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Norm saturating property of time optimal

controls for wave-type equations ∗

Jérôme Lohéac † Enrique Zuazua ‡

Abstract

We consider a time optimal control problem with point target for a
class of infinite dimensional systems governed by abstract wave operators.
In order to ensure the existence of a time optimal control, we consider con-
trols of energy bounded by a prescribed constant E > 0. Even when this
control constraint is absent, in many situations, due to the hyperbolicity
of the system under consideration, a target point cannot be reached in
arbitrarily small time and there exists a minimal universal controllability
time T∗ > 0, so that for every points y0 and y1 and every time T > T∗,
there exists a control steering y0 to y1 in time T . Simultaneously this
may be impossible if T < T∗ for some particular choices of y0 and y1 .
In this note we point out the impact of the strict positivity of the minimal
time T∗ on the structure of the norm of time optimal controls. In other
words, the question we address is the following: If τ is the minimal time,
what is the L2-norm of the associated time optimal control?
For different values of y0, y1 and E, we can have τ 6 T∗ or τ > T∗. If
τ > T∗, the time optimal control is unique, given by an adjoint problem
and its L2-norm is E, in the classical sense. In this case, the time optimal
control is also a norm optimal control. But when τ < T∗, we show, analyz-
ing the string equation with Dirichlet boundary control, that, surprisingly,
there exist time optimal controls which are not of maximal norm E.

Keyword: Wave equations, Optimal control, Open loop control systems,
Point-to-point control, Reachable states, Norm-optimal controls, Minimal con-
trol time.

1 Introduction

Time optimal control problems have been intensively studied for finite dimen-
sional systems showing that the optimal control satisfies a Pontryagin maximum
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principle, it is bang-bang and unique. For a survey of these results, we refer to
the books [17] and [1] and to the original work by [2]. These results have been
extended in [6] to infinite dimensional systems and reported in the books by
[18] and [8].

Many new results have been obtained for parabolic type systems; see for
instance [20], [23], [21] and [16]. However only few results exist for conservative
systems and they only concern distributed controls; see for instance [7], [19] and
[15, 14].

In all the above mentioned works, in order to ensure the existence of a time
optimal control, the controls are assumed to be bounded in L∞. But for the
wave equation, due to the finite velocity of propagation, the main difficulty arises
from the fact that it is globally controllable only for a large enough control time.

In the present work, in order to analyse this delicate issue, we chose an
Hilbertian approach and assume that the control is bounded in L2. This simpli-
fication allows us to easily consider the case of boundary control operators. In
section 4, we consider the example of the string equation with Dirichlet bound-
ary control, where some computations are explicit.

According to [11] (Theorem 3.1), the string equation with Dirichlet boundary
control cannot be controlled with classical bang-bang controls, i.e. controls
taking their values in {−1, 1} for almost every time. In addition, for norm
optimal control problems, which is a problem related to the one of finding time
optimal controls as we will see later, [3] consider a string equation with Newman
control at both ends and prove that for constant state targets (with constant
initial data), the time optimal controls are of bang-off-bang type, i.e. controls
taking values in {−1, 0, 1} for almost every time. Thus, even for constant data,
time optimal controls are not, in general, of bang-bang form. A more general
result on L∞-norm optimal controls, for the same system, can be found in [9]
and its generalisation to any Lp-norm optimal controls in [10].

In order to give a precise statement of our result, let us first recall some
classical definitions and notations from control theory, see for instance [22].

Throughout this paper, X and U are real Hilbert spaces identified with
their duals. We denote by T = (Tt)t>0 a strongly continuous semigroup on X
generated by an operator A : D(A) → X. In all this paper, we assume that A
is skew-adjoint with nonempty resolvent ρ(A).
The notation X1 stands for D(A) equipped with the norm ‖z‖X1 = ‖(βId −
A)z‖X , where β ∈ ρ(A) is fixed, while X−1 is the completion of X with respect
to the norm ‖z‖X−1

= ‖(βId − A)−1z‖X . Let us also denote by A and T the
extensions of A to X and T to X−1.
Let us now introduce the control operator B ∈ L(U,X−1). Then the infinite
dimensional system under consideration is:

y′ = Ay +Bu y(0) = y0 , (1)

where y is the state of the system and u ∈ L2(R+, U) is the control and y0 ∈ X
is the initial state position. The solution of (1) is:

y(t) = Tty0 + Φtu (t > 0) ,
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where Φt ∈ L
(
L2([0, t], U), X−1

)
is the input to state map defined by:

Φtu =

∫ t

0

Tt−sBu(s) ds (t > 0 , u ∈ L2([0, t], U)) .

We will say that B is an admissible control operator for T if there exists t > 0
such that Ran Φt ⊂ X and in the sequel we will assume that the pair (T, B)
satisfies this condition. Finally, we will say that the pair (A,B) is exactly
controllable in time T (T > 0) if Ran ΦT = X. In the sequel, we will assume
that the pair (A,B) is exactly controllable in some time T > 0 and we define
the universal controllability time:

T∗ = inf{T > 0 , Ran ΦT = X} > 0 . (2)

To be more precise, the time optimal control problem we address in this
work is the following:

Problem 1. Given E > 0 and y0, y1 ∈ X with y0 6= y1, find the minimal time
T > 0 such that there exists u ∈ L2([0, T ], U) satisfying:

• ‖u‖L2([0,T ],U) 6 E;

• the solution y of (1) with control u and initial condition y0 satisfies y(T ) =
y1.

In all this note, E defines a given nonnegative constant.
Our first result is as follows:

Theorem 1.1. Let y0, y1 ∈ X with y0 6= y1.
Assume that the pair (A,B) is exactly controllable and fix T > 0. Assume that
a control u ∈ L2([0, T ], U) with ‖u‖L2([0,T ],U) 6 E steering y0 to y1 in time T
exists.

Then there exists a minimal time τ > 0 such that y0 can be steered to y1 in
time τ = τ(y0, y1;E) preserving this bound, i.e.

τ = min
{
T > 0 , ∃u ∈ L2([0, T ], U) , ‖u‖L2([0,T ],U) 6 E

and ΦTu = y1 − TTy0} . (3)

Moreover, if τ > T∗ (with T∗ > 0 defined by (2)), there exists a unique control
u ∈ L2([0, τ ], U) with ‖u‖L2([0,τ ],U) 6 E steering y0 to y1 in time τ . In addition,
we have

‖u‖L2([0,τ ],U) = E (4)

and there exists η ∈ X \ {0} such that:

u = Φ∗τη . (5)

Let us remind that for every η ∈ X, (Φ∗T η)(t) = B∗z(t) (t ∈ [0, T ]) where z
is solution of:

z′ = −A∗z , z(T ) = η .
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The proof of the characterization of the optimal control Theorem 1.1 when
τ > T∗ is similar to the one by [19, Theorem 1.4] and is not repeated here. We
only give the key argument for the existence of τ in section 2, see Proposition 2.1.

Remark 1.1. If τ > T∗ the minimal time control is the minimal norm control
in time τ steering y0 to y1. That is to say that, if τ > T∗, the time optimal
control is L2([0, τ ], U)-norm optimal. This fact gives the same result as the one
in [24] for the heat equation, where we have T∗ = 0.

Theorem 1.1 does not give any relevant information when τ 6 T∗. In fact
when τ 6 T∗ the situation is less clear. In section 3, we show in Proposition 3.1,
under suitable assumptions on the reachable set, that for τ < T∗ there exists a
time optimal control u ∈ L2([0, τ ], U) with ‖u‖L2([0,τ ],U) < E. That is to say
that, when τ < T∗, there exist time optimal controls which do not satisfy the
norm saturating property (4). This situation appears at least when y0 = 0 and
it is a consequence of the following two properties of the reachable sets: They
are closed and strictly increasing as a function of t̄ < T∗.

More precisely, the way we build a non saturation time optimal control is by
choosing a target y1 ∈ X so that y1 is accessible from 0 in a time t̄ > 0 but not
for times s < t̄. In this case, it is clear that τ(0, y1;E) > t̄ whatever E > 0 is.
Choosing such a target y1 and choosing a constant E > 0 large enough, we will
obtain that τ(0, y1;E) = t̄ and the existence of a time optimal control whose
norm is not E.
In section 4, we will show that the assumptions made in Proposition 3.1 are
fulfilled for the string equation with Dirichlet boundary control.

2 Well posedness

In this paragraph, we will prove that τ defined by (3) exists, i.e., the set{
T > 0 , ∃u ∈ L2([0, T ], U) , ‖u‖L2([0,T ],U) 6 E and y1 − TTy0 = ΦTu

}
admits a minimum.

Before going further, let us introduce some ad hoc notations and spaces. Let
us define the set of points which can be reached from 0,

R2
t = Φt

(
L2([0, t], U)

)
(t > 0) , (6)

with the convention R2
0 = {0}.

Endowed with the norm:

‖y‖R2
t

= inf
{
‖u‖L2([0,T ],U) , u ∈ L2([0, T ], U) , y = Φtu

}
,

it constitutes a Banach space.
We also define the closed ball of radius E in R2

t :

B2
t (E) =

{
y ∈ R2

t , ‖y‖R2
t
6 E

}
(t > 0) .
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Using these notations, we have:

τ(y0, y1;E) = inf
{
T > 0 , y1 − TTy0 ∈ B2

T (E)
}
. (7)

By linearity of Φt, for every E > 0 and t > 0, B2
t (E) is a convex set of X.

Let us first give a basic property on the sets R2
t .

Lemma 2.1. Let 0 < s 6 t, then we have

R2
t = TsR2

t−s +R2
s ,

and the inclusions R2
s ⊂ R2

t ⊂ X are continuous.

In addition, the universal time T∗ defined by (2) is given by

T∗ = inf
{
T > 0 , R2

T = X
}
.

By a simple adaptation of [8] (Lemma 3.1.1 and Theorem 3.1.2), we obtain:

Proposition 2.1. Let y0, y1 ∈ X with y0 6= y1 and assume that a time T > 0
and a control u ∈ L2([0, T ], U) with ‖u‖L2([0,T ],U) 6 E steering y0 to y1 in time
T exist.
Then the set

{
T > 0 , y1 − TTy0 ∈ B2

T (E)
}

admits a minimum τ .

This result ensures the existence of a time optimal control u ∈ L2([0, τ ], U)
whatever the minimal time τ > 0 is.

3 Lack of norm optimality when τ 6 T∗

Proposition 3.1. Assume that T∗, defined by (2), is positive.
Let 0 < t̄ 6 T∗ and assume there exists y1 ∈ R2

t̄ such that,

y1 6∈ R2
s (s ∈ (0, t̄)) . (8)

Then for every γ ∈ R∗, the minimal time τ = τ(0, γy1;E) (defined by (3))
needed to steer 0 to γy1 is greater that t̄.

In addition, for |γ| > 0 small enough, we have τ(0, γy1;E) = t̄ and there
exists a time optimal control u ∈ L2([0, t̄], U) such that ‖u‖L2([0,t̄],U) < E.

Proof. Since R2
t̄ is a vector space, it is clear that for every γ ∈ R, γy1 ∈ R2

t̄ and,
similarly, γy1 6∈ R2

s for every s ∈ (0, t̄). Consequently, τ(0, γy1;E) > t̄.
Since y1 ∈ R2

t̄ , for every ε > 0, there exists ūε ∈ L2([0, t̄], U) such that
y1 = Φt̄ūε and ‖ūε‖L2([0,t̄],U) 6 ‖y1‖R2

t̄
+ ε. For every γ ∈ R, it is obvious that

γy1 = Φt̄(γūε) and ‖γūε‖L2([0,t̄],U) 6 ‖γy1‖R2
t̄

+ |γ|ε. Consequently, for

0 < |γ| < E

‖y1‖R2
t̄

+ ε
,

we found a control u = γūε ∈ L2([0, t̄], U) steering 0 to y1 satisfying ‖u‖L2([0,t̄],U <
E.
This ends the proof, since τ(0, γy1;E) > t̄.
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Remark 3.1. With the assumptions of Proposition 3.1 and if, in addition,
Ker Φt̄ 6= {0}, then, for |γ| > 0 small enough, there exists an infinite number of
time optimal controls steering 0 to γy1.

Let us also notice that with some closure property on R2
t , there exists a

target y1 such that the assumption (8) holds.

Lemma 3.1. Assume that for every t > 0, R2
t is a closed set in X and T∗

defined by (2) is nonnegative.
Then, there exists y1 ∈ X \ {0}, such that the set

{
t > 0 , y1 ∈ R2

t

}
admits a

minimum.

Proof. For every y ∈ X\{0} and every t > 0, let us define fy(t) = sup
ϕ∈R2

t

〈y1, ϕ〉
‖y1‖X‖ϕ‖X

.

We have fy(t) ∈ [0, 1] and for every t > T∗, fy(t) = 1. Thus, ty = inf {t > 0 , fy(t) = 1}
exists.

By contradiction, assume that ty = 0, that is to say that for every t > 0 and
every y ∈ X \ {0},

sup
ϕ∈R2

t

〈y1, ϕ〉
‖y1‖X‖ϕ‖X

= 1

and hence, R2
t is dense in X. Finally, using the closure property of R2

t , we
obtain R2

t = X for every t > 0 and this is in contradiction with T∗ > 0.
Consequently, there exists y1 ∈ X \ {0} such that ty1

> 0. In particular,
there exists ε0 > 0 such that fy1(ε0) < 1 and, consequently, y1 6∈ R2

ε0 and since

R2
ε0 is a closed set, we can choose y1 ∈ X \ {0} such that y1 ∈

(
R2
ε0

)⊥
. In

addition, for every ε < ε0, using R2
ε ⊂ R2

ε0 , we have y1 ∈
(
R2
ε

)⊥
.

Due to the closure property, to end the proof, we only need to prove that
fy1

(ty1
) = 1.

For every 0 < ε 6 ε0, we have:

1 = fy1
(ty1

+ ε) = sup
ϕ∈R2

ty1+ε

〈ϕ, y1〉
‖ϕ‖X‖y1‖X

.

But, according to Lemma 2.1,

1 = fy1
(ty1

+ ε) = sup
ϕ1∈R2

ty1

ϕ0∈R2
ε

〈Tεϕ1 + ϕ0, y1〉
‖Tεϕ1 + ϕ0‖X‖y1‖X

= sup
ϕ1∈R2

ty1

ϕ0∈R2
ε

〈Tεϕ1, y1〉
‖Tεϕ1 + ϕ0‖X‖y1‖X

6 sup
ϕ1∈R2

ty1

〈Tεϕ1, y1〉
‖Tεϕ1‖X‖y1‖X

6 sup
ϕ1∈R2

ty1

〈ϕ1,T∗εy1〉
‖ϕ1‖X‖y1‖X

= fT∗
εy1

(ty1
) .
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Using that lim
ε→0

T∗εy1 = y1, it is easy to see that lim
ε→0

fT∗
εy1(ty1) = fy1(ty1).

Consequently, we have proved that fy1
(ty1

) = 1 and this ends the proof.

In the next section, we show that the assumptions of Proposition 3.1 are
fulfilled for the string equation with Dirichlet boundary control.

4 Time optimal control of the string equation

In this section, we focus on the string equation with Dirichlet boundary control:

ẅ(t, x) = ∂2
xw(t, x) (t > 0 , x ∈ (0, 1)) , (9a)

w(t, 0) = u(t) (t > 0) , (9b)

w(t, 1) = 0 (t > 0) . (9c)

This system is suplemented with initial conditions:

w(0, x) = w0(x) and ẇ(0, x) = w1(x) (x ∈ (0, 1)) . (9d)

In this paragraph, we chose a Dirichlet boundary control at one end, but similar
results could have been obtained with Newman or Dirichlet boundary control
at one or both ends.

Using the formal representation introduced in section 1, see also § 10.3 by

[22], we have

[
w(t)
ẇ(t)

]
= Tt

[
w0

w1

]
+ Φtu with the operator A defined by:

A : D(A) → X := L2(0, 1)×H−1(0, 1)[
f
g

]
7→

[
0 Id
−A0 0

] [
f
g

]
,

with D(A) = H1
0 (0, 1)×L2(0, 1) ,

where A0 is the operator with values in L2(0, 1) defined by:

D(A0) = H2(0, 1) ∩H1
0 (0, 1) and A0f = − d2

dx2
f .

According to [22], see § 11.6.2, A can be seen has a skew-adjoint operator on X.
The control operator B is given by its adjoint:

B∗ : D(A) → R[
ϕ
ψ

]
7→ d

dx

(
A−1

0 ψ
)∣∣
x=0

.

For T > 0, let us define:

(ΨT z)(t) = B∗Ttz (t ∈ [0, T ] , z ∈ D(A)) .

We have [22, Proposition 4.4.1],

Ψ∗T = ΦT RT , (10)
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with RT ∈ L(L2(0, T )) defined by RTu(t) = u(T − t).

For every z =

[
z1

z2

]
∈ D(A) = H1

0 (0, 1)× L2(0, 1), we have:

(ΨT z)(t) =
d

dx
ζ(t)

∣∣∣∣
x=0

, (11)

where ζ is solution of:

ζ̈(t, x) = ∂2
xζ(t, x) ((t, x) ∈ (0, T )× (0, 1)) , (12a)

ζ(t, 0) = ζ(t, 1) = 0 (t ∈ [0, T ]) , (12b)

ζ(0, ·) = A−1
0 z2 ∈ H1

0 (0, 1) and ζ̇(0, ·) = −z1 ∈ L2(0, 1) . (13)

Decomposing any solution of (12) in Fourier series and using Ingham in-
equalities (see [12] and, for result related to control theory, see for instance [13]
and § 8.1 of [22]), we obtain that the pair (A∗, B∗) is exactly observable in any
time T > T∗ = 2, i.e., there exists c(T ) > 0 such that:

c(T )‖ΨT z‖2L2(0,T ) > ‖z‖
2
X (z ∈ X) .

In addition, the observability constant c(T ) is of order 1
T when T goes to infinity.

Thus for every T > 2, using a HUM control, there exists a control with L2(0, T )-
norm of order 1√

T
when T goes to infinity [25, Remark 2.3].

We sum up the above remarks in the following lemma:

Lemma 4.1. For every y0, y1 ∈ X and E > 0, there exists T > 0 large enough
such that y1 − TTy0 ∈ B2

T (E).

The above lemma combined with Proposition 2.1 ensures that a time optimal
control steering y0 to y1 exists.

For this particular control system, with the help of D’Alembert formula,
it is possible to compute the reachable space R2

T for all times T (including
T 6 T∗ = 2). To this end, let us first compute the kernel of ΨT .

Lemma 4.2.

• If T ∈ (0, 1),

Ker ΨT =

{[
z1

z2

]
∈ L2(0, 1)×H−1(0, 1) ,

1[0,T ]

(
z1(x)− d

dx

(
A−1

0 z2

))
= 0

}
;

• If T ∈ [1, 2),

Ker ΨT =

{[
d

dx

(
A−1

0 z2

)
z2

]
, z2 ∈ H−1(0, 1) , z21[2−T,1] = 0

}
;
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• If T ∈ [2,∞), Ker ΨT = {0}.

Proof. Ker ΨT is the set of points (−ζ2, A0ζ1) ∈ L2(0, 1) × H−1(0, 1), where
(ζ1, ζ2) ∈ H1

0 (0, 1) × L2(0, 1) are such that the solution ζ of (12), with initial
conditions

ζ(0, ·) = ζ1 and ζ̇(0, ·) = ζ2 ,

satisfies
∂xζ(t, ·)|x=0 = 0 (t ∈ [0, T ] a.e.) .

It is natural to extend ζ1 and ζ2 as odd functions on [−1, 1] and then as
2-periodic functions on R. Consequently, using D’Alembert formula, it follows
that ζ(t, x) is given by:

ζ(t, x) =
1

2

(
ζ1(x+ t) + ζ1(x− t) +

∫ x+t

x−t
ζ2(s) ds

)
.

From the above formula, we obtain:

∂xζ(t, ·)|x=0 = ζ ′1(t) + ζ2(t) . (14)

Let us now compute the set KT of points (ζ1, ζ2) such that ∂xζ(t, ·)|x=0 = 0 for
almost every t ∈ [0, T ] for different values of T .

• If T ∈ (0, 1),

KT =
{

(ζ1, ζ2) ∈ H1
0 (0, 1)× L2(0, 1) , ∀x ∈ [0, T ], ζ2(x) = −ζ ′1(x)

}
;

• If T ∈ [1, 2), set T = 1 + θ, then (ζ1, ζ2) ∈ K if and only if their extensions
satisfy ζ2(s) = −ζ ′1(s) for almost every s ∈ (0, 1 + θ). But, for almost
every s ∈ [0, θ],

ζi(1 + s) = −ζi(1− s) (i ∈ {1, 2}) .

This implies that:

KT =
{

(ζ1,−ζ ′1) , ζ1 ∈ H1
0 (0, 1) , ∀x ∈ [2− T, 1], ζ1(x) = 0

}
;

• If T > 2, KT = {0}.

From KT , we easily obtain Ker ΨT . This ends the proof.

By duality, the reachable state R2
T is:

Proposition 4.1.

• If T ∈ (0, 1],

R2
T =

{[
f
g

]
∈ L2(0, 1)×H−1(0, 1) , 1[T,1]f = 1[T,1]

d

dx

(
A−1

0 g
)

= 0 ,

1[0,T ]

(
f − d

dx

(
A−1

0 g
))

= 0

}
.
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• If T ∈ (1, 2],

R2
T =

{[
f
g

]
∈ L2(0, 1)×H−1(0, 1) ,1[0,2−T ]

(
f − d

dx

(
A−1

0 g
))

= 0

}
.

• If T > 2, R2
T = X = L2(0, 1)×H−1(0, 1).

Proof. According to (10), R2
t = Ran Φt is equal to Ran Ψ∗t (since Rt is a unitary

operator). If ΨT is coercive on X/Ker ΨT (with the quotient norm) then,

Ran Ψ∗T =
(
Ker ΨT

)⊥
.

Let us then show that ΨT is coercive on X/Ker ΨT .
To this end, define the two semi-norms on X = L2(0, 1)×H−1(0, 1):

N1(z1, z2) =
∥∥z1 + d

dx

(
A−1

0 z2

)∥∥
L2(0,1)

and N2(z1, z2) =
∥∥z1 − d

dx

(
A−1

0 z2

)∥∥
L2(0,1)

((z1, z2) ∈ X) .

Clearly, for every (z1, z2) ∈ X,

N1(z1, z2)2 +N2(z1, z2)2 = 2
(
‖z1‖2L2(0,1) + ‖z2‖H−1(0,1)

)
= 2‖(z1, z2)‖2X .

For every z =

[
z1

z2

]
∈ X, using (11) and (14), we have:

‖ΨT z‖2L2(0,T ) =

∫ T

0

|ζ ′1(x) + ζ2(x)|2 dx ,

with ζ1 (resp. ζ2) defined by ζ1 = A−1
0 z2 (resp. ζ2 = −z1) on (0, 1) and extend

as an odd function on [−1, 1] and then extended by 2-periodicity on R.
Thus,

• if T ∈ (0, 1], we have,

‖ΨT z‖2L2(0,T ) =

∥∥∥∥ d

dx

(
A−1

0 z2

)
− z1

∥∥∥∥2

L2(0,T )

and

2‖z‖2X/Ker ΦT
= 2 inf

z̃∈Ker ΦT

‖z + z̃‖2X

= inf
z̃∈Ker ΦT

(∥∥z1 + z̃1 + d
dx

(
A−1

0 (z2 + z̃2

)∥∥2

L2(0,1)

+
∥∥z1 + z̃1 − d

dx

(
A−1

0 (z2 + z̃2

)∥∥2

L2(0,1)

)
= inf

z̃1∈L2(0,T )

∥∥2z̃1 + z1 + d
dx

(
A−1

0 z2

)∥∥2

L2(0,T )

+
∥∥z1 − d

dx

(
A−1

0 z2

)∥∥2

L2(0,T )

= ‖ΨT z‖2L2(0,T ) .
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• if T ∈ (1, 2], we have,

‖ΨT z‖2L2(0,T ) =

∫ 1

0

|ζ ′1(x) + ζ2(x)|2 dx+

∫ T

1

|ζ ′1(x) + ζ2(x)|2 dx

=

∫ 1

0

|ζ ′1(x) + ζ2(x)|2 dx+

∫ 1

2−T
|ζ ′1(x)− ζ2(x)|2 dx ,

that is to say,

‖ΨT z‖2L2(0,T ) =
∥∥z1 − d

dx

(
A−1

0 z2

)∥∥
L2(0,1)2 +

∥∥z1 + d
dx

(
A−1

0 z2

)∥∥2

L2(2−T,1)

and, as for the previous item, we obtain:

2‖z‖2X/Ker ΦT
= ‖ΨT z‖2L2(0,T ) .

• if T > 2, we have Ker ΨT = {0} and

‖ΨT z‖2L2(0,T ) > ‖ΨT z‖2L2(0,2) = 2‖z‖2X .

All in all, we have proved that, for every T > 0,

‖ΨT z‖L2(0,T ) > 2‖z‖X/Ker ΨT
(z ∈ X) .

Consequently, R2
T = (Ker ΨT )

⊥
and a straight forward computation leads to

the result.

Consequently, by considering for instance the target

y1 =

[
(−2x+ 1)1[0,t̄](x)

2

]
,

with t̄ ∈ (0, 1), we have y1 ∈ R2
2−t̄ and y1 6∈ R2

s for every s < 2− t̄.
Thus, using Proposition 3.1, there exists γ 6= 0, such that the minimal time
τ(0, γy1;E) needed to steer 0 to γy1 is 2−t̄ and in addition, there exists a control
ū ∈ L2(0, 2− t̄) steering 0 to γy1 in time t̄ together with ‖ū‖L2(0,2−t̄) < E.

5 Concluding remarks

In this note we proved, on the example of the string equation with Dirichlet
boundary control, that there exist time optimal controls with L2-norm strictly
lower than E.
More generally, if, τ > T∗, time optimal controls are L2([0, τ ], U)-norm optimal
controls, but when τ < T∗, time optimal controls and L2([0, τ ], U)-norm optimal
controls can differ. In particular, in the situation of Remark 3.1, there is an
infinite number of time optimal controls which are not norm optimal ones.

This result is due to the fact that the reachable space is not the full space in
arbitrary small time. This is a great difference between Schrödinger and wave
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systems from the point of view of time optimal controllability. For the first one
exact controllability holds in all time and, therefore, the reachable space is the
full space for all time and, in particular, time independent, something that does
not occur for the wave equation.

One important question which is not addressed here, and that constitutes
still and interesting open problem, is the effective numerical computation of the
minimal control time and of time optimal controls. In fact, this issue seems to
be highly complex.

For instance for the string equation with boundary control, in order to com-
pute time optimal controls, we should design a numerical method able to build
controls even for times t < T∗ and, as far as we know, this has not been done
so far.

Indeed, there has been extensive work done on the development of efficient
numerical methods for approximating wave control problems. But this has
been always done beyond the universal control time T∗, i.e. for time intervals
[0, T ] with T > T∗. In fact, the existing methods try to mimic the behavior of
the continuous wave equation and, in particular, its finite velocity of propaga-
tion property and, therefore, do not allow yielding any effective approximation
method to build controls, specific to given data, when the control time is strictly
smaller than T∗. A survey of these methods can be found in [5]. Another ap-
proach, based on Russell’s principle,“stabilization implies controllability”, can
be found in [4]. But this method also needs the control time to be larger than
the universal controllability time T∗.

In addition, with the result of Proposition 4.1, we have a lower bound on
the minimal time needed to steer 0 to a given final target. But we do not have
a lower bound on the minimal time needed to steer a non null starting point to
a given target. Further developments in this direction could be derived out of
Theorem 2.1 of [11].
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[19] J. Lohéac and M. Tucsnak. Maximum principle and bang-bang property
of time optimal controls for Schrödinger-type systems. SIAM J. Control
Optim., 51(5):4016–4038, 2013.

[20] V. J. Mizel and T. I. Seidman. An abstract bang-bang principle and time-
optimal boundary control of the heat equation. SIAM J. Control Optim.,
35(4):1204–1216, 1997.

[21] K. D. Phung and G. Wang. An observability estimate for parabolic equa-
tions from a measurable set in time and its applications. J. Eur. Math.
Soc. (JEMS), 15(2):681–703, 2013.

[22] M. Tucsnak and G. Weiss. Observation and control for operator semigroups.
Basel: Birkhäuser, 2009.
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