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THE EUCLIDEAN ALGORITHM IN QUINTIC AND SEPTIC

CYCLIC FIELDS

PIERRE LEZOWSKI AND KEVIN J. MCGOWN

Abstract. Conditionally on the Generalized Riemann Hypothesis (GRH),
we prove the following results: (1) a cyclic number field of degree 5 is norm-

Euclidean if and only if ∆ = 114, 314, 414; (2) a cyclic number field of degree 7

is norm-Euclidean if and only if ∆ = 296, 436; (3) there are no norm-Euclidean
cyclic number fields of degrees 19, 31, 37, 43, 47, 59, 67, 71, 73, 79, 97. Our

proofs contain a large computational component, including the calculation of

the Euclidean minimum in some cases; the correctness of these calculations
does not depend upon the GRH. Finally, we improve on what is known uncon-

ditionally in the cubic case by showing that any norm-Euclidean cyclic cubic

field must have conductor f ≤ 157 except possibly when f ∈ (2 · 1014, 1050).

1. Introduction

Let K be a number field with ring of integers OK , and denote by N = NK/Q
the absolute norm map. For brevity, we will sometimes use the term field to mean
a number field. We call a number field K norm-Euclidean if for every α, β ∈ OK ,
β 6= 0, there exists γ ∈ OK such that |N(α − γβ)| < |N(β)|. Or equivalently, we
may ask that for every ξ ∈ K there exists γ ∈ OK such that |N(ξ − γ)| < 1. In
the quadratic setting, it is known that there are only finitely many norm-Euclidean
fields and they have been identified [4, 2]; namely, a number field of the form

K = Q(
√
d) with d squarefree is norm-Euclidean if and only if

d = −1,−2,−3,−7,−11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 .

This result was partially generalized by Heilbronn [8] as follows.

Theorem 1.1 (Heilbronn). Let ` be a prime. Then there are at most finitely many
cyclic number fields with degree ` which are norm-Euclidean.

However, Heilbronn provided no upper bound on the discriminant of such fields.
Building on work of Heilbronn, Godwin, and Smith (see [9, 5, 15, 7]), the second
author proved the following result.

Theorem 1.2 ([13, Theorem 1.1]). Assuming the GRH, the norm-Euclidean cyclic
cubic fields are exactly those with discriminant

∆ = 72, 92, 132, 192, 312, 372, 432, 612, 672, 1032, 1092, 1272, 1572 .

Many of the results in the aforementioned paper go through for any cyclic field
of odd prime degree. The main goal of this paper is to establish the analogue of
Theorem 1.2 for quintic and septic fields.

Theorem 1.3. Assume the GRH. A cyclic field of degree 5 is norm-Euclidean if
and only if ∆ = 114, 314, 414. A cyclic field of degree 7 is norm-Euclidean if and
only if ∆ = 296, 436.
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` f

3 7, 9, 13, 19, 31, 37, 43, 61, 67, 103, 109, 127, 157
5 11, 31, 41
7 29, 43
11 23, 67, 331
13 53, 131
17 137
23 47, 139
29 59
41 83
53 107
61 367
83 167, 499
89 179

Table 1.1. Possible norm-Euclidean fields in F

Although we cannot give a complete determination for degree 11, it appears that
for some degrees there are no norm-Euclidean cyclic fields whatsoever. This was
observed (but not proved) for degree 19 in [12]. We prove the following:

Theorem 1.4. Assuming the GRH, there are no norm-Euclidean cyclic fields of
degrees 19, 31, 37, 43, 47, 59, 67, 71, 73, 79, 97.

This list of primes is in no way intended to be complete, and in fact, there may
well be infinitely many primes ` for which there are no norm-Euclidean cyclic fields
of degree `.

In other small degrees where we cannot give a complete determination, even
under the GRH, we come very close. Let F denote the collection of cyclic number
fields of prime degree 3 ≤ ` ≤ 100 and conductor f . In this setting the conductor-
discriminant formula tells us that discriminant equals ∆ = f `−1.

Theorem 1.5. Assuming the GRH, Table 1.1 contains all norm-Euclidean fields
in F . (However, the possibility remains that some of these fields may not be norm-
Euclidean.) Moreover, even without the GRH, the table is complete for f ≤ 1013.

We remark that the top portion of this table (when 3 ≤ ` ≤ 30) appeared
in [12] although it was unknown at the time (even under the GRH) whether the
table was complete. A large part of establishing Theorems 1.3, 1.4, and 1.5 was a
computation that took 3.862 (one-core) years of CPU time on a 96-core computer
cluster.1

Finally, we also give a slight improvement on what is known unconditionally in
the cubic case. In [12], it was shown that the conductor of any norm-Euclidean
cyclic cubic field not listed in Theorem 1.2 must lie in the interval (1010, 1070). We
improve this slightly, thereby obtaining:

1The cluster consists of 8 compute nodes, each with twelve 2 GHz cores, and 64 GB memory
per node.
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` 3 5 7 11 13 17 19

unconditional 1070 1078 1082 1088 1089 1092 1094

with the GRH 1011 1012 1013 1013 1014 1014 1014

Table 2.1. Conductor bounds for norm-Euclidean fields in F es-
tablished in [12] and [13]

` 3 5 7 11 13 17 19 23

f < 4 · 1010 6 · 1010 4 · 1010 2 · 1011 3 · 1011 6 · 1011 8 · 1011 2 · 1011

` 29 31 37 41 43 47 53 59

f < 3 · 1012 3 · 1012 5 · 1012 6 · 1012 7 · 1012 9 · 1012 2 · 1013 2 · 1013

` 61 67 71 73 79 83 89 97

f < 2 · 1013 3 · 1013 3 · 1013 3 · 1013 4 · 1013 4 · 1013 5 · 1013 6 · 1013

Table 2.2. Conductor bounds for norm-Euclidean fields in F as-
suming the GRH

Theorem 1.6. Any norm-Euclidean cyclic cubic field not listed in Theorem 1.2
must have discriminant ∆ = f2 with f ≡ 1 (mod 3) where f is a prime in the
interval (2 · 1014, 1050).

Computing up to the new lower bound of 2 · 1014 required an additional 3.104
years of CPU time on the same cluster.

2. Summary

For norm-Euclidean fields in F one has an upper bound on the conductor, which
is greatly improved with the use of the GRH; in [12] and [13] the conductor bounds
of Table 2.1 were established.

In this paper, we establish the following improved bounds:

Proposition 2.1. Assuming the GRH, Table 2.2 gives conductor bounds for norm-
Euclidean fields in F .

In [12] computations were carried out that show the portion of Table 1.1 where
3 ≤ ` ≤ 30 is complete up to f = 1010. We have extended these computations,
thereby obtaining the following unconditional result:

Proposition 2.2. Table 1.1 contains all possible norm-Euclidean fields in F with
f ≤ 1013. Additionally, when 50 ≤ ` ≤ 100, the table is complete up to the bounds
listed in Table 2.2. Finally, when ` = 3, the table is complete up to 2 · 1014.

Note that Propositions 2.1 and 2.2 imply the truth of Theorems 1.4 and 1.5.
In the case of ` = 3, it is known that all 13 of the fields listed in Table 1.1 are
norm-Euclidean (see [15]). In the case of ` = 5, Godwin [6] proved that f = 11 is
norm-Euclidean and Cerri [3] has verified this. Up until this point, it seems that
nothing was known about the remaining fields in the table. We use the algorithm
of Cerri from [3] (which has recently been extended by the first author in [11]) with
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` 5 7

f 11 31 41 29 43
M(K) 1/11 25/31 27/41 17/29 37/43

Table 2.3. Euclidean minima

` 3 5 7 11 13 17 19 23

f < 1050 1055 1059 1064 1066 1068 1069 1071

` 29 31 37 41 43 47 53 59

f < 1073 1074 1075 1076 1077 1077 1078 1079

` 61 67 71 73 79 83 89 97

f < 1080 1080 1081 1081 1082 1082 1083 1084

Table 2.4. Conductor bounds for NE fields in F

some additional modifications to show that all five fields with ` = 5, 7 in Table 1.1
are norm-Euclidean. In fact, we compute the Euclidean minimum

M(K) = sup
ξ∈K

mK(ξ), where mK(ξ) = inf
γ∈OK

|N(ξ − γ)|,

for each of these fields. It is well-known (and readily observed) that M(K) < 1
implies that K is norm-Euclidean.

Proposition 2.3. Table 2.3 gives the Euclidean minimum M(K) of the cyclic field
K having degree ` and conductor f .

It appears that the fields of degree 11 are currently out of reach of the algorithm;
problems arise both from the time of computation required and from issues related
to precision. In light of the discussion above, observe that the truth of the previous
three propositions immediately implies Theorems 1.3, 1.4, and 1.5. We detail the
computations necessary to justify Propositions 2.2 and 2.3 in Sections 3 and 4
respectively.

In Section 5 we derive the conductor bounds given in Proposition 2.1. This in-
volves a trick which allows us to weaken the condition for “non-norm-Euclideanity”
from [12] provided ` > 3. We are also able to accomplish this in the cubic case by
a different argument that takes advantage of the fact that the character takes only
three values. This is carried out in Section 6.

Finally, the remainder of the paper is devoted to supplying the necessary justifica-
tion for the upper bound on the conductor given in Theorem 1.6. The proof involves
applying some recent results of Treviño concerning non-residues (see [18, 19, 17])
together with ideas in [14, 12]. For completeness, we provide improved (uncondi-
tional) conductor bounds for degrees ` > 3 as well. However, as is the case when
` = 3, these bounds are currently beyond our computational limits.

Proposition 2.4. Table 2.4 gives (unconditional) conductor bounds for norm-
Euclidean fields in F .
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3. Computation for Proposition 2.2

Let K denote the cyclic field of prime degree ` and conductor f . We suppose
that K has class number one. Assume that (f, `) = 1 so that K is not the field
with f = `2. No field of this type having f = `2 is norm-Euclidean anyhow except
for Q(ζ9 + ζ−19 ); this is [12, Thereom 4.1]. We may assume that f is a prime with
f ≡ 1 (mod `); see [12, Section 2.1]. Denote by q1 < q2 the two smallest rational
primes that are inert in K. Let χ denote any fixed primitive Dirichlet character of
modulus f and order ` so that a rational prime p splits in K if and only if χ(p) = 1.
The following theorem is proved in [12].

Proposition 3.1 ([12, Theorem 3.1]). Suppose that there exists r ∈ Z+ satisfying
the following conditions:

(r, q1q2) = 1, χ(r) = χ(q2)−1,

rq2k 6≡ f (mod q21) for all k = 1, . . . , q1 − 1,

(q1 − 1)(q2r − 1) ≤ f.

Then K is not norm-Euclidean.

Let N denote the image of the norm map from OK to Z. The proof of the
previous proposition relies on:

Lemma 3.2 (Heilbronn’s Criterion). If one can write f = a + b, with a, b > 0,
χ(a) = 1, a /∈ N , b /∈ N , then K is not norm-Euclidean.

The advantage of Proposition 3.1 is that it requires far fewer steps than applying
Lemma 3.2 directly. As K has class number one, we have that an integer n 6= 0
lies in N if and only if ` divides the p-adic valuation of n for all primes p which are
inert in K (i.e. all primes p for which χ(p) 6= 0, 1).

To prove Proposition 2.2 we find q1, q2, r as described above. To save time, we
look only for prime values of r. See [12] for the details. By applying Proposition 3.1,
we show there are no norm-Euclidean fields of the given form with 104 ≤ f ≤ F`
where F` = 1013 when 3 ≤ ` ≤ 50 and F` equals the value in Table 2.2 when
50 ≤ ` ≤ 100. For example, Table 3 shows the values for the last ten fields in our
calculation when ` = 97.

To better manage the computation, the values of f being considered (for a
given `) were broken into subintervals of length 109. As mentioned earlier, this
computation took 3.862 years of CPU time on a 96-core computer cluster. Another
computation of the same nature was performed to check that there are no norm-
Euclidean fields when ` = 3 with 1013 ≤ f ≤ 2·1014, which took an additional 3.104
years of CPU time on the same cluster. Combining the computation just described
with the results mentioned in Section 1 proves Proposition 2.2.

4. Computation for Proposition 2.3

Previously, Cerri computed that the Euclidean minimum of the cyclic quintic
field with conductor f = 11 is equal to 1/11 (see [3]). We compute the Euclidean
minimum of the remaining four fields K with ` = 5, 7 in Table 1.1, using the
algorithm described in [11].

The algorithm is divided into two main parts:
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f q1 q2 r

59 999 999 974 303 2 3 431
59 999 999 975 273 2 3 1933
59 999 999 977 213 2 3 241
59 999 999 979 929 2 3 673
59 999 999 981 869 2 3 797
59 999 999 989 823 2 3 2719
59 999 999 990 599 2 3 199
59 999 999 995 643 2 3 383
59 999 999 999 717 2 3 3709
59 999 999 999 911 2 3 2663

Table 3.1. Example calculation

` f M(K) C CPU time

5 31 25/31 10 13.2 min
5 41 27/41 10 67.0 min
7 29 17/29 14 95.6 min
7 43 37/43 14 475.8 min

Table 4.1. Computation of the Euclidean minima

• Using an embedding of K into R`, we try to find a finite list of points
L ⊆ K and some real number k such that any point x ∈ K \ L we have
mK(x) < k. If k < 1 and L = ∅, this proves that K is norm-Euclidean.
• Next, we compute the Euclidean minimum of the remaining points in L. If

max{mK(x) | x ∈ L} > k, then

M(K) = max{mK(x) | x ∈ L}.

If not, we start again with smaller k.

The algorithm also returns the finite set of critical points, that is to say the points
x ∈ K/OK satisfying M(K) = mK(x). The results obtained are given in Table 4.1,
where C is the cardinality of the set of critical points.

In carrying out these computations, the second part of the algorithm takes far
longer than the first. Nevertheless, we can improve the running time with the
following observation: The points considered in our four cases are always of the
form α/β where α, β are nonzero elements of OK such that Nβ is the conductor
f . This provides some information on the Euclidean minimum of α/β.

Lemma 4.1. Let N denote the image of the norm map N . Let α and β be nonzero
elements of OK such that Nβ = f . Then

mK

(
α

β

)
≥ min {|t| : t ∈ N , t ≡ Nα (mod f)}

f
.

Proof. By definition of the Euclidean minimum,

mK

(
α

β

)
=

min {|N(α− βz)| : z ∈ OK}
Nβ

=
min {|N(α− βz)| : z ∈ OK}

f
.
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f M(K) C CPU time

103 93/103 6 12 minutes
109 76/109 6 1 day 20 hours
127 94/127 6 2 days 17 hours

Table 4.2. Euclidean minima in some cyclic cubic cases

But for any z ∈ OK , N(α − βz) ≡ Nα (mod f). As N(α − βz) is obviously an
element of N , the result follows. �

In particular, for a point α/β of this form, if we can find some z ∈ OK such that

|N(α− βz)| = min {|t| : t ∈ N , t ≡ Nα (mod f)} ,
we will then have

mK

(
α

β

)
=
|N(α− βz)|

f
.

To illustrate this idea, consider the field K = Q(x) where x5−x4−12x3+21x2+
x− 5 = 0, of degree 5 and conductor 31. At the end of running the algorithm, we
get a list L of ten points of the form α/β as above. One of the points found has
α = − 106

5 x4− 162
5 x3 + 866

5 x2− 28
5 x−41, and β = −4x4−6x3 + 33x2−2x−9. Then

Nα = −25 (and Nβ = 31). As 6 /∈ N , Lemma 4.1 implies that mK (α/β) ≥ 25/31.
Of course, we have an equality because |N (α/β)| = 25/31. Besides, the ten points
found are in the same orbit under the action of the units on K/OK . Thus their
Euclidean minimum is equal to 25/31, which is the Euclidean minimum of K, and
they are the set of critical points, which has cardinality 10.

Remark 4.2. Lemma 4.1 is a variation on Heilbronn’s Criterion (Lemma 3.2). If

min {|t| : t ∈ N , t ≡ Nα (mod f)} > f,

then we can deduce from it an equality

f = a+ b,

where a is the integer in (0, f) such that Nα ≡ a (mod f) and b = f − a.

Remark 4.3. The algorithm may also be applied to calculate the Euclidean min-
imum of cyclic cubic number fields. Table 4.2 presents the results obtained in
some of the norm-Euclidean cases where the Euclidean minimum was previously
unknown. For conductors f < 103, one can refer to [10]. As observed in [7], the
field with conductor 157 seems harder to deal with; to date, no one has successfully
computed the Euclidean minimum of this field.

5. Improved GRH conductor bounds when ` > 3

We adopt the notation given in the first paragraph of Section 3. In addition,
from now on and throughout the paper, r ∈ Z+ will denote the smallest positive
integer such that (r, q1q2) = 1 and χ(r) = χ(q2)−1. However, we do not assume any
congruence conditions on r. The following lemma is an improvement of statement
(3) from Theorem 3.1 of [12]; it is essentially a direct application of the same
theorem.
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Lemma 5.1. Let us assume q1 6= 2, 3, 7. If K is norm-Euclidean, then

f < max

{
q1,

2.1

`
f1/` log f

}
q2r.

Proof. Let u be the integer such that 0 < u < q1 and uq2r ≡ f (mod q1). We
set v = (f − uq2r)/q1, so that f = uq2r + q1v. This equation can be used with
Heilbronn’s Criterion provided v > 0 and q1v /∈ N . Clearly v 6= 0 lest we contradict
the fact that f is prime. Therefore, as we are assuming K is norm-Euclidean, it
must be the case that v < 0 or q1v ∈ N . However, v < 0 immediately implies that
f < q1q2r, and there is nothing more to prove. Hence it suffices to assume v > 0.
In this case we must have q1v ∈ N which implies q`−11 divides v. Now we see that

v > 0 leads to q`−11 ≤ v < f/q1 and hence q1 < f1/`. As q1 6= 2, 3, 7, we know
from [12, Theorem 3.1] that f < 2.1q1q2r log q1 and the result follows. �

Proposition 5.2. Assume the GRH. If K is norm-Euclidean and f > 109, then

f ≤ max

{
(1.17 log(f)− 6.36)2,

2.1

`
f1/` log(f)

}
·
(
2.5(`− 1) log(f)2

)2
.

Proof. We use the bound on q1 given in [1] and the bounds on q2 and r given in [13,
Theorems 3.1 and 3.2]. If q1 6= 2, 3, 7, Lemma 5.1 together with these bounds gives
the result. This completes the proof in most cases, but it remains to check that we
obtain better bounds in the other special cases.

If q1 = 7, then f < 21 log 7 · q2r by [12, Theorem 3.1]. We easily see that
(1.17 log f − 6.36)2 > 21 log 7 for any f > 60, 000. The result now follows from [13,
Theorem 3.2]. If q1 = 2, 3 and q2 > 5, then we obtain f < 5q2r from [12, Theo-
rem 3.1] and the result follows in the same manner.

Finally, it remains to treat the two special cases: (q1, q2) = (2, 3), (3, 5). At
this point, we assume f ≥ 109. Proposition 5.1 of [12] tells us that f is bounded
above by 72(` − 1)f1/2 log(4f) + 35 and 507(` − 1)f1/2 log(9f) + 448 in the first
and second case respectively. In either case, the quantity in question is bounded
above by 568(`− 1)f1/2 log f . Consequently, we have f ≤ (568(`− 1) log f)2. Now,
one easily checks that (1.17 log f − 6.36)2(2.5)2 ≥ 1442 and 5682(`− 1)2(log f)2 ≤
1442(`− 1)2(log f)4, which implies the desired result. �

Invoking the previous proposition immediately yields the GRH conductor bounds
given in Table 2.2 when ` > 3. The ` = 3 entry of Table 2.2 will be obtained in
Corollary 6.2. This completes the proof of Theorems 1.3, 1.4, and 1.5.

6. The cyclic cubic case revisited

Unfortunately, the trick employed in the previous section does not help us when
` = 3. Nonetheless, in the cubic case, we are able to slightly weaken the conditions
for “non-norm-Euclideanity” given in [12, Theorem 3.1]. Notice that the following
result contains no congruence conditions and there is no extra log q1 factor. The
proof again relies on Heilbronn’s Criterion (Lemma 3.2), but we will take advantage
of the fact that χ only takes three different values in this very special case.

Proposition 6.1. Let K be a cyclic cubic number field. If q1 6= 2 and f ≥
q1q2 max(3r, 10q1), then K is not norm-Euclidean.
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Proof. It will be crucial that ` = 3, which of course implies that χ only takes three
values: 1, χ(q2), and χ(r). In addition, we have χ(r) = χ(q2)−1 = χ(q2)2.

Let u be the integer such that 0 < u < q1 and uq2r ≡ f (mod q1). We set
v = (f − uq2r)/q1, so that

(6.1) f = uq2r + q1v.

Observe that f ≥ q1q2r implies v ≥ 0; moreover, we may assume v 6= 0 lest we
contradict the fact that f is a prime. If q1 does not divide v, then we may apply
Heilbronn’s Criterion with (6.1). Hence we may assume that q1 divides v. We break
the proof into a number of cases.

(1) Suppose u is odd. Then u + q1 is even and 0 < (u + q1)/2 < q1, so every
prime divisor p of (u + q1)/2 is such that χ(p) = 1. Besides, (q1, q2r) = 1
and q1 divides v, so q1 does not divide v− q2r. As q1 > 2 and χ(2) = 1, we
may apply Heilbronn’s Criterion with

(6.2) f = (u+ q1)q2r + q1(v − q2r),
provided v > q2r.

(2) Suppose u is even. We distinguish cases according to the value of u+ q1.
(a) If u + q1 is composite, then any prime factor p of u + q1 is such that

p < q1. Therefore, we may again apply Heilbronn’s Criterion with
(6.2), provided v > q2r.

(b) If u+ q1 is prime and χ(u+ q1) = 1, then we proceed similarly.
(c) Suppose u+ q1 is prime and χ(u+ q1) = χ(r). Notice that r ≤ u+ q1.

(i) If u
2 + q1 is composite or a prime such χ(u2 + q1) = 1, then

(q2,
u
2 + q1) = 1 and we may use Heilbronn’s Criterion with

(6.3) f = (u+ 2q1)q2r + q1(v − 2q2r),

provided v ≥ 2q2r.
(ii) If u

2 + q1 is prime and χ(u2 + q1) = χ(q2), then we have q2 ≤
u
2 + q1 <

3
2q1 which also implies 0 ≤ u + 2(q1 − q2) < q1. If

u 6= 2(q2− q1), then q1 does not divide v+ r(u+ 2(q1− q2)) and
therefore we can apply Heilbronn’s Criterion with

f = (u+ 2q1)(q2 − q1)r + q1(v + r(u+ 2(q1 − q2))),

provided v ≥ 2q2r. Indeed, if (u+ 2q1)(q2 − q1)r ∈ N , then the
valuation of (u + 2q1)(q2 − q1)r at u

2 + q1 is at least ` = 3, so

(u2 + q1)2 divides r ≤ u + q1. Then q21 < (u2 + q1)2 ≤ r < 2q1,
which is impossible.
If u = 2(q2 − q1), then 4 divides u and q1 < u

4 + q1 < q2.
Therefore, (q2, (u+4q1)r) = 1 and (u+4q1)q2r /∈ N . So we may
apply Heilbronn’s Criterion with

f = (u+ 4q1)q2r + q1(v − 4q2r),

provided v ≥ 4q2r. Notice in this case that q2 ≤ 3
2q1 and r ≤

u+ q1 = 2q2 − q1 ≤ 2q1.
(iii) If u

2 + q1 is prime and χ(u2 + q1) = χ(r), then q2 < r ≤ u
2 + q1.

Therefore, (q2, u+2q1) = 1. Besides, r−q1 < q1, so (q2, r−q1) =
1. As a result, (u + 2q1)q2(r − q1) /∈ N . If r 6= u

2 + q1, then q1
does not divide q2(u + 2q1 − 2r), so we can apply Heilbronn’s
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Criterion with

f = (r − q1)q2(u+ 2q1) + q1(v + q2(u+ 2q1 − 2r)),

assuming v ≥ 2q2r.
If r = u

2 + q1, then u + q1 − r = u
2 . As u + q1 is prime and

satisfies χ(u + q1) = χ(r), we have (u + q1, (r − q1)q2) = 1 and
(r − q1)q2(u + q1) /∈ N . So we may use Heilbronn’s Criterion
with

f = (r − q1)q2(u+ q1) + q1(v + q2(u+ q1 − r)),
assuming v ≥ 0.

(d) Suppose u+ q1 is prime and χ(u+ q1) = χ(q2).
(i) If u

2 + q1 is composite or a prime such that χ(u2 + q1) = 1, then
we may use Heilbronn’s Criterion with (6.3).

(ii) If u2 +q1 is prime and χ(u2 +q1) = χ(q2), then q2 ≤ u
2 +q1 < u+q1,

so (q1q2, u+ q1) = 1, and by definition of r, r ≤ (u+ q1)2.
If r < (u+q1)2, then (u+q1)(q2−q1)r /∈ N . Indeed, q2 ≤ u

2 +q1,

so q2 − q1 < q1. Besides, (u+ q1)2 cannot divide r < (u+ q1)2.
Consequently, we may apply Heilbronn’s Criterion with

(6.4) f = (u+ q1)(q2 − q1)r + q1(v + r(u+ q1 − q2)),

assuming v ≥ q2r. Indeed, q2 ≤ u + q1 < 2q1, so 0 ≤ u + q1 −
q2 < q1, and u = q2 − q1 is impossible, because it would imply
q1 <

u
2 + q1 < q2, which contradicts χ(u2 + q1) 6= 1.

If r = (u+ q1)2, then (u2 + q1)2 < r; in this case, it follows from
the definition of r that (u2 +q1, q2) 6= 1 and we obtain u

2 +q1 = q2.
We may now apply Heilbronn’s Criterion with

f = 2uq22(u+ q1) + q1(v − uq2(u+ q1)),

assuming v ≥ uq2(u+ q1) (which holds if v ≥ q2(u+ q1)2 = q2r).
(iii) If u

2 + q1 is prime and χ(u2 + q1) = χ(r), then q2 < r ≤ u
2 + q1.

Therefore, (u + q1, (q2 − q1)r) = 1 and (u + q1)(q2 − q1)r /∈ N .
Besides, 0 < q2 − q1 < u+ q1 − q2 < 2q1 − q2 < q1, and we may
apply Heilbronn’s Criterion with (6.4), assuming v ≥ 0.

Now we summarize. In all cases but one, the assumption v ≥ 2q2r is sufficient and
hence it is enough to require that f ≥ 3q1q2r. (Recall that v = (f − uq2r)/q1.) In
the exceptional case, we have shown that v ≥ 4q2r is sufficient; but in that situation
we also know r ≤ 2q1 and therefore it is enough to require that f ≥ 10q21q2. �

Corollary 6.2. Assume the GRH. Let K be a cyclic cubic field. If K is norm-
Euclidean, then f < 4 · 1010.

Proof. We use Proposition 6.1 and the bounds on q1, q2 and r given in [1, 13]. �

Although the previous corollary is already known, we want to point out that
Proposition 6.1 allows one to prove Theorem 1.2 using less computation than is
employed in [13]. More importantly, Proposition 6.1 will serve as one of the main
ingredients in lowering the unconditional conductor bound (in the cubic case).

7. Character non-residues

Let χ be a non-principal Dirichlet character modulo a prime p. Suppose that
q1 < q2 are the two smallest prime non-residues of χ. This section is devoted to
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improving the constants appearing in [14]. We begin by quoting a result proved by
Treviño:

Proposition 7.1 ([19, Theorem 1.2]). Suppose p > 3. Then q1 < 0.9 p1/4 log p
unless χ is quadratic and p ≡ 3 (mod 4), in which case q1 < 1.1 p1/4 log p.

The following proposition will lead to improved bounds on q2 and the product
q1q2:

Proposition 7.2. Suppose p ≥ 106, and that u is a prime with u ≥ A log p where
A = (2/5)e3/2 ≈ 1.79. Suppose χ(n) = 1 for all n ∈ [1, H] with (n, u) = 1. Then

H ≤ g(p) p1/4 log p ,

where g(p) is an explicitly given function. Moreover, g(p) is decreasing for p ≥ 106

and g(p)→ 2.71512....

Proof. Similar to the proof of [14, Theorem 3], we may reduce to the case where
H ≤ (A log p − 1)1/2p1/2. We may assume H ≥ Kp1/4 log p where K := 2.7151,
or else there is nothing to prove. We set h = bA log pc, r = dB log pe, with A =
(2/5)e3/2 and B = 1/5.

For 1/2 ≤ y ≤ 1, we have exp(y/2B) ≤ exp(1/2B)y, so in particular

p1/2r = exp

(
1

2B

B log(p)

r

)
≤ exp

(
1

2B

)
B log(p)

r
.

But B exp(1/2B) log(p) = eA/2 · log(p) ≤ e(h+ 1)/2, from which we deduce

(7.1)

(
2r

e(h+ 1)

)r
≤ p−1/2.

One verifies that Kp1/4 > 32A for p ≥ 106 and hence H > 32h. We set X :=
H/(2h) and observe that we have the a priori lower bound

X =
H

2h
≥ Kp1/4 log p

2A log p
=
Kp1/4

2A
,

and, in particular, X > 16 from the previous sentence. We will make use of the
function f(X,u) defined by

f(X,u) = 1− π2

3

(
1

2X2
+

1

2X
+

1

1− u−1
· 1 + logX

X

)
;

observe that

f̂(p) := f

(
Kp1/4

2A
, A log p

)
≤ f(X,u) .

Combining [14, Proposition 1], [19, Theorem 1.1], and an explicit version of Stir-
ling’s Formula (see [16], for example), we obtain

(7.2)
6

π2

(
1− u−1

)
h(h− 2)2r

(
H

2h

)2

f̂(p) ≤
√

2

(
2r

e

)r
phr + (2r − 1)p1/2h2r.

Using the convexity of the logarithm, we establish the following estimates:

(7.3)

(
h

h− 2

)r
≤ F (p) ,

(
h+ 1

h

)r
≤ G(p)

F (p) := exp

(
2B log p+ 2

A log p− 3

)
, G(p) := exp

(
B log p+ 1

A log p− 1

)
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p0 106 108 1010 1012 1014 1016 1018 1020

C 6.9236 4.1883 3.5764 3.3290 3.2019 3.1246 3.0716 3.0320

p0 1022 1024 1026 1028 1030 1032 1034 1036

C 3.0008 2.9754 2.9542 2.9363 2.9208 2.9074 2.8956 2.8852

p0 1038 1040 1042 1044 1046 1048 1050 1052

C 2.8759 2.8676 2.8601 2.8533 2.8471 2.8415 2.8363 2.8315

Table 7.1. Values of C for various choices of p0

Note that F (p) and G(p) are both decreasing functions of p. Rearranging (7.2) and
applying (7.3), (7.1) gives:

6

π2

(
1− u−1

)
H2f̂(p)(7.4)

≤ 4h(2r − 1)

(
h

h− 2

)2r

p1/2

[
1 +

√
2

2r − 1

(
2r

eh

)r
p1/2

]

≤ 4h(2r − 1)F (p)2p1/2

[
1 +

√
2G(p)

2r − 1

(
2r

e(h+ 1)

)r
p1/2

]

≤ 4(A log p)(2B log p+ 1)F (p)2p1/2

(
1 +

√
2G(p)

2r − 1

)

≤ 8ABp1/2(log p)2F (p)2
(

1 +
1

2B log p

)(
1 +

√
2G(p)

2B log p− 1

)

≤ 8AB p1/2(log p)2F (p)2
(

1 +
5

2 log p

)(
1 +

5
√

2G(p)

2 log p− 5

)
(7.5)

Now the result follows provided we define:

g(p) := 2πF (p)

√√√√√A
(

1 + 5
2 log p

)(
1 + 5

√
2G(p)

2 log p−5

)
15f̂(p)

(
1− 1

A log p

) . �

Proposition 7.3. Fix a real constant p0 ≥ 106. There exists an explicit constant
C (see Table 7.1) such that if p ≥ p0 and u is a prime with u ≥ 1.8 log p, then there
exists n ∈ Z+ with (n, u) = 1, χ(n) 6= 1, and n < C p1/4 log p.

Proof. Let n0 denote the smallest n ∈ Z+ such that (n, u) = 1 and χ(n) 6= 1. We
apply Proposition 7.2 to find

n0 − 1 ≤ g(p0) p1/4 log p .

Computation of the table of constants is routine; for each value of p0, we compute
(being careful to round up) the quantity

g(p0) +
1

p
1/4
0 log p0

. �

Corollary 7.4. If p ≥ 1013, then q2 < 2.8 p1/4(log p)2.
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q1 arbitrary q1 > 100

k D1(k) D2(k)

2 36.9582 5.6360
3 25.3026 3.8981
4 21.3893 3.3703
5 19.4132 3.1104
6 18.2048 2.9523
7 17.3797 2.8439
8 16.7819 2.7650
9 16.3162 2.7030
10 15.9414 2.6525

Table 8.1. Values of D(k) when 2 ≤ k ≤ 10 and f ≥ 1020

Proof. If q1 > 1.8 log p, then we apply the previous proposition and we are done.
Hence we may assume that q1 ≤ 1.8 log p. If q2 = 3, then we are clearly done,
so we may also assume q2 6= 3. In this case, we combine [14, Lemma 7] and [18,
Theorem 1]2 to conclude q2 ≤ (1.55p1/4 log p)(1.8 log p) + 1 < 2.8p1/4(log p)2. �

Corollary 7.5. Suppose p ≥ 1030 and that χ has odd order. Then

q1q2 < 2.64 p1/2(log p)2 .

Proof. If q1 < 1.8 log p, we use the previous corollary (and its proof) to obtain
q2 < 3p1/4(log p)2, and hence q1q2 < 5.4p1/4(log p)3 ≤ 0.01p1/2(log p)2. If q1 ≥
1.8 log p, then we apply Proposition 7.1 (using the fact that χ has odd order) and
Proposition 7.2 to find q1q2 ≤ (0.9p1/4 log p)(2.93p1/4 log p). The result follows. �

8. Improved unconditional conductor bounds

In this section we will prove Proposition 2.4. First, we observe that applying
Treviño’s version of the Burgess Inequality (see [17]) immediately3 gives better
constants D(k) for [12, Proposition 5.7] for 2 ≤ k ≤ 10.

To establish our result, we follow the proof of [12, Theorem 5.8]. Details that are
identical or very similar will be omitted. We may assume throughout that f ≥ 1040.
If q1 ≤ 100, the techniques in [12] already give the desired result and hence we may
assume q1 > 100. We treat the cases of ` = 3 and ` > 3 separately.

First, we treat the cubic case. In light of Proposition 6.1, it suffices to verify
that 10q21q2 ≤ f and 3q1q2r ≤ f . The former condition easily holds, since applying
Proposition 7.1 and Corollary 7.5 immediately gives 10q21q2 < 24f3/4(log f)3 <
f . We turn to the latter condition. Proposition 5.7 of [12] (with the improved
constants) gives:

r ≤ (D2(k)(`− 1))kf
k+1
4k (log f)

1
2 .

2 In a private correspondence, the author of [18] has indicated that the result contained therein

holds when p > 1013; a correction to [18] is forthcoming.
3In the technical condition appearing in the proposition, one must replace 4f1/2 by 2f1/2;

however, in our application, this condition will be automatically met so this has no real effect.
Moreover, it is shown in [17] that the technical condition may be dropped completely provided

k ≥ 3.
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Applying Corollary 7.5, this leads to:

3q1q2r ≤ 3 · 2.64f1/2(log f)2 · (D2(k)(`− 1))kf
k+1
4k (log f)

1
2

≤ 8D2(k)k(`− 1)kf
3k+1
4k (log f)

5
2 ,

Choosing k = 4 we see that the desired condition holds when f ≥ 1050.
Now we turn to the case when ` > 3. In light of Lemma 5.1, it suffices to verify

that

max
{
q1 , f

1/5 log f
}
q2r ≤ f

Using Corollaries 7.4, 7.5 we have q1q2 ≤ 2.7f1/2(log f)2 as well as

(f1/5 log f)q2 ≤ 3f9/20(log f)2 < 2.7f1/2(log f)2 .

Consequently, applying Proposition 5.7 of [12] as before, we now have:

(8.1) max
{
q1 , f

1/5 log f
}
q2r ≤ 2.7D2(k)k(`− 1)kf

3k+1
4k (log f)

5
2 .

For the primes ` = 5, 7 we use k = 4 and for the remaining values of ` we use k = 3.
We check that the expression on the righthand side of (8.1) is less than f provided
f is greater than the value given in Table 2.4.
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