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THE EUCLIDEAN ALGORITHM IN QUINTIC AND SEPTIC CYCLIC FIELDS

 31, 37, 43, 47, 59, 67, 71, 73, 79, 97. Our proofs contain a large computational component, including the calculation of the Euclidean minimum in some cases; the correctness of these calculations does not depend upon the GRH. Finally, we improve on what is known unconditionally in the cubic case by showing that any norm-Euclidean cyclic cubic field must have conductor f ≤ 157 except possibly when f ∈ (2 • 10 14 , 10 50 ).

Introduction

Let K be a number field with ring of integers O K , and denote by N = N K/Q the absolute norm map. For brevity, we will sometimes use the term field to mean a number field. We call a number field K norm-Euclidean if for every α, β ∈ O K , β = 0, there exists γ ∈ O K such that |N (α -γβ)| < |N (β)|. Or equivalently, we may ask that for every ξ ∈ K there exists γ ∈ O K such that |N (ξ -γ)| < 1. In the quadratic setting, it is known that there are only finitely many norm-Euclidean fields and they have been identified [START_REF] Chatland | Euclid's algorithm in real quadratic fields[END_REF][START_REF] Barnes | The inhomogeneous minima of binary quadratic forms[END_REF]; namely, a number field of the form K = Q( √ d) with d squarefree is norm-Euclidean if and only if d = -1, -2, -3, -7, -11, 2, [START_REF] Cerri | Euclidean minima of totally real number fields: algorithmic determination[END_REF][START_REF] Godwin | On Euclid's algorithm in some cubic fields with signature one[END_REF][START_REF] Godwin | On Euclid's algorithm in some quartic and quintic fields[END_REF][START_REF] Godwin | On the Euclidean nature of four cyclic cubic fields[END_REF][START_REF] Lezowski | Computation of the Euclidean minimum of algebraic number fields[END_REF][START_REF] Mcgown | Norm-Euclidean Galois fields and the generalized Riemann hypothesis[END_REF][START_REF] Treviño | The Burgess inequality and the least k-th power non-residue[END_REF][START_REF] Treviño | The least k-th power non-residue[END_REF]21,29,33,37,41,57,73 .

This result was partially generalized by Heilbronn [START_REF] Heilbronn | On Euclid's algorithm in cyclic fields[END_REF] as follows.

Theorem 1.1 (Heilbronn). Let be a prime. Then there are at most finitely many cyclic number fields with degree which are norm-Euclidean.

However, Heilbronn provided no upper bound on the discriminant of such fields. Building on work of Heilbronn, Godwin, and Smith (see [START_REF] Heilbronn | On Euclid's algorithm in cubic self-conjugate fields[END_REF][START_REF] Godwin | On Euclid's algorithm in some cubic fields with signature one[END_REF][START_REF] Smith | On Euclid's algorithm in some cyclic cubic fields[END_REF][START_REF] Godwin | On the Euclidean nature of four cyclic cubic fields[END_REF]), the second author proved the following result.

Theorem 1.2 ([13, Theorem 1.1]). Assuming the GRH, the norm-Euclidean cyclic cubic fields are exactly those with discriminant ∆ = 7 2 , 9 2 , 13 2 , 19 2 , 31 2 , 37 2 , 43 2 , 61 2 , 67 2 , 103 2 , 109 2 , 127 2 , 157 2 .

Many of the results in the aforementioned paper go through for any cyclic field of odd prime degree. The main goal of this paper is to establish the analogue of Theorem 1.2 for quintic and septic fields.

Theorem 1.3. Assume the GRH. A cyclic field of degree 5 is norm-Euclidean if and only if ∆ = 11 4 , 31 4 , 41 4 . A cyclic field of degree 7 is norm-Euclidean if and only if ∆ = 29 6 , 43 6 . f 3 7, 9, 13, 19, 31, 37, 43, 61, 67 Although we cannot give a complete determination for degree 11, it appears that for some degrees there are no norm-Euclidean cyclic fields whatsoever. This was observed (but not proved) for degree 19 in [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF]. We prove the following: Theorem 1.4. Assuming the GRH, there are no norm-Euclidean cyclic fields of degrees 19, 31, 37, 43, 47, 59, 67, 71, 73, 79, 97. This list of primes is in no way intended to be complete, and in fact, there may well be infinitely many primes for which there are no norm-Euclidean cyclic fields of degree .

In other small degrees where we cannot give a complete determination, even under the GRH, we come very close. Let F denote the collection of cyclic number fields of prime degree 3 ≤ ≤ 100 and conductor f . In this setting the conductordiscriminant formula tells us that discriminant equals ∆ = f -1 . Theorem 1.5. Assuming the GRH, Table 1.1 contains all norm-Euclidean fields in F. (However, the possibility remains that some of these fields may not be norm-Euclidean.) Moreover, even without the GRH, the table is complete for f ≤ 10 13 .

We remark that the top portion of this table (when 3 ≤ ≤ 30) appeared in [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF] although it was unknown at the time (even under the GRH) whether the table was complete. A large part of establishing Theorems 1.3, 1.4, and 1.5 was a computation that took 3.862 (one-core) years of CPU time on a 96-core computer cluster. 1 Finally, we also give a slight improvement on what is known unconditionally in the cubic case. In [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF], it was shown that the conductor of any norm-Euclidean cyclic cubic field not listed in Theorem 1.2 must lie in the interval (10 10 , 10 70 ). We improve this slightly, thereby obtaining: 1 The cluster consists of 8 compute nodes, each with twelve 2 GHz cores, and 64 GB memory per node. Computing up to the new lower bound of 2 • 10 14 required an additional 3.104 years of CPU time on the same cluster.

Summary

For norm-Euclidean fields in F one has an upper bound on the conductor, which is greatly improved with the use of the GRH; in [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF] and [START_REF] Mcgown | Norm-Euclidean Galois fields and the generalized Riemann hypothesis[END_REF] the conductor bounds of Table 2.1 were established.

In this paper, we establish the following improved bounds:

Proposition 2.1. Assuming the GRH, Table 2.2 gives conductor bounds for norm-Euclidean fields in F.

In [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF] computations were carried out that show the portion of Table 1.1 where 3 ≤ ≤ 30 is complete up to f = 10 10 . We have extended these computations, thereby obtaining the following unconditional result: Proposition 2.2. Table 1.1 contains all possible norm-Euclidean fields in F with f ≤ 10 13 . Additionally, when 50 ≤ ≤ 100, the table is complete up to the bounds listed in Table 2.2. Finally, when = 3, the table is complete up to 2 • 10 14 .

Note that Propositions 2.1 and 2.2 imply the truth of Theorems 1.4 and 1.5. In the case of = 3, it is known that all 13 of the fields listed in Table 1.1 are norm-Euclidean (see [START_REF] Smith | On Euclid's algorithm in some cyclic cubic fields[END_REF]). In the case of = 5, Godwin [START_REF] Godwin | On Euclid's algorithm in some quartic and quintic fields[END_REF] proved that f = 11 is norm-Euclidean and Cerri [START_REF] Cerri | Euclidean minima of totally real number fields: algorithmic determination[END_REF] has verified this. Up until this point, it seems that nothing was known about the remaining fields in the table. We use the algorithm of Cerri from [START_REF] Cerri | Euclidean minima of totally real number fields: algorithmic determination[END_REF] (which has recently been extended by the first author in [START_REF] Lezowski | Computation of the Euclidean minimum of algebraic number fields[END_REF]) with 

M (K) = sup ξ∈K m K (ξ), where m K (ξ) = inf γ∈O K |N (ξ -γ)|,
for each of these fields. It is well-known (and readily observed) that M (K) < 1 implies that K is norm-Euclidean.

Proposition 2.3. Table 2.3 gives the Euclidean minimum M (K) of the cyclic field K having degree and conductor f .

It appears that the fields of degree 11 are currently out of reach of the algorithm; problems arise both from the time of computation required and from issues related to precision. In light of the discussion above, observe that the truth of the previous three propositions immediately implies Theorems 1.3, 1.4, and 1.5. We detail the computations necessary to justify Propositions 2.2 and 2.3 in Sections 3 and 4 respectively.

In Section 5 we derive the conductor bounds given in Proposition 2.1. This involves a trick which allows us to weaken the condition for "non-norm-Euclideanity" from [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF] provided > 3. We are also able to accomplish this in the cubic case by a different argument that takes advantage of the fact that the character takes only three values. This is carried out in Section 6.

Finally, the remainder of the paper is devoted to supplying the necessary justification for the upper bound on the conductor given in Theorem 1.6. The proof involves applying some recent results of Treviño concerning non-residues (see [START_REF] Treviño | On the maximum number of consecutive integers on which a character is constant[END_REF][START_REF] Treviño | The least k-th power non-residue[END_REF][START_REF] Treviño | The Burgess inequality and the least k-th power non-residue[END_REF]) together with ideas in [START_REF] Mcgown | On the second smallest prime non-residue[END_REF][START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF]. For completeness, we provide improved (unconditional) conductor bounds for degrees > 3 as well. However, as is the case when = 3, these bounds are currently beyond our computational limits.

Proposition 2.4. Table 2.4 gives (unconditional) conductor bounds for norm-Euclidean fields in F.

Computation for Proposition 2.2

Let K denote the cyclic field of prime degree and conductor f . We suppose that K has class number one. Assume that (f, ) = 1 so that K is not the field with f = 2 . No field of this type having f = 2 is norm-Euclidean anyhow except for Q(ζ 9 + ζ -1 9 ); this is [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF]Thereom 4.1]. We may assume that f is a prime with f ≡ 1 (mod ); see [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF]Section 2.1]. Denote by q 1 < q 2 the two smallest rational primes that are inert in K. Let χ denote any fixed primitive Dirichlet character of modulus f and order so that a rational prime p splits in K if and only if χ(p) = 1. The following theorem is proved in [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF]. Proposition 3.1 ([12, Theorem 3.1]). Suppose that there exists r ∈ Z + satisfying the following conditions:

(r, q 1 q 2 ) = 1, χ(r) = χ(q 2 ) -1 , rq 2 k ≡ f (mod q 2
1 ) for all k = 1, . . . , q 1 -1, (q 1 -1)(q 2 r -1) ≤ f.

Then K is not norm-Euclidean.
Let N denote the image of the norm map from O K to Z. The proof of the previous proposition relies on:

Lemma 3.2 (Heilbronn's Criterion). If one can write f = a + b, with a, b > 0, χ(a) = 1, a / ∈ N , b / ∈ N , then K is not norm-Euclidean.
The advantage of Proposition 3.1 is that it requires far fewer steps than applying Lemma 3.2 directly. As K has class number one, we have that an integer n = 0 lies in N if and only if divides the p-adic valuation of n for all primes p which are inert in K (i.e. all primes p for which χ(p) = 0, 1).

To prove Proposition 2.2 we find q 1 , q 2 , r as described above. To save time, we look only for prime values of r. See [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF] for the details. By applying Proposition 3.1, we show there are no norm-Euclidean fields of the given form with 10 4 ≤ f ≤ F where F = 10 13 when 3 ≤ ≤ 50 and F equals the value in Table 2.2 when 50 ≤ ≤ 100. For example, Table 3 shows the values for the last ten fields in our calculation when = 97.

To better manage the computation, the values of f being considered (for a given ) were broken into subintervals of length 10 9 . As mentioned earlier, this computation took 3.862 years of CPU time on a 96-core computer cluster. Another computation of the same nature was performed to check that there are no norm-Euclidean fields when = 3 with 10 13 ≤ f ≤ 2•10 14 , which took an additional 3.104 years of CPU time on the same cluster. Combining the computation just described with the results mentioned in Section 1 proves Proposition 2.2.

Computation for Proposition 2.3

Previously, Cerri computed that the Euclidean minimum of the cyclic quintic field with conductor f = 11 is equal to 1/11 (see [START_REF] Cerri | Euclidean minima of totally real number fields: algorithmic determination[END_REF]). We compute the Euclidean minimum of the remaining four fields K with = 5, 7 in Table 1.1, using the algorithm described in [START_REF] Lezowski | Computation of the Euclidean minimum of algebraic number fields[END_REF].

The algorithm is divided into two main parts: • Using an embedding of K into R , we try to find a finite list of points L ⊆ K and some real number k such that any point x ∈ K \ L we have m K (x) < k. If k < 1 and L = ∅, this proves that K is norm-Euclidean. • Next, we compute the Euclidean minimum of the remaining points in L.

f q 1 q 2 r
If max{m K (x) | x ∈ L} > k, then M (K) = max{m K (x) | x ∈ L}.
If not, we start again with smaller k. The algorithm also returns the finite set of critical points, that is to say the points x ∈ K/O K satisfying M (K) = m K (x). The results obtained are given in Table 4.1, where C is the cardinality of the set of critical points.

In carrying out these computations, the second part of the algorithm takes far longer than the first. Nevertheless, we can improve the running time with the following observation: The points considered in our four cases are always of the form α/β where α, β are nonzero elements of O K such that N β is the conductor f . This provides some information on the Euclidean minimum of α/β. 

m K α β ≥ min {|t| : t ∈ N , t ≡ N α (mod f )} f .
Proof. By definition of the Euclidean minimum, In particular, for a point α/β of this form, if we can find some z ∈ O K such that

m K α β = min {|N (α -βz)| : z ∈ O K } N β = min {|N (α -βz)| : z ∈ O K } f . f M (K) C CPU
|N (α -βz)| = min {|t| : t ∈ N , t ≡ N α (mod f )} ,
we will then have

m K α β = |N (α -βz)| f .
To illustrate this idea, consider the field K = Q(x) where x 5 -x 4 -12x 3 + 21x 2 + x -5 = 0, of degree 5 and conductor 31. At the end of running the algorithm, we get a list L of ten points of the form α/β as above. One of the points found has α = - where a is the integer in (0, f ) such that N α ≡ a (mod f ) and b = f -a.

Remark 4.3. The algorithm may also be applied to calculate the Euclidean minimum of cyclic cubic number fields. Table 4.2 presents the results obtained in some of the norm-Euclidean cases where the Euclidean minimum was previously unknown. For conductors f < 103, one can refer to [START_REF] Lemmermeyer | The Euclidean Algorithm in Algebraic Number Fields[END_REF]. As observed in [START_REF] Godwin | On the Euclidean nature of four cyclic cubic fields[END_REF], the field with conductor 157 seems harder to deal with; to date, no one has successfully computed the Euclidean minimum of this field.

Improved GRH conductor bounds when > 3

We adopt the notation given in the first paragraph of Section 3. In addition, from now on and throughout the paper, r ∈ Z + will denote the smallest positive integer such that (r, q 1 q 2 ) = 1 and χ(r) = χ(q 2 ) -1 . However, we do not assume any congruence conditions on r. The following lemma is an improvement of statement (3) from Theorem 3.1 of [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF]; it is essentially a direct application of the same theorem.

Lemma 5.1. Let us assume q 1 = 2, 3, 7. If K is norm-Euclidean, then

f < max q 1 , 2.1 f 1/ log f q 2 r.
Proof. Let u be the integer such that 0 < u < q 1 and uq 2 r ≡ f (mod q 1 ). We set v = (f -uq 2 r)/q 1 , so that f = uq 2 r + q 1 v. This equation can be used with Heilbronn's Criterion provided v > 0 and q 1 v / ∈ N . Clearly v = 0 lest we contradict the fact that f is prime. Therefore, as we are assuming K is norm-Euclidean, it must be the case that v < 0 or q 1 v ∈ N . However, v < 0 immediately implies that f < q 1 q 2 r, and there is nothing more to prove. Hence it suffices to assume v > 0. In this case we must have q 1 v ∈ N which implies q -1 1 divides v. Now we see that v > 0 leads to q -1 1 ≤ v < f /q 1 and hence q 1 < f 1/ . As q 1 = 2, 3, 7, we know from [12, Theorem 3.1] that f < 2.1q 1 q 2 r log q 1 and the result follows.

Proposition 5.2. Assume the GRH. If K is norm-Euclidean and f > 10 9 , then

f ≤ max (1.17 log(f ) -6.36) 2 , 2.1 f 1/ log(f ) • 2.5( -1) log(f ) 2 2 .
Proof. We use the bound on q 1 given in [START_REF] Bach | Explicit bounds for primality testing and related problems[END_REF] and the bounds on q 2 and r given in [13, Theorems 3.1 and 3.2]. If q 1 = 2, 3, 7, Lemma 5.1 together with these bounds gives the result. This completes the proof in most cases, but it remains to check that we obtain better bounds in the other special cases.

If q 1 = 7, then f < 21 log 7 • q 2 r by [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF]Theorem 3.1]. We easily see that (1.17 log f -6.36) 2 > 21 log 7 for any f > 60, 000. The result now follows from [START_REF] Mcgown | Norm-Euclidean Galois fields and the generalized Riemann hypothesis[END_REF]Theorem 3.2]. If q 1 = 2, 3 and q 2 > 5, then we obtain f < 5q 2 r from [12, Theorem 3.1] and the result follows in the same manner.

Finally, it remains to treat the two special cases: (q 1 , q 2 ) = (2, 3), [START_REF] Cerri | Euclidean minima of totally real number fields: algorithmic determination[END_REF][START_REF] Godwin | On Euclid's algorithm in some cubic fields with signature one[END_REF]. At this point, we assume f ≥ 10 9 . Proposition 5.1 of [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF] tells us that f is bounded above by 72( -1)f 1/2 log(4f ) + 35 and 507( -1)f 1/2 log(9f ) + 448 in the first and second case respectively. In either case, the quantity in question is bounded above by 568( -1)f 1/2 log f . Consequently, we have f ≤ (568( -1) log f ) 2 . Now, one easily checks that (1.17 log f -6.36) 2 (2.5) 2 ≥ 1442 and 568 2 ( -1) 2 (log f ) 2 ≤ 1442( -1) 2 (log f ) 4 , which implies the desired result.

Invoking the previous proposition immediately yields the GRH conductor bounds given in Table 2.2 when > 3. The = 3 entry of Table 2.2 will be obtained in Corollary 6.2. This completes the proof of Theorems 1.3, 1.4, and 1.5.

The cyclic cubic case revisited

Unfortunately, the trick employed in the previous section does not help us when = 3. Nonetheless, in the cubic case, we are able to slightly weaken the conditions for "non-norm-Euclideanity" given in [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF]Theorem 3.1]. Notice that the following result contains no congruence conditions and there is no extra log q 1 factor. The proof again relies on Heilbronn's Criterion (Lemma 3.2), but we will take advantage of the fact that χ only takes three different values in this very special case. Proposition 6.1. Let K be a cyclic cubic number field. If q 1 = 2 and f ≥ q 1 q 2 max(3r, 10q 1 ), then K is not norm-Euclidean.

improving the constants appearing in [START_REF] Mcgown | On the second smallest prime non-residue[END_REF]. We begin by quoting a result proved by Treviño: Proposition 7.1 ([19, Theorem 1.2]). Suppose p > 3. Then q 1 < 0.9 p 1/4 log p unless χ is quadratic and p ≡ 3 (mod 4), in which case q 1 < 1.1 p 1/4 log p.

The following proposition will lead to improved bounds on q 2 and the product q 1 q 2 : Proposition 7.2. Suppose p ≥ 10 6 , and that u is a prime with u ≥ A log p where

A = (2/5)e 3/2 ≈ 1.79. Suppose χ(n) = 1 for all n ∈ [1, H] with (n, u) = 1. Then H ≤ g(p) p 1/4 log p ,
where g(p) is an explicitly given function. Moreover, g(p) is decreasing for p ≥ 10 6 and g(p) → 2.71512.... Proof. Similar to the proof of [14, Theorem 3], we may reduce to the case where H ≤ (A log p -1) 1/2 p 1/2 . We may assume H ≥ Kp 1/4 log p where K := 2.7151, or else there is nothing to prove. We set h = A log p , r = B log p , with A = (2/5)e 3/2 and B = 1/5.

For 1/2 ≤ y ≤ 1, we have exp(y/2B) ≤ exp(1/2B)y, so in particular

p 1/2r = exp 1 2B B log(p) r ≤ exp 1 2B B log(p) r .
But B exp(1/2B) log(p) = eA/2 • log(p) ≤ e(h + 1)/2, from which we deduce (7.1) 2r e(h + 1)

r ≤ p -1/2 .
One verifies that Kp 1/4 > 32A for p ≥ 10 6 and hence H > 32h. We set X := H/(2h) and observe that we have the a priori lower bound

X = H 2h ≥ Kp 1/4 log p 2A log p = Kp 1/4 2A ,
and, in particular, X > 16 from the previous sentence. We will make use of the function f (X, u) defined by

f (X, u) = 1 - π 2 3 1 2X 2 + 1 2X + 1 1 -u -1 • 1 + log X X ; observe that f (p) := f Kp 1/4 2A , A log p ≤ f (X, u) .
Combining [14, Proposition 1], [START_REF] Treviño | The least k-th power non-residue[END_REF]Theorem 1.1], and an explicit version of Stirling's Formula (see [START_REF] Spira | Calculation of the gamma function by Stirling's formula[END_REF], for example), we obtain

(7.2) 6 π 2 1 -u -1 h(h -2) 2r H 2h 2 f (p) ≤ √ 2 2r e r ph r + (2r -1)p 1/2 h 2r .
Using the convexity of the logarithm, we establish the following estimates: 7.1) such that if p ≥ p 0 and u is a prime with u ≥ 1.8 log p, then there exists n ∈ Z + with (n, u) = 1, χ(n) = 1, and n < C p 1/4 log p.

(7.3) h h -2 r ≤ F (p) , h + 1 h r ≤ G(p) F ( 
6 π 2 1 -u -1 H 2 f (p) (7.4) ≤ 4h(2r -1) h h -2 2r p 1/2 1 + √ 2 2r -1 2r eh r p 1/2 ≤ 4h(2r -1)F (p) 2 p 1/2 1 + √ 2G(p) 2r -1 2r e(h + 1) r p 1/2 ≤ 4(A log p)(2B log p + 1)F (p) 2 p 1/2 1 + √ 2G(p) 2r -1 ≤ 8ABp 1/2 (log p) 2 F (p) 2 1 + 1 2B log p 1 + √ 2G(p) 2B log p -1 ≤ 8AB p 1/2 (log p) 2 F (p) 2 1 + 5 2 log p 1 + 5 √ 2G ( 
Proof. Let n 0 denote the smallest n ∈ Z + such that (n, u) = 1 and χ(n) = 1. We apply Proposition 7.2 to find n 0 -1 ≤ g(p 0 ) p 1/4 log p . Proof. If q 1 > 1.8 log p, then we apply the previous proposition and we are done. Hence we may assume that q 1 ≤ 1.8 log p. If q 2 = 3, then we are clearly done, so we may also assume q 2 = 3. In this case, we combine [14, Lemma 7] and [18, Theorem 1] 2 to conclude q 2 ≤ (1.55p 1/4 log p)(1.8 log p) + 1 < 2.8p 1/4 (log p) 2 .

Computation of the

Corollary 7.5. Suppose p ≥ 10 30 and that χ has odd order. Then

q 1 q 2 < 2.64 p 1/2 (log p) 2 .
Proof. If q 1 < 1.8 log p, we use the previous corollary (and its proof) to obtain q 2 < 3p 1/4 (log p) 2 , and hence q 1 q 2 < 5.4p 1/4 (log p) 3 ≤ 0.01p 1/2 (log p) 2 . If q 1 ≥ 1.8 log p, then we apply Proposition 7.1 (using the fact that χ has odd order) and Proposition 7.2 to find q 1 q 2 ≤ (0.9p 1/4 log p)(2.93p 1/4 log p). The result follows.

Improved unconditional conductor bounds

In this section we will prove Proposition 2.4. First, we observe that applying Treviño's version of the Burgess Inequality (see [START_REF] Treviño | The Burgess inequality and the least k-th power non-residue[END_REF]) immediately 3 gives better constants D(k) for [12, Proposition 5.7] for 2 ≤ k ≤ 10.

To establish our result, we follow the proof of [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF]Theorem 5.8]. Details that are identical or very similar will be omitted. We may assume throughout that f ≥ 10 40 . If q 1 ≤ 100, the techniques in [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF] already give the desired result and hence we may assume q 1 > 100. We treat the cases of = 3 and > 3 separately.

First, we treat the cubic case. In light of Proposition 6.1, it suffices to verify that 10q 2 1 q 2 ≤ f and 3q 1 q 2 r ≤ f . The former condition easily holds, since applying Proposition 7.1 and Corollary 7.5 immediately gives 10q 2 1 q 2 < 24f 3/4 (log f ) 3 < f . We turn to the latter condition. Proposition 5.7 of [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF] (with the improved constants) gives: r ≤ (D 2 (k)( -1)) k f k+1 4k (log f ) 2 In a private correspondence, the author of [START_REF] Treviño | On the maximum number of consecutive integers on which a character is constant[END_REF] has indicated that the result contained therein holds when p > 10 13 ; a correction to [START_REF] Treviño | On the maximum number of consecutive integers on which a character is constant[END_REF] is forthcoming. 3 In the technical condition appearing in the proposition, one must replace 4f 1/2 by 2f 1/2 ; however, in our application, this condition will be automatically met so this has no real effect. Moreover, it is shown in [START_REF] Treviño | The Burgess inequality and the least k-th power non-residue[END_REF] that the technical condition may be dropped completely provided k ≥ 3.

Applying Corollary 7.5, this leads to:

3q 1 q 2 r ≤ 3 • 2.64f 1/2 (log f ) 2 • (D 2 (k)( -1)) k f k+1 4k (log f ) 1 2 ≤ 8 D 2 (k) k ( -1) k f 3k+1 4k (log f ) 5 2 ,
Choosing k = 4 we see that the desired condition holds when f ≥ 10 50 . Now we turn to the case when > 3. In light of Lemma 5.1, it suffices to verify that max q 1 , f 1/5 log f q 2 r ≤ f Using Corollaries 7.4, 7.5 we have q 1 q 2 ≤ 2.7f 1/2 (log f ) 2 as well as (f 1/5 log f )q 2 ≤ 3f 9/20 (log f ) 2 < 2.7f 1/2 (log f ) 2 .

Consequently, applying Proposition 5.7 of [START_REF] Mcgown | Norm-Euclidean cyclic fields of prime degree[END_REF] as before, we now have:

(8.1) max q 1 , f 1/5 log f q 2 r ≤ 2.7 D 2 (k) k ( -1) k f 3k+1 4k (log f ) For the primes = 5, 7 we use k = 4 and for the remaining values of we use k = 3.

We check that the expression on the righthand of (8.1) is less than f provided f is greater than the value given in Table 2.4.

Lemma 4 . 1 .

 41 Let N denote the image of the norm map N . Let α and β be nonzero elements of O K such that N β = f . Then

106 5 x 4 -162 5 x 3 + 866 5 x 2 Remark 4 . 2 .

 4242 -28 5 x -41, and β = -4x 4 -6x 3 + 33x 2 -2x -9. Then N α = -25 (and N β = 31). As 6 / ∈ N , Lemma 4.1 implies that m K (α/β) ≥ 25/31. Of course, we have an equality because |N (α/β)| = 25/31. Besides, the ten points found are in the same orbit under the action of the units on K/O K . Thus their Euclidean minimum is equal to 25/31, which is the Euclidean minimum of K, and they are the set of critical points, which has cardinality 10. Lemma 4.1 is a variation on Heilbronn's Criterion (Lemma 3.2). If min {|t| : t ∈ N , t ≡ N α (mod f )} > f, then we can deduce from it an equality f = a + b,

5 ) 3 .

 53 Now the result follows provided we define: g(p) := 2πF (p) Fix a real constant p 0 ≥ 10 6 . There exists an explicit constant C (see Table

Table 1 . 1 .

 11 Possible norm-Euclidean fields in F

	, 103, 109, 127, 157

  70 10 78 10 82 10 88 10 89 10 92 10 94 with the GRH 10 11 10 12 10 13 10 13 10 14 10 14 10 14

	3	5	7	11	13	17	19
	unconditional 10						

Table 2 .

 2 • 10 10 6 • 10 10 4 • 10 10 2 • 10 11 3 • 10 11 6 • 10 11 8 • 10 11 2 • 10 11 • 10 12 3 • 10 12 5 • 10 12 6 • 10 12 7 • 10 12 9 • 10 12 2 • 10 13 2 • 10 13 • 10 13 3 • 10 13 3 • 10 13 3 • 10 13 4 • 10 13 4 • 10 13 5 • 10 13 6 • 10 13

		1. Conductor bounds for norm-Euclidean fields in F es-
	tablished in [12] and [13]					
	3	5	7	11	13	17	19	23
	f < 4 29	31	37	41	43	47	53	59
	f < 3 61	67	71	73	79	83	89	97
	f < 2							

Table 2 .

 2 Any norm-Euclidean cyclic cubic field not listed in Theorem 1.2 must have discriminant ∆ = f 2 with f ≡ 1 (mod 3) where f is a prime in the interval (2 • 10 14 , 10 50 ).

	2. Conductor bounds for norm-Euclidean fields in F as-
	suming the GRH
	Theorem 1.6.

Table 2 .

 2 10 50 10 55 10 59 10 64 10 66 10 68 10 69 10 71 10 73 10 74 10 75 10 76 10 77 10 77 10 78 10 79 10 80 10 80 10 81 10 81 10 82 10 82 10 83 10 84

			5			7		
	f	11	31	41		29	43	
	M (K) 1/11 25/31 27/41 17/29 37/43	
		Table 2.3. Euclidean minima		
	3	5	7	11	13	17	19	23
	f < 29	31	37	41	43	47	53	59
	f < 61	67	71	73	79	83	89	97
	f <							

[START_REF] Chatland | Euclid's algorithm in real quadratic fields[END_REF]

. Conductor bounds for NE fields in F some additional modifications to show that all five fields with = 5, 7 in Table

1

.1 are norm-Euclidean. In fact, we compute the Euclidean minimum

Table 4 .

 4 

	59 999 999 974 303 2 3	431
	59 999 999 975 273 2 3 1933
	59 999 999 977 213 2 3	241
	59 999 999 979 929 2 3	673
	59 999 999 981 869 2 3	797
	59 999 999 989 823 2 3 2719
	59 999 999 990 599 2 3	199
	59 999 999 995 643 2 3	383
	59 999 999 999 717 2 3 3709
	59 999 999 999 911 2 3 2663
	Table 3.1. Example calculation
	f	M (K) C CPU time
	5 31 25/31 10 13.2 min
	5 41 27/41 10 67.0 min
	7 29 17/29 14 95.6 min
	7 43 37/43 14 475.8 min

1. Computation of the Euclidean minima

Table 4 .

 4 2. Euclidean minima in some cyclic cubic casesBut for any z ∈ O K , N (α -βz) ≡ N α (mod f ). As N (α -βz) is obviously an element of N , the result follows.

	time
	103 93/103 6 12 minutes
	109 76/109 6 1 day 20 hours
	127 94/127 6 2 days 17 hours

Table 7 .

 7 1. Values of C for various choices of p 0

	p) := exp	2B log p + 2 A log p -3	, G(p) := exp	B log p + 1 A log p -1

Table 8 .

 8 table of constants is routine; for each value of p 0 , we compute (being careful to round up) the quantity

	g(p 0 ) +	1 0 log p 0 p 1/4

. Corollary 7.4. If p ≥ 10 13 , then q 2 < 2.8 p 1/4 (log p) 2 . 1. Values of D(k) when 2 ≤ k ≤ 10 and f ≥ 10 20
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Proof. It will be crucial that = 3, which of course implies that χ only takes three values: 1, χ(q 2 ), and χ(r). In addition, we have χ(r) = χ(q 2 ) -1 = χ(q 2 ) 2 .

Let u be the integer such that 0 < u < q 1 and uq 2 r ≡ f (mod q 1 ). We set v = (f -uq 2 r)/q 1 , so that (6.1) f = uq 2 r + q 1 v.

Observe that f ≥ q 1 q 2 r implies v ≥ 0; moreover, we may assume v = 0 lest we contradict the fact that f is a prime. If q 1 does not divide v, then we may apply Heilbronn's Criterion with (6.1). Hence we may assume that q 1 divides v. We break the proof into a number of cases.

(1) Suppose u is odd. Then u + q 1 is even and 0 < (u + q 1 )/2 < q 1 , so every prime divisor p of (u + q 1 )/2 is such that χ(p) = 1. Besides, (q 1 , q 2 r) = 1 and q 1 divides v, so q 1 does not divide v -q 2 r. As q 1 > 2 and χ(2) = 1, we may apply Heilbronn's Criterion with (6.2) f = (u + q 1 )q 2 r + q 1 (v -q 2 r), provided v q 2 r.

(2) Suppose u is even. We distinguish cases according to the value of u + q 1 .

(a) If u + q 1 is composite, then any prime factor p of u + q 1 is such that p < q 1 . Therefore, we may again apply Heilbronn's Criterion with (6.2), provided v q 2 r. (b) If u + q 1 is prime and χ(u + q 1 ) = 1, then we proceed similarly. (c) Suppose u + q 1 is prime and χ(u + q 1 ) = χ(r). Notice that r ≤ u + q 1 .

(i) If u 2 + q 1 is composite or a prime such χ( u 2 + q 1 ) = 1, then (q 2 , u 2 + q 1 ) = 1 and we may use Heilbronn's Criterion with

2 + q 1 is prime and χ( u 2 + q 1 ) = χ(q 2 ), then we have q 2 ≤ u 2 + q 1 < 3 2 q 1 which also implies 0 ≤ u + 2(q 1 -q 2 ) < q 1 . If u = 2(q 2 -q 1 ), then q 1 does not divide v + r(u + 2(q 1 -q 2 )) and therefore we can apply Heilbronn's Criterion with f = (u + 2q 1 )(q 2 -q 1 )r + q 1 (v + r(u + 2(q 1 -q 2 ))), provided v ≥ 2q 2 r. Indeed, if (u + 2q 1 )(q 2 -q 1 )r ∈ N , then the valuation of (u + 2q 1 )(q 2 -q 1 )r at u 2 + q 1 is at least = 3, so

, then 4 divides u and q 1 < u 4 + q 1 < q 2 . Therefore, (q 2 , (u + 4q 1 )r) = 1 and (u + 4q 1 )q 2 r / ∈ N . So we may apply Heilbronn's Criterion with f = (u + 4q 1 )q 2 r + q 1 (v -4q 2 r), provided v ≥ 4q 2 r. Notice in this case that q 2 ≤ 3 2 q 1 and r ≤ u + q 1 = 2q 2 -q 1 ≤ 2q 1 . (iii) If u 2 + q 1 is prime and χ( u 2 + q 1 ) = χ(r), then q 2 < r ≤ u 2 + q 1 . Therefore, (q 2 , u+2q 1 ) = 1. Besides, r -q 1 < q 1 , so (q 2 , r -q 1 ) = 1. As a result, (u + 2q 1 )q 2 (r -q 1 ) / ∈ N . If r = u 2 + q 1 , then q 1 does not divide q 2 (u + 2q 1 -2r), so we can apply Heilbronn's Criterion with f = (r -q 1 )q 2 (u + 2q 1 ) + q 1 (v + q 2 (u + 2q 1 -2r)), assuming v ≥ 2q 2 r. If r = u 2 + q 1 , then u + q 1 -r = u 2 . As u + q 1 is prime and satisfies χ(u + q 1 ) = χ(r), we have (u + q 1 , (r -q 1 )q 2 ) = 1 and (r -q 1 )q 2 (u + q 1 ) / ∈ N . So we may use Heilbronn's Criterion with f = (r -q 1 )q 2 (u + q 1 ) + q 1 (v + q 2 (u + q 1 -r)), assuming v ≥ 0. (d) Suppose u + q 1 is prime and χ(u + q 1 ) = χ(q 2 ).

(i) If u 2 + q 1 is composite or a prime such that χ( u 2 + q 1 ) = 1, then we may use Heilbronn's Criterion with (6.3). (ii) If u 2 +q 1 is prime and χ( u 2 +q 1 ) = χ(q 2 ), then q 2 ≤ u 2 +q 1 < u+q 1 , so (q 1 q 2 , u + q 1 ) = 1, and by definition of r, r ≤ (u + q 1 ) 2 . If r < (u+q 1 ) 2 , then (u+q 1 )(q 2 -q 1 )r / ∈ N . Indeed, q 2 ≤ u 2 +q 1 , so q 2 -q 1 < q 1 . Besides, (u + q 1 ) 2 cannot divide r < (u + q 1 ) 2 . Consequently, we may apply Heilbronn's Criterion with (6.4) f = (u + q 1 )(q 2 -q 1 )r + q 1 (v + r(u + q 1 -q 2 )), assuming v ≥ q 2 r. Indeed, q 2 ≤ u + q 1 < 2q 1 , so 0 ≤ u + q 1q 2 < q 1 , and u = q 2 -q 1 is impossible, because it would imply q 1 < u 2 + q 1 < q 2 , which contradicts χ( u 2 + q 1 ) = 1. If r = (u + q 1 ) 2 , then ( u 2 + q 1 ) 2 < r; in this case, it follows from the definition of r that ( u 2 +q 1 , q 2 ) = 1 and we obtain u 2 +q 1 = q 2 . We may now apply Heilbronn's Criterion with f = 2uq 2 2 (u + q 1 ) + q 1 (v -uq 2 (u + q 1 )), assuming v ≥ uq 2 (u + q 1 ) (which holds if v ≥ q 2 (u + q 1 ) 2 = q 2 r). (iii) If u 2 + q 1 is prime and χ( u 2 + q 1 ) = χ(r), then q 2 < r ≤ u 2 + q 1 . Therefore, (u + q 1 , (q 2 -q 1 )r) = 1 and (u + q 1 )(q 2 -q 1 )r / ∈ N . Besides, 0 < q 2 -q 1 < u + q 1 -q 2 < 2q 1 -q 2 < q 1 , and we may apply Heilbronn's Criterion with (6.4), assuming v ≥ 0. Now we summarize. In all cases but one, the assumption v ≥ 2q 2 r is sufficient and hence it is enough to require that f ≥ 3q 1 q 2 r. (Recall that v = (f -uq 2 r)/q 1 .) In the exceptional case, we have shown that v ≥ 4q 2 r is sufficient; but in that situation we also know r ≤ 2q 1 and therefore it is enough to require that f ≥ 10q 2 1 q 2 . Corollary 6.2. Assume the GRH. Let K be a cyclic cubic field. If K is norm-Euclidean, then f < 4 • 10 10 .

Proof. We use Proposition 6.1 and the bounds on q 1 , q 2 and r given in [START_REF] Bach | Explicit bounds for primality testing and related problems[END_REF][START_REF] Mcgown | Norm-Euclidean Galois fields and the generalized Riemann hypothesis[END_REF].

Although the previous corollary is already known, we want to point out that Proposition 6.1 allows one to prove Theorem 1.2 using less computation than is employed in [START_REF] Mcgown | Norm-Euclidean Galois fields and the generalized Riemann hypothesis[END_REF]. More importantly, Proposition 6.1 will serve as one of the main ingredients in lowering the unconditional conductor bound (in the cubic case).

Character non-residues

Let χ be a non-principal Dirichlet character modulo a prime p. Suppose that q 1 < q 2 are the two smallest prime non-residues of χ. This section is devoted to