.539
CAD 0.015 (0.011)  0.011 (0.011) 0.023 (0.005) 0.018 (0.005) 0.970 ( -0.170

Table 7: p-values of the Diebold-Mariano (1995) test for the null that the two models have the same

forecast accuracy against the alternative that the EGARCH forecasts are less accurate than those

of the Log-GARCH.

USD
MSE 0.0410
MAE 0.0000
Log-MSE  0.0000
Log-MAE  0.0000

JPY
0.8131
0.0013
0.0012
0.0064

GBP
0.6873
0.0322
0.0494
0.1490

CHF
0.1070
0.0479
0.0000
0.0000

CAD
0.7373
0.1720
0.0702
0.4524

Squared forecast Errors (MSE), the Mean Absolute forecast Errors (MAE), the MSE of the log-

squared returns (log-MSE) and the MAE of the log-squared returns (log-MAE). For the volatility
prediction 62, we used either the Log-GARCH(1,1) or the EGARCH(1,1), both estimated on the

initial 3344 observations. Table 7 shows that the Dielbold-Mariano tests (see Dielbold and Mariano

(1995)) often reject the null that the two forecasts are equally accurate in average in favor of the

alternative that the EGARCH(1,1) produces less accarate forecasts than the Log-GARCH(1,1),

except for the CAD series for which the null can not be rejected.

To summarize our empirical investigations, the Log-GARCH(1,1) model seems to be relevant

for the USD and GBP series, whereas none of the two models is suitable for the 3 other series.



D Proof of Theorem 4.2

For any 9 = (C’,legq)’, let T,(¢) = ﬁzgﬂ{l —n2(¢)}D¢(¢) where Dy(¢) = a%logaf(() and
let T,,(¢) = ﬁ SO {1 = 7€) IDe(C), where ni(¢) = e/0¢(¢) and 7 (C) = e /4(C).
Define

Kii K -1
K = ,  where IKCi; = Var{D(¢y)}, K=V
Ko Koo

K12 = K = Cov{D¢(¢y), Vlog 07 (o)} VT,

and

L=K1+PV I 4+ W + UKy

where ¥ = E{D({,)V'logc?(¢y)}. Let ¥, = E{Dy;(¢y)V'logo? (o)}, where Dy;(¢g) denotes
the i-th component of Dy({,), for i = 1,...3¢, t > 0. Let T, ;({) denote the i-th component of

T0 ().
The first step of the proof is similar to the one of the proof of Theorem 3.1. Let T, ; denote the

i-th component of T,, = Tn(zn), for i = 1,...2¢. A Taylor expansion gives, for some (, between

~

¢,, and (g, N
1 0T,

NS

We cannot follow the same steps of proof as in Theorem 3.1 because of the lack of moments

T, = Thi(0) + €IV, — Co)-

in the EGARCH(1,1) model for values of ¢ satisfying (4.2), see He et al. (2002). However, using
the approach of Straumann and Mikosch (2006) refined in Wintenberger (2013), there exist K > 0,
p € (0,1) and a compact neighborhood V(¢;) such that
~2 2 ¢
sup o7 (¢) — o7 (¢)| < Kp', a.s.
¢eV(Co)

Moreover, the process (¢) is lower bounded by w/(1—/) > 0 under (4.2). By a Lipschitz argument,
we then obtain

1 1
sup | =>— — —5—
cevicy) 192(¢)  a?(¢)

By an application of Lemma 2.1 in Straumann and Mikosch (2006), it yields to the first assertion

‘ < Kp', a.s.

(i) below. It remains to show the three last assertions (ii)-(iv) that are sufficient to prove Theorem



4.2:

. T . i aTn _ a’T”

) e [m0 0] o e 2|0~ o] o
almost surely,

i) Tal€) ) 4 w0, (ns — 150,

LT
NS

v) L is non-singular.

iii) (¢,) — ¥;, almost surely, where ¢, is between En and ¢,

To prove ii), we use that

Dy(¢o)

1 n
= § 1—n? + op(1).
vn t:l( ") ~V~1Vlog () rl)

Tn(Co)
V(G = o)

The convergence in distribution thus follows from the central limit theorem for martingale differ-
ences.

The proof of i) relies on an almost sure uniform argument applied to 9T, /9¢({) on some
neighborhood of {,. As ¢, converges almost surely to ¢, step i) ensures that
o= [~ T )| »0 e
Thus, the result will follow from the ergodic theorem applied to (VT,({y)) if ¥ is finite. Indeed,
the linear stochastic recurrent equation (4.3) when ¢ = ¢, takes a simple form with a Lipschitz
coefficient equals to Sy — %('yom + do|ne]). Under A9, one can use a contractive argument in L? to
prove that E{D;;(¢y)?} < 00, i =1,...,3q. The same argument was already used in Wintenberger
(2013) to prove that E{V’logc?(¢y)V logo?(¢y)} < oo. Thus, the finiteness of ¥; is derived from
the Cauchy-Schwarz inequality and step i) follows.

Let us prove step iv). Suppose there exist x = (z;) € R3? and y € R* such that
XDy () +¥'V ! Vlogof (¢y) = 0. (D.1)
Let z' = y'V~L. In view of (4.3) we have

Vlog U?(Co) = U;-1(¢p)Vlog 025271@0) + (15625*1’ let—1], log 0-15271(40))/a

’ ’ 7 /
Di(Co) = Ura(CoDia(o) + (11 et preilny) -

By stationarity, it follows from (D.1) that
_ _ ! /
x’ (1t71’q, e;tLq, ethq) +2' (L &1, |ei-1],logo7_1(¢g)) =0, a.s. (D.2)
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It follows that, with notations already used,

z1lyy,_ <0y + Tg+1log € 4 Lin,_1 <0} + T2g+1 log 63_11{nt,1>0}

+21 + 20m—100-1(Co) + 23mi—1]01-1(Co) + zalogop_1($o) = Rio. (D.3)

Thus, conditioning on n;—; < 0 we find

21+ xgi1logniy + 21+ (22 + 23)m-100-1(Co) + (24 + wgy1) log o7 _1(Co) = Ria.

By arguments already used, in view of Assumption A8 this entails x441 = 22 + 23 = 0. By

conditioning on 7;—1 > 0 we find 29441 = 22 — 23 = 0 and (D.3) reduces to

1l <oy + 21 + z4log J?—l(Co) = Ry .

The sign of 1,1 being independent of o ({n,,u < t — 2}) we also have 2y = 0. Turning back to (D.3),
we get T2l , <oy + Tgt2log 6%721{nt72>0} + x9442log 6?*21{7It—2<0} + 21 + z4logo? (o) = Ri_3.

Because log o2 (o) = wo + Yomi—2 + So|mi—2| + Bolog a2 5(¢y) we get, for n;—o < 0,
T2 + g2 10875 + 21 + z4(wo + (0 — do)m—2) = Ris.

By arguments already used, we deduce that zo412 = 24 = 0. By conditioning on 7;_o > 0, we get
Zg4+2 = 0 and thus o = 0. Proceeding similarly we show that all the components of x are equal
to zero. Using (D.2), we thus have z; = 0. We have shown that, in (D.1), = 0 and y = 0 which

entails that £ is non-singular. |

E Proof of Theorem 5.1

Introduce the vector 7, = (r1,...,r,)" where

n
rp,=n""! Z StSt—_hs with s; = nt2 —land 0 < h <n.
t=h+1

Let s¢(0) (respectively s¢(0)) be the random variable obtained by replacing 7; by 17:(60) = €;/0+(0)
(respectively m.(0) = €/54(0)) in s;. Let r,(0) (respectively 7,(0)) be obtained by replacing
ne by 1:(0) (respectively 7:(6)) in 7,. The vectors r,(0) = (r1(0),...,7m(0)) and 7,,(0) =
(71(0), ..., 7m(8)) are such that 7, = 7,,(00) and 7, = 7 (6,,).

We first study the asymptotic impact of the unknown initial values on the statistic 7,,.

We have $¢(0)s;—1(0) — 5:(0)S;—1(0) = a; + by with a; = {s5:(0) —5:(0)} s,—p(0) and by =



5¢(0){st—n(0) — 5;_n(0)}. A straightforward adaptation of the proof of (3.3) shows that the right-

hand side can be replaced by Kp! in this inequality. Thus, we have

2
g
la;| < Kple? =h g2 1.
t O_tQ_h(e) t

Lemma 3.1 and the ¢, and Hoélder inequalities entail that for sufficiently small s* € (0,1), there

exists a neighborhood V of 8y such that

s*

n
< ans*/2zpts* =0
t=1

E

1 n
%ZSUPWJ

= 6cv

as n — oo. It follows that n=1/2 3" | supgey |ai| = op(1). The same convergence holds for b; and

for the derivatives of a; and b;. We then obtain
Vn||rm — T (00)]| = op(1), Zug HVr;n(O) — VF;H(G)H =op(1). (E.1)
€
We now show that the asymptotic distribution of /n#,, is a function of the joint asymptotic
distribution of v/nr,, and of the QMLE. Using (E.1) and the consistency of En, Taylor expansions

of the components of r,,(-) around 6,, and 6 shows that

Vit = i (00) + [Vi7,(0°)] V(B — 60)
= Vg + [V, (67)]" V(8. — 8y) + op(1)

where the h-th row of the matrix [Vﬁn(e*)]/ is the transpose of V7,,(6%) for some 6} between 8,
and @p. In Section 7.11 of FWZ, we have shown the existence of moments of all order for log o7 (8)
and their derivatives at any order, uniformly in @ € V for some neighborhood V of 6y. Together
with Lemma 3.1, this implies that

328t(9)5t—h(9)

E 4
ey |  00:00;

ocy

‘<oo for all 4,5 € {1,...,d}.

Using these inequalities, the assumption En} < oo, and the almost sure convergence of 0; to 0y,

Taylor expansions and the ergodic theorem yield
V?“h(a;:) = V?“h(ao) + Op(l) — Cp ‘= E{St,hVSt(eo)} =—-F {St,hv log U?(GO)} .

Note that ¢, is the almost sure limit of (5.1). Let K, be the m x d matrix whose h-th row is ¢},.

We have shown that

VP = 1rm + Kp/n(0, — 6y) + op(1). (E.2)

10



~

We now derive the asymptotic distribution of \/n(ry,, 6, — 6g). Note that

1 n
Tm = Z S¢8t—1:4—m +op(1)  where Si_1:4—m = (St—1,-..,5t—m) .

t=1

With this notation, we have K,, = —Es; 1.4, V' log 02(8g). We have seen in the proof of Theorem
3.1 that

~ 1 <&
0,—60)=-J '— (1-n})Viogo} (0 1).
Vi (8~ 60) 7 1= )V iog a?(80) + on(1)
The central limit theorem applied to the martingale difference
{ (stv, log 03(00)7 sts;—l:t—m), O (nw u < t)}

then shows that

6, — 6, 1 & J 'V log o2(60)
vn = — Z 5t +op(1)
Tm \/ﬁ t=1 St—1:t—m
kg —1)J 71 pIN
£ ol [ Y Onrm , (E.3)
é\n"'m (Ii4 — 1)2Im
where
or (kg — )T 'EVIlogc?(00)s) 1.4 = — (ks —1)T 'K/,

Using together (E.2) and (E.3), we obtain
Vi, 5 N(0,D), D= (ks—1)>2I, — (ks — 1)KnJ K.,

We now show that D is invertible. Assumption A3 entails that the law of 5? is non degenerated.

We thus have k4 > 1, and it remains to show the invertibility of
(kg = ), — K J 'K/ = EVV', V=51, +K,J 'Viegoi(8).
If this matrix were singular then there would exist A = (A1,...,\;,)" such that A # 0 and
ANV =Xs 1. pm+u'Viogoi(0y) =0 as., (E.4)

with p/ = N K,,J~!. Note that

p /
\ log 0252(0) = Z IBJV log J?fj(e) + <1? ]‘t_fl,qeljll,q? 615_71,qa 0'%,171,(0)) ’ (E5)

j=1

11



Equation (E.4) gives
NV = M2y + paly <o+ porgly 150108 €1 + patagly <ologe’, + R_o. (E.6)
Thus (E.4) entails the two equations
1,_,>0 {)\177%1 + f1244 log n,+ R_Q} =0 a.s. (E.7)

and

Ly_i<o {21 + potoglogn® 1 + Ro} =0 as. (E.8)

Note that an equation of the form az? + blog |z| + ¢ = 0 cannot have more than 2 positive roots
or more than 2 negative roots, except if a = b = ¢ = 0. By Assumption A10, Equations (E.7) and
(E.8) thus imply A; = 0. We thus also have po4 4 = pa424 = 0 and it follows from (E.6) that po = 0.
Given that \; = po = porq = p2124 = 0, (E.4) and (E.5) now give

NV = XonPy+ psly_yco + i31qly_o>0108 €5 + p3 1241y <0loge”y

+izi3gl0g 0 + R o3 = 0. (E.9)
Since

logo?; = w+w-R 3l ,c0+arsl,y so0(logn’s + R_3)

+041—1n,2<0(10g 77%2 + R—S) + R_3,
we have the two equations
1y 5>0 {Az?732 + (34q + H313g014) log 2y + R 3} =0 as.
and
Iy_s<0 {)\27732 + (3424 + 313901 ) logn?y + R.3} =0 as.
By Assumption A10, we obtain
Ao = U3 tq + H34+3¢01+ = P3y2q + p33q1— = 0.

In view of (E.9), it follows that ug = 0. By iterating the previous arguments, it can be shown that
A1 = -+ = Ay, = 0 which leads to a contradiction. The non-singularity of D follows. The proof of

the convergence D — Din probability (and even almost surely) as n — oo is omitted. O
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