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Abstract: We consider a time optimal control problem with point target for a class of infinite
dimensional systems governed by abstract wave operators. In order to ensure the existence of a
time optimal control, we consider controls of energy bounded by a prescribed constant E > 0.
Even when this control constraint is absent, in many situations, due to the hyperbolicity of the
system under consideration, a target point cannot be reached in arbitrarily small time and there
exists a minimal universal controllability time T∗ > 0, so that for every points y0 and y1 and
every time T > T∗, there exists a control steering y0 to y1 in time T . Simultaneously this may
be impossible if T < T∗ for some particular choices of y0 and y1 .
In this note we point out the impact of the strict positivity of the minimal time T∗ on the
structure of the norm of time optimal controls. In other words, the question we address is the
following: If τ is the minimal time, what is the L2-norm of the associated time optimal control?
For different values of y0, y1 and E, we can have τ 6 T∗ or τ > T∗. If τ > T∗, the time optimal
control is unique, given by an adjoint problem and its L2-norm is E, in the classical sense. In
this case, the time optimal control is also a norm optimal control. But when τ < T∗, we show,
analyzing the string equation with Dirichlet boundary control, that, surprisingly, there exist
time optimal controls which are not of maximal norm E.

Keywords: Wave equations, Optimal control, Open loop control systems, Point-to-point
control, Reachable states, Norm-optimal controls, Minimal control time.

1. INTRODUCTION

Time optimal control problems have been intensively stud-
ied for finite dimensional systems showing that the optimal
control satisfies a Pontryagin maximum principle, it is
bang-bang and unique. For a survey of these results, we
refer to the books Lee and Markus (1967) and Agrachev
and Sachkov (2004) and to the original work by Bellman
et al. (1956). These results have been extended in Fattorini
(1964) to infinite dimensional systems and reported in the
books by Lions (1968) and Fattorini (2005).

Many new results have been obtained for parabolic type
systems; see for instance Mizel and Seidman (1997), Wang
(2008), Phung and Wang (2013) and Kunisch and Wang
(2013). However only few results exist for conservative
systems and they only concern distributed controls; see
for instance Fattorini (1977), Lohéac and Tucsnak (2013)
and Kunisch and Wachsmuth (2013b,a).

In all the above mentioned works, in order to ensure
the existence of a time optimal control, the controls are
assumed to be bounded in L∞. But for the wave equation,
due to the finite velocity of propagation, the main difficulty
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arises from the fact that it is globally controllable only for
a large enough control time.

In the present work, in order to analyse this delicate issue,
we chose an Hilbertian approach and assume that the
control is bounded in L2. This simplification allows us to
easily consider the case of boundary control operators. In
section 4, we consider the example of the string equation
with Dirichlet boundary control, where some computations
are explicit.

According to Gugat and Leugering (2008) (Theorem 3.1),
the string equation with Dirichlet boundary control cannot
be controlled with classical bang-bang controls, i.e. con-
trols taking their values in {−1, 1} for almost every time.
In addition, for norm optimal control problems, which is
a problem related to that of time optimal control as we
will see later, Bennighof and Boucher (1992) consider a
string equation with Newman control at both ends and
prove that for constant state targets (with constant initial
data), the time optimal controls are of bang-off-bang type,
i.e. controls taking values in {−1, 0, 1} for almost every
time. Thus, even for constant data, time optimal controls
are not, in general, of bang-bang form. A more general
result on L∞-norm optimal controls, for the same system,
can be found in Gugat (2002) and its generalisation to any
Lp-norm optimal controls in Gugat and Leugering (2002).



In order to give a precise statement of our result, let us
first recall some classical definitions and notations from
control theory, see for instance Tucsnak and Weiss (2009).

Throughout this paper, X and U are real Hilbert spaces
identified with their duals. We denote by T = (Tt)t>0

a strongly continuous semigroup on X generated by an
operator A : D(A)→ X. In all this paper, we assume that
A is skew-adjoint and has compact resolvent.
The notation X1 stands for D(A) equipped with the norm
‖z‖X1

= ‖(βId − A)z‖X , where β ∈ ρ(A) is fixed, while
X−1 is the completion of X with respect to the norm
‖z‖X−1

= ‖(βId− A)−1z‖X . Let us also denote by A and
T the extensions of A to X and T to X−1.
Let us now introduce the control operator B ∈ L(U,X−1).
Then the infinite dimensional system under consideration
is:

y′ = Ay +Bu y(0) = y0 , (1)

where y is the state of the system and u ∈ L2(R+, U) is
the control and y0 ∈ X is the initial state position. The
solution of (1) is:

y(t) = Tty0 + Φtu (t > 0) ,

where Φt ∈ L
(
L2([0, t], U), X−1

)
is the input to state map

defined by:

Φtu =

∫ t

0

Tt−sBu(s) ds (t > 0 , u ∈ L2([0, t], U)) .

We will say that B is an admissible control operator for T
if there exists t > 0 such that Ran Φt ⊂ X and in the
sequel we will assume that the pair (T, B) satisfies this
condition. Finally, we will say that the pair (A,B) is
exactly controllable in time T (T > 0) if Ran ΦT = X.
In the sequel, we will assume that the pair (A,B) is
exactly controllable in some time T > 0 and we define
the universal controllability time:

T∗ = inf{T > 0 , Ran ΦT = X} > 0 . (2)

To be more precise, the time optimal control problem we
address in this work is the following:

Problem 1. Given E > 0 and y0, y1 ∈ X with y0 6= y1,
to find the minimal time T > 0 such that there exists
u ∈ L2([0, T ], U) satisfying:

• ‖u‖L2([0,T ],U) 6 E;
• the solution y of (1) with control u and initial

condition y0 satisfies y(T ) = y1.

In all this note, E defines a given nonnegative constant.

Our first result is as follows:

Theorem 1.1. Let y0, y1 ∈ X with y0 6= y1.
Assume that the pair (A,B) is exactly controllable and
fix T > 0. Assume that a control u ∈ L2([0, T ], U) with
‖u‖L2([0,T ],U) 6 E steering y0 to y1 in time T exists.

Then there exists a minimal time τ > 0 such that y0 can
be steered to y1 in time τ = τ(y0, y1;E) preserving this
bound, i.e.

τ = min
{
T > 0 , ∃u ∈ L2([0, T ], U) ,

‖u‖L2([0,T ],U) 6 E and

ΦTu = y1 − TTy0} . (3)

Moreover, if τ > T∗ (with T∗ > 0 defined by (2)), there ex-
ists a unique control u ∈ L2([0, τ ], U) with ‖u‖L2([0,τ ],U) 6

E steering y0 to y1 in time τ . In addition, we have

‖u‖L2([0,τ ],U) = E (4)

and there exists η ∈ X \ {0} such that:

u = Φ∗τη . (5)

Let us remind that for every η ∈ X, (Φ∗T η)(t) = B∗z(t)
(t ∈ [0, T ]) where z is solution of:

z′ = −A∗z , z(T ) = η .

The proof of the characterization of the optimal control
Theorem 1.1 when τ > T∗ is similar to the one by (Lohéac
and Tucsnak, 2013, Theorem 1.4) and is not repeated here.
We only give the key argument for the existence of τ in
section 2, see Proposition 2.1.

Remark 1.1. If τ > T∗ the minimal time control is the
minimal norm control in time τ steering y0 to y1. That
is to say that, if τ > T∗, the time optimal control is
L2([0, τ ], U)-norm optimal. This fact gives the same result
as the one in Wang and Zuazua (2012) for the heat
equation.

Theorem 1.1 does not give any relevant information when
τ 6 T∗. In fact when τ 6 T∗ the situation is less
clear. In section 3, we show in Proposition 3.1, under
suitable assumptions on the reachable set, that for τ < T∗
there exists a time optimal control u ∈ L2([0, τ ], U) with
‖u‖L2([0,τ ],U) < E. That is to say that, when τ < T∗,
there exist time optimal controls which do not satisfy the
norm saturating property (4). This situation appears at
least when y0 = 0 and it is a consequence of the following
two properties of the reachable sets: They are closed and
strictly increasing as a function of t̄ < T∗.

More precisely, the way we build a non saturation time
optimal control is by choosing a target y1 ∈ X so that y1 is
accessible from 0 in a time t̄ > 0 but not for times s < t̄. In
this case, it is clear that τ(0, y1;E) > t̄ whatever E > 0 is.
Choosing such a target y1 and choosing a constant E > 0
large enough, we will obtain that τ(0, y1;E) = t̄ and the
existence of a time optimal control whose norm is not E.
In section 4, we will show that the assumptions made in
Proposition 3.1 are fulfilled for the string equation with
Dirichlet boundary control.

2. WELL POSEDNESS

In this paragraph, we will prove that τ defined by (3)
exists, i.e., the set{

T > 0 , ∃u ∈ L2([0, T ], U) , ‖u‖L2([0,T ],U) 6 E

and y1 − TTy0 = ΦTu}
admits a minimum.

Before going further, let us introduce some ad hoc nota-
tions and spaces. Let us define the set of points which can
be reached from 0,

R2
t = Φt

(
L2([0, t], U)

)
(t > 0) , (6)

with the convention R2
0 = {0}.

Endowed with the norm:

‖y‖R2
t

= inf
{
‖u‖L2([0,T ],U) , u ∈ L2([0, T ], U) ,

y = Φtu} ,



it constitutes a Banach space.
We also define the closed ball of radius E in R2

t :

B2
t (E) =

{
y ∈ R2

t , ‖y‖R2
t
6 E

}
(t > 0) .

Using these notations, we have:

τ(y0, y1;E) = inf
{
T > 0 , y1 − TTy0 ∈ B2

T (E)
}
. (7)

By linearity of Φt, for every E > 0 and t > 0, B2
t (E) is a

convex set of X.

Let us first give a basic property on the sets R2
t .

Lemma 2.1. Let 0 < s 6 t, then we have

R2
t = TsR2

t−s +R2
s ,

and the inclusions R2
s ⊂ R2

t ⊂ X are continuous.

In addition, the universal time T∗ defined by (2) is given
by T∗ = inf

{
T > 0 , R2

T = X
}

.

By a simple adaptation of Fattorini (2005) (Lemma 3.1.1
and Theorem 3.1.2), we obtain:

Proposition 2.1. Let y0, y1 ∈ X with y0 6= y1 and assume
that a time T > 0 and a control u ∈ L2([0, T ], U) with
‖u‖L2([0,T ],U) 6 E steering y0 to y1 in time T exist.

Then the set
{
T > 0 , y1 − TTy0 ∈ B2

T (E)
}

admits a min-
imum τ .

This result ensures the existence of a time optimal control
u ∈ L2([0, τ ], U) whatever the minimal time τ > 0 is.

3. LACK OF NORM OPTIMALITY WHEN τ 6 T∗

Proposition 3.1. Assume that T∗, defined by (2), is non-
negative.
Let 0 < t̄ 6 T∗ and assume there exists y1 ∈ R2

t̄ such that,

y1 6∈ R2
s (s ∈ (0, t̄)) . (8)

Then for every γ ∈ R∗, the minimal time τ = τ(0, γy1;E)
(defined by (3)) needed to steer 0 to γy1 is greater that t̄.

In addition, for |γ| > 0 small enough, we have τ(0, γy1;E) =
t̄ and there exists a time optimal control u ∈ L2([0, t̄], U)
such that ‖u‖L2([0,t̄],U) < E.

Proof. Since R2
t̄ is a vector space, it is clear that for

every γ ∈ R, γy1 ∈ R2
t̄ and, similarly, γy1 6∈ R2

s for every
s ∈ (0, t̄). Consequently, τ(0, γy1;E) > t̄.

Since y1 ∈ R2
t̄ , for every ε > 0, there exists ūε ∈

L2([0, t̄], U) such that y1 = Φt̄ūε and ‖ūε‖L2([0,t̄],U) 6
‖y1‖R2

t̄
+ ε. For every γ ∈ R, it is obvious that γy1 =

Φt̄(γūε) and ‖γūε‖L2([0,t̄],U) 6 ‖γy1‖R2
t̄

+ |γ|ε. Conse-

quently, for

0 < |γ| < E

‖y1‖R2
t̄

+ ε
,

we found a control u = γūε ∈ L2([0, t̄], U) steering 0 to y1

satisfying ‖u‖L2([0,t̄],U < E.
This ends the proof, since τ(0, γy1;E) > t̄.

Remark 3.1. With the assumptions of Proposition 3.1 and
if, in addition, Ker Φt̄ 6= {0}, then, for |γ| > 0 small
enough, there exists an infinite number of time optimal
controls steering 0 to γy1.

Let us also notice that with some closure property on R2
t ,

there exists a target y1 such that the assumption (8) holds.

Lemma 3.1. Assume that for every t > 0, R2
t is a closed

set in X and T∗ defined by (2) is nonnegative.
Then, there exists y1 ∈ X \ {0}, such that the set{
t > 0 , y1 ∈ R2

t

}
admits a minimum.

Proof. For every y ∈ X\{0} and every t > 0, let us define

fy(t) = sup
ϕ∈R2

t

〈y1, ϕ〉
‖y1‖X‖ϕ‖X

.

We have fy(t) ∈ [0, 1] and for every t > T∗, fy(t) = 1.
Thus, ty = inf {t > 0 , fy(t) = 1} exists.

By contradiction, assume that ty = 0, that is to say that
for every t > 0 and every y ∈ X \ {0},

sup
ϕ∈R2

t

〈y1, ϕ〉
‖y1‖X‖ϕ‖X

= 1

and hence, R2
t is dense in X. Finally, using the closure

property of R2
t , we obtain R2

t = X for every t > 0 and this
is in contradiction with T∗ > 0.

Consequently, there exists y1 ∈ X \ {0} such that ty1 > 0.
In particular, there exists ε0 > 0 such that fy1(ε0) < 1 and,
consequently, y1 6∈ R2

ε0 and since R2
ε0 is a closed set, we can

choose y1 ∈ X \ {0} such that y1 ∈
(
R2
ε0

)⊥
. In addition,

for every ε < ε0, using R2
ε ⊂ R2

ε0 , we have y1 ∈
(
R2
ε

)⊥
.

Due to the closure property, to end the proof, we only need
to prove that fy1(ty1) = 1.
For every 0 < ε 6 ε0, we have:

1 = fy1(ty1 + ε) = sup
ϕ∈R2

ty1
+ε

〈ϕ, y1〉
‖ϕ‖X‖y1‖X

.

But, according to Lemma 2.1,

1 = fy1
(ty1

+ ε) = sup
ϕ1∈R2

ty1

ϕ0∈R2
ε

〈Tεϕ1 + ϕ0, y1〉
‖Tεϕ1 + ϕ0‖X‖y1‖X

= sup
ϕ1∈R2

ty1

ϕ0∈R2
ε

〈Tεϕ1, y1〉
‖Tεϕ1 + ϕ0‖X‖y1‖X

6 sup
ϕ1∈R2

ty1

〈Tεϕ1, y1〉
‖Tεϕ1‖X‖y1‖X

6 sup
ϕ1∈R2

ty1

〈ϕ1,T∗εy1〉
‖ϕ1‖X‖y1‖X

= fT∗
εy1

(ty1
) .

Using that lim
ε→0

T∗εy1 = y1, it is easy to see that

lim
ε→0

fT∗
εy1

(ty1
) = fy1

(ty1
). Consequently, we have proved

that fy1
(ty1

) = 1 and this ends the proof.

In the next section, we show that the assumptions of
Proposition 3.1 are fulfilled for the string equation with
Dirichlet boundary control.

4. TIME OPTIMAL CONTROL OF THE STRING
EQUATION

In this section, we focus on the string equation with
Dirichlet boundary control:

ẅ(t, x) = ∂2
xw(t, x) (t > 0 , x ∈ (0, 1)) , (9a)



w(t, 0) = u(t) (t > 0) , (9b)

w(t, 1) = 0 (t > 0) . (9c)

This system is suplemented with initial conditions:

w(0, x) = w0(x) and ẇ(0, x) = w1(x)

(x ∈ (0, 1)) . (9d)

Using the formal representation introduced in section 1,
see also § 10.3 by Tucsnak and Weiss (2009), we have[
w(t)
ẇ(t)

]
= Tt

[
w0

w1

]
+ Φtu with the operator A defined by:

A : D(A) → X := L2(0, 1)×H−1(0, 1)[
f
g

]
7→
[

0 Id
−A0 0

] [
f
g

]
,

with D(A) = H1
0 (0, 1)× L2(0, 1) ,

where A0 is the operator with values in L2(0, 1) defined by:

D(A0) = H2(0, 1) ∩H1
0 (0, 1) and A0f = − d2

dx2
f .

The control operator B is given by its adjoint:

B∗ : D(A) → R[
ϕ
ψ

]
7→ d

dx

(
A−1

0 ψ
)∣∣∣∣
x=0

.

For T > 0, let us define:

(ΨT z)(t) = B∗Ttz (t ∈ [0, T ] , z ∈ D(A)) .

We have (Tucsnak and Weiss, 2009, Proposition 4.4.1),

Ψ∗T = ΦT RT , (10)

with RT ∈ L(L2(0, T )) defined by RTu(t) = u(T − t).

For every z =

[
z1

z2

]
∈ D(A) = H1

0 (0, 1)×L2(0, 1), we have:

(ΨT z)(t) =
d

dx
ζ(t)

∣∣∣∣
x=0

, (11)

where ζ is solution of:

ζ̈(t, x) = ∂2
xζ(t, x) ((t, x) ∈ (0, T )× (0, 1)) , (12a)

ζ(t, 0) = ζ(t, 1) = 0 (t ∈ [0, T ]) , (12b)

ζ(0, ·) = A−1
0 z2 ∈ H1

0 (0, 1)

and ζ̇(0, ·) = −z1 ∈ L2(0, 1) . (13)

Decomposing any solution of (12) in Fourier series and
using Ingham inequalities (see Ingham (1936) and, for
result related to control theory, see for instance Jaffard
and Micu (2001) and § 8.1 of Tucsnak and Weiss (2009)),
we obtain that the pair (A∗, B∗) is exactly observable in
any time T > T∗ = 2, i.e., there exists c(T ) > 0 such that:

c(t)‖ΨT z‖2L2(0,T ) > ‖z‖
2
X (z ∈ X) .

In addition, the observability constant c(T ) is of order 1
T

when T goes to infinity.
Thus for every T > 2, using a HUM control, there exists
a control with L2(0, T )-norm of order 1√

T
when T goes to

infinity (Zuazua, 2005, Remark 2.3).
We sum up the above remarks in the following lemma:

Lemma 4.1. For every y0, y1 ∈ X, there exists T > 0 large
enough such that y1 − TTy0 ∈ B2

T (E).

The above lemma combined with Proposition 2.1 ensures
that a time optimal control steering y0 to y1 exists.

For this particular control system, with the help of
D’Alembert formula, it is possible to compute the reach-
able space R2

T for all times T (including T 6 T∗ = 2). To
this end, let us first compute the kernel of ΨT .

Lemma 4.2.

• If T ∈ (0, 1),

Ker ΨT =

{[
z1

z2

]
∈ L2(0, 1)×H−1(0, 1) ,

1[0,T ]

(
z1(x)− d

dx

(
A−1

0 z2

))
= 0

}
;

• If T ∈ [1, 2),

Ker ΨT =

{[
d

dx

(
A−1

0 z2

)
z2

]
, z2 ∈ H−1(0, 1) ,

z21[2−T,1] = 0

}
;

• If T ∈ [2,∞), Ker ΨT = {0}.

Proof. Ker ΨT is the set of points (−ζ2, A0ζ1) ∈ L2(0, 1)×
H−1(0, 1), where (ζ1, ζ2) ∈ H1

0 (0, 1)×L2(0, 1) are such that
the solution ζ of (12), with initial conditions

ζ(0, ·) = ζ1 and ζ̇(0, ·) = ζ2 ,

satisfies

∂xζ(t, ·)|x=0 = 0 (t ∈ [0, T ] a.e.) .

It is natural to extend ζ1 and ζ2 as odd functions on [−1, 1]
and then as 2-periodic functions on R. Consequently, using
D’Alembert formula, it follows that ζ(t, x) is given by:

ζ(t, x) =
1

2

(
ζ1(x+ t) + ζ1(x− t) +

∫ x+t

x−t
ζ2(s) ds

)
.

From the above formula, we obtain:

∂xζ(t, ·)|x=0 = ζ ′1(t) + ζ2(t) . (14)

Let us now compute the set KT of points (ζ1, ζ2) such that
∂xζ(t, ·)|x=0 = 0 for almost every t ∈ [0, T ] for different
values of T .

• If T ∈ (0, 1),

KT =
{

(ζ1, ζ2) ∈ H1
0 (0, 1)× L2(0, 1) ,

∀x ∈ [0, T ], ζ2(x) = −ζ ′1(x)} ;

• If T ∈ [1, 2), set T = 1 + θ, then (ζ1, ζ2) ∈ K if
and only if their extensions satisfy ζ2(s) = −ζ ′1(s)
for almost every s ∈ (0, 1 + θ). But, for almost every
s ∈ [0, θ],

ζi(1 + s) = −ζi(1− s) (i ∈ {1, 2}) .
This implies that:

KT =
{

(ζ1,−ζ ′1) , ζ1 ∈ H1
0 (0, 1) ,

∀x ∈ [2− T, 1], ζ1(x) = 0} ;

• If T > 2, KT = {0}.
From KT , we easily obtain Ker ΨT . This ends the proof.

By duality, we obtain the reachable state R2
T for every

T > 0.



Proposition 4.1.

• If T ∈ (0, 1],

R2
T =

{[
f
g

]
∈ L2(0, 1)×H−1(0, 1) ,

1[T,1]f = 1[T,1]
d

dx

(
A−1

0 g
)

= 0 ,

1[0,T ]

(
f − d

dx

(
A−1

0 g
))

= 0

}
.

• If T ∈ (1, 2],

R2
T =

{[
f
g

]
∈ L2(0, 1)×H−1(0, 1) ,

1[0,2−T ]

(
f − d

dx

(
A−1

0 g
))

= 0

}
.

• If T > 2, R2
T = X = L2(0, 1)×H−1(0, 1).

Proof. According to (10),R2
t = Ran Φt is equal to Ran Ψ∗t

(since Rt is a unitary operator). If ΨT is coercive on
X/Ker ΨT (with the quotient norm) then,

Ran Ψ∗T =
(
Ker ΨT

)⊥
.

Let us then show that ΨT is coercive on X/Ker ΨT .
To this end, define the two semi-norms on X = L2(0, 1)×
H−1(0, 1):

N1(z1, z2) =
∥∥z1 + d

dx

(
A−1

0 z2

)∥∥
L2(0,1)

and N2(z1, z2) =
∥∥z1 − d

dx

(
A−1

0 z2

)∥∥
L2(0,1)

((z1, z2) ∈ X) .

Clearly, for every (z1, z2) ∈ X,

N1(z1, z2)2 +N2(z1, z2)2

= 2
(
‖z1‖2L2(0,1) + ‖z2‖H−1(0,1)

)
= 2‖(z1, z2)‖2X .

For every z =

[
z1

z2

]
∈ X, using (11) and (14), we have:

‖ΨT z‖2L2(0,T ) =

∫ T

0

|ζ ′1(x) + ζ2(x)|2 dx ,

with ζ1 (resp. ζ2) defined by ζ1 = A−1
0 z2 (resp. ζ2 = −z1)

on (0, 1) and extend as an odd function on [−1, 1] and then
extended by 2-periodicity on R.
Thus,

• if T ∈ (0, 1], we have,

‖ΨT z‖2L2(0,T ) =

∥∥∥∥ d

dx

(
A−1

0 z2

)
− z1

∥∥∥∥2

L2(0,T )

and

2‖z‖2X/Ker ΦT
= 2 inf

z̃∈Ker ΦT

‖z + z̃‖2X

= inf
z̃∈Ker ΦT

(∥∥z1 + z̃1 + d
dx

(
A−1

0 (z2 + z̃2

)∥∥2

L2(0,1)

+
∥∥z1 + z̃1 − d

dx

(
A−1

0 (z2 + z̃2

)∥∥2

L2(0,1)

)
= inf

z̃1∈L2(0,T )

∥∥2z̃1 + z1 + d
dx

(
A−1

0 z2

)∥∥2

L2(0,T )

+
∥∥z1 − d

dx

(
A−1

0 z2

)∥∥2

L2(0,T )

= ‖ΨT z‖2L2(0,T ) .

• if T ∈ (1, 2], we have,

‖ΨT z‖2L2(0,T ) =

∫ 1

0

|ζ ′1(x) + ζ2(x)|2 dx

+

∫ T

1

|ζ ′1(x) + ζ2(x)|2 dx

=

∫ 1

0

|ζ ′1(x) + ζ2(x)|2 dx

+

∫ 1

2−T
|ζ ′1(x)− ζ2(x)|2 dx ,

that is to say,

‖ΨT z‖2L2(0,T ) =
∥∥z1 − d

dx

(
A−1

0 z2

)∥∥
L2(0,1)2

+
∥∥z1 + d

dx

(
A−1

0 z2

)∥∥2

L2(2−T,1)

and, as for the previous item, we obtain:

2‖z‖2X/Ker ΦT
= ‖ΨT z‖2L2(0,T ) .

• if T > 2, we have Ker ΨT = {0} and

‖ΨT z‖2L2(0,T ) > ‖ΨT z‖2L2(0,2) = 2‖z‖2X .

All in all, we have proved that, for every T > 0,

‖ΨT z‖L2(0,T ) > 2‖z‖X/Ker ΨT
(z ∈ X) .

Consequently, R2
T = (Ker ΨT )

⊥
and a straight forward

computation leads to the result.

Consequently, by considering for instance the target

y1 =

[
(−2x+ 1)1[0,t̄](x)

2

]
,

with t̄ ∈ (0, 1), we have y1 ∈ R2
2−t̄ and y1 6∈ R2

s for every

s < 2− t̄.
Thus, using Proposition 3.1, there exists γ 6= 0, such that
the minimal time τ(0, γy1;E) needed to steer 0 to γy1 is
2− t̄ and in addition, there exists a control ū ∈ L2(0, 2− t̄)
steering 0 to γy1 in time t̄ together with ‖ū‖L2(0,2−t̄) < E.

5. CONCLUDING REMARKS

In this note we proved, on the example of the string
equation with Dirichlet boundary control, that there exist
time optimal controls with L2-norm strictly lower than E.
More generally, if, τ > T∗, time optimal controls are
L2([0, τ ], U)-norm optimal controls, but when τ < T∗, time
optimal controls and L2([0, τ ], U)-norm optimal controls
can differ. In particular, in the situation of Remark 3.1,
there is an infinite number of time optimal controls which
are not norm optimal ones.

This result is due to the fact that the reachable space
is not the full space in arbitrary small time. This is a
great difference between Schrödinger and wave systems
from the point of view of time optimal controllability. For
the first one exact controllability holds in all time and,
therefore, the reachable space is the full space for all time
and, in particular, time independent, something that does
not occur for the wave equation.

One important question which is not addressed here, and
that constitutes still and interesting open problem, is the
effective numerical computation of the minimal control
time and of time optimal controls. In fact, this issue seems
to be highly complex.



For instance for the string equation with boundary control,
in order to compute time optimal controls, we should
design a numerical method able to build controls even for
times t < T∗ and, as far as we know, this has not been
done so far.

Indeed, there has been extensive work done on the devel-
opment of efficient numerical methods for approximating
wave control problems. But this has been always done
beyond the universal control time T∗, i. e, for time in-
tervals [0, T ] with T > T∗. In fact, he existing methods
try to mimic the behavior of the continuous wave equa-
tion and, in particular, its finite velocity of propagation
property and, therefore, do not allow to yield any ef-
fective approximation method to build controls, specific
to given data, when the control time is strictly smaller
than T∗. A survey of these methods can be found in
Ervedoza and Zuazua (2013). Another approach, based on
Russeell’s principle,“stabilization implies controllability”,
can be found in Ĉındea et al. (2011). But this method
also needs the control time to be larger than the universal
controllability time T∗.

In addition, with the result of Proposition 4.1, we have a
lower bound on the minimal time needed to steer 0 to a
given final target. But we do not have a lower bound on the
minimal time needed to steer a non null starting point to a
given target. Further developments in this direction could
be derived out of Theorem 2.1 of Gugat and Leugering
(2008).
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