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We investigate first-order separation logic with one record field restricted to a unique quantified variable (1SL1). Undecidability is known when the number of quantified variables is unbounded and the satisfiability problem is pspace-complete for the propositional fragment. We show that the satisfiability problem for 1SL1 is pspace-complete and we characterize its expressive power by showing that every formula is equivalent to a Boolean combination of atomic properties. This contributes to our understanding of fragments of first-order separation logic that can specify properties about the memory heap

of programs with singly-linked lists. All the fragments we consider contain the magic wand operator and first-order quantification over a single variable.

Introduction

Separation Logic for Verifying Programs with Pointers

Separation logic [START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF]) is a well-known logic for analysing programs with pointers stemming from BI logic [START_REF] Ishtiaq | BI as an Assertion Language for Mutable Data Structures[END_REF]. Such programs have specific errors to be detected and separation logic is used as an assertion language for Hoare-like proof systems [START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF] that are dedicated to verify programs manipulating heaps. Any procedure mechanizing the proof search requires subroutines that check the satisfiability or the validity of formulae (more precisely entailment) from the assertion language. That is why, characterizing the computational complexity of separation logic and its fragments and designing optimal decision procedures remain essential tasks. Separation logic contains a structural separating connective and its adjoint (the separating implication, also known as the magic wand).

Concise and modular proofs can be derived using these connectives, since they can express properties such as non-aliasing [START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF].

The main concern of the paper is to study a non-trivial fragment of firstorder separation logic with one record field as far as expressive power, decidability and complexity are concerned. Herein, the models of separation logic are pairs made of a variable valuation (store) and a partial function with finite domain (heap), also known as memory states.

Decidability and Complexity Results for Separation Logic

The complexity of satisfiability and model-checking problems for separation logic fragments have been quite studied [START_REF] Calcagno | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF][START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF][START_REF] Cook | Tractable Reasoning in a Fragment of Separation Logic[END_REF] (see also new decidability results in [START_REF] Iosif | The Tree Width of Separation Logic with Recursive Definitions[END_REF] or undecidability results in [START_REF] Brotherston | Undecidability of Propositional Separation Logic and Its Neighbours[END_REF][START_REF] Larchey-Wendling | The Undecidability of Boolean BI through Phase Semantics[END_REF]) in an alternative setting). Separation logic is equivalent to a Boolean propositional logic (Lozes 2004a,b) if first-order quantifiers are disabled. Separation logic without first-order quantifiers is decidable, but it becomes undecidable with first-order quantifiers [START_REF] Calcagno | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF]. For instance, model-checking and satisfiability for propositional separation logic are pspace-complete problems [START_REF] Calcagno | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF]. Decidable fragments with first-order quantifiers can be found in [START_REF] Galmiche | Tableaux and Resource Graphs for Separation Logic[END_REF][START_REF] Brochenin | On the almighty wand[END_REF].

In order to study decidability or complexity issues for separation logic, two tracks have been observed in the literature. There is the verification approach with decision procedures for fragments of practical use, see e.g. [START_REF] Berdine | Smallfoot: Modular Automatic Assertion Checking with Separation Logic[END_REF][START_REF] Cook | Tractable Reasoning in a Fragment of Separation Logic[END_REF][START_REF] Haase | SeLoger: A Tool for Graph-Based Reasoning in Separation Logic[END_REF]. Alternatively, fragments, extensions or variants of separation logic are considered from a logical viewpoint, see e.g. [START_REF] Calcagno | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF][START_REF] Brotherston | Undecidability of Propositional Separation Logic and Its Neighbours[END_REF]; Larchey-Wendling and Galmiche 2010).

Our Contributions

In this paper, we study first-order separation logic with one quantified variable, with an unbounded number of program variables and with one record field (herein called 1SL1).

1. We introduce test formulae that state simple properties about the memory states and we show that every formula in 1SL1 is equivalent to a Boolean combination of test formulae, extending what was done in (Lozes 2004b;[START_REF] Brochenin | Reasoning about sequences of memory states[END_REF] for the propositional case. For instance, separating connectives can be eliminated in a controlled way as well as first-order quantification over the single variable. In that way, we show a quantifier elimination property similar to the one for Presburger arithmetic (in that case, the test formulae are linear and periodicity constraints). This result extends previous ones on propositional separation logic (Lozes 2004a,b;[START_REF] Brochenin | Reasoning about sequences of memory states[END_REF] and as far as we know, this is the first time that this approach is extended to a first-order version of separation logic with the magic wand operator. However, it is the best we can hope for since 1SL with two quantified variables and no program variables (1SL2) has been recently shown undecidable in [START_REF] Demri | Expressive Completeness of Separation Logic with Two Variables and No Separating Conjunction[END_REF]. Of course, other extensions of 1SL1 could be considered, for instance to add a bit of arithmetical constraints, but herein we focus on 1SL1 that is theoretically nicely designed, even though it is still unclear how much 1SL1 is useful for formal verification. We also establish that the satisfiability problem for Boolean combinations of test formulae is np-complete thanks to a saturation algorithm for the theory of memory states with test formulae, paving the way to use SMT solvers to decide 1SL1; see e.g. the use of such solvers in [START_REF] Piskac | Automating Separation Logic using SMT[END_REF].

By way of comparison with first-order predicate logic, propositional calculus is np-complete and FO1 (first-order logic with one variable) is npcomplete too. We knew that propositional separation logic is pspacecomplete and herein we also establish that 1SL1 satisfiability has the same worst-case complexity. 2. Even though Boolean combinations of test formulae and 1SL1 have identical expressive power, we obtain pspace-completeness for model-checking and satisfiability in 1SL1. The conciseness of 1SL1 explains the difference between these two complexities. We show that the satisfiability problem for Boolean combinations of test formulae is np-complete whereas we establish that model-checking and satisfiability problems for 1SL1 are pspace-complete. The difference between these two complexities here is due to the conciseness of 1SL1. pspacecompleteness is still a relatively low complexity but this result can be extended with more than one record field (but still with one quantified variable). This is the best we can hope for with one quantified variable and with the magic wand, that is notoriously known to easily increase computational complexity. 3. Moreover, we provide a simple algorithm to compute from a formula in 1SL1, an equivalent Boolean combination of test formulae.

Structure of the paper. Section 2 is mainly dedicated to preliminary definitions about separation logic, basic properties that can be expressed in 1SL1 and several preliminary definitions and results about partitions on memory states. In Section 3, test formulae are introduced as well as several relations between locations based on such test formulae. The second part of this section contains a series of technical lemmas that are useful to establish the correctness of the abstraction based on test formulae, which is shown in Section 4. Decidability of 1SL1 satisfiability problem as well as admissibility of quantifiers are established in Section 4 too. Section 4 concludes by showing that the satisfiability and model-checking problems can be solved in polynomial space. In Section 5, we prove a result stated earlier in the paper, namely the satisfiability status of conjunctions of literals made of test formulae can be decided in polynomial time. Strictly speaking, this result is not used to establish complexity results about 1SL1 (and that is why, its proof has been postponed a bit) but it paves the way to decide 1SL1 with SMT solvers, this is at least our hope. Whereas Section 6 contains concluding remarks, a technical appendix concludes the paper and it contains the proofs that are not present in the main body of the paper.

2 Separation Logic 1SL and its Heap Memory Model 2.1 First-Order Separation Logic with One Selector 1SL

Let PVAR be a countably infinite set of program variables and FVAR be a countably infinite set of quantified variables. We write x, y, . . . , x 1 , x 2 , . . . to denote program variables and u, u 1 , u 2 , . . . to denote quantified variables. A memory state (also called a model ) is a pair ps, hq such that s is a variable valuation of the form s : PVAR Ñ N (the store), h is a partial function h : N ã N with finite domain (the heap) and we write domphq to denote its domain and ranphq to denote its range.

Two heaps h 1 and h 2 are said to be disjoint, noted h 1 K h 2 , if their domains are disjoint; when this holds, we write h 1 ]h 2 to denote the heap corresponding to the disjoint union of the graphs of h 1 and h 2 , hence domph 1 ]h 2 q " domph 1 qZ domph 2 q. When the domains of h 1 and h 2 are not disjoint, the composition h 1 ] h 2 is not defined even if h 1 and h 2 have the same values on domph 1 q X domph 2 q.

The empty heap, denoted , is the only heap with an empty domain. It is a neutral element for ]: we have h ] " ] h " h for any heap h. The heap h 1 is a subheap of h 2 , noted h 1 Ď h 2 , if domph 1 q Ď domph 2 q and h 1 plq " h 2 plq for any l P domph 1 q. Alternatively, we say that the heap h 2 is an extension of the heap h 1 . Obviously, h 1 Ď h 1 ] h 2 whenever the composition is defined. Moreover, any extension of the heap h 1 has the form h 1 ] h 2 for some heap h 2 . A heap is atomic if its domain is a singleton set. We write rl 1 Þ Ñ l 2 s for the unique atomic heap h such that domphq " tl 1 u and hpl 1 q " l 2 .

Formulae in 1SL are built from expressions (composed of either program or quantified variables) and atomic formulae (either equality tests or points-to). Formulae in 1SL are closed under Boolean connectives, first-order quantification (as in first-order classical logic) but also under separating conjunction ˚, its unit emp, and the separating implication ´usually called the magic wand. We make use of standard notations for the derived connectives of classical logic. The size of a formula A, written |A|, is defined as the number of symbols required to write it. An assignment is a map f : FVAR Ñ N. The satisfaction relation ( is parameterized by assignments (clauses for Boolean connectives are omitted):

ps, hq ( f e " e 1 iff e " e 1 where x def " spxq and u def " fpuq. ps, hq ( f e ãÑ e 1 iff e P domphq and hp e q " e 1 .

ps, hq ( f emp iff h " .

ps, hq ( f A 1 ˚A2 iff h " h 1 ] h 2 , ps, h 1 q ( f A 1 , ps, h 2 q ( f A 2 for some h 1 , h 2 . ps, hq ( f A 1 ´A2 iff for all h 1 , if h K h 1 and ps, h 1 q ( f A 1 then ps, h]h 1 q ( f A 2 . ps, hq ( f Du A iff there is l P N such that ps, hq ( fruÞ Ñls A where fru Þ Ñ ls is the assignment equal to f except that u takes the value l.

Whereas 'Du' is clearly a first-order quantifier, the connectives ˚and ´are known to be second-order quantifiers. In the paper, we show how to eliminate these three connectives when only one quantified variable is used. The logic 1SL is not minimal for its expressive power; e.g. emp is logically equivalent to @u ppu ãÑ uq´Kq.

Proposition 2.2 Let s, s 1 : PVAR Ñ N be two stores, h : N ã N be a heap, f, f 1 : FVAR Ñ N be two assignments and let A be an 1SL formula. If spxq " s 1 pxq holds for every program variable x that occurs in A and fpuq " f 1 puq holds for any quantified variable u that occurs freely in A then the equivalence ps, hq ( f A iff ps 1 , hq ( f 1 A holds.

The proof is by an easy verification and it is left to the reader.

As a consequence of Proposition 2.2, we might abusively use the notation ps, hq ( f A when the "store" s : tx 1 , . . . , x q u Ñ N is only defined on a superset of the program variables that occur in A, because the interpretation of the program variables that do not occur in A does not matter. Proposition 2.3 Let ϕ : N Ñ N be permutation on locations, i.e. a one-toone map. For any 1SL formula A, any memory state ps, hq and any assignment f : FVAR Ñ N, we have ps, hq ( f A iff pϕ ˝s, ϕ ˝h ˝ϕ´1 q ( ϕ˝f A.

In the above statement, it is worth noting that the domain of ϕ ˝h ˝ϕ´1 is ϕpdomphqq. The proof of Proposition 2.3 is left to the reader.

Since models for a formula A are closed under permutations on locations, without any loss of generality, we can assume that for every variable x in A being either a program variable or a freely occuring quantified variable spxq ď m where A contains at most m program or free variables.

Corollary 2.4 Let A be an 1SL formula, V Ď PVAR and F Ď FVAR be finite subsets such that V contains the program variables that occur in A and F contains the quantified variables that occur freely in A. If there exist a memory state ps, hq and an assignment f : FVAR Ñ N such that ps, hq ( f A, then there exist a memory state ps 1 , h 1 q and an assignment f 1 : FVAR Ñ N such that ps 1 , h 1 q ( f 1 A and s 1 pVqYf 1 pFq Ď t0, 1, . . . , m´1u with m " cardpVq`cardpFq.

Proof The set spVq Y fpFq is a finite subset of N. Its cardinal is less than m " cardpVq `cardpFq. Hence, there exists a permutation on locations ϕ : N Ñ N such that ϕpspVq Y fpFqq Ď t0, 1, . . . , m ´1u. We apply Proposition 2.3 and get s 1 " ϕ ˝s, h 1 " ϕ ˝h ˝ϕ´1 and f 1 " ϕ ˝f.

[ \

We write 1SL0 to denote the propositional fragment of 1SL where no variable from FVAR occurs. Similarly, we write 1SL1 to denote the fragment of 1SL restricted to a single quantified variable, say u. In that case, the satisfaction relation can be denoted by ( l where l is understood as the value l " fpuq of the quantified variable u under the assignment f.

Let L be a logic among 1SL, 1SL1 and 1SL0. As usual, the satisfiability problem for L takes as input a formula A in L and asks whether there is a memory state ps, hq and an assignment f such that ps, hq ( f A. The modelchecking problem for L takes as input a formula A in L, a memory state ps, hq and an assignment f for free variables from A and asks whether ps, hq ( f A.

When checking the satisfiability status of a formula A in 1SL1, we assume that its program variables are contained in tx 1 , . . . , x q u for some q ě 1 and the quantified variable is u. So, PVAR is unbounded but as usual, when dealing with a specific formula, the set of program variables is finite.

Theorem 2.5 [START_REF] Calcagno | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF][START_REF] Brochenin | On the almighty wand[END_REF][START_REF] Demri | Expressive Completeness of Separation Logic with Two Variables and No Separating Conjunction[END_REF] The satisfiability and model-checking problems for 1SL0 are pspacecomplete. The satisfiability problem for 1SL is undecidable, even when restricted to two quantified variables.

A First Glimpse of Properties that can be Stated in 1SL1

The logic 1SL1 allows to express different types of properties on memory states. The examples below indeed illustrate the expressivity of 1SL1 and in the paper we characterize precisely what can be expressed in 1SL1:

the variable e is allocated in the heap: allocpeq def " pe ãÑ eq ´K e where e is either x i or u. Intuitively: it is not possible to add a loop at e; the program variables x i and x j have the same value (without explicit equality predicate and with only one quantified variable): @ u pu ãÑ x i q ´pu ãÑ x j q the variable x i points to a location that is a loop:

tolooppx i q def " Du px i ãÑ u ^u ãÑ uq x i
the variable x i points to a location that is allocated:

toallocpx i q def " Du `xi ãÑ u ^allocpuq ˘xi
the variables x i and x j point to a shared location:

convpx i , x j q def " Du px i ãÑ u ^xj ãÑ uq x i x j
there is a location between x i and x j :

btwnpx i , x j q def " Du px i ãÑ u ^u ãÑ x j q x i x j
the domain of the heap has at least k elements:

# dom ě k def " emp ˚¨¨¨˚ emp
where emp occurs k times (in the example, k " 3 on the right-hand side of the equality symbol); the memory heap has exactly one memory cell at address x i (expressed in 1SL0):

atomicpx i q def " allocpx i q ^ p# dom ě 2q
the location interpreted by x i has no predecessor:

# predpx i q " 0 def " pDu u ãÑ x i q
the location interpreted by x i has exactly one predecessor:

# predpx j q " 1 def " pDu u ãÑ x i q ^ pDu u ãÑ x i ˚Du u ãÑ x i q
the location interpreted by x i has exactly k ą 0 predecessors: # predpx j q " k def " p# predpx j q " 1q ˚¨¨¨˚p# predpx j q " 1q where # predpx j q " 1 occurs k times; the heap contains at least three self-loops:

# loop ě 3 def " pDu u ãÑ uq ˚pDu u ãÑ uq ˚pDu u ãÑ uq
We also illustrate briefly the expressive power of 1SL2, i.e. with two quantified variables. But be aware that 1SL2 is strictly more expressive than 1SL1; see for instance Corollary 4.12. Moreover, 1SL2 is proved non recursively enumerable in [START_REF] Demri | Expressive Completeness of Separation Logic with Two Variables and No Separating Conjunction[END_REF] whereas in this paper we show that 1SL1 is pspace-complete. In 1SL2, it is possible to express the existence of paths/lists within memory states:

the heap is composed of exactly a path of strictly positive length from x i to x j together with an arbitrary number of cycles, written ls 1 px i , x j q:

# predpx i q " 0 ^allocpx i q ^# predpx j q " 1 ^ allocpx j q ^@u 1 p# predpu 1 q " 0 ^allocpu 1 qq ñ u 1 " x i ^@u 1 p# predpu 1 q ‰ 0 ^u1 ‰ x j q ñ p# predpu 1 q " 1 ^allocpu 1 qq
there is a path from x i to x j can be expressed by lspx i , x j q def " px i " x j q _ `ls 1 px i , x j q ˚Jq to be found originally in (Brochenin et al 2012, Lemma 2.4); a similar property was established for graph logics in [START_REF] Dawar | Expressiveness and complexity of graph logic[END_REF].

Decomposition and Graphical Representation

We fix a finite set of q distinct program variables V " tx 1 , . . . , x q u Ď PVAR; to each memory state ps, hq, we associate several subsets of locations that together define two partitions of domphq. Beware that these subsets and partitions depend on the choice of q and V:

one partition takes care of self-loops and predecessors of interpretations of program variables; the other one takes care of locations which are "close" to the interpretations of program variables; see below.

This allows us to decompose the heap domains in such a way that we can easily identify the properties that can be indeed expressed by the formulae of 1SL1 that contain only the program variables of V.

We introduce a first partition of the heap domain by distinguishing the selfloops and the predecessors of variable interpretations on the one hand, and the remaining locations in the domain on the other hand: predps, h, iq is defined for any i P r1, qs. From the definition of remps, hq, we derive the obvious identity domphq " remps, hq Z `predps, hq Y loopps, hq ˘. However, the sets predps, hq and loopps, hq are not necessarily disjoint. As a consequence of h being a partial function, the sets predps, h, iq and predps, h, jq intersect only if spx i q " spx j q, in which case the identity predps, h, iq " predps, h, jq holds.

We introduce a second partition of domphq by distinguishing the locations related to a memory cell involving a program variable interpretation on the one hand, and the remaining locations in the domain on the other hand. So, the sets below depend also implicitly on V:

refps, hq def " domphq X spVq ♥ps, hq def " refps, hq Y accps, hq accps, hq def " domphq X h `spVq ˘♥ps, hq def " domphqz♥ps, hq
The core of the memory state ps, hq, written ♥ps, hq, contains the locations l in domphq such that either l is the interpretation of a program variable or it is an image by h of a program variable (that is also in the domain). We have refps, hq Ď spVq, whence cardprefps, hqq ď q. Since h is a partial function, from accps, hq Ď hpspVqq we deduce cardpaccps, hqq ď q. As a consequence, we have cardp♥ps, hqq ď 2q. Hence, the core of a memory heap is always a "small part" of the domain, small meaning of bounded size when q is fixed.

In the sequel, we need to consider locations that belong to the intersection of those sets from different partitions. For instance, pred ♥ ps, hq contains the set of locations l in domphq that are predecessors of a variable interpretation but no program variable x i in tx 1 , . . . , x q u satisfies spx i q " l or hpspx i qq " l (which means l R ♥ps, hq).

We insist on the fact that the definitions of subsets like refps, hq, accps, hq and ♥ps, hq and hence pred ♥ ps, h, iq, pred ♥ ps, h, iq, loop ♥ ps, hq, ... depend on a particular choice of q and V " tx 1 , . . . , x q u even though our notation does not reflect that dependency. We made this choice for the sake of readability. However, in most of developments of this paper, and unless stated otherwise, we assume a fixed choice for q and V. A memory state ps, hq restricted to the finite set of program variables x 1 , . . . , x q can be represented by a finite graph encoding the (graph) representation of the heap h. Moreover, each variable x i labels the location spx i q, which may add a few more nodes in the case spx i q does not belong to the domain and codomain of h. The graph of Figure 2.1 illustrates the previous definitions of subsets on a simple memory state.

The introduction of the above sets provides a canonical way to decompose the heap domains, which will be helpful in the sequel.

Lemma 2.6 (Canonical decomposition) For all stores s and all heaps h, the following identity holds:

domphq " ♥ps, hq Z pred ♥ ps, hq Z loop ♥ ps, hq Z rem ♥ ps, hq
The proof is by straightforward verification using the fact that predps, hq X loopps, hq Ď ♥ps, hq.

Proposition 2.7 pred ♥ ps, h, iq ˇˇi P r1, qs ( is a partition of pred ♥ ps, hq.

The (easy) proof is left to the reader.

Remember that both pred ♥ ps, h, iq " pred ♥ ps, h, jq and pred ♥ ps, h, iq " H are possible. Below, we present properties about the canonical decomposition.

Proposition 2.8 (Canonical decomposition and splitting) Let us assume s, h, h 1 , h 2 such that h " h 1 ] h 2 . With the notation X for NzX, the identities ♥ps, hq X domph 1 q " ♥ps, h 1 q Z ∆ps, h 1 , h 2 q ♥ps, hq X domph 2 q " ♥ps, h 2 q Z ∆ps, h 2 , h 1 q hold with ∆ps, h 1 , h 2 q def " domph 1 q X h 2 pspVqq X spVq X h 1 pspVqq.

The proof is by Boolean computations.

The set ∆ps, h 1 , h 2 q contains the locations belonging to the core of h and to the domain of h 1 , without being in the core of h 1 . Its expression in Proposition 2.8 uses only basic set-theoretical operations. From Proposition 2.8, we conclude that ♥ps, h 1 ] h 2 q can be different from ♥ps, h 1 q Z ♥ps, h 2 q. Proposition 2.9 Let s, h, h 1 , h 2 be such that h " h 1 ] h 2 and let i P r1, qs. The following identities hold:

1. pred ♥ ps, h 1 , iq " ppred ♥ ps, h, iq X domph 1 qq Z ppredps, h, iq X ∆ps, h 1 , h 2 qq; 2. loop ♥ ps, h 1 q " ploop ♥ ps, hq X domph 1 qq Z ploopps, hq X ∆ps, h 1 , h 2 qq; 3. rem ♥ ps, h 1 q " prem ♥ ps, hq X domph 1 qq Z premps, hq X ∆ps, h 1 , h 2 qq.

The proof can be found in Appendix A starting at page 50.

Remark that ] is commutative, hence symmetric identities hold for the subsets pred ♥ ps, h 2 , iq, loop ♥ ps, h 2 q and rem ♥ ps, h 2 q. The following propositions describe the changes that occur in the canonical decomposition of a memory state when exactly one memory cell is added to the heap. Recall that we write rl 1 Þ Ñ l 2 s for the unique atomic heap h such that domphq " tl 1 u and hpl 1 q " l 2 . We write p♥ps, hq to denote the set spVq Y hpspVqq.

Proposition 2.10 Let ps, hq be a memory state, l 1 P Nzdomphq and l 2 P N. Let us write h 1Ñ2 for h]rl 1 Þ Ñ l 2 s and let i be in r1, qs. The following identities hold:

domph 1Ñ2 q " domphq Z tl 1 u predps, h 1Ñ2 , iq " predps, h, iq Z " tl 1 u if l 2 " spx i q H if l 2 ‰ spx i q loopps, h 1Ñ2 q " loopps, hq Z " tl 1 u if l 1 " l 2 H if l 1 ‰ l 2 remps, h 1Ñ2 q " remps, hq Z " tl 1 u if l 2 R spVq Y tl 1 u H if l 2 P spVq Y tl 1 u ♥ps, h 1Ñ2 q " ♥ps, hqZ $ ' ' & ' ' % tl 1 , l 2 u if l 1 P spVq, l 2 P domphq and l 2 R ♥ps, hq tl 1 u if l 1 P spVq and pl 2 R domphq or l 2 P ♥ps, hqq tl 1 u if l 1 R spVq and l 1 P hpspVqq H if l 1 R p♥ps, hq
The proof can be found in Appendix A starting at page 50. Proposition 2.11 Let ps, hq be a memory state, l 1 P Nzdomphq and l 2 P N.

Let us write h 1Ñ2 for h]rl 1 Þ Ñ l 2 s and let i be in r1, qs. The following identities hold:

pred ♥ ps, h 1Ñ2 , iq " $ & % pred ♥ ps, h, iq Z tl 1 u if l 1 R p♥ps, hq and l 2 " spx i q pred ♥ ps, h, iq ´tl 2 u if l 1 P spVq and l 2 P pred ♥ ps, h, iq pred ♥ ps, h, iq otherwise loop ♥ ps, h 1Ñ2 q " $ & % loop ♥ ps, hq Z tl 1 u if l 1 R p♥ps, hq and l 1 " l 2 loop ♥ ps, hq ´tl 2 u if l 1 P spVq and l 2 P loop ♥ ps, hq loop ♥ ps, hq otherwise rem ♥ ps, h 1Ñ2 q " $ & % rem ♥ ps, hq Z tl 1 u if l 1 R p♥ps, hq and l 2 R spVq Y tl 1 u rem ♥ ps, hq ´tl 2 u if l 1 P spVq and l 2 P rem ♥ ps, hq rem ♥ ps, hq otherwise 
where X ´tl 2 u means that the location l 2 already belongs to the set X and is (strictly) removed from it.

The proof can be found in Appendix A starting at page 51.

How to Count in 1SL1

In this section, let us consider a fixed memory state ps, hq and a fixed location l. We explain how to measure the cardinal of some finite sets of locations using 1SL1 formulae, in particular those of the form Xz♥ps, hq where X is one of the sets among predps, h, jq, loopps, hq and remps, hq. The ground idea is the following: using the identity X " `X X ♥ps, hq ˘Z `Xz♥ps, hq the cardinal of Xz♥ps, hq can be obtained from the cardinal of X and the cardinal of X X ♥ps, hq (by expressing their difference in 1SL1).

In 1SL1, it is easy to detect if there is one element in either predps, h, jq or loopps, hq using the formulae

# predpx j q ě 1 def " Du u ãÑ x j and # loop ě 1 def " Du u ãÑ u
Hence, using the separating conjunction ˚, we can measure the cardinal of predps, h, jq or loopps, hq with

# predpx j q ě k def " # predpx j q ě 1 ˚¨¨¨˚# predpx j q ě 1 repeated k times # loop ě k def " # loop ě 1 ˚¨¨¨˚# loop ě 1 repeated k times
This encoding works smoothly thanks to the identities predps,

h 1 ] h 2 , jq " predps, h 1 , jq Z predps, h 2 , jq, loopps, h 1 ] h 2 q " loopps, h 1 q Z loopps, h 2 q.
Let us explain how to evaluate the cardinal of remps, hq. To do so, we define the following 1SL1 formulae for every e P tx 1 , . . . , x q u Y tuu: inrempeq def " allocpeq ^ e ãÑ e ^ŹjPr1,qs e ãÑ x j torempx i q def " toallocpx i q ^ tolooppx i q ^ŹjPr1,qs btwnpx i , x j q Proposition 2.12 With u " l and x i " spx i q, we have: ps, hq ( l inrempeq iff e P remps, hq ps, hq ( l torempx i q iff hpspx i qq P remps, hq

The proof is left to the reader.

Hence, the formula # rem ě 1 def " Du inrempuq detects if remps, hq is nonempty. Using the separating conjunction ˚, we can measure the cardinal of remps, hq in 1SL1 by # rem ě k def " # rem ě 1 ˚¨¨¨˚# rem ě 1 repeated k times because the identity remps, h 1 ] h 2 q " remps, h 1 q Z remps, h 2 q holds too.

To count the number of elements in e.g. pred ♥ ps, h, jq, it is thus sufficient to count the number of elements in pred ♥ ps, h, jq and then use the identity predps, h, jq " pred ♥ ps, h, jq Z pred ♥ ps, h, jq However, splitting pred ♥ ps, h, jq into k parts using the separating conjunction like we did for predps, h, jq will not work because ♥ps, h 1 ]h 2 q is not necessarily equal to ♥ps, h 1 q Z ♥ps, h 2 q; see Proposition 2.8 for instance.

By contrast, one possible trick consists in directly enumerating the elements in predps, h, jq X refps, hq and in predps, h, jq X `accps, hqzrefps, hq ˘and then to use the identity The proof is left to the reader.

Hence, ref I holds iff sI is a subset of refps, hq of size cardpIq and thus cardpIq gives a lower bound for the cardinal of refps, hq. Moreover, acc I provides us a way to give a lower bound for the cardinal of accps, hqzrefps, hq.

To illustrate the usefulness of ref I and acc I , we show how to measure the cardinal of the core. Using the identity ♥ps, hq " refps, hqZ `accps, hqzrefps, hq we can express the fact that ♥ps, hq has cardinal at least k by

# core ě k def " Ž ref R ^acc A ˇˇR Y A Ď r1
, qs and cardpRq `cardpAq ě k ( But we can easily measure the cardinal of subsets of the core such as e.g. pred ♥ ps, h, jq. Its cardinal is at least k iff the following formula is satisfied

# pred ♥ px j q ě k def " ł " ref R ^ŹrPR x r ãÑ x j ^R Y A Ď r1
, qs and acc A ^ŹaPA btwnpx a , x j q cardpRq `cardpAq ě k * and, using predps, h, jq " pred ♥ ps, h, jq Z pred ♥ ps, h, jq we conclude that the cardinal of pred ♥ ps, h, jq is at least k iff the following formula is satisfied

# pred ♥ px j q ě k def " ł pď2q # predpx j q ě k `p ^ # pred ♥ px j q ě p `1
Notice that we can stop at 2q because of the inclusion pred ♥ ps, h, jq Ď ♥ps, hq and the upper bound cardp♥ps, h, jqq ď 2q.

Similarly, measuring the sizes of loop ♥ ps, hq and rem ♥ ps, hq is done with

# loop ♥ ě k def " ł " ref R ^ŹrPR x r ãÑ x r ^R Y A Ď r1, qs and acc A ^ŹaPA tolooppx a q cardpRq `cardpAq ě k * # rem ♥ ě k def " ł " ref R ^ŹrPR inrempx r q ^R Y A Ď r1
, qs and acc A ^ŹaPA torempx a q cardpRq `cardpAq ě k * and using the partitions loopps, hq " loop ♥ ps, hq Z loop ♥ ps, hq and remps, hq " rem ♥ ps, hqZrem ♥ ps, hq, we can measure the sizes of loop ♥ ps, hq and rem ♥ ps, hq

with # loop ♥ ě k def " ł pď2q # loop ě k `p ^ # loop ♥ ě p `1 # rem ♥ ě k def " ł pď2q # rem ě k `p ^ # rem ♥ ě p `1
Lemma 2.14 For any k ě 1 and for any i P r1, qs, there exist 1SL1 formulae denoted # pred ♥ px i q ě k, # loop ♥ ě k and # rem ♥ ě k respectively such that, for any memory state ps, hq and for any location l P N the following equivalences hold:

1. ps, hq ( l # pred ♥ px i q ě k iff cardppred ♥ ps, h, iqq ě k; 2. ps, hq ( l # loop ♥ ě k iff cardploop ♥ ps, hqq ě k; 3. ps, hq ( l # rem ♥ ě k iff cardprem ♥ ps, hqq ě k.
The proof can be found in Appendix A starting at page 53.

Equipotence for Comparing Cardinalities

We introduce the notion of equipotence and we state several properties about it. This will be useful in the forthcoming developments. The proof is left to the reader.

Definition 2.17 (α-equipotence) Let α P N. We say that two finite sets X and Y are α-equipotent and we write X " α Y if, either cardpXq " cardpY q or both cardpXq and cardpY q are greater that α. We say that two finite sets X and Y are equipotent and we write X " 8 Y when cardpXq " cardpY q.

Proposition 2.18 For any α P N and any finite sets X and Y , the following conditions are equivalent:

1. X " α Y ; 2. pcardpXq ě k iff cardpY q ě kq for any k ď α; 3. pcardpXq " cardpY q ă αq or pcardpXq ě α and cardpY q ě α); 4. minpcardpXq, αq " minpcardpY q, αq.

The proof is left to the reader.

It is thus obvious that X " α Y holds whenever cardpXq " cardpY q, i.e. " 8 Ď " α . The equipotence relation is also decreasing, i.e. " α2 Ď " α1 holds for all α 1 ď α 2 . It is easy to verify " 8 " Ş α " α . Hence the notation " 8 is consistent with the intuitive idea of a downward limit. We state below two lemmas that will be helpful in the sequel.

Lemma 2.19 Let α P N and X, X 1 , Y, Y 1 be finite sets such that X XX 1 " H, Y X Y 1 " H, X " α Y and X 1 " 8 Y 1 hold. Then X Z X 1 " α`n Y Z Y 1 holds where n " cardpX 1 q.
The proof is left to the reader. Proposition 2.20 Let X and Y be two finite sets and let x R X and y R Y . If the equipotence X Z txu " α`1 Y Z tyu holds then X " α Y holds.

The proof is left to the reader.

Lemma 2.21 Let α 1 , α 2 P N and X, X 1 , Y 0 be finite sets such that X Z X 1 " α1`α2 Y 0 holds. Then there are two finite sets Y, Y 1 such that Y 0 " Y ZY 1 , X " α1 Y and X 1 " α2 Y 1 hold.
The proof can be found in Appendix A starting at page 53.

Lemma 2.22 Let α 1 , α 2 ě 1 and X, X 1 , Y 0 be finite sets and x, y be elements such that X Z X 1 " α1`α2 Y 0 holds and x{y respect X Z X 1 {Y 0 . Then there are two finite sets Y and Y 1 such that Y 0 " Y Z Y 1 , X " α1 Y and X 1 " α2 Y 1 hold, and x{y respect both X{Y and Y {Y 1 .

Proof There are three cases:

if x P X then we have x P X Z X 1 and as a consequence y P Y 0 . Let us define X 2 " Xztxu and Y 1 0 " Y 0 ztyu. As α 1 ě 1, by Proposition 2.20 we deduce X 2 Z X 1 " pα1´1q`α2 Y 1 0 . By Lemma 2.21, we obtain Y 2 and Proposition 2.24 For any α ě 0 and any finite set X, there exists a partition X " X 1 Z X 2 of X such that X 1 " α X 1 Z X 2 and cardpX 1 q ď α.

Y 1 such that Y 1 0 " Y 2 Z Y 1 , X 2 " α1´1 Y 2 and X 1 " α2 Y 1 . Observe that y R Y 2 and y R Y 1 because Y 2 Z Y 1 Ď Y 0 ztyu. We define Y " Y 2 Z tyu. By Lemma 2.19, we have X " X 2 Z txu " α1 Y 2 Z tyu " Y . Since x P X and y P Y , x{y respects X{Y ; and since x R X 1 (because X X X 1 " H) and y R Y 1 , x{y respects X 1 {Y 1 ; -the case x P X 1 is the symmetric case; -if x R X ZX 1 then y R Y 0 . Using Proposition 2.21 we choose Y, Y 1 such that Y 0 " Y Z Y 1 , X " α1 Y and X 1 " α2 Y 1 . From x R X Z X 1 and y R Y Z Y 1 , we deduce x R X, x R X 1 , y R Y and y R Y 1 hence
Proof If cardpXq ď α then, we define X 1 " X and X 2 " H. If cardpXq ą α then choose X 1 Ď X such that cardpX 1 q " α (e.g. X 1 is composed of the least α elements of X) and X 2 " XzX 1 .

[ \

Test formulae and Pointed Memory States

In this section, we consider a fixed set V " tx 1 , . . . , x q u of q ě 1 distinct program variables. The value q can always be chosen large enough to accommodate a formula that contains many program variables. Below, we introduce test formulae stating simple properties and we show that every formula in 1SL1 is equivalent to a Boolean combination of test formulae.

Test Formulae for 1SL1

Test formulae express simple properties about the memory states; this includes properties about program variables but also global properties about numbers of predecessors or loops, following the decomposition in Section 2.3. These test formulae allow us to characterize the expressive power of 1SL1, similarly to what has been done in (Lozes 2004a,b;[START_REF] Brochenin | Reasoning about sequences of memory states[END_REF] for 1SL0. Moreover, we aim at defining the class of test formulae as small as possible in order to nail down the very expressive power of 1SL1. Since every formula in 1SL1 is shown equivalent to a Boolean combination of test formulae (forthcoming Theorem 4.11), this process can be viewed as a means to eliminate separating connectives in a controlled way; elimination is not total since the test formulae require such separating connectives. However, this is analogous to quantifier elimination in Presburger arithmetic [START_REF] Presburger | Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt[END_REF] for which simple modulo constraints need to be introduced in order to eliminate the quantifiers (of course, modulo constraints are defined with quantifiers but in a controlled way too).

In Sections 2.2 and 2.4, we explained how to express the following test formulae in 1SL1. In particular in Lemma 2.14, we show how to define the formulae # loop ♥ ě k [resp. # rem ♥ ě k and # pred ♥ px i q ě k] in 1SL1. Notice however that the precise way they are actually defined in 1SL1 does not impact our developments. Definition 3.1 (Test formulae) Given α ě 0, we define sets of test formulae: Equality def " x i " x j ˇˇi, j P r1, qs ( Pattern def " x i ãÑ x j , convpx i , x j q, btwnpx i , x j q ˇˇi, j P r1, qs ( Y toallocpx i q, tolooppx i q ˇˇi P r1, qs (

Extra u def " u " u, u ãÑ u, allocpuq ( 
Y x i " u, u " x i , x i ãÑ u, u ãÑ x i ˇˇi P r1, qs ( Size α def " # pred ♥ px i q ě k ˇˇi P r1, qs, k P r1, αs ( Y # loop ♥ ě k, # rem ♥ ě k ˇˇk P r1, αs ( Basic def " Equality Y Pattern Test α def " Basic Y Size α Y tKu Basic u def " Basic Y Extra u Test u α def " Test α Y Extra u
We observe that Size 0 is an empty set of formulae. The formula allocpx i q is not included because we use the logically equivalent convpx i , x i q. Notice however that allocpuq (defined by pu ãÑ uq ´K) cannot be replaced because convpx i , x j q needs the quantifier Du to be defined in 1SL1. Unlike allocpx i q, the test formula allocpuq cannot be defined from conv.

It is important to note that the sets Basic u , Size α and Test u α depend on a particular choice of q and V; and again our notation does not reflect that dependency. By way of example, the definition of # loop ♥ ě k and its semantics inherently depend on q (and on V " tx 1 , . . . , x q u); see Proposition 2.14. As an illustration, the conjunction of test formulae

x 1 ãÑ x 2 ^x2 ãÑ x 1 ^ px 1 " x 2 q ^u ãÑ u ^ # loop ♥ ě 1
is satisfiable if q ě 3 and unsatisfiable if q " 2 because in any model, the interpretation of u (a self-loop) must belong the interpretation of programs variables V " tx 1 , . . . , x q u. But u cannot be interpreted by either x 1 or x 2 unless x 1 " x 2 is satisfied as well.

Proposition 3.2 (Monotonicity of Basic u ) Let s, h 1 , h 2 and l P N be such that h 1 Ď h 2 . For any formula B P Basic u , if ps, h 1 q ( l B then ps, h 2 q ( l B.

The proof is left to the reader.

Satisfiability of Boolean Combinations of Test Formulae

Definition 3.3 (Literals and atoms) A literal is a test formula in Test u α or the negation of a test formula in Test u

α . An atom is a saturated conjunction of literals from Test u α , i.e. each formula from Test u α occurs exactly once, possibly negated.

Hence atoms are either inconsistent (and equivalent to K) or minimal elements in the Boolean algebra generated by Test u α ; any Boolean combination of formulae of Test u α is equivalent to a disjunction of atoms.

Definition 3.4

The satisfiability problem for Boolean combinations of test formulae is defined by: Input: a set of program variables V " tx 1 , . . . , x q u; a Boolean combination A of formulae from Ť αě1 Test u α built on V (the bounds k in the Size α formulae are encoded in binary). Question: is A satisfiable with test formulae understood using the set V? Indeed, we need to specify the set tx 1 , . . . , x q u as an input because the meaning of test formulae like # loop ♥ ě 1 depends on tx 1 , . . . , x q u; see the previous section.

Theorem 3.5 The satisfiability problem for Boolean combinations of test formulae is np-complete.

Proof np-hardness follows from a reduction from SAT, assuming that the number of program variables is unbounded. Indeed, each propositional variable p i can be encoded by the equality x 2i " x 2i`1 where the program variables x 2i and x 2i`1 are dedicated to p i only. The proof of the np upper bound is given in Section 5.

[ \ Checking the satisfiability status of a Boolean combination of test formulae is typically the kind of tasks that could be performed by an SMT solver, see e.g. (de Moura and Björner 2008; Barrett et al 2011).

Observing Pointed Memory States with Test Formulae

We introduce the notion of pointed memory state and three kinds of equivalence relations between pointed memory states: α-equivalence denoted » α and basic equivalence denoted » b . Definition 3.6 (Pointed memory state, maxval) The triple m " ps, h, lq is a pointed memory state if ps, hq is a memory state and l P N is a location. We define maxvalphq def " max `domphq Y ranphq maxvalps,

hq def " max `spVq Y domphq Y ranphq maxvalpmq def " max `spVq Y domphq Y ranphq Y tlu Definition 3.7 (Pseudo-core)
The pseudo-core of a memory state ps, hq, written p♥ps, hq, is defined as p♥ps, hq def " spVqYhpspVqq. The pseudo-core of a pointed memory state m " ps, h, lq is defined by p♥pmq def " spVqYhpspVqqYtlu.

We observe that for any u ą maxvalps, hq, we have u R domphq Y p♥ps, hq and if u ą maxvalps, h, lq then u R domphq Y p♥ps, h, lq. Note also that the identity ♥ps, hq " p♥ps, hq X domphq holds. Moreover, ♥ps, hq Ď p♥ps, hq and p♥ps, hq may contain locations that are not in domphq, unlike the core ♥ps, hq.

Below, we introduce equivalence relations depending on whether memory states are indistinguishable with respect to some sets of test formulae. Definition 3.8 (Equivalences) Given pointed memory states m " ps, h, lq and m 1 " ps 1 , h 1 , l 1 q, we say that m and m 1 are α-equivalent and we write m » α m 1 when the equivalence ps, hq ( l B iff ps 1 , h 1 q ( l 1 B holds for any B P Test u α We also define the basic equivalence, written » b , by using Basic u instead of Test u α .

It is obvious that » α and » b are indeed equivalence relations between pointed memory states. The pointed memory states m and m 1 are basically equivalent (resp. α-equivalent) if and only if they cannot be distinguished by the formulae of Basic u (resp. Test u α ). Since the inclusion Basic u Ď Test u α holds, it is obvious that the inclusion » α Ď » b holds. Also observe that the identity » b " » 0 holds because the set of formulae Test u 0 is identical to Basic u Y tKu. Nevertheless, we think it is clearer to keep a separate notation for » b . Proposition 3.9 Let ps, h, lq and ps 1 , h 1 , l 1 q be two pointed memory states such that ps, h, lq » b ps 1 , h 1 , l 1 q. Then ps, , lq » b ps 1 , , l 1 q holds.

The proof is left to the reader; remember that denotes the empty heap. Proposition 3.10 below states that α-equivalence corresponds to basic equivalence together with α-equipotence of the sets pred ♥ p¨, ¨, iq, loop ♥ p¨, ¨q and rem ♥ p¨, ¨q. Proposition 3.10 For any α ě 0, the relation ps, h, lq » α ps 1 , h 1 , l 1 q holds if and only if the four following conditions hold:

1. ps, h, lq » b ps 1 , h 1 , l 1 q; 2. pred ♥ ps, h, iq " α pred ♥ ps 1 , h 1 , iq for any i P r1, qs; 3. loop ♥ ps, hq " α loop ♥ ps 1 , h 1 q; 4. rem ♥ ps, hq " α rem ♥ ps 1 , h 1 q.
The proof follows from Test u α " tKu Y Basic u Y Size α and Lemma 2.14. Proposition 3.11 Let m " ps, h, lq and m 1 " ps 1 , h 1 , l 1 q be two pointed memory states such that domphq Ď ♥ps, hq and domph 1 q Ď ♥ps 1 , h 1 q. For any

α ě 0, m » α m 1 iff m » b m 1 .
This is a direct consequence of Proposition 3.10.

A Relational View of Basic Equivalence

In this section, we assume two pointed memory states m " ps, h, lq and m 1 " ps 1 , h 1 , l 1 q. We name some properties which will be used to define binary relations between locations.

Definition 3.12 For u, v P N, we define the following properties: pR1q u " l and v " l 1 ; pR2q u " spx i q and v " s 1 px i q for some i P r1, qs; pR3q u " hpspx i qq and v " h 1 ps 1 px i qq for some i P r1, qs; pT1q u " l iff v " l 1 ; pT2q u " spx i q iff v " s 1 px i q for any i P r1, qs; pT3q u " hpspx i qq iff v " h 1 ps 1 px i qq for any i P r1, qs; pT4q u P domphq iff v P domph 1 q; pT5q hpuq " spx i q iff h 1 pvq " s 1 px i q for any i P r1, qs; pT6q hpuq " u iff h 1 pvq " v.

We say that e.g. u{v verify pT2q if this property holds.

We emphasize the fact that Properties pR1-3q and pT1-6q depend on m{m 1 . More precisely, pR1q and pT1q depend on l{l 1 , pR2q and pT2q depend on s{s 1 , pT4,6q depend on h{h 1 , and the remaining pR3q and pT3,5q depend on ps, hq{ps 1 , h 1 q. When the context does not single out a unique choice for m{m 1 , we will explicitly say that e.g. u{v verify pT3q with respect to m{m 1 .

The Properties pT2-6q characterize precisely the positions of u (resp. v) in the canonical decomposition of m (resp. m 1 ). The Property pT1q characterizes the positions of u{v with respect to l{l 1 . As witnessed in upcoming Lemma 3.25 and Propositions 3.29 and 3.31, we do not need all this precision to establish that basic or α-equivalence is preserved by atomic extensions. Proposition 3.13 Let u, v P N. For pT10q-pT20q defined as pT10q u P spVq iff v P s 1 pVq; pT11q u P hpspVqq iff v P h 1 ps 1 pVqq; pT12q u P p♥ps, hq iff v P p♥ps 1 , h 1 q; pT13q u P ♥ps, hq iff v P ♥ps 1 , h 1 q; pT14q u P predps, h, iq iff v P predps 1 , h 1 , iq for any i P r1, qs; pT15q u P predps, hq iff v P predps 1 , h 1 q; pT16q u P loopps, hq iff v P loopps 1 , h 1 q; pT17q u P remps, hq iff v P remps 1 , h 1 q; pT18q u P pred ♥ ps, h, iq iff v P pred ♥ ps 1 , h 1 , iq for any i P r1, qs; pT19q u P loop ♥ ps, hq iff v P loop ♥ ps 1 , h 1 q; pT20q u P rem ♥ ps, hq iff v P rem ♥ ps 1 , h 1 q; pT21q u P p♥pmq iff v P p♥pm 1 q.

the following propositions hold:

1. pT2q implies pT10q;

4. pT2-4q imply pT13q; 2. pT3q implies pT11q;

5. pT2-6q imply pT10-20q; 3. pT2-3q imply pT12q;

6. pT1-3q imply pT21q.

The proof can be found in Appendix B starting at page 54.

Definition 3.14 (Binary relations between locations) We define binary relations between locations

denoted R m,m 1 , R l m,m 1 , D m,m 1 , T m,m 1 and T l m,m 1 by u R m,m 1 v iff pR2q or pR3q u R l m,m 1 v iff pR1q or pR2q or pR3q u D m,m 1 v iff pT4q u T m,m 1 v
iff pT2q and . . . and pT6q u T l m,m 1 v iff pT1q and . . . and pT6q

In the rest of this section, we simply denote R, R l ,... instead of R m,m 1 , R l m,m 1 ,... Obviously the inclusions R Ď R l and T l Ď T Ď D hold. Proposition 3.15 The following inclusions hold:

1. R Ď p♥ps, hq ˆp♥ps 1 , h 1 q 4. R l Ď p♥pmq ˆp♥pm 1 q 2. T X p♥ps, hq ˆN Ď R 5. T l X p♥pmq ˆN Ď R l 3. T X N ˆp♥ps 1 , hq Ď R 6. T l X N ˆp♥pm 1 q Ď R l
The proof can be found in Appendix B starting at page 55. Proposition 3.16 The following properties hold:

1. The relation T restricted to p♥ps, hqˆp♥ps 1 , h 1 q is functional and injective; 2. The relation T l restricted to p♥pmq ˆp♥pm 1 q is functional and injective;

3. For any u R domphq Y p♥ps, hq, v R domph 1 q Y p♥ps 1 , h 1 q, we have u T v; 4. For any u R domphq Y p♥pmq, v R domph 1 q Y p♥pm 1 q, we have u T l v.
The proof can be found in Appendix B starting at page 55.

We get a characterization of the basic equivalence of m and m 1 in terms of the inclusion of the relation

R l into T l . Theorem 3.17 m » b m 1 if and only if R l Ď T l .
The proof can be found in Appendix B starting at page 55. Proposition 3.18 If m » b m 1 then the following properties hold:

1. The relation R is total and surjective between p♥ps, hq and p♥ps 1 , h 1 q; 2. The relation R 1 is total and surjective between p♥pmq and p♥pm 1 q.

The proof can be found in Appendix B starting at page 56. Lemma 3.19 (Bijections between pseudo-cores) When m and m 1 are basically equivalent, i.e. m » b m 1 , the following properties hold:

1. the inclusions R Ď T and R l Ď T l hold; 2. both R " T X p♥ps, hq ˆp♥ps 1 , h 1 q and R l " T l X p♥pmq ˆp♥pm 1 q hold; 3. the relation R is bijective between p♥ps, hq and p♥ps 1 , h 1 q; 4. the relation R l is bijective between p♥pmq and p♥pm 1 q; 5. the relation R l X♥ps, hqˆ♥ps 1 , h 1 q is bijective between ♥ps, hq and ♥ps 1 , h 1 q.

Proof We have proved R l Ď T l in Theorem 3.17. Hence we deduce R Ď R l Ď T l Ď T. Hence Property 1 holds. By Proposition 3.15 item 5, we derive T l X p♥pmq ˆp♥pm 1 q Ď T l X p♥pmq N Ď R l . By Proposition 3.15 item 4 and R l Ď T l , we derive R l Ď T l X p♥pmq p♥pm 1 q. Hence we obtain the identity R l " T l X p♥pmq ˆp♥pm 1 q. The identity R " T X p♥ps, hq ˆp♥ps 1 , h 1 q can then be established with similar arguments, i.e. Proposition 3.15 items 1 and2. Hence Property 2 holds. By Proposition 3.18 item 2, R l is total and surjective. By Proposition 3.16 item 2, T l X p♥pmq ˆp♥pm 1 q is functional and injective. From the identity R l " T l X p♥pmq ˆp♥pm 1 q we deduce that R l is a bijective relation between p♥pmq and p♥pm 1 q. The same reasoning applies to R. Properties 3 and 4 hold.

We have ♥ps, hq Ď p♥ps, h, lq and ♥ps 1 , h 1 q Ď p♥ps 1 , h 1 , l 1 q. Moreover if u and v are such that u R l v then u{v respect ♥ps, hq{♥ps 1 , h 1 q using u T l v with pT13q. Hence by Proposition 2.16, R l X ♥ps, hq ˆ♥ps 1 , h 1 q is a bijection between ♥ps, hq and ♥ps 1 , h 1 q.

[ \ When we atomically extend a heap (see forthcoming Propositions 3.29 and 3.31), we use the totality of the relations T l (and T). To get these results, we need slightly stronger assumptions. With » 2 instead of » b , the relation T l is total from N to r0, m `1s with m " maxvalpm 1 q.

Proposition 3.20 If m and m 1 are 2-equivalent (i.e. m » 2 m 1 ), then T l is a total relation on N: for any u P N, there exists v ď maxvalpm 1 q `1 such that u T l v.

Proof Since » 2 Ď » b we have R l Ď T l by Theorem 3.17. Let us consider u P N. We have to show that there exists v P N such that u T l v holds. We determine the value of v according to the first condition satisfied in the list below.

-If u P p♥pmq then we define v as the unique location in p♥pm 1 q such that u R l v, see Lemma 3.19 item 4. We derive u T l v. The relation v ď maxvalpm 1 q `1 holds because v P p♥pm 1 q;

-If u P pred ♥ ps, h, jq for some j P r1, qs then we know that u ‰ l because the case u " l P p♥pmq occurs earlier in the list.

Hence we have u P pred ♥ ps, h, jqztlu. From l R l l 1 we deduce l T l l 1 . Hence by Proposition 3.13 pT18q, l{l 1 respect pred ♥ ps, h, jq{pred ♥ ps 1 , h 1 , jq. We also have pred ♥ ps, h, jq " 2 pred ♥ ps 1 , h 1 , jq by Proposition 3.10. Hence by Proposition 2.23, we can choose a location v P pred ♥ ps 1 , h 1 , jqztl 1 u.

The relation v ď maxvalpm 1 q `1 holds because v P domph 1 q. Let us establish u T l v. We have u P pred ♥ ps, h, jqztlu and v P pred ♥ ps 1 , h 1 , jqztl 1 u.

As a consequence, we deduce u R p♥pmq and v R p♥pm 1 q. Hence, Properties pT1-3q hold. We also have u P domphq and v P domph 1 q, whence Property pT4q holds. We have hpuq " spx j q and h 1 pvq " s 1 px j q. We deduce hpuq R l h 1 pvq and thus hpuq T l h 1 pvq. Let us prove Property pT5q for u{v: we use pT2q for hpuq{h 1 pvq and get hpuq " spx i q iff h 1 pvq " s 1 px i q for any i P r1, qs. Let us prove Property pT6q: the identity u " hpuq implies u " spx j q which contradicts u R p♥pmq. Hence u ‰ hpuq and for similar reasons, v ‰ h 1 pvq;

-If u P loop ♥ ps, hq then we know that u ‰ l because the case u " l P p♥pmq occurs earlier in the list. Hence we have u P loop ♥ ps, hqztlu. Since l T l l 1 , by Proposition 3.13 pT19q we deduce that l{l 1 respect loop ♥ ps, hq{loop ♥ ps 1 , h 1 q.

We also have loop ♥ ps, hq " 2 loop ♥ ps 1 , h 1 q by Proposition 3.10. Hence by Proposition 2.23, we can choose a location v P loop ♥ ps 1 , h 1 qztl 1 u.

The relation v ď maxvalpm 1 q `1 holds because v P domph 1 q. Let us check that u T l v holds. We have u P loop ♥ ps, hqztlu and v P loop ♥ ps 1 , h 1 qztl 1 u.

As a consequence, we deduce u R p♥pmq and v R p♥pm 1 q. Hence Properties pT1-3q hold. We also have u P domphq and v P domph 1 q; hence Property pT4q holds. We have hpuq " u and h 1 pvq " v, whence Property pT6q holds. We have already proved that Property pT2q holds for u{v. As hpuq " u and h 1 pvq " v we deduce that Property pT2q holds for hpuq{h 1 pvq. Hence Property pT5q holds for u{v;

-If u P rem ♥ ps, hq then u P rem ♥ ps, hqztlu. By Proposition 3.13 pT20q, l{l 1 respect rem ♥ ps, hq{rem ♥ ps 1 , h 1 q. We have rem ♥ ps, hq " 2 rem ♥ ps 1 , h 1 q by Proposition 3.10. Hence by Proposition 2.23, we can choose a location v P rem ♥ ps 1 , h 1 qztl 1 u.

The relation v ď maxvalpm 1 q `1 holds because v P domph 1 q. Let us check that u T l v holds. We have u P rem ♥ ps, hqztlu and v P rem ♥ ps 1 , h 1 qztl 1 u. So, we deduce u R p♥pmq and v R p♥pm 1 q. Hence Properties pT1-3q hold.

We also have u P domphq and v P domph 1 q hence Property pT4q holds. We have hpuq R spVq Y tuu and h 1 pvq R s 1 pVq Y tvu hence Properties pT5-6q hold;

-In the remaining cases we have u R domphqYp♥pmq. Let v " maxvalpm 1 q`1.

Then we have v R domph 1 q Y p♥pm 1 q and by Proposition 3.16 item 4, we conclude u T l v.

[ \ If we do not require Property pT1q, i.e. we work with T instead of T l , then only » 1 is needed to establish that T is total from N to r0, m `1s with m " maxvalps 1 , h 1 q.

Proposition 3.21 If m and m 1 satisfy m » 1 m 1 , then T is a total relation on N: for any u P N, there exists v ď maxvalps 1 , h 1 q `1 such that u T v.

The proof can be found in Appendix B starting at page 56.

Basic Equivalence and Heap Splitting

In this section, we consider two stores s and s 1 , two locations l and l 1 , and two heaps h "

h 1 ] h 2 and h 1 " h 1 1 ] h 1 2 that are divided into two disjoint subheaps. Let us denote m " ps, h, lq m 1 " ps 1 , h 1 , l 1 q R l " R l m,m 1 T l " T l m,m 1 m 1 " ps, h 1 , lq m 1 1 " ps 1 , h 1 1 , l 1 q R l 1 " R l m1,m 1 1 T l 1 " T l m1,m 1 1 D 1 " D m1,m 1 1 m 2 " ps, h 2 , lq m 1 2 " ps 1 , h 1 2 , l 1 q R l 2 " R l m2,m 1 2 T l 2 " T l m2,m 1 2 D 2 " D m2,m 1 2 It is trivial to check the inclusion R l 1 Ď R l because h 1 Ď h and h 1 1 Ď h 1 . The inclusion R l 2 Ď
R l holds by symmetry. Let us study under which conditions the splits h " h 1 ]h 2 and h

1 " h 1 1 ]h 1 2
preserve basic equivalence, i.e. when do m 1 » b m 1 1 and m 2 » b m 1 2 hold, provided that m » b m 1 already holds. Proposition 3.22 Let us assume R l Ď T l (or equivalently m » b m 1 ). Then the following statements are equivalent:

1. R l Ď D 1 X D 2 ; 3. R l 1 Ď T l 1 and R l 2 Ď T l 2 ; 2. R l Ď T l 1 X T l 2 ; 4. m 1 » b m 1 1 and m 2 » b m 1 2 .
The proof can be found in Appendix B starting at page 57.

If the splits h " h 1 ] h 2 and h 1 " h 1 1 ] h 1 2 preserve basic equivalence, then some subsets of the core are equipotent.

Proposition 3.23 Let us assume m » b m 1 , m 1 » b m 1 1 and m 2 » b m 1 2 .
With the notation X for NzX, the following properties hold:

1. predps, h, iq X ∆ c " 8 predps 1 , h 1 , iq X ∆ 1 c for any i P r1, qs 2. loopps, hq X ∆ c " 8 loopps 1 , h 1 q X ∆ 1 c 3. remps, hq X ∆ c " 8 remps 1 , h 1 q X ∆ 1 c
where c P t1, 2u and

" ∆ c " domph c q X h 3´c pspVqq X spVq X h c pspVqq ∆ 1 c " domph 1 c q X h 1 3´c ps 1 pVqq X s 1 pVq X h 1 c ps 1 pVqq Proof
The definition of ∆ps, h 1 , h 2 q corresponds to that of Propositions 2.8 and 2.9. We have

∆ 1 " ∆ps, h 1 , h 2 q, ∆ 2 " ∆ps, h 2 , h 1 q, ∆ 1 1 " ∆ps 1 , h 1 1 , h 1 2 q and ∆ 1 2 " ∆ps 1 , h 1 2 , h 1 1 q. We easily verify that the inclusions ∆ 1 Y ∆ 2 Ď ♥ps, hq and ∆ 1 1 Y ∆ 1 2 Ď ♥ps 1 , h 1 q hold.
We invite the reader to check the following equivalences:

u P predps, h, jq X ∆ 1 iff h 1 puq " spx j q and u P h 2 pspVqq and u R spVq and u R h 1 pspVqq u P loopps, hq X ∆ 1 iff h 1 puq " u and u P h 2 pspVqq and u R spVq and u R h 1 pspVqq u P remps, hq X ∆ 1 iff u P domph 1 q and h 1 puq R spVq and hpuq ‰ u and u P h 2 pspVqq and u R spVq and u R h 1 pspVqq From Proposition 3.22 and Theorem 3.19 we deduce R l Ď T l X T l 1 X T l 2 . Moreover by Lemma 3.19, the relation R l X ♥ps, hq ˆ♥ps 1 , h 1 q is a bijection between ♥ps, hq and ♥ps 1 , h 1 q.

Let us prove Property 1 with c " 1 for instance. We use Proposition 2.16: we have predps, h, iq X ∆ 1 Ď ♥ps, hq and predps 1 , h 1 , iq X ∆ 1 1 Ď ♥ps 1 , h 1 q. Hence let us show that if u P ♥ps, hq and v P ♥ps 1 , h 1 q verify u R l v then u{v respect predps, h, iq X ∆ 1 {predps 1 , h 1 , iq X ∆ 1 1 : we use the first of the three above equivalences and u T l 1 v with pT5q, u T l 2 v with pT11q, u T l v with pT10q, and u T l 1 v with pT11q. Hence by Proposition 2.16, there is a bijection between predps, h, iq X ∆ 1 and predps 1 , h 1 , iqX∆ 1 1 and thus predps, h, iqX∆ 1 " 8 predps 1 , h 1 , iqX∆ 1 1 holds. We use similar arguments for Property 1 (c " 2) and Properties 2-3.

[ \

Basic Equivalence and Location Update

In this section, we study under which conditions an update of the location l in the pointed memory state ps, h, lq preserves basic equivalence.

Proposition 3.24 Let ps, h, lq and ps 1 , h 1 , l 1 q be basically equivalent pointed memory states, i.e. ps, h, lq » b ps 1 , h 1 , l 1 q. For any l 0 , l 1 0 P N, if l 0 {l 1 0 verify pT2-6q then ps, h, l 0 q » b ps 1 , h 1 , l 1 0 q holds. Proof Since any formula B P Basic contains no free occurence of u, by Proposition 2.2 we have ps, hq ( l0 B iff ps, hq ( l B iff ps 1 , h 1 q ( l 1 B iff ps 1 , h 1 q ( l 1 0 B. As the identity Basic u " Basic Y Extra u holds, to get ps, h, l 0 q » b ps 1 , h 1 , l 1 0 q it is sufficient to prove the property ps, hq ( l0 B iff ps 1 , h 1 q ( l 1 0 B for any formula B P Extra u . We proceed by a case analysis on B; we display the only if case, the if case being proved in a symmetric way:

-B is u ãÑ u: from ps, hq ( l0 u ãÑ u we get hpl 0 q " l 0 . Since l 0 {l 1 0 verify pT6q, we deduce h 1 pl 1 0 q " l 1 0 and thus ps 1 , h 1 q ( l 1 0 u ãÑ u; -B is allocpuq: from ps, hq ( l0 allocpuq we get l 0 P domphq. Since l 0 {l 1 0 verify pT4q, we deduce l 1 0 P domph 1 q and thus ps 1 , h 1 q ( l 1 0 allocpuq; -B is x i " u: from ps, hq ( l0 x i " u we get spx i q " l 0 . Since l 0 {l 1 0 verify pT2q, we deduce s 1 px i q " l 1 0 and thus ps 1 , h 1 q ( l 1 0 x i " u; -B is x i ãÑ u: from ps, hq ( l0 x i ãÑ u we get hpspx i qq " l 0 . Since l 0 {l 1 0 verify pT3q, we deduce h 1 ps 1 px i qq " l 1 0 and thus ps 1 , h 1 q ( l 1 0 x i ãÑ u; -B is u ãÑ x j : from ps, hq ( l0 u ãÑ x j we get hpl 0 q " spx i q. Since l 0 {l 1 0 verify pT5q, we deduce h 1 pl 1 0 q " s 1 px i q and thus ps 1 , h 1 q ( l 1 0 u ãÑ x j .

[ \

Atomic Extensions and α-Equivalence

Recall that we write rl 1 Þ Ñ l 2 s to denote the (atomic) heap h such that domphq " tl 1 u, hpl 1 q " l 2 and ranphq " tl 2 u. We study under which conditions atomic extensions preserve α-equivalence.

Lemma 3.25 Let α ě 1 and let ps, h, lq and ps 1 , h 1 , l 1 q be two pointed memory states. Let l 1 , l 2 , l 1 1 , l 1 2 P N be such that l 1 R domphq and l 1 1 R domph 1 q. We assume that one of the conditions below holds:

(C1) l 1 {l 1 1 verify pT1-3q, l 2 {l 1 2 verify pT1-6q, and l 2 " l 1 iff l 1 2 " l 1 1 ; (C2) l 1 R spVq, l 1 {l 1 1 verify pT1-3q, l 2 {l 1 2 verify pT2q, and l 2 " l 1 iff l 1 2 " l 1 1 . If ps, h, lq » α ps 1 , h 1 , l 1 q then ps, h ] rl 1 Þ Ñ l 2 s, lq » β ps 1 , h 1 ] rl 1 1 Þ Ñ l 1 2 s, l 1 q where β " α ´1 if l 1 P spVq, and β " α otherwise.
The proof can be found in Appendix B starting at page 58. Now let us present sufficient conditions under which an atomic extension does not change a pointed memory state up to α-equivalence. Proposition 3.26 Let m " ps, h, lq be a pointed memory state and l 1 , l 2 P N be such that l 1 R domphq Y p♥pmq. We have ps, h ] rl 1 Þ Ñ l 2 s, lq » b ps, h, lq. Moreover, given α ě 0, if we assume that one of the following conditions hold (C1) l 2 " spx i q and cardppred ♥ ps, h, iqq ě α for some i P r1, qs; (C2) l 2 " l 1 and cardploop ♥ ps, hqq ě α; (C3) l 2 R spVq Y tl 1 u and cardprem ♥ ps, hqq ě α.

then we have ps, h ] rl 1 Þ Ñ l 2 s, lq » α ps, h, lq.
The proof can be found in Appendix B starting at page 61.

We extend the previous result to more general extensions that avoid adding locations in the pseudo-core.

Corollary 3.27 Let α ě 0. Let m " ps, h, lq be a pointed memory state and h 1 be a heap such that domph 1 q X pdomphq Y p♥pmqq " H. If for any u P domph 1 q one of the following conditions holds (C1) h 1 puq " spx i q and cardppred ♥ ps, h, iqq ě α for some i P r1, qs; (C2) h 1 puq " u and cardploop ♥ ps, hqq ě α; (C3) h 1 puq R spVq Y tuu and cardprem ♥ ps, hqq ě α.

then we have ps, h ] h 1 , lq » α ps, h, lq.

The proof can be found in Appendix B starting at page 62.

Transposing Heap Extensions through α-Equivalence

In this section, we assume s, s 1 , h 0 , h 1 0 , h, h 1 , l and l 1 such that h 0 K h and

h 1 0 K h 1 . We denote m " ps, h, lq m 0 " ps, h 0 ] h, lq R l " R l m,m 1 T l " T l m,m 1 m 1 " ps 1 , h 1 , l 1 q m 1 0 " ps 1 , h 1 0 ] h 1 , l 1 q R l 0 " R l m0,m 1 0 T l 0 " T l m0,m 1 0
We insist that the heap of m 0 is h 0 ] h, not h 0 : the short notation might be a bit confusing here. Because h Ď h 0 ] h and

h 1 Ď h 1 0 ] h 1 , it is trivial to check that the inclusion R l Ď R l 0 holds. Proposition 3.28 We assume m » b m 1 , m 0 » b m 1 0 and u, v P N such that u T l 0 v. If either u P p♥pmq or v P p♥pm 1 q then u R l v.
Proof We assume u P p♥pmq and we show u R l v. From p♥pmq Ď p♥pm 0 q, we deduce u P p♥pm 0 q. By Proposition 3.15 item 5, from u T l 0 v we deduce u R l 0 v and thus v P p♥pm 1 0 q by Proposition 3.15 item 4. Since u P p♥pmq, by Lemma 3.19 there exists a unique location w P p♥pm 1 q such that u R l w. From R l Ď R l 0 we deduce u R l 0 w. Hence, we have (u R l 0 v and u R l 0 w) and by Proposition 3.15 item 4 and Lemma 3.19, R l 0 is a bijection. We deduce v " w, and then u R l v.

[ \ Proposition 3.29 Let α ě 1. We assume that the following conditions hold:

(a) m » α`1 m 1 ; (b) m 0 » α`1 m 1 0 ; (c) domphq Ď p♥pmq; (d) domph 1 q Ď p♥pm 1 q.
Let l 1 P spVqzdomph 0 ] hq and l 2 P N. There exist l 1 1 , l 1 2 P N such that

1. l 1 1 P s 1 pVqzdomph 1 0 ] h 1 q; 2. l 1 1 , l 1 2 ď maxvalpm 1 0 q `1; 3. ps, h ] rl 1 Þ Ñ l 2 s, lq » α ps 1 , h 1 ] rl 1 1 Þ Ñ l 1 2 s, l 1 q; 4. ps, h 0 ] h ] rl 1 Þ Ñ l 2 s, lq » α ps 1 , h 1 0 ] h 1 ] rl 1 1 Þ Ñ l 1 2 s, l 1 q.
The proof can be found in Appendix B starting at page 63.

Corollary 3.30 Let α ě 1. Let h 0 K h 1 , domph 1 q Ď spVq and ps, h 0 , lq » p`α ps 1 , h 1 0 , l 1 q with p " cardpdomph 1 qq. Then there exists a heap h 1

1 such that h 1 0 K h 1 1 , domph 1 1 q Ď s 1 pVq, ps, h 1 , lq » α ps 1 , h 1 1 , l 1 q, ps, h 0 ] h 1 , lq » α ps 1 , h 1 0 ] h 1 1 , l 1 q and maxvalps 1 , h 1 1 q ď maxvalps 1 , h 1 0 , l 1 q `p.
The proof is by induction on the cardinality of domph 1 q using Proposition 3.29. Proposition 3.31 below is a slight variant of Proposition 3.29. Proposition 3.31 Let α ě 1. We assume that the following conditions hold:

(a) m » α m 1 ; (b) m 0 » α m 1 0 ;
Let l 1 R domph 0 ] hq Y spVq and l 2 P N. There exist l 1 1 , l 1 2 P N such that

1. l 1 1 R domph 1 0 ] h 1 q Y s 1 pVq 2. l 1 1 , l 1 2 ď maxvalpm 1 0 q `2; 3. ps, h ] rl 1 Þ Ñ l 2 s, lq » α ps 1 , h 1 ] rl 1 1 Þ Ñ l 1 2 s, l 1 q; 4. ps, h 0 ] h ] rl 1 Þ Ñ l 2 s, lq » α ps 1 , h 1 0 ] h 1 ] rl 1 1 Þ Ñ l 1 2 s, l 1 q.
The proof can be found in Appendix B starting at page 64.

Corollary 3.32 Let α ě 1. Let domph 1 q X pdomph 0 ] hq Y spVqq " H, ps, h, lq » α ps 1 , h 1 , l 1 q and ps, h 0 ] h, lq » α ps 1 , h 1 0 ] h 1 , l 1 q. Then there exists a heap h 1 1 such that domph 1 1 q X pdomph 1 0 ] h 1 q Y s 1 pVqq " H, ps, h ] h 1 , lq » α ps 1 , h 1 ] h 1 1 , l 1 q, ps, h 0 ] h ] h 1 , lq » α ps 1 , h 1 0 ] h 1 ] h 1 1 , l 1 q and maxvalps 1 , h 1 1 q ď maxvalps 1 , h 1 0 ] h, l 1 q `2. cardpdomph 1 qq.
The proof is by induction on the cardinality of domph 1 q using Proposition 3.31.

3.9 Correctness of the Abstraction Lemmas 3.33,3.34 and 3.35 below roughly state that the relation » α (and therefore the set of test formulae we have introduced) behaves properly. Each lemma corresponds to a given quantifier, respectively separating conjunction ˚, separating implication ´and first-order quantifier Du. We combine these three lemmas in the proof of Correctness Theorem 4.3.

Lemma 3.33 below states how two equivalent memory states can be split. The precision is split accordingly. Lemma 3.33 (Distributivity) Let α, α 1 , α 2 ě 1 such that α " α 1 `α2 . Let us consider two α-equivalent pointed memory states ps, h, lq and ps 1 , h 1 , l 1 q, i.e. ps, h, lq » α ps 1 , h 1 , l 1 q. For every split h " h 1 ] h 2 of h, there exists a split h 1 "

h 1 1 ] h 1 2 of h 1 such that ps, h 1 , lq » α1 ps 1 , h 1 1 , l 1 q and ps, h 2 , lq » α2 ps 1 , h 1 2 , l 1 q.
Proof Let m " ps, h, lq and m 1 " ps 1 , h 1 , l 1 q be such that ps, h, lq » α ps 1 , h 1 , l 1 q.

Let us denote by R l (resp. T l ) the relation R l m,m 1 (resp. T l m,m 1 ) from Definition 3.14. From m » α m 1 we deduce m » b m 1 and then by Theorem 3.17, we have the inclusion R l Ď T l . Moreover by Lemma 3.19, we know that R l ♥ def " R l X ♥ps, hq ˆ♥ps 1 , h 1 q is a bijective relation between ♥ps, hq and ♥ps 1 , h 1 q.

Let us define J " tj P r1, qs | for all k P r1, qs, spx j q " spx k q implies j ď ku. Since spx i q R l s 1 px i q and R l Ď T l , using pT2q we deduce spx i q " spx j q iff s 1 px i q " s 1 px j q for all i, j P r1, qs. Hence J is a subset of r1, qs that verifies (J1) for any i P r1, qs, there exists j P J such that spx i q " spx j q and s 1 px i q " s 1 px j q; (J2) for all i, j P J, spx i q " spx j q or s 1 px i q " s 1 px j q implies i " j.

For every c P t1, 2u and for every j P J, let us consider the following notations:

D " domphq D c " domph c q D 1 " domph 1 q C " ♥ps, hq C c " C X D c C 1 " ♥ps 1 , h 1 q P pjq " pred ♥ ps, h, jq P c pjq " P pjq X D c P 1 pjq " pred ♥ ps 1 , h 1 , jq L " loop ♥ ps, hq L c " L X D c L 1 " loop ♥ ps 1 , h 1 q R " rem ♥ ps, hq R c " R X D c R 1 " rem ♥ ps 1 , h 1 q
According to Lemma 2.6 and Properties (J1) and (J2), we have the following canonical decompositions:

D " C Z Ţ jPJ P pjq Z L Z R D 1 " C 1 Z Ţ jPJ P 1 pjq Z L 1 Z R 1
We know that R l ♥ is a one-to-one relation between C and C 1 , and from Proposition 3.10, we have P pjq " α P 1 pjq, L " α L 1 and R " α R 1 .

Using the bijection R l ♥ , for c " 1 or 2, let us define

C 1 c " R l ♥ pC c q. Then, we have C " C 1 Z C 2 and C 1 " C 1 1 Z C 1 2 . Let us show that l{l 1 respect both C 1 {C 1 1 and C 2 {C 1 2 .
We have l R l l 1 by definition and hence l T l l 1 . By pT13q, we deduce that l{l 1 respect C{C 1 . Hence if l P C 1 then l P C and thus l 1 P C 1 .

As a consequence, l R l ♥ l 1 and thus as C 1 1 " R l ♥ pC 1 q, we deduce

l 1 P C 1 1 . For similar reasons, if l P C 2 then l 1 P C 1 2 . Now, if l 1 P C 1 1 then l 1 P C 1 hence l P C " C 1 Z C 2 . The case l P C 2 would lead to l 1 P C 1 2 hence l 1 P C 1 1 X C 1 2
which is impossible. Hence we have l P C 1 . For similar reasons, if l 1 P C 1 2 then l P C 2 . We conclude that l{l 1 respect both C 1 {C 1 1 and C 2 {C 1 2 . Let us verify that l{l 1 respect both P pjq{P 1 pjq: l P P pjq iff hplq " spx j q and l R ♥ps, hq iff h 1 pl 1 q " s 1 px j q and l 1 R ♥ps 1 , h 1 q iff l 1 P P 1 pjq using l T l l 1 with pT5q and pT13q. By Lemma 2.22, from P pjq " α1`α2 P 1 pjq and α 1 , α 2 ě 1, we compute P 1 c pjq such that P 1 pjq " P 1 1 pjq Z P 1 2 pjq, P 1 pjq " α1 P 1 1 pjq, P 2 pjq " α2 P 1

2 pjq and l{l 1 respect both P 1 pjq{P 1 1 pjq and P 2 pjq{P 1 2 pjq. By a similar argument, we get L 1

1 and L 1 2 (resp. R 1 1 and R 1 2 ) such that L 1 " L 1 1 Z L 1 2 , L 1 " α1 L 1 1 , L 2 " α2 L 1 2 (resp. R 1 " R 1 1 Z R 1 2 , R 1 " α1 R 1 1 , R 2 " α2 R 1 
2 ) and l{l

1 respect both L 1 {L 1 1 and L 2 {L 1 2 (resp. R 1 {R 1 1 and R 2 {R 1 2 ). Now let us define a partition D 1 " D 1 1 Z D 1 2 by D 1 1 " C 1 1 Z Ţ jPJ P 1 1 pjq Z L 1 1 Z R 1 1 D 1 2 " C 1 2 Z Ţ jPJ P 1 2 pjq Z L 1 2 Z R 1 2 and h 1 1 , h 1 2 such that h 1 " h 1 1 ] h 1 2 , domph 1 1 q " D 1 1 and domph 1 2 q " D 1 2 .
We point out that the defining equation of D 1 c is not necessarily the canonical decomposition of D 1 c " domph 1 c q according to ps 1 , h 1 c q. Since the identities

D 1 " C 1 Z Ţ jPJ P 1 pjq Z L 1 Z R 1 D 2 " C 2 Z Ţ jPJ P 2 pjq Z L c Z R 2 hold, we observe that l{l 1 respect both D 1 {D 1
1 and D 2 {D 1 2 . Using Proposition 3.22, we check that the basic equivalences ps, h 1 , lq » b ps 1 , h 1 1 , l 1 q and ps, h 2 , lq » b ps 1 , h 1 2 , l 1 q hold. For c " 1 or c " 2, let us prove R l Ď D c :

we already proved that l{l 1 respect domph c q{domph 1 c q; if spx i q P domph c q " D c then spx i q P domphq and thus spx i q P C. We derive spx i q P C c " C X D c . Since spx i q P ♥ps, hq we derive s 1 px i q P ♥ps 1 , h 1 q using spx i q T l s 1 px i q and pT13q. Thus spx i q R l ♥ s 1 px i q holds and we deduce s 1 px i q P C 1 c hence s 1 px i q P D 1 c " domph 1 c q. The reverse implication "s 1 px i q P domph 1 c q implies spx i q P domph c q" is proved by symmetric arguments; if hpspx i qq P domph c q " D c then hpspx i qq P domphq and thus hpspx i qq P C.

We derive hpspx i qq P C c " C X D c . From hpspx i qq R l ♥ h 1 ps 1 px i qq, we deduce h 1 ps 1 px i qq P C 1 c hence h 1 ps 1 px i qq P D 1 c " domph 1 c q. The reverse implication "h 1 ps 1 px i qq P domph 1 c q implies hpspx i qq P domph c q" is proved by symmetric arguments.

Hence we have ps, h, lq » b ps 1 , h 1 , l 1 q, ps, h 1 , lq » b ps 1 , h 1 1 , l 1 q and ps, h 2 , lq » b ps 1 , h 1 2 , l 1 q. According to the above definitions and Proposition 2.9, we get the following identities:

pred ♥ ps, h c , jq " P c pjq Z `predps, h, jq X ∆ps, h c , h 3´c q pred ♥ ps 1 , h 1 c , jq " P 1 c pjq Z `predps 1 , h 1 , jq X ∆ps 1 , h 1 c , h 1 3´c q
Ȃccording to Proposition 3.23 item 1 we have predps, h, jq X ∆ps, h c , h 3´c q " 8 predps 1 , h 1 , jq X ∆ps 1 , h 1 c , h 1 3´c q

For any j P J, from P c pjq " αc P 1 c pjq we get pred ♥ ps, h c , jq " αc pred ♥ ps 1 , h 1 c , jq by Lemma 2.19. In fact we get more precision but we do not need it here.

By similar arguments using Proposition 3.23 items 2 and 3, we establish loop ♥ ps, h c q " αc loop ♥ ps 1 , h 1 c q and rem ♥ ps, h c q " αc rem ♥ ps 1 , h 1 c q. Using Properties (J1), we have pred ♥ ps, h c , iq " αc pred ♥ ps 1 , h 1 c , iq for any i P r1, qs. Hence, by Proposition 3.10, we deduce ps, h 1 , lq » α1 ps 1 , h 1 1 , l 1 q and ps, h 2 , lq » α2 ps 1 , h 1 2 , l 1 q.

[ \ Lemma 3.34 below states how to extend a memory state with a heap while preserving equivalence. Some precision (not exceeding q) is lost in the process. Lemma 3.34 (Compositionality) Let us consider α ě 1, two pointed memory states ps, h 0 , lq and ps 1 , h 1 0 , l 1 q such that ps, h 0 , lq » q`α ps 1 , h 1 0 , l 1 q. For any h such that h K h 0 there exists h 1 such that h 1 K h 1 0 and 1. ps, h, lq » α ps 1 , h 1 , l 1 q; 2. ps, h 0 ] h, lq » α ps 1 , h 1 0 ] h 1 , l 1 q; 3. maxvalps 1 , h 1 q ď maxvalps 1 , h 1 0 , l 1 q `p2α `3qpq `2q ´4.

Proof Let J def " tj P r1, qs | for all k P r1, qs, spx j q " spx k q implies j ď ku. So J is a subset of r1, qs that verifies: (J1) for any i P r1, qs, there exists j P J such that spx i q " spx j q; (J2) for all i, j P J, spx i q " spx j q implies i " j.

We define set following subsets of domphq:

-S " domphq X spVq; -H " `domphq X p♥ps, h 0 ] h, lq ˘zspVq; -P j ZP 1 j " predps, h, jqzp♥ps, h 0 ]h, lq and P j " α P j ZP 1 j and cardpP j q ď α for any j P J; -L Z L 1 " loopps, hqzp♥ps, h 0 ] h, lq and L " α L Z L 1 and cardpLq ď α; -R Z R 1 " remps, hqzp♥ps, h 0 ] h, lq and R " α R Z R 1 and cardpRq ď α.

where pP j {P 1 j q jPJ , L{L 1 and R{R 1 are obtained using Proposition 2.24.and from e.g. L " α L Z L 1 and cardpLq ď α we deduce either cardpLq " α or L 1 " H. Let us check that

domphq " S Z H Z ě jPJ `Pj Z P 1 j q Z pL Z L 1 q Z pR Z R 1 q (3.1)
is indeed a partition of the domain of h. Obviously SZH " domphqXp♥ps, h 0 ] h, lq. Then predps, hq " Ţ jPJ predps, h, jq because of Properties (J1) and (J2). From domphq " ppredps, hq Y loopps, hqq Z remps, hq, we deduce domphqzp♥ps, h 0 ] h, lq " p

ě jPJ `Pj Z P 1 j q Y pL Z L 1 qq Z pR Z R 1 q
Then the only remaining point is to show that pP j Z P 1 j q X pL Z L 1 q " H. If u P pP j Z P 1 j q X pL Z L 1 q then we have u P predps, h, jq and u P loopps, hq.

Hence hpuq " spx j q and hpuq " u. We deduce u " spx j q P p♥ps, h 0 ] h, lq which contradicts u P L Z L 1 .

We observe that cardpSq ď q because S Ď spVq and that cardpHq ď q `1 because H Ď ph 0 ] hqpspVqq Y tlu. Let us define h 1 as the restriction of h to S, i.e. h 1 Ď h and domph 1 q " S; h 2 as the restriction of h to H Y Ť j P j Y L Y R; h 3 as the restriction of

Ť j P 1 j Y L 1 Y R 1 .
Then we have h " h 1 ] h 2 ] h 3 , cardpdomph 1 qq ď q, and cardpdomph 2 qq ď cardpHq `řjPJ cardpP j q `cardpLq `cardpRq ď pq `1q `q.α `α `α " pα `1qpq `2q ´1.

Let us write p " cardpSq " cardpdomph 1 qq ď q and m " maxvalps 1 , h 1 0 , l 1 q. We deduce ps, h 0 , lq » p`α ps 1 , h 1 0 , l 1 q. By Corollary 3.30, we get h 1 1 such that:

-domph 1 1 q Ď s 1 pVq; -maxvalps 1 , h 1 1 q ď maxvalps 1 , h 1 0 , l 1 q `p; -ps, h 1 , lq » α ps 1 , h 1 1 , l 1 q; -ps, h 0 ] h 1 , lq » α ps 1 , h 1 0 ] h 1 1
, l 1 q. We deduce maxvalps 1 , h 1 1 q ď m `q and thus also maxvalps 1 , h 1 0 ] h 1 1 q ď m `q. Then we use Corollary 3.32 for h 2 . We have indeed domph 2 q X pdomph 0 ]

h 1 qYspVqq Ď domph 2 qXpdomph 0 qYspVqq Ď pdomph 2 qXdomph 0 qqYpdomph 2 qX spVqq Ď H Y H Ď H, ps, h 1 , lq » α ps 1 , h 1 1 , l 1 q and ps, h 0 ] h 1 , lq » α ps 1 , h 1 0 ] h 1 1 , l 1 q. We obtain a heap h 1 2 such that: -domph 1 1 q X pdomph 1 0 ] h 1 1 q Y s 1 pVqq " H; -maxvalps 1 , h 1 2 q ď maxvalps 1 , h 1 0 ] h 1 1 , l 1 q `2. cardpdomph 2 qq; -ps, h 1 ] h 2 , lq » α ps 1 , h 1 1 ] h 1 2 , l 1 q; -ps, h 0 ] h 1 ] h 2 , lq » α ps 1 , h 1 0 ] h 1 1 ] h 1 2
, l 1 q. We deduce maxvalps 1 , h 1 2 q ď pm`qq`2ppα`1qpq`2q´1q " m`p2α`3qpq`2q´4 and thus also maxvalps 1 , h 1 1 ] h 1 2 q ď m `p2α `3qpq `2q ´4. Then, we use Corollary 3.27 to show that ps, h 1 ]h 2 ]h 3 , lq » α ps, h 1 ]h 2 , lq holds. By construction of h 3 , it is clear that domph 3 q X pdomph 1 ] h 2 q Y p♥ps, h 1 ] h 2 , lqq " H because p♥ps, h 1 ] h 2 , lq Ď p♥ps, h 0 ] h, lq. It is thus sufficient to verify either (C1) or (C2) or (C3) for any l 1 P domph 3 q " Ť j P 1 j Y L 1 Y R 1 . We have three cases for l 1 P domph 3 q:

if l 1 P P 1 j for some j P J. Then hpl 1 q " spx j q and thus h 3 pl 1 q " spx j q. Moreover P 1 j ‰ H and thus we must have cardpP j q " α (because P j " α P j Z P 1 j and cardpP j q ď α). Let us prove P j Ď pred ♥ ps, h 1 ] h 2 , jq. We have P j Ď ppredps, h, jqzp♥ps, h 0 ] h, lqq X domph 2 q hence we deduce

P j Ď ppredps, h, jq X domph 2 qqzp♥ps, h 0 ] h, lq. But predps, h, jq X domph 2 q Ď predps, h 1 ]h 2 , jq because h 2 Ď h 1 ]h 2 Ď h; and ♥ps, h 1 ]h 2 q Ď p♥ps, h 0 ] h, lq because h 1 ] h 2 Ď h 0 ] h. We deduce P j Ď predps, h 1 ] h 2 , jqz♥ps, h 1 ] h 2 q " pred ♥ ps, h 1 ] h 2 , jq.
We deduce cardppred ♥ ps, h 1 ] h 2 , jqq ě α. Condition (C1) holds for l 1 ;

if l 1 P L 1 then hpl 1 q " l 1 hence h 3 pl 1 q " l 1 . Since L 1 is not empty, we have cardpLq " α and we show that L Ď loop ♥ ps, h 1 ] h 2 q.

We have L Ď ploopps, hqzp♥ps, h 0 ]h, lqqXdomph 2 q hence L Ď ploopps, hqX domph 2 qqzp♥ps, h 0 ] h, lq. But loopps, hq X domph 2 q Ď loopps, h 1 ] h 2 q and ♥ps,

h 1 ] h 2 q Ď p♥ps, h 0 ] h, lq. We get L Ď loopps, h 1 ] h 2 qz♥ps, h 1 ] h 2 q.
We deduce cardploop ♥ ps, h 1 ] h 2 qq ě α. Condition (C2) holds for l 1 ; if l 1 P R 1 then hpl 1 q R spVq Y tl 1 u hence h 3 pl 1 q R spVq Y tl 1 u. Since R 1 is not empty, we have cardpRq " α and we show that R Ď rem ♥ ps, h 1 ] h 2 q.

We have R Ď premps, hqzp♥ps, h 0 ]h, lqqXdomph 2 q hence R Ď premps, hqX domph 2 qqzp♥ps, h 0 ] h, lq. But remps, hq X domph 2 q Ď remps, h 1 ] h 2 q and ♥ps,

h 1 ] h 2 q Ď p♥ps, h 0 ] h, lq. We get R Ď remps, h 1 ] h 2 qz♥ps, h 1 ] h 2 q.
We deduce cardprem ♥ ps, h 1 ] h 2 qq ě α. Condition (C3) holds for l 1 .

Hence, by Corollary 3.27, we deduce that ps, h 1 ] h 2 ] h 3 , lq » α ps, h 1 ] h 2 , lq holds. By similar arguments, we show that ps,

h 0 ] h 1 ] h 2 ] h 3 , lq » α ps, h 0 ] h 1 ] h 2 , lq holds as well.
Let us finally show that h 1 " h 1 1 ] h 1 2 satisfies the required conditions. We have already proved maxvalps 1 , h 1 q ď maxvalps 1 , h 1 0 , l 1 q `p2α `3qpq `2q ´4. Then we have ps, h, lq " ps,

h 1 ]h 2 ]h 3 , lq » α ps, h 1 ]h 2 , lq » α ps 1 , h 1 1 ]h 1 2 , l 1 q " ps 1 , h 1 , l 1 q and ps, h 0 ] h, lq " ps, h 0 ] h 1 ] h 2 ] h 3 , lq » α ps, h 0 ] h 1 ] h 2 , lq » α ps 1 , h 1 0 ] h 1 1 ] h 1 2 , l 1 q " ps 1 , h 1 0 ] h 1 , l 1 q.
[ \ Lemma 3.35 below states how to update the location of the quantified variable while preserving equivalence. No precision is lost here. Lemma 3.35 (Existence) Let α ě 1 and ps, h, lq and ps 1 , h 1 , l 1 q be two αequivalent pointed memory states, i.e. ps, h, lq » α ps 1 , h 1 , l 1 q. For every l 0 P N, there exists l 1 0 ď maxvalps 1 , h 1 q `1 such that ps, h, l 0 q » α ps 1 , h 1 , l 1 0 q.

Proof By Proposition 3.10, we have ps, h, lq » b ps 1 , h 1 , l 1 q together with three α-equipotence constraints: pred ♥ ps, h, iq " α pred ♥ ps 1 , h 1 , iq for any i P r1, qs, loop ♥ ps, hq " α loop ♥ ps 1 , h 1 q, and rem ♥ ps, hq " α rem ♥ ps 1 , h 1 q. Let l 0 P N. Let us consider the relation T m,m 1 of Definition 3.14 where m " ps, h, lq and m 1 " ps 1 , h 1 , l 1 q. By Proposition 3.21, there exists l 1 0 P N such that l 1 0 ď maxvalps 1 , h 1 q `1 and l 0 T m,m 1 l 1 0 holds. By definition of T m,m 1 , this means that l 0 {l 1 0 verify pT2-6q. Hence by Proposition 3.24, we get ps, h, l 0 q » b ps 1 , h 1 , l 1 0 q, and by Proposition 3.10, we conclude ps, h, l 0 q » α ps 1 , h 1 , l 1 0 q.

[ \

Decidability, Expressiveness and Complexity

In this section, we show that two α-equivalent pointed memory states cannot be distinguished by 1SL1 formulae of memory threshold less than α. We introduce model compression results and deduce that the unbounded quantifications used in the definitions of ps, hq ( l Du A and ps, hq ( l A ´B can be replaced by bounded quantifications. We then derive decidability results for the model-checking and satisfiability problems in 1SL1 and a quantifier elimination result for 1SL1: any formula of 1SL1 is equivalent to a Boolean combination of test formulae in Test u α for some threshold α ě 1. Then we provide a pspace complexity characterization for both model-checking and satisfiability in 1SL1 using a bounded model-checking algorithm.

Correctness of the Abstraction

Given the three previous results, Lemma 3.33 for distributivity, Lemma 3.34 for compositionality and Lemma 3.35 for existence, we design a notion of memory threshold that matches the loss of precision induced by the separating conjunction, the separating implication and the first-order quantification. Definition 4.1 (Memory Threshold) Given q ě 1 and an 1SL1 formula A built over the program variables x 1 , . . . , x q , we define its memory threshold thpq, Aq inductively as follows:

thpq, A 1 q def " thpq, A 1 q thpq, Du A 1 q def " thpq, A 1 q thpq, A 1 ^A2 q def " max `thpq, A 1 q, thpq, A 2 q thpq, A 1 ˚A2 q def " thpq, A 1 q `thpq, A 2 q thpq, A 1 ´A2 q def " q `max `thpq, A 1 q, thpq, A 2 q thpq, A 1 q def " 1 for every atomic formula A 1 in π Y tK, empu
For instance thp3, px 1 ãÑ x 1 q´Kq " 3 `maxp1, 1q " 4. The rationale for these inductive definitions comes from the proof of the upcoming correctness result and how Lemmas 3.33,3.34 and 3.35 are used there. In the case of A 1 ˚A2 , the use of the Distributivity Lemma 3.33 implies that precision is split in half. In the case of A 1 ´A2 , the use of the Compositionality Lemma 3.34 implies a loss of precision bounded by q. Proposition 4.2 Given q ě 1 and a formula A in 1SL1 with program variables in x 1 , . . . , x q , we have 1 ď thpq, Aq ď q.|A|.

The proof is left to the reader.

Now we state the correctness result which means that test formulae in Test u

α provide the proper abstraction for the formulae of 1SL1 with a memory threshold bounded by α. Theorem 4.3 (Abstraction Correctness) Let q ě 1. For any 1SL1 formula A with program variables in x 1 , . . . , x q , for any α ě 1, if thpq, Aq ď α and ps, h, lq » α ps 1 , h 1 , l 1 q hold then ps, hq ( l A iff ps 1 , h 1 q ( l 1 A.

Proof

The proof is by induction on the structure of A. Suppose that ps, h, lq » α ps 1 , h 1 , l 1 q and A be a formula with thpq, Aq ď α. By structural induction, we show that ps, hq ( l A if and only if ps 1 , h 1 q ( l 1 A: but we only display the proof of the only if implication, the converse implication is obtained by symmetry.

-A is e ãÑ e 1 which is covered by one of the following cases: x i ãÑ x j , x i ãÑ u, u ãÑ x i and u ãÑ u. All of these formulae belong to Basic u Ď Test u α ;

-A is e " e 1 which is covered by one of the following cases: x i " x j , x i " u, u " x i and u " u. The two first belong to Basic u Ď Test u α , u " x i is logically equivalent to x i " u and u " u is a tautology; -A is emp which is logically equivalent to

`Ži convpx i , x i q _ Ž i toallocpx i q _ Ž i # pred ♥ px i q ě 1 _ # loop ♥ ě 1 _ # rem ♥ ě 1
by the canonical decomposition of Lemma 2.6. This formula is a Boolean combination of formulae of Test u 1 Ď Test u α . Remember that convpx i , x i q is use in place of allocpx i q; -A is Du A 1 with ps, hq ( l Du A 1 and ps, h, lq » α ps 1 , h 1 , l 1 q and thpq, Du A 1 q ď α. There exists l 0 such that ps, hq ( l0 A 1 . By Lemma 3.35, there is l 1 such that ps, h, l 0 q » α ps 1 , h 1 , l 1 q. Since we have ps, hq ( l0 A 1 , by induction hypothesis we get ps 1 , h 1 q ( l1 A 1 (note that thpq, A 1 q " thpq, Du A 1 q ď α).

Thus we conclude ps 1 , h 1 q ( l 1 Du A 1 ;

-A is A 1 ˚A2 with ps, hq ( l A 1 ˚A2 , ps, h, lq » α ps 1 , h 1 , l 1 q, thpq, A 1 ˚A2 q ď α.

There are heaps h 1 and h 2 such that h " h 1 ] h 2 and ps, h 1 q ( l A 1 and ps, h 2 q ( l A 2 . As α ě thpq, Aq " thpq, A 1 q `thpq, A 2 q, there exist α 1 and α 2 such that α " α 1 `α2 and α 1 ě thpq, A 1 q and α 2 ě thpq, A 2 q. By Lemma 3.33, there exist heaps h 1 1 and h 1 2 such that h

1 " h 1 1 ] h 1 2
and ps, h 1 , lq » α1 ps 1 , h 1 1 , l 1 q and ps, h 2 , lq » α2 ps 1 , h 1 2 , l 1 q. By the induction hypothesis, we get ps 1 , h 11 q ( l 1 A 1 and ps 1 , h 1 2 q ( l 1 A 2 (since thpq, A 1 q ď α 1 and thpq, A 2 q ď α 2 ). Consequently we obtain ps 1 , h 1 q ( l 1 A 1 ˚A2 ; -A is A 1 ´A2 with ps, hq ( l A 1 ´A2 and ps, h, lq » α ps 1 , h 1 , l 1 q and q `β " thpq, A 1 ´A2 q ď α with β " maxpthpq, A 1 q, thpq, A 2 qq

We deduce ps, h, lq » q`β ps 1 , h 1 , l 1 q. Let us prove ps 1 , h 1 q ( l 1 A 1 ´A2 . We pick h 1 1 such that h 1 1 K h 1 and ps 1 , h 1 1 q ( l 1 A 1 and show that ps 1 , h 1 ] h 1 1 q ( l 1 A 2 . By Lemma 3.34, there is a heap h 1 such that h 1 K h and ps, h 1 , lq » β ps 1 , h 1 1 , l 1 q and ps, h ] h 1 , lq » β ps 1 , h 1 ] h 1 1 , l 1 q. We deduce that ps, h 1 q ( l A 1 holds by the induction hypothesis (since thpq, A 1 q ď β). As h 1 K h and ps, hq ( l A 1 ´A2 hold, we deduce ps, h ] h 1 q ( l A 2 . By induction hypothesis, we deduce ps 1 , h 1 ] h 1 1 q ( l 1 A 2 (since thpq, A 2 q ď β). Hence we have ps 1 , h 1 q ( l 1 A 1 ´A2 .

The induction step for a Boolean outermost connective is straightforward and therefore this concludes the proof.

[ \

Model Checking, Satisfiability and Expressive Completeness

Lemma 3.34 and the proof of Lemma 3.35 suggest a "compressor" lemma that can operate at any precision and compress either the location or the heap of a pointed memory state.

Lemma 4.4 (Compressor) Let q ě 1 and let ps, h, lq be a pointed memory state. The two following statements hold:

1. there exists l 1 ď maxvalps, hq `1 s.t. ps, h, lq » α ps, h, l 1 q holds for any α; 2. for any α ě 1, any h 1 K h, there exists h 1 1 K h s.t. ps, h 1 , lq » α ps, h 1 1 , lq and ps, h ] h 1 , lq » α ps, h ] h 1 1 , lq and maxvalph 1 1 q ď maxvalps, h, lq `15qα. Proof Let m " ps, h, lq be a pointed memory state.

Let us start with Statement 1. Let us define l 1 the following way: if l P domphqYp♥ps, hq then l 1 " l; and l 1 " maxvalps, hq`1 if l R domphqYp♥ps, hq. In the former case, we obviously have l T m,m l 1 because T m,m is reflexive. In the later case, we get l T m,m l 1 by Proposition 3.16 item 3. Hence l{l 1 verify pT2-6q with respect to m{m. In both cases, the relation l 1 ď maxvalps, hq `1 is obvious. Since ps, h, lq » b ps, h, lq holds by reflexivity and l{l 1 verify pT2-6q then by Proposition 3.24, we get ps, h, lq » b ps, h, l 1 q. Let α ě 0. By Proposition 3.10, only the α-equipotence constraints pred ♥ ps, h, iq " α pred ♥ ps, h, iq, loop ♥ ps, hq " α loop ♥ ps, hq and rem ♥ ps, hq " α rem ♥ ps, hq remain. By reflexivity, they hold trivially. Now let us prove Statement 2. Let α ě 1 and h 1 K h. By reflexivity we have ps, h, lq » q`α ps, h, lq. Hence by Lemma 3.34, there exists a heap h 1 1 such that ps, h 1 , lq » α ps, h 1 1 , lq, ps, h ] h 1 , lq » α ps, h ] h 1 1 , lq and maxvalps, h 1 1 q ď maxvalps, h, lq `p2α `3qpq `2q ´4. As α ě 1 and q ě 1, we get the relation p2α`3qpq `2q´4 ď 15qα. We deduce maxvalph 1 1 q ď maxvalps, h, lq`15qα. [ \ We derive two corollaries that aim at replacing unbounded/infinite quantification with bounded/finite quantification in the respective definitions of ps, hq ( l Du A and ps, hq ( l A ´B. Corollary 4.5 Let q ě 1. For any pointed memory state ps, h, lq and for any 1SL1 formula A with program variables in x 1 , . . . , x q , we have:

ps, hq ( l Du A iff there is l 1 ď maxvalps, hq `1 such that ps, hq ( l 1 A
Proof The if case is trivial. For the only if case, let us assume ps, hq ( l Du A.

Then there exists l 0 P N such that ps, hq ( l0 A. By Lemma 4.4, there exists l 1 ď maxvalps, hq `1 such that ps, h, l 0 q » α ps, h, l 1 q holds for any α. Choosing e.g. α " thpq, Aq, we deduce ps, hq ( l 1 A by Theorem 4.3.

[ \ Corollary 4.6 Let q ě 1. Let ps, h, lq be pointed memory state and A, B be two 1SL1 formulae with program variables in x 1 , . . . , x q . Let us define m " maxvalps, h, lq `15|A ´B|q 2 . Then ps, hq ( l A ´B if and only if for any h 1 K h with maxvalph 1 q ď m, ps, h 1 q ( l A implies ps, h ] h 1 q ( l B

Proof The only if case is trivial. For the if case, let us assume that ps, h 1 q ( l A implies ps, h]h 1 q ( l B for any h 1 K h such that maxvalph 1 q ď m and show that ps, hq ( l A ´B holds. Let us consider a heap h 1 such that h 1 K h and ps, h 1 q ( l A and prove ps, h ] h 1 q ( l B. By Lemma 4.4, for α " q|A ´B| there exists a heap h 2 such that h 2 K h, ps, h 1 , lq » α ps, h 2 , lq, ps, h ] h 1 , lq » α ps, h ] h 2 , lq and maxvalph 2 q ď maxvalps, h, lq `15qα. We deduce maxvalph 2 q ď m. But we have thpq, Aq ď q|A| ď α. Hence by Theorem 4.3, from ps, h 1 q ( l A and ps, h 1 , lq » α ps, h 2 , lq we deduce ps, h 2 q ( l A. Then by hypothesis with h 1 as h 2 , we deduce ps, h ] h 2 q ( l B. By Theorem 4.3, from thpq, Bq ď q|B| ď α and ps, h ] h 1 , lq » α ps, h ] h 2 , lq we conclude ps, h ] h 1 q ( l B.

[ \

We also deduce a model compression result under α-equivalence and then we derive a small model property as a consequence of Theorem 4.3.

Corollary 4.7 Let q, α ě 1. Every pointed memory state is α-equivalent to a pointed memory state ps, h, lq such that maxvalps, h, lq ď 16qα.

Proof Let ps 0 , h 0 , l 0 q be a pointed memory state. The set s 0 pVqYtl 0 u is a subset of N of cardinal less than q `1. Hence there exists a bijection ϕ : N Ñ N such that ϕps 0 pVq Y tl 0 uq Ď r0, qs. We define s " ϕ ˝s0 , h 1 " ϕ ˝h0 ˝ϕ´1 and l " ϕpl 0 q. By Proposition 2.3, the pointed memory states ps 0 , h 0 , l 0 q and ps, h 1 , lq do not distinguish any formula of 1SL1, hence we have ps 0 , h 0 , l 0 q » α ps, h 1 , lq.

Now we consider the pointed memory state ps, , lq. As ϕps 0 pVq Y tl 0 uq Ď r0, qs we deduce spVqYtlu Ď r0, qs hence maxvalps, , lq ď q. We use Lemma 4.4 item 2 with α ě 1 and h 1 K , hence there exists h such that ps, h 1 , lq » α ps, h, lq (and ps, ] h 1 , lq » α ps, ] h, lq) and maxvalphq ď maxvalps, , lq 15qα. We deduce that ps 0 , h 0 , l 0 q and ps, h, lq are α-equivalent. Moreover, maxvalps, h, lq ď maxpq, q `15qαq ď 16qα.

[ \ Corollary 4.8 (Small Model Property) Let A be an 1SL1 formula with program variables in x 1 , . . . , x q . If A is satisfiable then there exists a pointed memory state ps, h, lq such that ps, hq ( l A and maxvalps, h, lq ď 16q.thpq, Aq.

Proof Let α " thpq, Aq. Let ps 1 , h 1 , l 1 q be a pointed memory state that satisfies A, i.e. ps 1 , h 1 q ( l 1 A. By Corollary 4.7, there exists a pointed memory state such that ps 1 , h 1 , l 1 q » α ps, h, lq and maxvalps, h, lq ď 16qα " 16q.thpq, Aq. By Theorem 4.3, from α ď thpq, Aq we deduce ps, hq ( l A.

[ \ Now we can give proofs of high-level decidability results as easy consequences of the previous Compressor Lemma 4.4 and its corollaries. Theorem 4.9 (Decidability of Model-Checking) The problem of checking whether an 1SL1 formula A and a pointed memory state ps, h, lq verify ps, hq ( l A, is decidable.

Proof For q ě 1, V " tx 1 , . . . , x q u, a formula A with program variables in V and a pointed memory state ps, h, lq, we define a function mc `q, V, A, ps, h, lq which returns a value in tff, ttu by structural induction on the formula A: if A is either e " e 1 or e ãÑ e 1 or emp, then we define mc `q, V, A, ps, h, lq ˘such that mc `q, V, A, ps, h, lq ˘" tt iff ps, hq ( l A (the details are left to the reader, same as upcoming function amc in Figure 4.1 page 40);

if the principal connective of A is Boolean, for instance if A " A 1 ^A2 then mc `q, V, A, ps, h, lq ˘" tt if both mc `q, V, A 1 , ps, h, lq ˘" tt and mc `q, V, A 2 , ps, h, lq ˘" tt hold; otherwise mc `q, V, A, ps, h, lq ˘" ff;

if A is Du A 1 then mc `q, V, A, ps, h, lq ˘" tt if mc `q, V, A 1 , ps, h, l 1 q ˘" tt holds for some l 1 ď maxvalps, hq `1; otherwise mc `q, V, A, ps, h, lq ˘" ff;

if A is A 1 ˚A2 then mc `q, V, A, ps, h, lq ˘" tt if both mc `q, V, A 1 , ps, h 1 , lq ˘" tt and mc `q, V, A 2 , ps, h 2 , lq ˘" tt hold for some heaps h 1 and h 2 such that h " h 1 ]h 2 (there are only finitely many such splits); otherwise mc `q, V, A, ps, h, lq ˘" ff;

if A is A 1 ´A2 then mc `q, V, A, ps, h, lq ˘" ff if both mc `q, V, A 1 , ps, h 1 , lq ˘" tt and mc `q, V, A 2 , ps, h ] h 1 , lq ˘" ff hold for some heap h 1 such that h 1 K h and maxvalph 1 q ď maxvalps, h, lq `2|A 1 ´A2 |q 2

(there are only finitely many such h 1 ); otherwise mc `q, V, A, ps, h, lq ˘" tt.

The termination of mc is by induction on A: any call to mc `q, V, A, ps, h, lq ȏnly generates finitely many recursive sub-calls on the (strict) subformulae of A. Let us prove the correcteness of the mc function. Let us fix q and V. We show by induction on A that if A has its program variables in V then for any pointed memory state ps, h, lq, the equivalence ps, hq ( l A if and only mc `q, V, A, ps, h, lq ˘" tt holds. The proof uses Corollaries 4.5 and 4.6 in an obvious way. For instance, let us consider the case where A " A 1 ´A2 :

let us assume ps, hq ( l A and let us show mc `q, V, A, ps, h, lq ˘" tt. We show that mc `q, V, A, ps, h, lq ˘" ff leads to a contradiction. Indeed, in that case, there exists a heap h 1 such that h 1 K h and mc `q, V, A 1 , ps, h 1 , lq ˘"

tt and mc `q, V, A 2 , ps, h ] h 1 , lq ˘" ff. By the induction hypothesis, we deduce ps, h 1 q ( l A 1 and ps, h ] h 1 q * l A 2 . As a consequence we get ps, hq * l A 1 ´A2 which contradicts the hypothesis. Hence mc `q, V, A, ps, h, lq ˘" ff is impossible so we must have mc `q, V, A, ps, h, lq ˘" tt; let us assume mc `q, V, A, ps, h, lq ˘" tt and let us show ps, hq ( l A 1 Á2 . We use Corollary 4.6. Let us consider a heap h 1 such that h 1 K h, maxvalph 1 q ď maxvalps, h, lq`2|A 1 ´A2 |q 2 and ps, h 1 q ( l A 1 . Let us show ps, h ] h 1 q ( l A 2 . By contradiction, if ps, h ] h 1 q * l A 2 then by induction, we have mc `q, V, A 1 , ps, h 1 , lq ˘" tt and mc `q, V, A 2 , ps, h ] h 1 , lq ˘" ff. From the definition of mc, we derive mc `q, V, A, ps, h, lq ˘" ff which leads to a contradiction. Hence we must have ps, h ] h 1 q ( l A 2 .

To finish, deciding the model checking problem pA, ps, h, lqq can be done this way: compute the program variables of A in V " tx 1 , . . . , x q u and call mc `q, V, A, ps, h, lq ˘(remark that if A contains no program variable, we can harmlessly add an arbitrary one to V).

[ \ Later we show how to transform the decidability proof into a bounded model checking algorithm that runs in pspace.

Theorem 4.10 (Decidability of Satisfiability) The problem of checking whether an 1SL1 formula A admits a pointed memory state ps, h, lq such that ps, hq ( l A, is decidable. This is a direct consequence of Corollary 4.8 and Theorem 4.9. Here is our main result characterizing the expressive power of 1SL1 in terms of Boolean combination of test formulae. [ \ We note that the proof of Theorem 4.11 can lead to an algorithmic way to eliminate quantifiers thanks to the decidability of model-checking (Theorem 4.9). Indeed, by Corollary 4.7, for every pointed memory state ps, h, lq, there is a pointed memory state ps 1 , h 1 , l 1 q such that ps, h, lq and ps 1 , h 1 , l 1 q are αequivalent and maxvalps 1 , h 1 , l 1 q ď 16qα. So, in the construction of T A , we can restrict ourselves to pointed memory states whose maximal value is bounded by 16qα. However, the procedure described in the proof is not really suited for an effective elimination of quantifiers. Theorem 4.11 provides a characterization of the expressive power of 1SL1, which is now easy to differenciate from 1SL2. No big deal here since undecidability of 1SL2 is established in [START_REF] Demri | Expressive Completeness of Separation Logic with Two Variables and No Separating Conjunction[END_REF] (but strictly speaking, this does not entail that 1SL2 is strictly more expressive than 1SL1 in case there would be a non-computable translation from 1SL2 into 1SL1). Corollary 4.12 1SL2 is strictly more expressive than 1SL1.

The proof can be found in Appendix C starting at page 65.

Discussion

The Boolean combination equivalent to any formula in 1SL1 is made of test formulae that depend on the memory threshold of the formula and on the set of program variables occurring in it, which seems fair enough.

When A in 1SL1 has no free occurrence of u, one can show that A is equivalent to a Boolean combination of formulae in Test thpq,Aq . Similarly, when A in 1SL1 has no occurrence of u at all, A is equivalent to a Boolean combination of formulae of the form x i " x j , x i ãÑ x j , allocpx i q and # rem ♥ ě k with the alternative definition ♥ps, hq " spVq X domphq; see also (Lozes 2004a,b;[START_REF] Brochenin | Reasoning about sequences of memory states[END_REF]. Theorem 4.11 witnesses that the test formulae we introduced properly abstract memory states when 1SL1 formulae are involved. Test formulae from Definition 3.1 were not given to us and we had to design such formulae to conclude Theorem 4.11. All the test formulae can be expressed in 1SL1, see developments in Section 2.4 and Lemma 2.14.

Last but not least, we need to prove that the set of test formulae is expressively complete to get Theorem 4.11. Lemmas 3.33,3.34 and 3.35 are helpful to obtain the Correctness Theorem 4.3, taking care of the different first-or second-order quantifiers. It is in their proofs that the completeness of the set Test u α is best illustrated. Nevertheless, to apply these lemmas in the proof of Theorem 4.3, we designed the adequate definition for the function thp¨, ¨q and we arranged different thresholds in their statements. Then, there is a real interplay between the definition of thp¨, ¨q and how Lemmas 3.33,3.34 and 3.35 are used in the proof of Theorem 4.3.

A pspace Upper Bound for Model Checking and Satisfiability

In this section, we consider 1SL1 formulae with program variables in x 1 , . . . , x q . But q ě 1 remains a parameter that is instantiated in our proof of the pspace bound for satisfiability (resp. model checking) in 1SL1; see Theorems 4.17 and 4.18. Proposition 4.13 We consider the function ϕ that maps formulae of 1SL1 defined by ϕpAq def " 15q 2 |A| 2 . Then the following relations hold for any A, B:

1. ϕp Aq ě ϕpAq; 2. ϕpDu Aq ě 1 `ϕpAq; 3. ϕpA ^Bq ě maxpϕpAq, ϕpBqq; 4. ϕpA ˚Bq ě maxpϕpAq, ϕpBqq; 5. ϕpA ´Bq ě 15|A ´B|q 2 `maxpϕpAq, ϕpBqq.

The proof is left to the reader. Remark that the actual value of ϕpAq " 15q 2 |A| 2 does not matter much; other choices could be made. It is only essential that ϕ verifies the relations 1-5 of Proposition 4.13 because they are essential in the proof of correctness of the algorithm bmc that follows. Notice however 1: if B is emp then return tt iff domphq is empty; 2: if B is x i " x j then return tt iff spx i q and spx j q are equal; 3: if B is x i " u or u " x i then return tt iff spx i q and l are equal; 4: if B is u " u then return tt; 5: if B is x i ãÑ x j then return tt iff spx i q P domphq, and hpspx i qq and spx j q are equal; 6: if B is x i ãÑ u then return tt iff spx i q P domphq, and hpspx i qq and l are equal; 7: if B is u ãÑ x j then return tt iff l P domphq, and hplq and spx j q are equal; 8: if B is u ãÑ u then return tt iff l P domphq, and hplq and l are equal. 1: if A is atomic then return amc `q, V, A, ps, h, lq ˘;

2: if A is A 1 then return not bmc `q, m, V, A 1 , ps, h, lq ˘; 3: if A is A 1 ^A2 then return bmc `q, m, V, A 1 , ps, h, lq ˘and bmc `q, m, V, A 2 , ps, h, lq ˘; 4: if A is Du A 1 then return fin exst l 0 P r0, ms l 0 `ϕpA 1 q ď m and bmc `q, m, V, A 1 , ps, h, l 0 q ˘( 5: if A is A 1 ˚A2 then return fin exst $ ' ' & ' ' %
h 1 : r0, ms ã r0, ms maxvalph 1 q `maxpϕpA 1 q, ϕpA 2 qq ď m and subheapph 1 , hq and bmc `q, m, V, A 1 , ps, h 1 , lq

ȃnd bmc `q, m, V, A 2 , ps, h ´h1 , lq ˘, / / . / / - 6: if A is A 1 ´A2 then return fin fall $ ' ' & ' ' % h 1 : r0, ms ã r0, ms not pmaxvalph 1 q `maxpϕpA 1 q, ϕpA 2 qq ď mq or not orthoph 1 , hq or not bmc `q, m, V, A 1 , ps, h 1 , lq ȏr bmc `q, m, V, A 2 , ps, h ] h 1 , lq ˘, / / . / / -
where not, or, and are Boolean operators; fin exst, fin fall are finite quantification operators; subheap, ortho, ] and ´are heap related functions; maxval, max, `and ď are natural number related functions; and ϕ is implemented as defined in Proposition 4.13 Fig. 4.2 Function bmc `q, m, V, A, ps, h, lq ˘P tff, ttu for any formula A of 1SL1.

that ϕ should also be chosen to be smoothly computable, i.e. in our case, with a low space complexity bound like Oplog q `log |A|q.

In Figure 4.2, we describe the recursive function bmc `q, m, V, A, ps, h, lq with the following inputs:

q ě 1 and m P N are two natural numbers; -V " tx 1 , . . . , x q u is a set of q program variables; -A is an 1SL1 formula with program variables in x 1 , . . . , x q ; ps, h, lq is a pointed memory state where s : tx 1 , . . . , x q u Ñ N.

Such an input is called legitimate for bmc. The function bmc is defined by structural induction on the formula A and (eventually) returns a Boolean value in tff, ttu. There is a special treatment for atomic formulae B of 1SL1 described by the (non-recursive) function amc `q, V, B, ps, h, lq ˘P tff, ttu; see Figure 4.1.

Proposition 4.14 On a legitimate input, bmc `q, m, V, A, ps, h, lq ˘always terminates and returns either ff or tt. If pq, m, Vq can be stored in memory space Opqm log mq and the relation maxvalps, h, lq ď m holds then the call bmc `q, m, V, A, ps, h, lq ˘runs in space O `pq `|A|qm log m ˘.

Proof bmc `q, m, V, A, ps, h, lq ˘terminates because it is defined by structural induction on A. The depth of recursion is thus bounded by the depth of A, which is itself bounded by |A|. The parameters q, m, V, and s remain unchanged during a run of bmc and can be stored in space Opqm log mq. Each recursive call involves storing new data in the stack:

when bmc `q, m, V, Du A, ps, h, lq ˘makes the recursive call, the new data is l 0 (size bounded by log m); when bmc `q, m, V, A ˚B, ps, h, lq ˘makes recursive calls, the new data is either h 1 or h 2 " h ´h1 (both of size bounded by m log m); when bmc `q, m, V, A ´B, ps, h, lq ˘makes recursive sub-calls, the new data is either h 1 or h ] h 1 (both of size bounded by m log m).

[ \

We now prove following correctness lemma for bmc `q, m, V, A, ps, h, lq ˘: on a legitimate input, it returns the correct value of the predicate ps, hq ( l A provided m is chosen large enough. Lemma 4.15 Let q ě 1 and m P N. Let A be an 1SL1 formula with program variables in V " tx 1 , . . . , x q u and ps, h, lq be a pointed memory state. If we assume maxvalps, h, lq `ϕpAq ď m then bmc `q, m, V, A, ps, h, lq ˘" tt iff ps, hq ( l A

The proof can be found in Appendix C starting at page 65.

Theorem 4.16 Let q ě 1. Given a 1SL1 formula A with program variables in x 1 , . . . , x q , a pointed memory state ps, h, lq and m P N such that maxpq, maxvalps, h, lq, |A|q ď m, it is possible to check the predicate ps, hq ( l A in space Opm 5 log mq.

Proof Let V " tx 1 , . . . , x q u and m 1 " 16m 4 . We have maxvalps, h, lq ď m ď m 1 and maxvalps, h, lq `ϕpAq " maxvalps, h, lq

`15q 2 |A| 2 ď m `15m 4 ď m 1
Up to compression of the names x 1 , . . . , x q , we can store the data pq, 16m 4 , Vq in space Opqm 1 log m 1 q. Hence bmc `q, m 1 , V, A, ps, h, lq ˘terminates after a run in space Oppq `|A|qm 1 log m 1 q (see Proposition 4.14) and returns the correct value of the predicate ps, hq ( l A (see Lemma 4.15). From q ď m and |A| ď m, we deduce the Opm 5 log mq space upper bound.

[ \ Theorem 4.17 The satisfiability of an 1SL1 formula A can be solved in space Op|A| 15 log |A|q.

Proof The first step is to collect the program variables of A. Since each atomic formula contains at most two different program variables, A contains at most |A|`1 different program variables. Let q " |A|`1. Hence there exists a set V " tx 1 , . . . , x q u such that A has programs variables in x 1 , . . . , x q . Computing q and V can be done in deterministic time Op|A| log |A|q with a sorting algorithm.

Hence it can also be done in space Op|A| log |A|q.

We now use the particular values q and V obtained from A. Corollary 4.8 states that if A is satisfiable, then there is a pointed memory state ps, h, lq such that ps, hq ( l A and maxvalps, h, lq ď m with m " 16q.thpq, Aq. From q " |A| `1 and thpq, Aq ď q|A|, we deduce m ď 16p|A| `1q 3 .

To check for the satisfiability of A, it is thus sufficient to test the predicate ps, hq ( l A for all pointed memory states ps, h, lq such that maxvalps, h, lq ď m. For such a pointed memory state we have maxpq, maxvalps, h, lq, |A|q ď maxpq, m, |A|q ď 16p|A| `1q 3 . Hence by Theorem 4.16, checking for satisfiability of A can be done in space Op|A| 15 log |A|q.

[ \ Before we prove the pspace upper bound for the model-checking problem, we have to describe the composition of the input of this problem (and how its size is measured) because it does not only contain a formula but also a model. Hence the input of the model-checking problem is of the form pps, h, lq, Aq. where ps, h, lq is a pointed memory state and A is an 1SL1 formula; and the problem is to determine whether ps, hq ( l A holds. Let V " tx 1 , . . . , x q u be the q different program variables that occur in A. The store s must be defined on at least those q program variables that occur in A. Let n be the cardinality of domphq. The heap h which is defined on exactly n locations. Let m be the maximal value of the numerical inputs, i.e. spVqYdomphqYranphqYtlu. Hence the value pq `n `1q log m `|A| measures the size of the input of the modelchecking problem. We rather choose the lower bound k " q `n `1 `|A|, i.e. we assume that each numerical input is as least one bit long.

Theorem 4.18 Model-checking for 1SL1 can be solved in polynomial space.

Proof From the input pps, h, lq, Aq, we first compute a pointed memory state ps 1 , h 1 , l 1 q of small size which is equivalent to ps, h, lq in polynomial space: we construct ps 1 , h 1 , l 1 q such that maxvalps 1 , h 1 , l 1 q ď 2k and (ps, hq ( l A iff ps 1 , h 1 q ( l 1 A). Let us define the set D " spVqYdomphqYranphqYtlu. We know that d " cardpDq ď q`2n`1 ď 2k. In deterministic polynomial-time (and thus also polynomial space), we compute a bijection ϕ : D Ñ r0, d ´1s, for instance using a sorting algorithm. Then we compute s 1 " ϕ ˝s, h 1 " ϕ ˝h ˝ϕ´1 and l 1 " ϕplq in polynomial time. We obviously have maxvalps 1 , h 1 , l 1 q ď d ´1 ď 2k and by Proposition 2.3, we have the equivalence ps, hq ( l A iff ps 1 , h 1 q ( l 1 A.

We have maxpq, maxvalps 1 , h 1 , l 1 q, |A|q ď 2k, hence by Theorem 4.16, we can check the predicate ps 1 , h 1 q ( l 1 A in space Opk 5 log kq which is thus polynomial in the size of the input.

[ \ Theorem 4.19 The model-checking and satisfiability problems for 1SL1 are pspace-complete.

Proof pspace-hardness for both problems is a consequence of [START_REF] Calcagno | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF] since the problems for propositional separation logic SL0 are already pspace-hard. Note that the pspace-hardness proof can be adapted with a single record field and that nil can be simulated by a dedicated program variable, see [START_REF] Calcagno | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF]. The pspace upper bound for model-checking (resp. satisfiability) is stated in Theorem 4.18 (resp. Theorem 4.17).

[ \ Corollary 4.20 Let q ě 1. Let A be an 1SL1 formula with program variables in x 1 , . . . , x q and let α " thpq, Aq. Computing a Boolean combination of test formulae in Test u α logically equivalent to A can be done in polynomial space (even though the outcome formula can be of exponential size).

Proof We analyze the proof of Theorem 4.11. Let A be an 1SL1 formula with α " thpq, Aq. By the proof of Theorem 4.11 and Corollary 4.7, A is logically equivalent to the formula below ł Ź S α ps, h, lq ˇˇps, hq ( l A and maxvalps, h, lq ď 16qα (

The non-isomorphic copies of pointed memory states ps, h, lq such that maxvalps, h, lq ď 16qα can be enumerated in polynomial space. Moreover, the model-checking problem for 1SL1 can be solved in polynomial space, whence the above formula can be built in polynomial space (even though its size may be exponential in the size of A). Note also that S α ps, h, lq can be computed in polynomial space too.

[ \

Complexity of Satisfiability of Test Formulae

The goal of this section is to complete the proof of Theorem 3.5. We decide the conjunctions of literals in deterministic polynomial-time using a saturation algorithm based in a set of deduction rules for basic test formulae. We then describe the np procedure for Boolean combinations of test formulae. Remember that Basic u (resp. Test u α ) denotes the set of basic formulae (resp. test formulae) built from the program variables x 1 , . . . , x q .

Proposition 5.1 (Soundness of the saturation rules) Let P be a subset of Basic u and let ps, h, lq be a pointed memory state such that ps, hq ( l B holds for any B P P. If C P Basic u is derivable from the formulae of P using the rules of Figure 5.1 then ps, hq ( l C holds.

The proof is by induction on the derivation height and it is left to the reader.

If a set of basic formulae is satisfied in a model, then all the basic logical consequences of those formulae are also satisfied in that model. Hence, in general it is not possible to satisfy exactly a given set of basic formulae. But if a set P of basic formuae is closed under the rules of Figure 5.1, then it is possible to satisfy exactly the formulae of P in the canonical pre-model defined below.

x " x

x " y y " x

x " y y " z

x " z convpx i , x j q convpx j , x i q convpx i , x j q convpx j , x k q convpx i , x k q

x " y x ãÑ z y ãÑ z

x " y z ãÑ x z ãÑ y

x i " x j convpx i , x k q convpx j , x k q x i " x j btwnpx i , x k q btwnpx j , x k q x i " x j btwnpx k , x i q btwnpx k , x j q u " x i allocpuq convpx i , x i q x i ãÑ z x j ãÑ z convpx i , x j q
x ãÑ y x ãÑ z y " z x i ãÑ y y ãÑ x j btwnpx i , x j q x i ãÑ y btwnpx i , x j q y ãÑ x j

x i ãÑ x j convpx j , x j q toallocpx i q

x i ãÑ u allocpuq toallocpx i q

x i ãÑ x j toallocpx i q convpx j , x j q x i ãÑ y y ãÑ y tolooppx i q Definition 5.2 (Canonical pre-model) Let q ě 1. The canonical pre-model of a finite set P of formulae of Basic u is built the following way: we define two partial functions s : V ã r1, qs and h : r1, qs ã rq `1, 2qs, a finite graph H Ď r0, 2qs ˆr0, 2q `1s and a finite subset L Ď r0, 2qs by: spx i q def " mintj | x i " x j P Pu and h i def " mintq `j | convpx i , x j q P Pu; -Fm i def " tx i ãÑ x 1 , . . . , x i ãÑ x q u and Bw i def " tbtwnpx i , x 1 q, . . . , btwnpx i , x q qu; -Fm u def " tu ãÑ x 1 , . . . , u ãÑ x q u and To u def " tx 1 ãÑ u, . . . , x q ãÑ uu; -Eq u def " tx 1 " u, . . . , x q " uu; for B Ď Basic u the notation B K P is a shortcut for B X P " H; -H is defined to be the least set such that:

x i ãÑ y tolooppx i q y ãÑ y u ãÑ x allocpuq convpx i , x j q x i ãÑ z x j ãÑ z convpx i , x j q btwnpx i , x k q btwnpx j , x k q convpx i , x j q tolooppx i q tolooppx j q convpx i , x j q toallocpx i q toallocpx j q x i " u convpx i , x i q allocpuq btwnpx i , x j q btwnpx i , x k q x j " x k btwnpx i , x j q convpx i , x i q btwnpx i , x j q toallocpx i q tolooppx i q btwnpx i , x j q x i ãÑ x j tolooppx i q toallocpx i q toallocpx i q convpx i , x i q toallocpx i q x i ãÑ u allocpuq
H1. pspx i q, spx j qq P H if x i ãÑ x j P P; H2. pspx i q, h j q P H if convpx i , x j q P P and Fm i K P; H3. ph i , spx j qq P H if btwnpx i , x j q P P and Fm i K P; H4. ph i , h j q P H if tconvpx i , x j q, tolooppx i qu Ď P and Fm i K P; H5. ph i , 0q P H if toallocpx i q P P and pFm i Y Bw i Y ttolooppx i quq K P; H6. p0, spx i qq P H if u ãÑ x i P P and pEq u Y To u q K P; H7. p0, 0q P H if u ãÑ u P P and pEq u Y To u Y Fm u q K P; H8. p0, 2q `1q P H if pEq u Y To u Y Fm u Y tu ãÑ uuq K P and allocpuq P P; -L is defined to be the least set such that:

L1. spx i q P L if x i " u P P;

L2. h i P L if x i ãÑ u P P and Eq u K P; L3. 0 P L if pEq u Y To u q K P.

Remark that when we write e.g. pspx i q, h j q P H, we assume that spx i q and h j are both defined otherwise the pair is not added to H. The same remark holds for the definition of L.

Remark that Fm abbreviates "from," Bw abbreviates "between," To abbreviates "to" and Eq abbreviates "equal." We prove that the canonical premodel, which might not even be a memory state in general, becomes a model of exactly those formulae of P when P is saturated under logical consequence. s is a total function s : V Ñ r1, qs, hence s is a store; -H is a finite and functional graph, hence H is the graph of some heap h; -L is a singleton subset of N, i.e. L " tlu for a location l; the inclusion domphq Ď ♥ps, hq Y tlu holds; for any formula B P Basic u we have ps, hq ( l B iff B P P.

The proof can be found in Appendix D starting at page 66.

Hence if P is closed under the rules of Figure 5.1 then the canonical premodel of P is a model of exactly those formulae in P. As a consequence, any conjunction of basic test formulae is satisfiable. Let us see what happens when we add negations of basic test formulae and cardinality constraints like # pred ♥ px i q ě k or # loop ♥ ě k 1 ... Let us write clpPq to denote the closure of a (finite) set P of basic formulae of Basic u under the rules of Figure 5.1, i.e. all the formulae that can be deduced from those of P. We can compute clpPq by an obvious saturation algorithm. Since Basic u is closed under the rules of Figure 5.1, the cardinal of clpPq is at most the cardinal of Basic u , i.e. 4q 2 `6q `3. Hence, the saturation algorithm runs in polynomial time in q.

The expression B ´is defined as usual by B if B ´X clpB `q " H then the conjunction of B `Y B ´is satisfied in the canonical model of clpB `q by Proposition 5.3;

if otherwise B ´X clpB `q ‰ H then B `Y B ´is unsatisfiable. Indeed, let B P B ´X clpB `q. Then B should be both satisfied (by Proposition 5.1) and unsatisfied in any model of B `Y B ´which leads to a contradiction.

For the general problem of the satisfiability of conjunctions of literals in Basic u YSize α , there is a subtlety related to the interpretation of the quantified variable u. Indeed, using only literals from Basic u it is possible to require that the interpretation of u belongs to domphqz♥ps, hq. Indeed, any model of B Y px 1 " uq, . . . , px q " uq, px 1 ãÑ uq, . . . , px q ãÑ uq, allocpuq (

We say that the triple pB `, B ´, Sq is 3-consistent when it is 2-consistent and the following conditions hold:

C3.1 if allocpuq P clpB `q and # rem ♥ ě 1 P S then pB `Y tBu, B ´, Sq is 2-consistent for some B P Eq u Y To u Y Fm u Y tu ãÑ uu.

where Eq u , To u and Fm u are from Definition 5.2.

Proposition 5.7 If the conjunction of the formulae in B `Y B ´Y S is satisfiable then the triple pB `, B ´, Sq is n-consistent for any n P t1, 2, 3u.

The proof can be found in Appendix D starting at page 77.

Proposition 5.8 If the triple pB `, B ´, Sq is 3-consistent then the conjunction of the formulae in B `Y B ´Y S is satisfiable.

The proof can be found in Appendix D starting at page 78.

Proposition 5.9 For any n P t1, 2, 3u, the n-consistency of pB `, B ´, Sq can be checked in polynomial time in the size of pB `, B ´, Sq.

The proof is left to the reader.

Let us conclude this section by explaining why the satisfiability problem for Boolean combinations of test formulae (see Definition 3.4) can be solved in np, establishing the upper bound that was postponed from the proof of Theorem 3.5. Let A be a Boolean combination of test formulae over x 1 , . . . , x q . An np procedure for checking the satisfiability of A goes as follows:

1. non-deterministically guess a conjunction of literals contained in A that makes true A propositionnally, say A 1 ^¨¨¨^A n . Then check for the satisfiability of A 1 ^¨¨¨^A n starting at step 2. If it is satisfiable return "yes." If no such conjunction is satisfiable return "false"; 2. none of the A i can be K; if A i is K then remove it; hence all the A i are literals from Basic u Y Size α ; 3. sort A 1 , . . . , A n and find pB `, B ´, Sq so that tA 1 , . . . , A n u " B `Y B ´YS; 4. Return the 3-consistency of pB `, B ´, Sq.

From Propositions 5.7 and 5.8, the 3-consistency of pB `, B ´, Sq is equivalent to satisfiability of the conjunction of B `Y B ´Y S, hence this is equivalent to the satisfiability of A 1 ^¨¨¨^A n . Step 1 is the nondeterministic polynomialtime step, all the other steps can be performed in deterministic polynomial time; use Proposition 5.9 for step 4.

Conclusion

In [START_REF] Brochenin | On the almighty wand[END_REF], the undecidability of first-order separation logic 1SL with a unique record field is shown. Propositional separation logic 1SL0 is also known to be pspace-complete [START_REF] Calcagno | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF]. In this paper, we provided an extension with a unique quantified variable (and with both separating connectives) and we show that the satisfiability problem for 1SL1 is pspace-complete by presenting an original and fine-tuned abstraction of memory states. We proved that in 1SL1 separating connectives can be eliminated in a controlled way as well as first-order quantification over the single variable. In that way, we show a quantifier elimination property similar to what is known with Presburger arithmetic. Last but not least, we have established that satisfiability problem for Boolean combinations of test formulae is np-complete thanks to a saturation algorithm to deal with conjunctions. This is reminiscent of decision procedures used in SMT solvers and it is a challenging question to take advantage of these features to decide 1SL1 with an SMT solver. Finally, the design of decidable fragments between 1SL1 and undecidable 1SL2 that admit decision procedures by adapting our method would be worth being further investigated. Indeed, even though the extension with strictly more than one record field might preserve decidability (which remains to be formally proved), it is open whether the addition of the reachability predicate remains decidable.

A Proofs of Section 2 Proposition 2.9 Let s, h, h 1 , h 2 be such that h " h 1 ] h 2 and let i P r1, qs. The following identities hold:

1. pred ♥ ps, h 1 , iq " ppred ♥ ps, h, iq X domph 1 qq Z ppredps, h, iq X ∆ps, h 1 , h 2 qq; 2. loop ♥ ps, h 1 q " ploop ♥ ps, hq X domph 1 qq Z ploopps, hq X ∆ps, h 1 , h 2 qq; 3. rem ♥ ps, h 1 q " prem ♥ ps, hq X domph 1 qq Z premps, hq X ∆ps, h 1 , h 2 qq.

Proof First, observe that we have the following identities: predps, h 1 , iq " predps, h, iq X domph 1 q loopps, h 1 q " loopps, hq X domph 1 q remps, h 1 q " remps, hq X domph 1 q ♥ps, h 1 q " ♥ps, hq Y domph 1 q Y ∆ps, h 1 , h 2 q By definition, we have pred ♥ ps, h 1 , iq " predps, h 1 , iqz♥ps, h 1 q " predps, h 1 , iq X ♥ps, h 1 q Hence, pred ♥ ps, h 1 , iq " ppredps, h, iq X domph 1 q X ♥ps, hqqY ppredps, h, iq X domph 1 q X domph 1 qq Y ppredps, h, iq X domph 1 q X ∆ps, h Proof The proof of the first four identities is left to the reader. For the identity that describes ♥ps, h 1Ñ2 q, we notice that refps, h 1Ñ2 q " refps, hq Y ptl 1 u X spVqq holds. For accps, h 1Ñ2 q, it is a bit more complicated. We have

domph 1Ñ2 q " domphq Z tl 1 u predps, h 1Ñ2 , iq " predps, h, iq Z " tl 1 u if l 2 " spx i q H if l 2 ‰ spx i q loopps, h 1Ñ2 q " loopps, hq Z " tl 1 u if l 1 " l 2 H if l 1 ‰ l 2 remps, h 1Ñ2 q " remps, hq Z " tl 1 u if l 2 R spVq Y tl 1 u H if l 2 P spVq Y tl 1 u ♥ps, h 1Ñ2 q " ♥ps, hq Z $ ' ' & ' ' % tl 1 , l 2 u if
accps, h 1Ñ2 q " ˆhpspVqq Y " tl 2 u if l 1 P spVq H if l 1 R spVq ˙X `domphq Y tl 1 u Hence
we deduce the properties:

(P1) accps, hq Ď accps, h 1Ñ2 q Ď accps, hq Y tl 1 , l 2 u; (P2) l 1 P accps, h 1Ñ2 qzaccps, hq iff l 1 P hpspVqq or l 1 " l 2 P spVq;

if l 1 P spVq and l 2 P rem ♥ ps, hq then l 2 P h 1Ñ2 pspVqq X domphq Ď ♥ps, h 1Ñ2 q. Hence l 2 R rem ♥ ps, h 1Ñ2 q.

[ \ Lemma 2.14 For any k ě 1 and for any i P r1, qs, there exist 1SL1 formulae denoted # pred ♥ px i q ě k, # loop ♥ ě k and # rem ♥ ě k respectively such that, for any memory state ps, hq and for any location l P N the following equivalences hold:

1. ps, hq ( l # pred ♥ px i q ě k iff cardppred ♥ ps, h, iqq ě k; 2. ps, hq ( l # loop ♥ ě k iff cardploop ♥ ps, hqq ě k; 3. ps, hq ( l # rem ♥ ě k iff cardprem ♥ ps, hqq ě k.

Proof Let us first establish the equivalence ps, hq ( l # pred ♥ px j q ě k iff cardppred ♥ ps, h, jqq ě k

For the if part, let us assume cardppred ♥ ps, h, jqq ě k. Then, then let us define R " i P r1, qs ˇˇhpspx i qq " spx j q and @r P r1, qs, spxrq " spx i q ñ i ď r (

A " " i P r1, qs hpspx i qq R spVq and h 2 pspx i qq " spx j q and @r P r1, qs, hpspxrqq " hpspx i qq ñ i ď r

*

We also recall the notations sR " tspx i q | i P Ru and sA " tspx i q | i P Au from Proposition 2.13. We check the identities pred ♥ ps, h, jq " sR Z hpsAq, cardpsRq " cardpRq and cardphpsAqq " cardpAq hold. We deduce cardpRq`cardpAq ě k. By Proposition 2.13, we have ps, hq ( l ref R and ps, hq ( l acc A . For any r P R we have hpspxrqq " spx j q hence ps, hq ( l Ź rPR xr ãÑ x j . For any a P A we have h 2 pspxaqq " spx j q hence ps, hq ( l Ź aPA btwnpxa, x j q. For the only if part, let us assume ps, hq ( l # pred ♥ px j q ě k. By definition, there exists R, A Ď r1, qs such that cardpRq `cardpAq ě k, ps, hq ( l ref R , ps, hq ( l acc A , @r P R, hpspxrqq " spx j q and @a P A, h 2 pspxaqq " spx j q. We deduce sR Ď predps, h, jq X refps, hq and hpsAq Ď predps, h, jq X paccps, hqzrefps, hqq and cardpsRq " cardpRq and cardphpsAqq " cardpAq. Hence sR Z hpsAq Ď pred ♥ ps, h, jq and cardpsR Z hpsAqq " cardpRq `cardpAq ě k. As a consequence, cardppred ♥ ps, h, jqq ě k holds.

Let us now establish the equivalence ps, hq ( l # pred ♥ px j q ě k iff cardppred ♥ ps, h, jqq ě k For the if part, let us assume cardppred ♥ ps, h, jqq ě k. Let us define p " cardppred ♥ ps, h, jqq. From pred ♥ ps, h, jq Ď ♥ps, hq we deduce p ď 2q. We have cardppred ♥ ps, h, jqq " p ă p `1 and as a consequence, we deduce ps, hq * l # pred ♥ px j q ě p `1. From predps, h, jq " pred ♥ ps, h, jq Z pred ♥ ps, h, jq we get predps, h, jq ě k `p and thus the relation ps, hq ( l # predpx j q ě k `p holds. We deduce ps, hq ( l # pred ♥ px j q ě k.

For the only if part, let us assume ps, hq ( l # pred ♥ px j q ě k. There exists p ď 2q such that ps, hq ( l # predpx j q ě k `p and ps, hq * l # pred ♥ px j q ě p `1. We deduce the upper bound cardppred ♥ ps, h, jqq ď p and the lower bound cardppredps, h, jqq ě k `p. Using the partition predps, h, jq " pred ♥ ps, h, jq Z pred ♥ ps, h, jq, we derive the lower bound cardppred ♥ ps, h, jqq ě k.

The cases of the test formulae # loop ♥ ě k and # rem ♥ ě k can be treated in a similar way after slight modifications in the definitions of R and A.

[ \ Lemma 2.21 Let α 1 , α 2 P N and X, X 1 , Y 0 be finite sets such that X Z X 1 " α 1 `α2 Y 0 holds. Then there are two finite sets

Y, Y 1 such that Y 0 " Y Z Y 1 , X "α 1 Y and X 1 "α 2 Y 1 hold.
if A is A 1 ˚A2 , let us assume bmc `q, m, V, A 1 ˚A2 , ps, h, lq ˘" tt and let us prove ps, hq ( l A 1 ˚A2 . By definition of bmc, there exists a heap h 1 : r0, ms ã r0, ms such that maxvalph 1 q `maxpϕpA 1 q, ϕpA 2 qq ď m and h 1 Ď h and bmc `q, m, V, A 1 , ps, h 1 , lq ˘" tt and bmc `q, m, V, A 2 , ps, h 2 , lq ˘" tt with h 2 " h ´h1 . For each c P t1, 2u, we have maxvalps, hc, lq `ϕpAcq ď maxvalps, h, lq `ϕpAq ď m by Proposition 4.13 item 4.

Hence by induction hypotheses, we deduce ps, h 1 q ( l A 1 and ps, h 2 q ( l A 2 . Given that the identity h " h 1 ] h 2 holds, we get ps, hq ( l A 1 ˚A2 . Now let us assume ps, hq ( l A 1 ˚A2 and prove bmc `q, m, V, A 1 ˚A2 , ps, h, lq ˘" tt.

There exists h 1 and h 2 such that h " h 1 ] h 2 , ps, h 1 q ( l A 1 and ps, h 2 q ( l A 2 .

For each c P t1, 2u, from hc Ď h we deduce maxvalps, hc, lq `maxpϕpA 1 q, ϕpA 2 qq ď maxvalps, h, lq `ϕpAq ď m by Proposition 4.13 item 4. Hence we have the identities bmc `q, m, V, A 1 , ps, h 1 , lq ˘" tt and bmc `q, m, V, A 2 , ps, h 2 , lq ˘" tt by induction hypothesis. Moreover, we have subheapph 1 , hq " tt and maxvalph 1 q `maxpϕpA 1 q, ϕpA 2 qq ď m holds. As h 2 " h ´h1 , by definition of bmc, we get bmc `q, m, V, A 1 ˚A2 , ps, h, lq ˘" tt;

if A is A 1 ´A2 , let us assume bmc `q, m, V, A 1 ´A2 , ps, h, lq ˘" tt and prove ps, hq ( l A 1 ´A2 . For this we use Corollary 4.6. Let us consider h 1 K h such that maxvalph 1 q ď maxvalps, h, lq `15|A 1 ´A2 |q 2 and ps, h 1 q ( l A 1 and prove ps, h ] h 1 q ( l A 2 . We have maxvalph 1 q `maxpϕpA 1 q, ϕpA 2 qq ď maxvalps, h, lq `15|A 1 ´A2 |q 2 `maxpϕpA 1 q, ϕpA 2 qq ď maxvalps, h, lq `ϕpAq ď m by Proposition 4.13 item 5. Let us prove the identity bmc `q, m, V, A 1 , ps, h 1 , lq ˘" tt. We have maxvalps, h, lq `ϕpA 1 q ď maxvalps, h, lq `ϕpAq ď m by Proposition 4.13 item 5. We also have maxvalph 1 q `ϕpA 1 q ď maxvalph 1 q `maxpϕpA 1 q, ϕpA 2 qq ď m. Hence we get maxvalps, h 1 , lq `ϕpA 1 q ď m and by induction hypothesis, from ps, h 1 q ( l A 1 , we get bmc `q, m, V, A 1 , ps, h 1 , lq ˘" tt. Since maxvalph 1 q `maxpϕpA 1 q, ϕpA 2 qq ď m holds, by definition of bmc we have h 1 K h and bmc `q, m, V, A 1 , ps, h 1 , lq ˘" tt. Hence, to satisfy bmc `q, m, V, A 1 ´A2 , ps, h, lq ˘" tt, we must have bmc `q, m, V, A 2 , ps, h ] h 1 , lq ˘" tt. Then maxvalps, h 1 , lq `ϕpA 2 q ď maxvalph 1 q `maxpϕpA 1 q, ϕpA 2 qq ď m holds and maxvalps, h, lq `ϕpA 2 q ď maxvalps, h, lq `ϕpAq ď m holds by Proposition 4.13 item 5. We deduce maxvalps, h ] h 1 , lq `ϕpA 2 q ď m and thus we have ps, h ] h 1 q ( l A 2 by induction hypothesis. Now let us assume ps, hq ( l A 1 ´A2 and prove bmc `q, m, V, A 1 ´A2 , ps, h, lq ˘" tt. By definition of bmc, we pick h 1 : r0, ms ã r0, ms and we verify that either maxvalph 1 q maxpϕpA 1 q, ϕpA 2 qq ą m or h 1 K h does not hold or bmc `q, m, V, A 1 , ps, h 1 , lq

˘"

ff or bmc `q, m, V, A 2 , ps, h ] h 1 , lq ˘" tt. So we assume h 1 K h and maxvalph 1 q maxpϕpA 1 q, ϕpA 2 qq ď m and bmc `q, m, V, A 1 , ps, h 1 , lq ˘" tt and we prove the identity bmc `q, m, V, A 2 , ps, h ] h 1 , lq ˘" tt. We have maxvalph 1 q `ϕpA 1 q ď m and maxvalps, h, lq `ϕpA 1 q ď maxvalps, h, lq `ϕpAq ď m by Proposition 4.13 item 5. Hence we derive maxvalps, h 1 , lq `ϕpA 1 q ď m thus by induction hypothesis we get ps, h 1 q ( l A 1 . As h 1 K h we deduce ps, h ] h 1 q ( l A 2 . We have maxvalph 1 q `ϕpA 2 q ď m and maxvalps, h, lq `ϕpA 2 q ď maxvalps, h, lq `ϕpAq ď m by Proposition 4.13 item 5. Hence we derive maxvalps, h ] h 1 , lq `ϕpA 2 q ď m and thus by induction hypothesis we get bmc `q, m, V, A 2 , ps, h ] h 1 , lq ˘" tt.

[ \ D Proofs of Section 5 s is a total function s : V Ñ r1, qs, hence s is a store; -H is a finite and functional graph, hence H is the graph of some heap h;

-L is a singleton subset of N, i.e. L " tlu for a location l; the inclusion domphq Ď ♥ps, hq Y tlu holds; for any formula B P Basic u we have ps, hq ( l B iff B P P.

Proof Since P is closed under the three rules

x " x

x " y y " x

x " y y " z

x " z the relation tpx, yq | x " y P Pu is an equivalence relation. Hence the function s is total: indeed x i " x i P P and the set tj | x i " x j P Pu contains at least i. Hence spx i q is always defined and we have x i " x spx i q P P. Moreover we have spx i q " spx j q iff x i " x j P P for all i, j P r1, qs (D.1)

Since P is closed under the two rules

convpx i , x j q convpx j , x i q convpx i , x j q convpx j , x k q convpx i , x k q
the relation tpi, jq | convpx i , x j q P Pu is a partial equivalence relation and h i ,h j are both defined and h i " h j iff convpx i , x j q P P for all i, j P r1, qs (D.2)

It is obvious that H is a finite graph. An important remark for the rest of the proof is the following: by construction we have

t0u Z tspx i q | i P r1, qsu Z th i | i P r1, qs and h i is definedu Z t2q `1u Ď N (D.3)
i.e. these sets are mutually disjoint. Let u, w P N be such that pu, wq P H and let us check the following characteristic properties of the graph H:

P1 one of the three following properties holds: eithers u " spx i q for some i P r1, qs; or u " h i for some i such that convpx i , x i q P P; or u " 0; P2 if u " spx i q then either w " spx j q and x i ãÑ x j P P for some j P r1, qs; or w " h i and convpx i , x i q P P and tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H; P3 if h i is defined and u " h i then convpx i , x i q P P, tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H and:

either w " spx j q and btwnpx i , x j q P P for some j P r1, qs; or w " h i and tolooppx i q P P; or w " 0 and toallocpx i q P P and tbtwnpx i , x 1 q, . . . , btwnpx i , xqq, tolooppx i qu X P " H; P4 if u " 0 then tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ uu X P " H and:

either w " spx i q and u ãÑ x i P P for some i P r1, qs; or w " 0 and u ãÑ u P P and tu ãÑ x 1 , . . . , u ãÑ xqu X P " H; or w " 2q `1 and allocpuq P P and tu ãÑ x 1 , . . . , u ãÑ xq, u ãÑ uu X P " H.

We prove Properties P1 to P4 in that order:

-Property P1 holds by definition of H. We just have to check that when u " h i then convpx i , x i q P P but this is a consequence of Equivalence (D.2); let us check Property P2. By definition of H and Property (D.3), there are two possibilities for pspx i q, wq P H:

either pspx i q, wq " pspx k q, spx j qq with x k ãÑ x j P P. But from spx k q " spx i q we deduce x k " x i P P by Equivalence (D.1). As P is closed under the rule

x k " x i x k ãÑ x j x i ãÑ x j
we deduce x i ãÑ x j P P and v " spx j q;

or pspx i q, wq " pspx k q, h j q with convpx k , x j q P P and tx k ãÑx 1 , . . . , x k ãÑxquXP " H.

From spx i q " spx k q we deduce tx k " x i , x i " x k u Ď P by Equivalence (D.1). But P is closed under the rule

x k " x i convpx k , x j q convpx i , x j q convpx i , x j q convpx j , x i q convpx i , x j q convpx j , x i q convpx i , x i q x i " x k x i ãÑ xp x k ãÑ xp
hence we deduce tconvpx i , x j q, convpx i , x i qu P P and tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H. We conclude w " h j " h i using Equivalence (D.2); let us check Property P3. By definition of H and Property (D.3), there are three possibilities for ph i , wq P H:

either ph i , wq " ph k , spx j qq with btwnpx k , x j q P P and tx k ãÑx 1 , . . . , x k ãÑxquXP " H. We deduce h i " h k and w " spx j q. Thus tconvpx i , x k q, convpx k , x i q, convpx i , x i qu Ď P by Equivalence (D.2). Since P is closed under the rules

convpx k , x i q btwnpx k , x j q btwnpx i , x j q convpx i , x k q x i ãÑ xp x k ãÑ xp
we deduce btwnpx i , x j q P P and tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H; ph i , wq " ph k , h j q with tconvpx k , x j q, tolooppx k qu Ď P and tx k ãÑ x 1 , . . . , x k ãÑ xqu X P " H. We deduce h i " h k and w " h j . By Equivalence (D.2), we deduce the inclusion tconvpx i , x k q, convpx k , x i q, convpx i , x i qu Ď P. Since P is closed under the rules convpx k , x i q tolooppx k q tolooppx i q convpx i , x k q x i ãÑ xp

x k ãÑ xp we deduce tolooppx i q P P and tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H; ph i , wq " ph k , 0q with toallocpx k q P P and tx k ãÑ x 1 , . . . , x k ãÑ xq, btwnpx k , x 1 q, . . . , btwnpx k , xqq, tolooppx k qu X P " H. We deduce h i " h k and w " 0. We get tconvpx i , x k q, convpx k , x i q, convpx i , x i qu Ď P using Equivalence (D.2). Since P is closed under the rules

convpx k , x i q toallocpx k q toallocpx i q convpx i , x k q x i ãÑ xp x k ãÑ xp convpx i , x k q btwnpx i , xpq btwnpx k , xpq convpx i , x k q tolooppx i q
tolooppx k q we deduce toallocpx i q P P and tx i ãÑ x 1 , . . . , x i ãÑ xq, btwnpx i , x 1 q, . . . , btwnpx i , xqq, tolooppx i qu X P " H; let us finally check Property P4. By definition of H and Property (D.3), there are three possibilities for p0, wq P H: -p0, wq " p0, spx i qq with uãÑx i P P and tx 1 "u, . . . , xq "u, x 1 ãÑu, . . . , xq ãÑuuXP " H; Hence w " spx i q and all the other properties hold; -p0, wq " p0, 0q with u ãÑ u P P and tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ u, u ãÑ x 1 , . . . , u ãÑ xqu X P " H. Hence w " 0 and all the other properties hold; -p0, wq " p0, 2q `1q with allocpuq P P and tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ u, u ãÑ x 1 , . . . , u ãÑ xq, u ãÑ uu X P " H. Hence w " 2q `1 and all the other properties hold.

We can now check that H is a functional graph. Assume that tpu, vq, pu, wqu Ď H. Let us show v " w. We have three cases:

either u " spx i q v " spx j q and w " spx k q with tx i ãÑ x j , x i ãÑ x k u Ď P. But P is closed under the rule x i ãÑ x j x i ãÑ x k

x j " x k hence x j " x k P P and thus v " spx j q " spx k q " w by Equivalence (D.1);

v " spx j q and w " h i is impossible because tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H contradicts x i ãÑ x j P P; v " h j and w " h j imply v " w; or u " h i with convpx i , x i q P P and tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H v " spx j q and w " spx k q with tbtwnpx i , x j q, btwnpx i , x k qu Ď P. But P is closed under the rule btwnpx i , x j q btwnpx i , x k q

x j " x k hence x j " x k P P and thus v " spx j q " spx k q " w by Equivalence (D.1); v " spx j q and w " h i with tbtwnpx i , x j q, tolooppx i qx i u Ď P. But P is closed under the rule tolooppx i q btwnpx i , x j q

x i ãÑ x j hence we deduce x i ãÑ x j which contradicts tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H; v " spx j q and w " 0 is impossible because btwnpx i , x j q P P contradicts tbtwnpx i , x 1 q, . . . , btwnpx i , xqq, tolooppx i qu X P " H; v " h i and w " h i implies v " w; v " h i and w " 0 is impossible because tolooppx i q P P contradicts tbtwnpx i , x 1 q, . . . , btwnpx i , xqq, tolooppx i qu X P " H; v " 0 and w " 0 implies v " w; or u " 0 with tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ uu X P " H v " spx i q and w " spx j q with tu ãÑ x i , u ãÑ x i u Ď P. But P is closed under the rule u ãÑ x i u ãÑ x j

x i " x j hence x i " x j P P and thus v " spx i q " spx j q " w by Equivalence (D.1); v " spx i q and w " 0 with tu ãÑ x i , u ãÑ uu Ď P. But P is closed under the rule u ãÑ x i u ãÑ u x i " u hence x i " u P P which contradicts tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ uu X P " H; v " spx i q and w " 2q `1 is impossible because u ãÑ x i P P contradicts tu ãÑ x 1 , . . . , u ãÑ xq, u ãÑ uu X P " H; v " 0 and w " 0 implies v " w; v " 0 and w " 2q `1 is impossible because u ãÑ u P P contradicts tu ãÑ x 1 , . . . , u ãÑ xq, u ãÑ uu X P " H; v " 2q `1 and w " 2q `1 implies v " w.

Let us now show that L is a singleton set. For that, we first show that L contains no more than one location:

if spx i q P L and spx j q P L then tx i " u, x j " uu Ď P. But P is closed under the rules x j " u u " x j

x i " u u " x j

x i " x j thus x i " x j P P and spx i q " spx j q; spx i q P L and h j P L is impossible because x i "u P P contradicts tx 1 "u, . . . , xq "uuXP " H; the case when spx i q P L and 0 P L is impossible because x i " u P P contradicts tx 1 " u, . . . , xq " u, . . .u X P " H; if h i P L and h j P L then we have tx i ãÑ u, x j ãÑ uu P P. But P is closed under the rule x i ãÑ u x j ãÑ u convpx i , x j q hence convpx i , x j q P P and thus h i " h j ; -h i P L and 0 P L is impossible because x i ãÑ u P P contradicts t. . . , x 1 ãÑ u, . . . , xq ãÑ uu X P " H.

Then we show that L is not empty. If there exists i such that x i " u P P then spx i q P L.

Otherwise we have tx 1 " u, . . . , xq " uu X P " H. If there exists j such that x j ãÑ u P P then, because P is closed under the rule

x j ãÑ u x j ãÑ u convpx j , x j q we have convpx j , x j q P P and thus h j is defined (see Equivalence (D.2)) and we deduce h j P L. Otherwise tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ uu X P " H and in that case 0 P L.

We consider the memory state ps, hq and the location l such that H is the graph of the heap h and L " tlu. Let us show that the inclusion domphq Ď ♥ps, hq Y tlu holds. For this we show that the three following properties hold:

-domphq Ď tspx i q | i P r1, qsu Y th i | i P r1, qs and h i is definedu Y t0u; -tspx i q | i P r1, qsu Y th i | i P r1, qs and h i is definedu Ď p♥ps, hq; -if 0 P domphq then l " 0.
The first property is trivial by definition of H. For the second property, we first notice that tspx i q | i P r1, qsu Ď p♥ps, hq. Then if h i is defined then convpx i , x i q P P and tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H by characteristic Property P3 of H. Hence we have pspx i q, h i q P H and we deduce h i P hpsptx 1 , . . . , xquqq. Finally, if 0 P domphq then by characteristic Property P4 of H we have tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ uu X P " H and as a consequence we get 0 P L by definition of L. Hence l " 0.

From the three previous properties we deduce domphq Ď p♥ps, hq Y tlu and hence the inclusion domphq Ď ♥ps, hq Y tlu holds.

Let us finally show that for any basic formula B P Basic u we have ps, hq ( l B iff B P P. We proceed by case analysis on B: if B is x i " x j . Then ps, hq ( l x i " x j iff spx i q " spx j q iff x i " x j P P by Equivalence (D.1); if B is x i ãÑ x j . Let us first assume ps, hq ( l x i ãÑ x j and show x i ãÑ x j P P. We have hpspx i qq " spx j q hence pspx i q, spx j qq P H. By the characteristic Property P2 of H, the only possibility is that there exists k such that spx j q " spx k q and x i ãÑ x k P P. Hence by Equivalence (D.1), we have x k " x j P P. But P is closed under the rule

x k " x j x i ãÑ x k

x i ãÑ x j hence we derive x i ãÑ x j P P. Let us now assume x i ãÑ x j P P. Then pspx i q, spx j qq P H by definition of H and thus ps, hq ( l x i ãÑ x j ; if B is convpx i , x j q. Let us first assume ps, hq ( l convpx i , x j q and show convpx i , x j q P P. We have hpspx i qq " hpspx j qq " v. Hence tpspx i q, vq, pspx j q, vqu Ď H. By the characteristic Property P2 of H and Property (D.3), we have two cases:

v " spx k q and v " spxrq with tx i ãÑ x k , x j ãÑ xru Ď P. We deduce spx k q " spxrq and thus x k " xr P P by Equivalence (D.1). But P is closed under the rules

x k " xr x i ãÑ x k x i ãÑ xr x i ãÑ xr x j ãÑ xr convpx i , x j q
hence we get convpx i , x j q P P; v " h i and v " h j with tconvpx i , x i q, convpx j , x j qu Ď P. From h i " h j , we deduce convpx i , x j q P P by Equivalence (D.2); Now let us assume convpx i , x j q P P and let us show ps, hq ( l convpx i , x j q. We have two cases:

if x i ãÑ x k P P holds for some k P r1, qs then as P is closed under the rule convpx i , x j q x i ãÑ x k

x j ãÑ x k then x j ãÑ x k P P and tpspx i q, x k q, pspx j q, x k qu Ď H by definition of H. Hence ps, hq ( l convpx i , x j q; otherwise tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H. From convpx i , x j q P P we deduce h i " h j and convpx j , x j q P P by Equivalence (D.2). Hence by definition of H we have tpspx i q, h j q, pspx j q, h j qu Ď H and we conclude ps, hq ( l convpx i , x j q;

if B is btwnpx i , x j q. Let us first assume ps, hq ( l btwnpx i , x j q and show btwnpx i , x j q P P. We have tpspx i q, vq, pv, spx j qqu Ď H for some v. By characteristic Property P2 of H, we have two cases:

v " spx k q with x i ãÑ x k P P. From pspx k q, spx j qq P H we deduce ps, hq ( l x k ãÑ x j and thus x k ãÑ x j P P (from the earlier case B " x k ãÑ x j ). Since P is closed under the rule x i ãÑ x k x k ãÑ x j btwnpx i , x j q we deduce btwnpx i , x j q P P; v " h i with convpx i , x i q and tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H. By characteristic Property P3 of H and Property (D.3), there is only one possible case for ph i , spx j qq P H: there must exist k such that spx j q " spx k q and btwnpx i , x k q P P. By Equivalence (D.1), we deduce x k " x j P P. Since P is closed under the rule

x k " x j btwnpx i , x k q btwnpx i , x j q we deduce btwnpx i , x j q P P; Now let us assume btwnpx i , x j q P P and let us show ps, hq ( l btwnpx i , x j q. We have two cases:

either x i ãÑ x k P P holds for some k P r1, qs. As P is closed under the rule

x i ãÑ x k btwnpx i , x j q

x k ãÑ x j we deduce x k ãÑ x j P P and thus we have tpspx i q, spx k qq, pspx k q, spx j qqu Ď H by definition of H. As a consequence, we get ps, hq ( l btwnpx i , x j q; or tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H. Since P is closed under the rule btwnpx i , x j q convpx i , x i q we deduce convpx i , x i q P P and thus tpspx i q, h i q, ph i , spx j qqu Ď H by definition of H. As a consequence we derive ps, hq ( l btwnpx i , x j q; if B is tolooppx i q. Let us first assume ps, hq ( l tolooppx i q and show tolooppx i q P P. We have tpspx i q, vq, pv, vqu Ď H for some v P N. By characteristic Property P2 of H, we have two cases for pspx i q, vq P H: v " spx j q with x i ãÑ x j P P. From pspx j q, spx j qq P H we deduce ps, hq ( l x j ãÑ x j and thus x j ãÑ x j P P (from the earlier case B " x j ãÑ x j ). Since P is closed under the rule x i ãÑ x j x j ãÑ x j tolooppx i q we deduce tolooppx i q P P; v " h i with convpx i , x i q P P and tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H. By characteristic Property P3 of H and Property (D.3), from ph i , h i q P H we deduce tolooppx i q P P;

Now let us assume tolooppx i q P P and let us show ps, hq ( l tolooppx i q. We have two cases:

either x i ãÑ x j P P holds for some for some j P r1, qs. As P is closed under the rule

x i ãÑ x j tolooppx i q

x j ãÑ x j we deduce x j ãÑ x j P P and thus we have both ps, hq ( l x i ãÑ x j and ps, hq ( l x j ãÑ x j (from the earlier cases B " x i ãÑ x j and B " x j ãÑ x j ). Hence we derive ps, hq ( l tolooppx i q; or tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H. As P is closed under the rule tolooppx i q toallocpx i q toallocpx i q convpx i , x i q we also get convpx i , x i q P P and thus tpspx i q, h i q, ph i , h i qu Ď H by definition of H. Hence ps, hq ( l tolooppx i q; if B is toallocpx i q. Let us first assume ps, hq ( l toallocpx i q and show toallocpx i q P P.

We have tpspx i q, vq, pv, wqu Ď H for some v, w P N. By characteristic Property P2 of H, we have two cases for pspx i q, vq P H: v " spx j q with x i ãÑ x j P P. From pspx j q, wq P H we deduce ps, hq ( l convpx j , x j q and thus convpx j , x j q P P (from the earlier case B " convpx j , x j q). Since P is closed under the rule x i ãÑ x j convpx j , x j q toallocpx i q we deduce toallocpx i q P P; v " h i with convpx i , x i q P P and tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H. By characteristic Property P3 of H, we have three cases for ph i , wq P H.

w " spx j q with btwnpx i , x j q P P. But P is closed under the rule btwnpx i , x j q toallocpx i q hence toallocpx i q P P; w " h i with tolooppx i q P P. But P is closed under the rule tolooppx i q toallocpx i q hence toallocpx i q P P; w " 0 and in this case toallocpx i q P P; Now let us assume toallocpx i q P P and let us show ps, hq ( l toallocpx i q. We have four cases:

either x i ãÑ x j P P holds for some j P r1, qs. As P is closed under the rule x i ãÑ x j toallocpx i q convpx j , x j q we deduce convpx j , x j q P P and thus we have both ps, hq ( l x i ãÑ x j and ps, hq ( l convpx j , x j q (from the earlier cases B " x i ãÑ x j and B " convpx j , x j q). Hence we derive ps, hq ( l toallocpx i q; or tx i ãÑ x 1 , . . . , x i ãÑ xqu X P " H and btwnpx i , x j q P P for some j P r1, qs. Then we have ps, hq ( l btwnpx i , x j q (from the earlier case B " btwnpx i , x j q). We deduce ps, hq ( l toallocpx i q; or tx i ãÑ x 1 , . . . , x i ãÑ xq, btwnpx i , x 1 q, . . . , btwnpx i , xqqu X P " H and tolooppx i q P P.

Then we have ps, hq ( l tolooppx i q (from the earlier case B " tolooppx i q). We deduce ps, hq ( l toallocpx i q;

or tx i ãÑ x 1 , . . . , x i ãÑ xq, btwnpx i , x 1 q, . . . , btwnpx i , xqq, tolooppx i qu X P " H. Since P is closed under the rule toallocpx i q convpx i , x i q we deduce convpx i , x i q P P and thus tpspx i q, h i q, ph i , 0qu Ď H hence we conclude ps, hq ( l toallocpx i q;

if B is x i " u. Let us first assume ps, hq ( l x i " u and show x i " u P P. We have l " spx i q.

According to the definition of L and Property (D.3), we must have l " spx j q with x j " u P P. But then we have spx i q " spx j q hence x i " x j P P by Equivalence (D.1). As P is closed under the rule x i " x j x j " u

x i " u we get x i " u P P.

Conversely, if we assume x i " u P P then by definition of L we have spx i q P L and thus l " spx i q. As a consequence, we have ps, hq ( l x i " u;

if B is x i ãÑ u. Let us first assume ps, hq ( l x i ãÑ u and show x i ãÑ u P P. We have pspx i q, lq P H. By the characteristic Property P2 of H, we have two cases:

either l " spx j q with x i ãÑ x j P P for some j P r1, qs. We derive ps, hq ( l x i ãÑ x j from the earlier case B " x i ãÑ x j and thus we get ps, hq ( l x j " u. Hence we have x j " u P P (from the earlier case B " x j " u). As P is closed under the rule x j " u x i ãÑ x j

x i ãÑ u we get x i ãÑ u P P; or l " h i . But in that case, according to the definition of L and Property (D.3), we must have x i ãÑ u P P; Now let us assume x i ãÑ u P P and let us show ps, hq ( l x i ãÑ u. We have two cases:

either x j " u P P for some j P r1, qs. As P is closed under the rules x j " u u " x j u " x j x i ãÑ u

x i ãÑ x j we get x i ãÑ x j P P. Then we have ps, hq ( l x j " u and ps, hq ( l x i ãÑ x j (from the earlier cases B " x j " u and B " x i ãÑ x j ). Hence we deduce ps, hq ( l x i ãÑ u; or tx 1 " u, . . . , xq " uu X P " H and in that case l " h i . But P is closed under the rule x i ãÑ u x i ãÑ u convpx i , x i q hence convpx i , x i q P P and thus pspx i q, h i " lq P H by definition of H. We conclude ps, hq ( l x i ãÑ u;

if B is u ãÑ x i . Let us first assume ps, hq ( l u ãÑ x i and show u ãÑ x i P P. According to the definition of L, for l P L we have three cases:

either l " spx j q with x j " u P P for some j P r1, qs. From pspx j q, spx i qq P H, using characteristic Property P2 of H and Property (D.3), we deduce x j ãÑ x i P P. But P is closed under the rule x j " u x j ãÑ x i u ãÑ x i hence we get u ãÑ x i P P; or l " h j with x j ãÑu P P for some j P r1, qs. From ph j , spx i qq P H, using characteristic Property P3 of H and Property (D.3), we deduce btwnpx j , x i q P P. Since P is closed under the rule x j ãÑ u btwnpx j , x i q u ãÑ x i we get u ãÑ x i P P;

or l " 0. From p0, spx i qq P H, using characteristic Property P4 of H and Property (D.3), we deduce spx i q " spx j q and u ãÑ x j P P. From Equivalence (D.1) we get x j " x i P P and as P is closed under the rule

x j " x i u ãÑ x j u ãÑ x i we conclude u ãÑ x i P P; Now let us assume u ãÑ x i P P and let us show ps, hq ( l u ãÑ x i . We have three cases for l P L:

either l " spx j q with x j " u P P for some j P r1, qs. As P is closed under the rules

x j " u u " x j
u " x j u ãÑ x i

x j ãÑ x i we get x j ãÑ x i P P and thus ps, hq ( l x j ãÑ x i from the earlier case B " x j ãÑ x i .

We deduce ps, hq ( l u ãÑ x i ; or l " h j with x j ãÑ u P P and tx 1 " u, . . . , xq " uu X P " H. As P is closed under the rules x j ãÑ u u ãÑ x i btwnpx j , x i q

x j ãÑ xp x j ãÑ u

xp " u we get btwnpx j , x i q P P and tx j ãÑ x 1 , . . . , x j ãÑ xqu X P " H. Hence by definition of H we get ph j , spx i qq P H. We deduce ps, hq ( l u ãÑ x i or l " 0 and tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ uu X P " H. Then p0, spx i qq P H by definition of H and we deduce ps, hq ( l u ãÑ x i ;

if B is u ãÑ u. Let us first assume ps, hq ( l u ãÑ u and show u ãÑ u P P. According to the definition of L, for l P L we have three cases: either l " spx i q with x i " u P P for some i P r1, qs. From the earlier case B " x i " u we deduce ps, hq ( l x i " u. Hence we get ps, hq ( l x i ãÑ x i and as a consequence x i ãÑ x i P P. But P is closed under the rules

x i " u x i ãÑ x i u ãÑ x i
x i " u u ãÑ x i u ãÑ u hence u ãÑ u P P; or l " h i with x i ãÑ u P P and tx 1 " u, . . . xq " uu X P " H for some i P r1, qs.

We deduce ps, hq ( l x i ãÑ u from the earlier case B " x i ãÑ u. Hence we derive ps, hq ( l tolooppx i q and thus tolooppx i q P P from the earlier case B " tolooppx i q.

But P is closed under the rule x i ãÑ u tolooppx i q u ãÑ u hence u ãÑ u P P; or l " 0. Then p0, 0q P H and by characteristic Property P4 of H and Property (D.3), we must have u ãÑ u P P; Now let us assume u ãÑ u P P and let us show ps, hq ( l u ãÑ u. We have three cases for l P L we have three cases:

either l " spx i q with x i " u P P for some i P r1, qs. As P is closed under the rules

x i " u u " x i u " x i u ãÑ u x i ãÑ u u " x i x i ãÑ u x i ãÑ x i
we get x i ãÑ x i P P hence ps, hq ( l x i ãÑ x i (from the earlier case B " x i ãÑ x i ). Since l " spx i q we deduce ps, hq ( l u ãÑ u;

pB `Y tBu, B ´, Sq is 1-consistent for some B P Eq u Y Tou. By Property (S1), we deduce that the conjunction of the formulae of B `Y tBu Y B ´Y S is satisfiable. Hence the conjunction of the formulae of B `Y B ´Y S is satisfiable as well;

if u ãÑ u P clpB `q. In the canonical pre-model of clpB `q, we have pred ♥ ps, h, iq " rem ♥ ps, hq " H for any i P r1, qs and loop ♥ ps, hq " tlu. We consider two sub-cases:

either # loop ♥ ě 1 R S. As earlier, we extend the canonical pre-model ps, h, lq under the cardinality assignment pp 1 , . . . , pq, maxp1, lq, rq using Proposition 5.5 and we get a heap h 1 such that ps, h, lq » b ps, h 1 , lq, cardppred ♥ ps, h 1 , iqq " p j for any i P r1, qs, cardploop ♥ ps, h 1 qq " maxp1, lq and cardprem ♥ ps, h 1 qq " r. We can then show that ps, h 1 , lq satisfies the conjunction of the formulae of B `Y B ´Y S; or # loop ♥ ě 1 P S. Then by Condition C2.2, pB `Y tBu, B ´, Sq is 1-consistent for some B P Eq u Y Tou. By Property (S1), we deduce that the conjunction of the formulae of B `Y tBu Y B ´Y S is satisfiable. Hence the conjunction of the formulae of B `Y B ´Y S is satisfiable as well.

Let us finally show (S3). We assume that pB `, B ´, Sq is 3-consistent and we prove that the conjunction of the formulae of B `Y B ´Y S is satisfiable. We further assume that allocpuq P clpB `q and pEq u Y Tou Y Fmu Y tu ãÑ uuq X clpB `q " H because otherwise we can either apply Property (S1) or Property (S2). Hence in the canonical pre-model ps, h, lq of clpB `q, we have l P rem ♥ ps, hq. But since domphq Ď ♥ps, hq Y tlu, we deduce pred ♥ ps, h, iq " H for any i P r1, qs, loop ♥ ps, hq " H and rem ♥ ps, hq " tlu. We consider two cases:

either # rem ♥ ě 1 R S. As earlier, we extend the canonical model ps, h, lq under the cardinal assignment pp 1 , . . . , pq, l, maxp1, rqq using Proposition 5.5 and we get a heap h 1 such that ps, h, lq » b ps, h 1 , lq, cardppred ♥ ps, h 1 , iqq " p i for any i P r1, qs, cardploop ♥ ps, h 1 qq " l and cardprem ♥ ps, h 1 qq " maxp1, rq. We deduce that ps, h 
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 3 Completeness of the saturation rules) If the (finite) subset P Ď Basic u is closed under the rules of Figure 5.1 and ps, H, Lq is the canonical pre-model of P then:

  ´def " t B | B P B ´u. Given B `, B ´Ď Basic u , checking for the satisfiability of the conjunction of the formulae of B `Y B ´is easy. It is sufficient to compute the closure clpB `q:

Proposition 5. 3 (

 3 Completeness of the saturation rules) If the (finite) subset P Ď Basic u is closed under the rules of Figure 5.1 and ps, H, Lq is the canonical pre-model of P then:

  This graph represents an example of memory state ps, hq with the variables x 1 , . . . , x 4 . Nodes labelled by '♥' belong to ♥ps, hq; those labelled by 'ö' belong to loop ♥ ps, hq; those labelled by 'p' belong to pred ♥ ps, hq and those labelled by 'r' belong to rem ♥ ps, hq.

	ö	ö	♥	x 3	x 4
	♥	♥	p	r	
		x 1			
		x 2	♥	r	

  Iu, we have ps, hq ( l ref I iff sI Ď refps, hq and cardpsIq " cardpIq ps, hq ( l acc I iff hpsIq Ď accps, hqzrefps, hq and cardphpsIqq " cardpIq

	pred ♥ ps, h, jq " `predps, h, jqXrefps, hq	˘Z`p redps, h, jqXpaccps, hqzrefps, hqq	For
	any subset I Ď r1, qs, let us define the 1SL1 formulae below
	ref I	def "	ľ i‰jPI	px i " x j q	^ľ iPI	allocpx i q
	acc I	def "	ľ i‰jPI	convpx i , x j q	^ľ iPI	iPI,jPr1,qs toallocpx i q ^ľ px i ãÑ x j q
	Proposition 2.13 For I Ď r1, qs with sI

def " tspx i q | i P

  Definition 2.15 We say that x{y respect X{Y if (x P X iff y P Y ) holds. Let us consider four sets X Ď X 1 and Y Ď Y 1 . Let R Ď X 1 ˆY 1 be a bijective relation between X 1 and Y 1 . Let us assume that for any x, y, if x R y then x{y respects X{Y . Then R X X ˆY is a bijective relation between X and Y .

	Proposition 2.16

  Proposition 2.23 Let X and Y be two 2-equipotent finite sets, i.e. X " 2 Y . Let x and y be such that x{y respect X{Y . For any u P Xztxu there exists v P Y ztyu.Proof Let u P Xztxu. We have two cases: either x P X and then we have u ‰ x P X thus cardpXq ě 2. Using X " 2 Y we deduce cardpY q ě 2 and thus cardpY ztyuq ě 1; or x R X and then we have y R Y and thus Xztxu " X " 2 Y " Y ztyu. Hence if Xztxu is non-empty then so is Y ztyu.[ \

		x{y respect both X{Y
	and Y {Y 1 .	[ \

  4.11 (Quantifier Admissibility) Let q ě 1. Every formula A in 1SL1 with program variables in x 1 , . . . , x q is logically equivalent to a Boolean combination of test formulae in Test u α with α " thpq, Aq. Proof Let α " thpq, Aq and consider the (saturated) set of literals S α ps, h, lq Test u α and ps, hq ( l Bu Y t B | B P Test u α and ps, hq * l Bu  As Test u α is finite, the set S α ps, h, lq is finite and let us consider the well-defined atom Ź S α ps, h, lq. It is obvious to check the equivalence ps 1 , h 1 q ( l 1 ľ S α ps, h, lq iff ps, h, lq » α ps 1 , h 1 , l 1 q

	def " tB | B P The disjunction "
	T A

def " ł Ź S α ps, h, lq | ps, hq ( l A ( is a Boolean combination (with, as is usual, the empty disjunction understood as K) of test formulae in Test u α because Ź S α ps, h, lq ranges over the finite set of atoms built from Test u α . By Theorem 4.3, we deduce that A is logically equivalent to T A which finishes the proof.

  1 , h 2 qq Consequently, pred ♥ ps, h 1 , iq " ppred ♥ ps, h, iq X domph 1 qq Y ppredps, h, iq X ∆ps, h 1 , h 2 qq since ∆ps, h 1 , h 2 q Ď domph 1 q.The other identities are established in a similar fashion. [ \ Proposition 2.10 Let ps, hq be a memory state, l 1 P Nzdomphq and l 2 P N. Let us write h 1Ñ2 for h ] rl 1 Þ Ñ l 2 s and let i be in r1, qs. The following identities hold:

  l 1 P spVq, l 2 P domphq and l 2 R ♥ps, hq tl 1 u if l 1 P spVq and pl 2 R domphq or l 2 P ♥ps, hqq tl 1 u if l 1 R spVq and l 1 P hpspVqq H if l 1 R p♥ps, hq

  1 , lq satisfies the conjunction of the formulae of B `Y B ´Y S; or # rem ♥ ě 1 P S. Then by Condition C3.1, pB `Y tBu, B ´, Sq is 2-consistent for some B P Eq u Y Tou Y Fmu Y tu ãÑ uu. By Property (S2), we deduce that the conjunction of the formulae of B `Y tBu Y B ´Y S is satisfiable. Hence the conjunction of the formulae of B `Y B ´Y S is satisfiable as well. [ \
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would meet such a requirement. Hence, one of the test formulae # pred ♥ px 1 q ě 1, . . . , # pred ♥ px q q ě 1, # loop ♥ ě 1, # rem ♥ ě 1 has to be satisfied in such a model. That is why we develop a more involved argument to check the satisfiability of conjunctions of literals in Test u α in polynomial time.

Definition 5.4 A cardinality assignment is a tuple pp 1 , . . . , p q , l, rq of q `2 elements of N.

Proposition 5.5 Let q ě 1. Let s : V Ñ N be a store, h : N ã N be a heap and l P N be a location. Let pp 1 , . . . , p q , l, rq be a cardinality assignment such that:

1. spx i q " spx j q implies p i " p j for all i, j P r1, qs; 2. cardppred ♥ ps, h, iqq ď p i for any i P r1, qs; 3. cardploop ♥ ps, hqq ď l; 4. cardprem ♥ ps, hqq ď r.

There exists a heap h 1 such that:

ps, h, lq » b ps, h 1 , lq; cardppred ♥ ps, h 1 , iqq " p i for any i P r1, qs; cardploop ♥ ps, h 1 qq " l; cardprem ♥ ps, h 1 qq " r.

The proof can be found in Appendix D starting at page 76.

It is always possible to add elements outside the core of a heap as much as we wish while preserving basic equivalence.

Definition 5.6 (1-, 2-and 3-consistency) Let q, α ě 1. Let B `, B ´be two (finite) sets of formulae of Basic u and S be a (finite) set of literals from Size α . We say that the triple pB `, B ´, Sq is 1-consistent when for all i, j P r1, qs and for all a, b P N the following conditions hold: C1.1 B ´X clpB `q " H; C1.2 if x i " x j P clpB `q and t# pred ♥ px i q ě a, # pred ♥ px j q ě bu Ď S then a ă b; C1.3 if t# loop ♥ ě a, # loop ♥ ě bu Ď S then a ă b; C1.4 if t# rem ♥ ě a, # rem ♥ ě bu Ď S then a ă b.

We say that the triple pB `, B ´, Sq is 2-consistent when it is 1-consistent and for all i, j P r1, qs the following conditions hold: C2.1 if tx i " x j , u ãÑ x i u Ď clpB `q and # pred ♥ px j q ě 1 P S then pB `Y tBu, B ´, Sq is 1-consistent for some B P Eq u Y To u ; C2.2 if u ãÑ u P clpB `q and # loop ♥ ě 1 P S then pB `Y tBu, B ´, Sq is 1-consistent for some B P Eq u Y To u ;

(P3) l 2 P accps, h 1Ñ2 qzaccps, hq iff l 1 " l 2 P hpspVqq or l 1 P spVq and l 2 P domphq Y tl 1 u

From ♥ps, h 1Ñ2 q " refps, h 1Ñ2 q Y accps, h 1Ñ2 q, it is then easy to deduce the inclusions ♥ps, hq Ď ♥ps, h 1Ñ2 q Ď ♥ps, hq Y tl 1 , l 2 u

Then we study the statements l 1 P ♥ps, h 1Ñ2 q and l 2 P ♥ps, h 1Ñ2 q according to the four supplementary conditions on the right-hand side of the fifth identity:

if l 1 P spVq, l 2 P domphq and l 2 R ♥ps, hq then l 1 ‰ l 2 (because l 1 R domphq). Then l 1 , l 2 R ♥ps, hq. Hence the union ♥ps, hq Z tl 1 , l 2 u is indeed disjoint. From l 1 P spVq we deduce l 1 P refps, h 1Ñ2 q. From l 1 P spVq and l 2 P domphq we deduce l 2 P accps, h 1Ñ2 q.

We obtain ♥ps, h 1Ñ2 q " ♥ps, hq Z tl 1 , l 2 u;

if l 1 P spVq and (l 2 R domphq or l 2 P ♥ps, hq) then we already have l 1 P refps, h 1Ñ2 q and l 1 R ♥ps, hq. Hence l 1 P ♥ps, h 1Ñ2 qz♥ps, hq.

Let us show that if l 1 ‰ l 2 and l 2 P ♥ps, h 1Ñ2 q then l 2 P ♥ps, hq. By contradiction, let us assume l 1 ‰ l 2 and l 2 P ♥ps, h 1Ñ2 qz♥ps, hq. Then we have l 2 P refps, h 1Ñ2 q Y accps, h 1Ñ2 q. Then either l 2 P refps, h 1Ñ2 q or l 2 P accps, h 1Ñ2 q. In the former case, from l 1 ‰ l 2 we deduce l 2 P refps, hq Ď ♥ps, hq, a contradiction. In the later case, we deduce l 2 P accps, h 1Ñ2 qz♥ps, hq Ď accps, h 1Ñ2 qzaccps, hq hence, by (P3) either l 1 " l 2 P hpspVqq (a contradiction) or l 2 P domphq Y tl 1 u. From l 1 ‰ l 2 , we get l 2 P domphq.

Since we also have l 2 R ♥ps, hq, we get a contradiction with l 2 R domphq or l 2 P ♥ps, hq.

We deduce ♥ps, h 1Ñ2 q " ♥ps, hq Z tl 1 u;

if l 1 R spVq and l 1 P hpspVqq then we have l 1 P accps, h 1Ñ2 q and l 1 R ♥ps, hq. Hence l 1 P ♥ps, h 1Ñ2 qz♥ps, hq.

Let us show that if l 1 ‰ l 2 and l 2 P ♥ps, h 1Ñ2 q then l 2 P ♥ps, hq. By contradiction, let us assume l 1 ‰ l 2 and l 2 P ♥ps, h 1Ñ2 qz♥ps, hq. Then we have l 2 P refps, h 1Ñ2 q Y accps, h 1Ñ2 q. Then either l 2 P refps, h 1Ñ2 q or l 2 P accps, h 1Ñ2 q. But l 2 P accps, h 1Ñ2 q implies l 2 P accps, h 1Ñ2 qz♥ps, hq Ď accps, h 1Ñ2 qzaccps, hq and thus, by (P3) we get either l 1 " l 2 (a contradiction) or l 1 R spVq (a contradiction). From l 2 P refps, h 1Ñ2 q and l 1 ‰ l 2 we deduce l 2 P refps, hq Ď ♥ps, hq (a contradiction). We obtain ♥ps, h 1Ñ2 q " ♥ps, hq Z tl 1 u;

if l 1 R p♥ps, hq then neither l 1 nor l 2 belong to accps, h 1Ñ2 qzaccps, hq. Then l 1 P refps, h 1Ñ2 q implies l 1 P spVq which contradicts l 1 R p♥ps, hq. Hence we get l 1 R ♥ps, h 1Ñ2 q. Finally, l 2 P refps, h 1Ñ2 q implies either l 2 P refps, hq or l 1 " l 2 . In the former case, we get l 2 P ♥ps, hq. In the later case, we have already proved l 2 " l 1 R ♥ps, h 1Ñ2 q.

Hence in any case, (l 1 R ♥ps, h 1Ñ2 q and l 2 P ♥ps, h 1Ñ2 q) imply l 2 P ♥ps, hq.

We obtain ♥ps, h 1Ñ2 q " ♥ps, hq.

[ \ Proposition 2.11 Let ps, hq be a memory state, l 1 P Nzdomphq and l 2 P N. Let us write h 1Ñ2 for h ] rl 1 Þ Ñ l 2 s and let i be in r1, qs. The following identities hold: Proof Let us first establish the two following properties:

(P1) l 1 P ♥ps, h 1Ñ2 q iff l 1 P p♥ps, hq;

(P2) if l 2 P domphqz♥ps, hq then (l 2 P ♥ps, h 1Ñ2 q iff l 1 P spVq).

Property (P1) is a direct consequence the last equation of Proposition 2.10 and the fact that l 1 R ♥ps, hq (remember l 1 R domphq). Let us prove Property (P2):

for the only if part, we assume l 2 P ♥ps, h 1Ñ2 q and prove l 1 P spVq by contradiction. Indeed, if l 1 R spVq, then we have the inclusion l 2 P ♥ps, h 1Ñ2 q Ď ♥ps, hqYtl 1 u according to Proposition 2.10. Hence either l 2 P ♥ps, hq which contradicts l 2 P domphqz♥ps, hq or l 2 " l 1 which implies l 2 R domphq and contradicts l 2 P domphqz♥ps, hq; for the if part, if l 1 P spVq then l 2 " h 1Ñ2 pl 1 q P h 1Ñ2 pspVqq. Since l 2 P domphq Ď domph 1Ñ2 q we deduce l 2 P ♥ps, h 1Ñ2 q.

By Proposition 2.10, there are only three possible values for ♥ps, h 1Ñ2 q:

♥ps, h 1Ñ2 q P ♥ps, hq, ♥ps, hq Z tl -

or l 2 P ♥ps, h 1Ñ2 q). But pred ♥ ps, h, iq Ď predps, h, iq Ď predps, h 1Ñ2 , iq. Hence we know that l 2 P predps, h 1Ñ2 , iq and thus we must have l 2 P ♥ps, h 1Ñ2 q. Since l 2 P pred ♥ ps, h, iq Ď domphqz♥ps, hq we deduce l 1 P spVq by Property (P2); if l 1 P spVq and l 2 P pred ♥ ps, h, iq then

Let us now consider the case of loop ♥ ps, h 1Ñ2 q. According to Proposition 2.10, we know that loopps, h 1Ñ2 q P loopps, hq, loopps, hq Z tl 1 u ( and by inclusion (A.1), we deduce that there are only three possible values for loop ♥ ps, h 1Ñ2 q which are loop ♥ ps, hq Z tl 1 u, loop ♥ ps, hq ´tl 2 u and loop ♥ ps, hq.

l 1 P loop ♥ ps, h 1Ñ2 qzloop ♥ ps, hq iff l 1 P loop ♥ ps, h 1Ñ2 q iff l 1 P loopps, h 1Ñ2 q and l 1 R ♥ps, h 1Ñ2 q iff l 1 " l 2 and l 1 R p♥ps, hq; if l 2 P loop ♥ ps, hqzloop ♥ ps, h 1Ñ2 q then l 2 P loop ♥ ps, hq and either l 2 R loopps, h 1Ñ2 q or l 2 P ♥ps, h 1Ñ2 q. But loop ♥ ps, hq Ď loopps, h 1Ñ2 q. Hence we get l 2 P loopps, h 1Ñ2 q and thus we must have l 2 P ♥ps, h 1Ñ2 q. Since l 2 P loop ♥ ps, hq Ď domphqz♥ps, hq we deduce l 1 P spVq by Property (P2); if l 1 P spVq and l 2 P loop ♥ ps, hq then l 2 P h 1Ñ2 pspVqq X domphq Ď ♥ps, h 1Ñ2 q. Hence l 2 R loop ♥ ps, h 1Ñ2 q.

Let us now consider the case of rem ♥ ps, h 1Ñ2 , iq. According to Proposition 2.10, we know that remps, h 1Ñ2 q P remps, hq, remps, hq Z tl 1 u ( and by inclusion (A.1), we deduce that there are only three possible values for rem ♥ ps, h 1Ñ2 q which are rem ♥ ps, hq Z tl 1 u, rem ♥ ps, hq ´tl 2 u and rem ♥ ps, hq.

-

Because of the inclusions rem ♥ ps, hq Ď remps, hq Ď remps, h 1Ñ2 q, we have l 2 P remps, h 1Ñ2 q and thus we deduce l 2 P ♥ps, h 1Ñ2 q. Since l 2 P rem ♥ ps, hq Ď domphqz♥ps, hq we deduce l 1 P spVq by Property (P2);

Proof By Proposition 2.18 item 3, we have two cases: either cardpX Z X 1 q " cardpY 0 q ă α 1 `α2 or cardpX Z X 1 q ě α 1 `α2 and cardpY 0 q ě α 1 `α2 . The case cardpX Z X 1 q " cardpY 0 q ă α 1 `α2 is easy: we have cardpXq ď cardpXq cardpX 1 q " cardpY 0 q; then for Y , we choose any subset of Y 0 such that cardpY q " cardpXq. Then we define Y 1 " Y 0 zY and we get cardpY 1 q " cardpY 0 q ´cardpY q " cardpX Z X 1 q ćardpXq " cardpX 1 q. Then we have both X "α 1 Y and X 1 "α 2 Y 1 . Let us consider the case cardpX Z X 1 q ě α 1 `α2 and cardpY 0 q ě α 1 `α2 . We have four sub-cases:

the case cardpXq ă α 1 and cardpX 1 q ă α 2 is impossible because it contradicts cardpX Z X 1 q ě α 1 `α2 ; in the case cardpXq ě α 1 and cardpX 1 q ă α 2 , let Y 1 be any subset of Y 0 such that cardpY 1 q " cardpX 1 q and Y " Y 0 zY 1 . We have cardpX 1 q " cardpY 1 q hence X 1 "α 2 Y 1 .

We have cardpXq ě α 1 and cardpY q " cardpY 0 q ´cardpY 1 q ě pα 1 `α2 q ´α2 " α 1 hence X "α 1 Y ; the case cardpXq ă α 1 and cardpX 1 q ě α 2 is obtained by symmetry from the previous case; in the case cardpXq ě α 1 and cardpX 1 q ě α 2 , let Y be any subset of Y 0 s.t. cardpY q " α 1 and Y 1 " Y 0 zY . We have cardpXq ě α 1 and cardpY q " α 1 hence X "α 1 Y . We have cardpX 1 q ě α 2 and cardpY 1 q " cardpY 0 q ´cardpY q ě pα 1 `α2 q ´α1 " α 2 hence

[ \ B Proofs of Section 3

Proposition 3.13 Let u, v P N. For pT10q-pT20q defined as pT10q u P spVq iff v P s 1 pVq; pT11q u P hpspVqq iff v P h 1 ps 1 pVqq; pT12q u P p♥ps, hq iff v P p♥ps 1 , h 1 q; pT13q u P ♥ps, hq iff v P ♥ps 1 , h 1 q; pT14q u P predps, h, iq iff v P predps 1 , h 1 , iq for any i P r1, qs; pT15q u P predps, hq iff v P predps 1 , h 1 q; pT16q u P loopps, hq iff v P loopps 1 , h 1 q; pT17q u P remps, hq iff v P remps 1 , h 1 q; pT18q u P pred ♥ ps, h, iq iff v P pred ♥ ps 1 , h 1 , iq for any i P r1, qs; pT19q u P loop ♥ ps, hq iff v P loop ♥ ps 1 , h 1 q; pT20q u P rem ♥ ps, hq iff v P rem ♥ ps 1 , h 1 q; pT21q u P p♥pmq iff v P p♥pm 1 q.

the following propositions hold:

Let us now tackle the if part. We assume R l Ď T l . Hence we have l T l l 1 , spx i q T l s 1 px i q for any i P r1, qs, and hpspx i qq T l h 1 ps 1 px i qq for any i P r1, qs such that spx i q P domphq (and s 1 px i q P domph 1 q). To establish m » b m 1 , we consider a formula B P Basic u and we show that ps, hq ( l B implies ps 1 , h 1 q ( l 1 B. The reverse implication can be proved by symmetric arguments. We proceed by a case analysis on B:

B is x i " x j : if ps, hq ( l x i " x j then spx i q " spx j q. Using the instance of pT2q for spx i q T l s 1 px i q with parameter j, we get s 1 px i q " s 1 px j q. We deduce ps 1 , h 1 q ( l 1 x i " x j ; B is x i ãÑ x j : if ps, hq ( l x i ãÑ x j then hpspx i qq " spx j q. Using the instance of for hpspx i qq T l h 1 ps 1 px i qq with parameter j, we get h 1 ps 1 px i qq " s 1 px j q. We deduce ps 1 , h 1 q ( l 1 x i ãÑ x j ; B is convpx i , x j q: if ps, hq ( l convpx i , x j q then hpspx i qq " hpspx j qq. Using the instance of pT3q for hpspx i qq T l h 1 ps 1 px i qq with parameter j, we get h 1 ps 1 px i qq " h 1 ps 1 px j qq. We deduce ps 1 , h 1 q ( l 1 convpx i , x j q; B is btwnpx i , x j q: if ps, hq ( l btwnpx i , x j q then hphpspx i qqq " spx j q. Using the instance of pT5q for hpspx i qq T l h 1 ps 1 px i qq with parameter j, we get h 1 ph 1 ps 1 px i qqq " s 1 px j q. We deduce ps 1 , h 1 q ( l 1 btwnpx i , x j q; B is toallocpx i q: if ps, hq ( l toallocpx i q then hpspx i qq P domphq. Using pT4q for hpspx i qq T l h 1 ps 1 px i qq, we get h 1 ps 1 px i qq P domph 1 q. We deduce ps 1 , h 1 q ( l 1 toallocpx i q; B is tolooppx i q: if ps, hq ( l tolooppx i q then hphpspx i qqq " hpspx i qq. By pT6q for hpspx i qq T l h 1 ps 1 px i qq, we get h 1 ph 1 ps 1 px i qqq " h 1 ps 1 px i qq. We deduce ps 1 , h 1 q ( l 1 tolooppx i q; B is u ãÑ u: if ps, hq ( l u ãÑ u then hplq " l. Using pT6q for l T l l 1 , we get h 1 pl 1 q " l 1 . We deduce ps 1 , h 1 q ( l 1 u ãÑ u; B is allocpuq: if ps, hq ( l allocpuq then l P domphq. Using pT4q for l T l l 1 , we get l 1 P domph 1 q. We deduce ps 1 , h 1 q ( l 1 allocpuq; B is x i " u: if ps, hq ( l x i "u then spx i q " l. Using pT1q for spx i q T l s 1 px i q, we get s 1 px i q " l 1 .

We deduce ps 1 , h 1 q ( l 1 x i " u; B is x i ãÑ u: if ps, hq ( l x i ãÑ u then hpspx i qq " l. Using pT1q for hpspx i qq T l h 1 ps 1 px i qq, we get h 1 ps 1 px i qq " l 1 . We deduce ps 1 , h 1 q ( l 1 x i ãÑ u; B is u ãÑ x i : if ps, hq ( l u ãÑ x i then hplq " spx i q. Using pT5q for l T l l 1 with parameter i, we get h 1 pl 1 q " s 1 px i q. We deduce ps 1 , h 1 q ( l 1 u ãÑ x i .

[ \ Proposition 3.18 If m » b m 1 then the following properties hold:

1. The relation R is total and surjective between p♥ps, hq and p♥ps 1 , h 1 q; 2. The relation R 1 is total and surjective between p♥pmq and p♥pm 1 q.

Proof Let us consider Property 1. To show that R is total, we prove that for all u P p♥ps, hq, there is v P p♥ps 1 , h 1 q such that u R v. If u " spx i q then choose v " s 1 px i q; and if u " hpspx i qq then spx i q P domphq. But we have spx i q R l s 1 px i q by definition of R l , hence by Theorem 3.17 we deduce spx i q T l s 1 px i q. As a consequence spx i q{s 1 px i q verify pT4q and thus s 1 px i q P domph 1 q. We choose v " h 1 ps 1 px i qq and we get u R l v and v P p♥ps 1 , h 1 q. By symmetric arguments, R is surjective. The proof that R l is total and surjective (Property 2) is similar. Proposition 3.21 If m and m 1 satisfy m » 1 m 1 , then T is a total relation on N: for any u P N, there exists v ď maxvalps 1 , h 1 q `1 such that u T v.

Proof Since » 1 Ď » b we have R Ď T by Lemma 3.19. Let us consider u P N. We have to show that there exists v P N such that u T v holds. We determine the value of v according to the first condition that holds in the following list: if u P p♥ps, hq then let us define v to be the unique location in p♥ps 1 , h 1 q such that u R v, see Lemma 3.19. We deduce u T v. The relation v ď maxvalps 1 , h 1 q `1 holds because v P p♥ps 1 , h 1 q;

if u P pred ♥ ps, h, jq for some j P r1, qs then we know that pred ♥ ps, h, jq is not empty. We have pred ♥ ps, h, jq " 1 pred ♥ ps 1 , h 1 , jq by Proposition 3.10 hence pred ♥ ps 1 , h 1 , jq is not empty either. We choose any v P pred ♥ ps 1 , h 1 , jq.

The relation v ď maxvalps 1 , h 1 q `1 holds because v P domph 1 q. Let us check that u T v holds by establishing Properties pT2-6q for u{v. We have u P pred ♥ ps, h, jq and v P pred ♥ ps 1 , h 1 , jq. As a consequence we deduce u R p♥ps, hq and v R p♥ps 1 , h 1 q. Hence Properties pT2-3q hold. We also have u P domphq and v P domph 1 q hence Property pT4q holds. We have hpuq " spx j q and h 1 pvq " s 1 px j q. We deduce hpuq R h 1 pvq and thus hpuq T h 1 pvq. Since pT2q holds for hpuq{h 1 pvq, we deduce that Property pT5q holds for u{v. Let us prove Property pT6q for u{v: the identity u " hpuq implies u " spx j q which contradicts u R p♥pmq. Hence u ‰ hpuq and for the similar reasons, v ‰ h 1 pvq;

if u P loop ♥ ps, hq then we proceed in a way similar to the previous case;

if u P rem ♥ ps, hq then we proceed in a way similar to the previous case;

in the remaining cases we have u R pdomphqYp♥ps, hqq. Let us define v " maxvalps 1 , h 1 q`1.

We have v R pdomph 1 qYp♥ps 1 , h 1 qq and by Proposition 3.16 item 3, we deduce u T v. [ \ Proposition 3.22 Let us assume R l Ď T l (or equivalently m » b m 1 ). Then the following statements are equivalent:

Proof Let us review the easy implications first. Obviously, statement 3 and 4 are equivalent by Theorem 3.17. Then statement 2 implies statement 3 by the two following deductions:

1 ps 1 px i qq because spx i q D 1 s 1 px i q (which comes from spx i q R l s 1 px i q) and u T l v; Property pT4q: u P domph 1 q iff v P domph 1 1 q because u D 1 v; Property pT5q: h 1 puq " spx i q iff (u P domph 1 q and hpuq " spx i q) iff (v P domph 1 1 q and h 1 pvq " s 1 px i q) iff h 1 1 pvq " s 1 px i q because u D 1 v and u T l v; Property pT6q: h 1 puq " u iff (u P domph 1 q and hpuq " u) iff (v P domph 1 1 q and h 1 pvq " v)

Let us finish by showing that statement 3 implies statement 1. So we assume R l

being treated in a similar way. Notice the inclusion T l 1 Ď D 1 that always holds by Definition 3.14. For u R l v there are three cases:

or u " spx i q and v " s 1 px i q for some i P r1, qs. We have

or u " hpspx i qq and v " h 1 ps 1 px i qq for some i P r1, qs. Let us assume u P domph 1 q and let us prove v P domph 1 1 q. From hpspx i qq P domph 1 q deduce spx i q P domphq " domph 1 q Z domph 2 q. Hence we have two cases:

either spx i q P domph 1 q. In this case we have h 1 pspx i qq " hpspx i qq " u P domph 1 q and spx i q P domph 1 q. From R l 1 Ď T l 1 we deduce spx i q T l 1 s 1 px i q and h 1 pspx i qq T l 1 h 1 1 ps 1 px i qq. By pT4q (twice) we get h 1 1 ps 1 px i qq P domph 1 1 q and s 1 px i q P domph 1 1 q. We deduce v " h 1 ps 1 px i qq " h 1 1 ps 1 px i qq P domph 1 1 q;

or spx i q P domph 2 q. In this case we have h 2 pspx i qq " hpspx i qq " u P domph 1 q and spx i q P domph 2 q. Since domphq " domph 1 q Z domph 2 q we deduce hpspx i qq P domphq and h 2 pspx i qq R domph 2 q. Because R l 2 Ď T l 2 and R l Ď T l we have spx i q T l 2 s 1 px i q, hpspx i qq T l h 1 ps 1 px i qq and h 2 pspx i qq T l 2 h 1 2 ps 1 px i qq. Hence by pT4q (three times) we deduce s 1 px i q P domph 1 2 q, h 1 ps 1 px i qq P domph 1 q and h 1 2 ps 1 px i qq R domph 1 2 q. As a consequence v " h 1 ps 1 px i qq " h 1 2 ps 1 px i qq R domph 1 2 q and v " h 1 ps 1 px i qq P domph 1 q. We conclude v P domph 1 1 q.

[ \ Lemma 3.25 Let α ě 1 and let ps, h, lq and ps 1 , h 1 , l 1 q be two pointed memory states. Let l 1 , l 2 , l 1 1 , l 1 2 P N be such that l 1 R domphq and l 1 1 R domph 1 q. We assume that one of the conditions below holds:

According to Proposition 3.10, we have to establish

together with β-equipotence constraints:

We start with basic Equivalence (B.1). We have to show that for any

The reverse implication can be established in a symmetric way. Note that all hypotheses are symmetric: when l 1 {l 1 1 verify pT2q, we have l 1 R spVq iff l 1 1 R s 1 pVq. We proceed by a case analysis on B:

B is x i " x j : using ps, h, lq » b ps 1 , h 1 , l 1 q, we derive ps, h 1Ñ2 q ( l x i " x j iff ps, hq ( l x i " x j iff ps 1 , h 1 q ( l 1 x i " x j iff ps 1 , h 1 1Ñ2 q ( l 1 x i " x j ; B is x i ãÑ x j : let us suppose ps, h 1Ñ2 q ( l x i ãÑ x j and let us show ps 1 , h 1 1Ñ2 q ( l 1 x i ãÑ x j . For ps, h 1Ñ2 q ( l x i ãÑ x j we have two cases:

hpspx i qq " spx j q. We derive h 1 ps 1 px i qq " s 1 px j q (because ps, h, lq » b ps 1 , h 1 , l 1 q) and thus we also have h 1 1Ñ2 ps 1 px i qq " s 1 px j q hence ps 1 , h 1 1Ñ2 q ( l 1 x i ãÑ x j ; l 1 " spx i q and l 2 " spx j q. Since l 1 {l 1 1 and l 1 {l 1 1 verify pT2q in both (C1) and (C2), we get l 1 1 " s 1 px i q and l 1 2 " s 1 px j q and thus h 1 1Ñ2 ps 1 px i qq " s 1 px j q and finally ps 1 , h 1 1Ñ2 q ( l 1 x i ãÑ x j . In both cases we obtain ps 1 , h 1 1Ñ2 q ( l 1 x i ãÑ x j ; B is convpx i , x j q: let us suppose ps, h 1Ñ2 q ( l convpx i , x j q and prove that ps 1 , h 1 1Ñ2 q ( l 1 convpx i , x j q. From h 1Ñ2 " h ] rl 1 Þ Ñ l 2 s and ps, h 1Ñ2 q ( l convpx i , x j q, we get four cases:

spx i q, spx j q P domphq and hpspx i qq " hpspx j qq. Then ps, hq ( l convpx i , x j q from which we get ps 1 , h 1 q ( l 1 convpx i , x j q and thus also ps 1 , h 1 1Ñ2 q ( l 1 convpx i , x j q; hpspx i qq " l 2 and spx j q " l 1 . If (C1) holds then l 2 {l 1 2 verify pT3q and l 1 {l 1 1 verify pT2q and we get h 1 ps 1 px i qq " l 1 2 and s 1 px j q " l 1 1 . Hence ps 1 , h 1 1Ñ2 q ( l 1 convpx i , x j q. If (C2) holds then spx j q " l 1 contradicts l 1 R spVq; the case spx i q " l 1 and hpspx j qq " l 2 is symmetric to the previous one; spx i q " spx j q " l 1 . In case of (C1), l 1 {l 1 1 verify pT2q and thus we get s 1 px i q " s 1 px j q " l 1 1 and then ps 1 , h 1 1Ñ2 q ( l 1 convpx i , x j q. (C2) implies l 1 R spVq which contradicts spx i q " l 1 . In all four cases we have ps 1 , h 1 1Ñ2 q ( l 1 convpx i , x j q;

B is btwnpx i , x j q: let us assume ps, h 1Ñ2 q ( l btwnpx i , x j q and let us prove that ps 1 , h 1 1Ñ2 q ( l 1 btwnpx i , x j q. We have four cases:

hphpspx i qqq " spx j q. Then ps, hq ( l btwnpx i , x j q from which we get ps 1 , h 1 q ( l 1 btwnpx i , x j q then ps 1 , h 1 1Ñ2 q ( l 1 btwnpx i , x j q; hpspx i qq " l 1 and l 2 " spx j q. In both (C1) and (C2), l 1 {l 1 1 verify pT3q and l 2 {l 1 2 verify pT2q. Hence we get h 1 ps 1 px i qq " l 1 1 and l 1 2 " s 1 px j q. Thus ps 1 , h 1 1Ñ2 q ( l 1 btwnpx i , x j q; l 1 " spx i q and hpl 2 q " spx j q. In (C1), l 1 {l 1 1 verify pT2q and l 2 {l 1 2 verify pT5q, hence we get l 1 1 " s 1 px i q and h 1 pl 1 2 q " s 1 px j q, Thus ps 1 , h 1 1Ñ2 q ( l 1 btwnpx i , x j q. In case (C2), l 1 " spx i q contradicts l 1 R spVq; l 1 " l 2 " spx i q " spx j q. l 1 {l 1 1 and l 2 {l 1 2 verify pT2q in both (C1) and (C2), hence we get l 1 1 " l 1 2 " s 1 px i q " s 1 px j q. We deduce ps 1 , h 1 1Ñ2 q ( l 1 btwnpx i , x j q. In all four cases we have ps 1 , h 1 1Ñ2 q ( l 1 btwnpx i , x j q; B is toallocpx i q: let us assume ps, h 1Ñ2 q ( l toallocpx i q and let us prove ps 1 , h 1 1Ñ2 q ( l 1 toallocpx i q. We get four cases:

hpspx i qq P domphq. Then ps, hq ( l toallocpx i q from which we get ps 1 , h 1 q ( l 1 toallocpx i q then ps 1 , h 1 1Ñ2 q ( l 1 toallocpx i q; hpspx i qq " l 1 . l 1 {l 1 1 verify pT3q in both (C1) and (C2), thus we get h 1 ps 1 px i qq " l 1

and thus ps 1 , h 1 1Ñ2 q ( l 1 toallocpx i q; l 1 " spx i q and l 2 P domphq. In case (C1), l 1 {l 1 1 verify pT2q and l 2 {l 1 2 verify pT4q. Then we get l 1 1 " s 1 px i q and l 1 2 P domph 1 q and we deduce ps 1 , h 1 1Ñ2 q ( l 1 toallocpx i q. (C2) implies l 1 R spVq which contradicts spx i q " l 1 ; l 1 " l 2 " spx i q. l 1 {l 1 1 and l 2 {l 1 2 verify pT2q in both (C1) and (C2), hence l 1 1 " l 1 2 " s 1 px i q " s 1 px j q. We deduce ps 1 , h 1 1Ñ2 q ( l 1 toallocpx i q. In all four cases we have ps 1 , h 1 1Ñ2 q ( l 1 toallocpx i q; B is tolooppx i q: let us suppose ps, h 1Ñ2 q ( l tolooppx i q and let us prove ps 1 , h 1 1Ñ2 q ( l 1 tolooppx i q. We get four cases:

hpspx i qq " hphpspx i qqq. Then ps, hq ( l tolooppx i q from which we get ps 1 , h 1 q ( l 1 tolooppx i q then ps 1 , h 1 1Ñ2 q ( l 1 tolooppx i q; hpspx i qq " l 1 " l 2 . In both (C1) and (C2), l 1 {l 1 1 verify pT3q, and l 2 " l 1 iff l 1 2 " l 1 1 . We get h 1 ps 1 px i qq " l 1 1 and l 1 1 " l 1 2 and thus ps 1 , h 1 1Ñ2 q ( l 1 tolooppx i q; l 1 " spx i q and hpl 2 q " l 2 . In case (C1), l 1 {l 1 1 verify pT2q and l 2 {l 1 2 verify pT6q, hence we get l 1 1 " s 1 px i q and h 1 pl 1 2 q " l 1 2 and then ps 1 , h 1 1Ñ2 q ( l 1 tolooppx i q In case (C2), l 1 " spx i q contradicts l 1 R spVq; l 1 " l 2 " spx i q. l 1 {l 1 1 and l 2 {l 1 2 verify pT2q in both (C1) and (C2), hence l 1 1 " l 1 2 " s 1 px i q " s 1 px j q. We deduce ps 1 , h 1 1Ñ2 q ( l 1 tolooppx i q. In all four cases we have ps 1 , h 1 1Ñ2 q ( l 1 tolooppx i q; B is u ãÑ u: let us suppose ps, h 1Ñ2 q ( l u ãÑ u and let us prove that ps 1 , h 1 1Ñ2 q ( l 1 u ãÑ u. We get two cases.

hplq " l. We derive ps, hq ( l u ãÑ u then ps 1 , h 1 q ( l 1 u ãÑ u and hence ps 1 , h 1 1Ñ2 q ( l 1 u ãÑ u; l " l 1 " l 2 . l 1 {l 1 1 verify pT1q, and l 2 " l 1 iff l 1 2 " l 1 1 holds in both (C1) and (C2). Hence we get l 1 " l 1 1 and l 1 1 " l 1 2 and thus ps 1 , h 1 1Ñ2 q ( l 1 u ãÑ u. In both cases we obtain ps 1 , h 1 1Ñ2 q ( l 1 u ãÑ u; B is allocpuq: let us assume ps, h 1Ñ2 q ( l allocpuq and let us prove that ps 1 , h 1 1Ñ2 q ( l 1 allocpuq. We get two cases.

l P domphq. We derive ps, hq ( l allocpuq then ps 1 , h 1 q ( l 1 allocpuq and hence ps 1 , h 1 1Ñ2 q ( l 1 allocpuq; l " l 1 . l 1 {l 1 1 verify pT1q in both (C1) and (C2), hence we get l 1 " l 1 1 . We deduce ps 1 , h 1 1Ñ2 q ( l 1 allocpuq. In both cases we obtain ps 1 , h 1 1Ñ2 q ( l 1 allocpuq; B is x i " u: using ps, h, lq » b ps 1 , h 1 , l 1 q, we derive the equivalences ps, h 1Ñ2 q ( l x i " u iff ps, hq ( l x i " u iff ps 1 , h 1 q ( l 1 x i " u iff ps 1 , h 1 1Ñ2 q ( l 1 x i " u; B is x i ãÑ u: let us suppose ps, h 1Ñ2 q ( l x i ãÑ u and let us prove that ps 1 , h 1 1Ñ2 q ( l 1 x i ãÑ u. We get two cases.

hpspx i qq " l. We derive ps, hq ( l x i ãÑ u then ps 1 , h 1 q ( l 1 x i ãÑ u and hence ps 1 , h 1 1Ñ2 q ( l 1 x i ãÑ u;

l 1 " spx i q and l 2 " l. In case (C1), l 1 {l 1 1 verify pT2q and l 2 {l 1 2 verify pT1q, hence we get l 1 1 " s 1 px i q and l 1 2 " l 1 and thus ps 1 , h 1 1Ñ2 q ( l 1 x i ãÑ u. In case (C2), l 1 " spx i q contradicts l 1 R spVq.

In both cases we obtain ps 1 , h 1 1Ñ2 q ( l 1 x i ãÑ u; B is u ãÑ x j : let us suppose ps, h 1Ñ2 q ( l u ãÑ x j and let us show ps 1 , h 1 1Ñ2 q ( l 1 u ãÑ x j . We get two cases.

hplq " spx j q. We derive ps, hq ( l u ãÑ x j then ps 1 , h 1 q ( l 1 u ãÑ x j and hence ps 1 , h 1 1Ñ2 q ( l 1 u ãÑ x j ; l 1 " l and l 2 " spx i q. l 1 {l 1 1 verify pT1q and l 2 {l 1 2 verify pT2q in both (C1) and (C2), hence we get l 1

1 " l 1 and l 1 2 " s 1 px i q. We deduce ps 1 , h 1 1Ñ2 q ( l 1 u ãÑ x j . In both cases we obtain ps 1 , h 1 1Ñ2 q ( l 1 u ãÑ x j . This ends the proof of the basic equivalence ps, h 1Ñ2 , lq » b ps 1 , h 1 1Ñ2 , l 1 q.

Let us consider β-Equipotence (B.2). By Proposition 2.11, there are 3 possible values for pred ♥ ps, h 1Ñ2 q:

if l 1 R p♥ps, hq and l 2 " spx i q then the identity pred ♥ ps, h 1Ñ2 , iq " pred ♥ ps, h, iq Z tl 1 u holds. We can treat the case of (C1) and (C2) simulaneously. As l 1 {l 1 1 verify pT2-3q, l 1 {l 1 1 also verify pT12q and we deduce l 1 1 R p♥ps 1 , h 1 q. As l 2 {l 1 2 verify pT2q, we get l 1 2 " s 1 px i q. Thus by Proposition 2.11 again, we have

From ps, h, lq »α ps 1 , h 1 , l), we have pred ♥ ps, h, iq "α pred ♥ ps 1 , h holds. We treat the case (C1) and (C2) separately.

On the one hand, if (C1) holds then, l 1 {l 1 1 verify pT2q and thus also pT10q. Thus we get l 1 1 P s 1 pVq. Moreover, l 2 {l 1 2 verify pT1-6q and thus also pT18q. Thus we get l 1 2 P pred ♥ ps 1 , h 1 , iq. We deduce pred ♥ ps 1 , h in the otherwise case we have `l1 P p♥ps, hq or l 2 ‰ spx i q ˘and `l1 R spVq or l 2 R pred ♥ ps, h, iq ȃnd pred ♥ ps, h 1Ñ2 , iq " pred ♥ ps, h, iq. By a combination of the arguments of two previous cases, in both (C1) and (C2), we have Let us consider β-Equipotence (B.3). We have loop ♥ ps, hq "α loop ♥ ps 1 , h 1 q. By Proposition 2.11, there are three cases for the value of loop ♥ ps, h 1Ñ2 q: if l 1 R p♥ps, hq and l 1 " l 2 then loop ♥ ps, h 1Ñ2 q " loop ♥ ps, hq Z tl 1 u. As l 1 {l 1 1 verify pT12q, and l 2 " l 1 iff l 1 2 " l 1 1 , we deduce l 1 1 R p♥ps 1 , h 1 q and l 1 1 " l 1 2 . Thus by Proposition 2.11, we have loop ♥ ps 1 , h 1 1Ñ2 q " loop ♥ ps 1 , h 1 q Z tl 1 1 u. Since we have loop ♥ ps, hq "α loop ♥ ps 1 , h 1 q, we deduce Equipotence (B.3) using Lemma 2.19 and β ď α `1;

if l 1 P spVq and l 2 P loop ♥ ps, hq then loop ♥ ps, h 1Ñ2 q " loop ♥ ps, hq ´tl 2 u.

On the one hand, if (C1) holds then l 1 {l 1 1 verify pT10q and l 2 {l 1 2 verify pT19q. Hence we get l 1 1 P s 1 pVq and l 1 2 P loop ♥ ps 1 , h 1 q. We deduce loop ♥ ps 1 , h 1 1Ñ2 q " loop ♥ ps 1 , h 1 q´tl 1 2 u. Since l 1 P spVq, we have β `1 " α and thus by Proposition 2.20 we get Equipotence (B.3). On the other hand, (C2) contradicts l 1 P spVq; in the otherwise case we have `l1 P p♥ps, hq or l 1 ‰ l 2 q and `l1 R spVq or l 2 R loop ♥ ps, hq ȃnd loop ♥ ps, h 1Ñ2 q " loop ♥ ps, hq. By a combination of the arguments of two previous cases, in both (C1) and (C2), we have

Let us consider β-Equipotence (B.4). We have rem ♥ ps, hq "α rem ♥ ps 1 , h 1 q. By Proposition 2.11, there are three cases for the value of rem ♥ ps, h 1Ñ2 q: if l 1 R p♥ps, hq Y tl 2 u and l 2 R spVq then rem ♥ ps, h 1Ñ2 q " rem ♥ ps, hqZtl 1 u. As l 1 {l 1 1 verify pT12q, l 2 " l 1 iff l 1

2 " l 1 1 , and l 2 {l 1 2 verify pT10q, we deduce l 1 1 R p♥ps 1 , h 1 q, l 1 1 ‰ l 1 2 and l 1 2 R s 1 pVq. Thus by Proposition 2.11, we have rem ♥ ps 1 , h 1 1Ñ2 q " rem ♥ ps 1 , h 1 qZtl 1 1 u. Since we have rem ♥ ps, hq "α rem ♥ ps 1 , h 1 q, we deduce Equipotence (B.4) using Lemma 2.19 and β ď α `1;

if l 1 P spVq and l 2 P rem ♥ ps, hq then rem ♥ ps, h 1Ñ2 q " rem ♥ ps, hq ´tl 2 u.

On the one hand, if Hypothesis (C1) holds then l 1 {l 1 1 verify pT10q and l 2 {l 1 2 verify pT20q. Hence we get l 1 1 P s 1 pVq and l 1 2 P rem ♥ ps 1 , h 1 q. We deduce rem ♥ ps 1 , h 1 1Ñ2 q " rem ♥ ps 1 , h 1 q ´tl 1 2 u. Since l 1 P spVq, we have β `1 " α and thus by Proposition 2.20 we get Equipotence (B.4). On the other hand, (C2) contradicts l 1 P spVq; in the otherwise case we have `l1 P p♥ps, hq Y tl 2 u or l 2 P spVq ˘and `l1 R spVq or l 2 R rem ♥ ps, hq ȃnd rem ♥ ps, h 1Ñ2 q " rem ♥ ps, hq. By a combination of the arguments of two previous cases, in both (C1) and (C2), we have 3.26 Let m " ps, h, lq be a pointed memory state and l 1 , l 2 P N be such that l 1 R domphq Y p♥pmq. We have ps, h ] rl 1 Þ Ñ l 2 s, lq » b ps, h, lq. Moreover, given α ě 0, if we assume that one of the following conditions hold (C1) l 2 " spx i q and cardppred ♥ ps, h, iqq ě α for some i P r1, qs; (C2) l 2 " l 1 and cardploop ♥ ps, hqq ě α; (C3) l 2 R spVq Y tl 1 u and cardprem ♥ ps, hqq ě α.

then we have ps, h ] rl 1 Þ Ñ l 2 s, lq »α ps, h, lq.

Proof We write h 1Ñ2 to denote h ] rl 1 Þ Ñ l 2 s. First, without assuming any of (C1-3), let use prove that ps, h 1Ñ2 , lq » b ps, h, lq holds. By Proposition 3.2 (monotonicity), we only need to prove that ps, h 1Ñ2 q ( l B implies ps, hq ( l B for any formula B P Basic u . We proceed by a case analysis on B: B is x i " x j : This only depends on the value of s and therefore we are done; B is x i ãÑ x j : from ps, h 1Ñ2 q ( l x i ãÑ x j , we get h 1Ñ2 pspx i qq " spx j q. But since l 1 R p♥pmq, we deduce l 1 ‰ spx i q and thus hpspx i qq " spx j q. We get ps, hq ( l x i ãÑ x j ; B is convpx i , x j q: from ps, h 1Ñ2 q ( l convpx i , x j q, the identity h 1Ñ2 pspx i qq " h 1Ñ2 pspx j qq holds. But since l 1 R tspx i q, spx j qu, we deduce hpspx i qq " hpspx j qq and thus ps, hq ( l convpx i , x j q; B is btwnpx i , x j q: from ps, h 1Ñ2 q ( l btwnpx i , x j q, we get h 1Ñ2 ph 1Ñ2 pspx i qqq " spx j q. But since l 1 R tspx i q, hpspx i qqu (remember hpspx i qq P p♥pmq), we get hphpspx i qqq " spx j q and thus ps, hq ( l btwnpx i , x j q; B is toallocpx i q: from ps, h 1Ñ2 q ( l toallocpx i q, we deduce h 1Ñ2 pspx i qqq P domph 1Ñ2 q.

Since l 1 ‰ spx i q, we get hpspx i qqq P domphq Y tl 1 u. Since hpspx i qq ‰ l 1 , we deduce hpspx i qq P domphq and thus ps, hq ( l toallocpx i q; B is tolooppx i q: from ps, h 1Ñ2 q ( l tolooppx i q we get h 1Ñ2 ph 1Ñ2 pspx i qqq " h 1Ñ2 pspx i qq.

But since l 1 R tspx i q, hpspx i qqu, we get hphpspx i qqq " hpspx i qq and thus ps, hq ( l tolooppx i q; B is u ãÑ u: from ps, h 1Ñ2 q ( l uãÑu we get h 1Ñ2 plq " l. But since l 1 ‰ l, we deduce hplq " l and thus ps, hq ( l u ãÑ u; B is allocpuq: from ps, h 1Ñ2 q ( l allocpuq we get l P domph 1Ñ2 q. But since l 1 ‰ l and domph 1Ñ2 q " domphq Y tl 1 u, we deduce l P domphq and thus ps, hq ( l allocpuq; B is x i " u: only depends on the values of s and l; B is x i ãÑ u: from ps, h 1Ñ2 q ( l x i ãÑ u we get h 1Ñ2 pspx i qq " l. But since l 1 ‰ spx i q, we deduce hpspx i qq " l and thus ps, hq ( l x i ãÑ u; B is u ãÑ x j : from ps, h 1Ñ2 q ( l u ãÑ x j we get h 1Ñ2 plq " spx i q. But since l 1 ‰ l, we deduce hplq " spx i q and thus ps, hq ( l u ãÑ x j . Now we assume α ě 0 such that one of either (C1), (C2) or (C3) holds. Since we already have ps, h 1Ñ2 , lq » b ps, h, lq, according to Proposition 3.10, we have to establish three α-equipotence constraints: pred ♥ ps, h 1Ñ2 , jq "α pred ♥ ps, h, jq for any j P r1, qs loop ♥ ps, h 1Ñ2 q "α loop ♥ ps, hq rem ♥ ps, h 1Ñ2 q "α rem ♥ ps, hq If (C1) holds then by Proposition 2.11, we have pred ♥ ps, h 1Ñ2 , jq " pred ♥ ps, h, jqZtl 1 u if spx i q " spx j q, pred ♥ ps, h 1Ñ2 , jq " pred ♥ ps, h, jq if spx i q ‰ spx j q, loop ♥ ps, h 1Ñ2 q " loop ♥ ps, hq and rem ♥ ps, h 1Ñ2 q " rem ♥ ps, hq. Then we already have pred ♥ ps, h 1Ñ2 , jq "α pred ♥ ps, h, jq when spx i q ‰ spx j q, loop ♥ ps, h 1Ñ2 q "α loop ♥ ps, hq and rem ♥ ps, h 1Ñ2 q "α rem ♥ ps, hq. If spx i q " spx j q holds then we have pred ♥ ps, h, jq " pred ♥ ps, h, iq. As a consequence, we get cardppred ♥ ps, h 1Ñ2 , jqq ě α `1 and cardppred ♥ ps, h, jqq ě α. Hence pred ♥ ps, h 1Ñ2 , jq "α pred ♥ ps, h, jq holds as well.

If (C2) holds then by Proposition 2.11, we have pred ♥ ps, h 1Ñ2 , jq " pred ♥ ps, h, jq. Indeed, l 2 " spx j q implies l 1 " l 2 P spVq which contradicts l 1 R domphq Y p♥pmq. We also get loop ♥ ps, h 1Ñ2 q " loop ♥ ps, hq Z tl 1 u and rem ♥ ps, h 1Ñ2 q " rem ♥ ps, hq. The three α-equipotence constraints follow.

If (C3) holds then by Proposition 2.11, we have pred ♥ ps, h 1Ñ2 , jq " pred ♥ ps, h, jq, loop ♥ ps, h 1Ñ2 q " loop ♥ ps, hq and rem ♥ ps, h 1Ñ2 q " rem ♥ ps, hq Z tl 1 u. The α-equipotence constraints follow.

[ \ Corollary 3.27 Let α ě 0. Let m " ps, h, lq be a pointed memory state and h 1 be a heap such that domph 1 q X pdomphq Y p♥pmqq " H. If for any u P domph 1 q one of the following conditions holds (C1) h 1 puq " spx i q and cardppred ♥ ps, h, iqq ě α for some i P r1, qs;

(C2) h 1 puq " u and cardploop ♥ ps, hqq ě α;

(C3) h 1 puq R spVq Y tuu and cardprem ♥ ps, hqq ě α.

then we have ps, h ] h 1 , lq »α ps, h, lq.

Proof We prove the result by induction on (the size of the domain of) h 1 . If h 1 " then the result it trivial by reflexivity of »α. Otherwise, we can write h 1 " rl 1 Þ Ñ l 2 s ] h 2 . From domph 1 qXpdomphqYp♥pmqq " H we deduce l 1 R domphqYp♥pmq. We apply Proposition 3.26 to m, l 1 and l 2 and we get ps, h ] rl 1 Þ Ñ l 2 s, lq »α ps, h, lq.

We then use the induction hypothesis on h 2 (with h ] rl 1 Þ Ñ l 2 s replacing h). Let us verify the requirements:

Let us show that either (C1), (C2) or (C3) holds for u. We have u P domph 1 q and h 1 puq " h 2 puq. By hypothesis, one of the following conditions holds:

h 1 puq " spx i q and cardppred ♥ ps, h, iqq ě α for some i P r1, qs. From spVq Ď p♥ps, h, lq, we deduce l 1 R spVq. Thus by Proposition 2.11 we have

We also have h 2 puq " h 1 puq " spx i q hence Condition (C1) holds; h 1 puq " u and cardploop ♥ ps, hqq ě α. By Proposition 2.11 again, from l 1 R spVq we deduce cardploop ♥ ps, h ] rl 1 Þ Ñ l 2 sqq ě α. As h 2 puq " h 1 puq " u, Condition (C2) holds; h 1 puq R spVq Y tuu and cardprem ♥ ps, hqq ě α. By Proposition 2.11 again, from

As a consequence, we obtain ps

We assume that the following conditions hold:

Let l 1 P spVqzdomph 0 ] hq and l 2 P N. There exist l 1 1 , l 1 2 P N such that 1.

Proof According to Lemma 3.19, we have both R l Ď T l and R l 0 Ď T l 0 . Let use define l 1 1 to be the unique value such that l 1 R l l 1 1 . We also have l 1 R l 0 l 1 1 . Hence we get both l 1 T l l 1 1 and l 1 T l 0 l 1 1 . From l 1 P p♥pmq and l 1 T l l 1 1 we deduce l 1 1 P p♥pm 1 q. Since l 1 P spVq and l 1 R domph 0 ] hq from l 1 T l 0 l 1 1 we deduce l 1 1 P s 1 pVqzdomph 1 0 ] h 1 q by pT10q and pT4q. Hence Property 1 holds.

Let us define l 1

2 by Proposition 3.20: since α ě 1, we have m 0 » 2 m 1 0 , and thus there exists l 1 2 ď maxvalpm 1 0 q `1 such that l 2 T l 0 l 1 2 . Property 2 holds because l 1 1 P s 1 pVq and l 1 2 ď maxvalpm 1 0 q `1. Let us establish Property 4, i.e. ps,

if l 2 P p♥pm 0 q then l 2 R l 0 l 1 2 by Proposition 3.15 item 5. Since

2 R p♥pm 1 0 q by pT21q with l 2 T l 0 l 1 2 . But l 1 P spVq and l 1 1 P s 1 pVq hence l 1 ‰ l 2 and l 1 1 ‰ l 1 2 and we deduce l 1 " l 2 iff l 1 1 " l 1 2 . We apply Lemma 3.25 (C1) with Hypothesis (b) and we get Property 4.

Let us show Property 3, i.e. ps, h ] rl

We use Lemma 3.25 (C1) with m{m 1 . Since l 1 R domph 0 ] hq and l 1 1 R domph 1 0 ] h 1 q then l 1 R domphq and l 1 1 R domph 1 q. l 1 {l 1 1 verify pT1-3q because l 1 T l l 1 1 holds. We already verified that l 1 " l 2 iff l 1

1 " l 1 2 holds. Let us check that l 2 {l 1 2 verify pT1-6q, i.e. l 2 T l l 1 2 : if l 2 P p♥pmq then, as l 2 T l 0 l 1 2 holds, by Proposition 3.28, we get l 2 R l l 1 2 and thus l 2 T l l 1 2 ; if l 2 R p♥pmq then we must have l 1 2 R p♥pm 1 q: otherwise if l 1 2 P p♥pm 1 q holds then we would have l 2 R l l 1 2 by Proposition 3.28, which contradicts l 2 R p♥pmq. Hence by Hypotheses (c) and (d) we deduce l 2 R domphq and l 1 2 R domph 1 q. By Proposition 3.16 item 4, we deduce l 2 T l l 1 2 . We apply Lemma 3.25 (C1) with Hypothesis (a) and we get Property 3.

[ \ Proposition 3.31 Let α ě 1. We assume that the following conditions hold:

1 and simultaneously check Property 1 and prove that l 1 1 ď maxvalpm 1 0 q`1, l 1 T l 0 l 1 1 and l 1 T l l 1 1 hold: if l 1 P p♥pm 0 q then let us define l 1 1 P p♥pm 1 0 q as the unique value such that l 1 R l 0 l 1 1 . We immediately deduce l 1 T l 0 l 1 1 . As a consequence, l 1 1 R domph 1 0 ] h 1 q by pT4q and l 1 1 R s 1 pVq by pT10q. Hence Property 1 holds. As l 1 1 P p♥pm 1 0 q, the relation l 1 1 ď maxvalpm 1 0 q`1 holds trivially. Only l 1 T l l 1 1 remains. We use Proposition 3.28

♥pm 1 q hold and we deduce l 1 T l l 1

1 by Proposition 3.16 item 4; if l 1 R p♥pm 0 q then we define l 1

1 " maxvalpm 1 0 q `1 and Property 1 holds in an obvious way. We also have l 1 R domph 0 ] hq Y p♥pm 0 q and l 1 1 R domph 1 0 ] h 1 q Y p♥pm 1 0 q and we deduce l 1 T l 0 l 1 1 by Proposition 3.16 item 4. A fortiori we have l 1 R domphq Y p♥pmq and l 1 1 R domph 1 q Y p♥pm 1 q and we deduce l 1 T l l 1

1 by Proposition 3.16 item 4. From l 1 1 ď maxvalpm 1 0 q `1, we obviously derive Property 2 for l 1 1 . Let us define l 1 2 by choosing the first possible choice in the following list. We simultaneously check Property 2 for l 1 2 and prove that l 2 {l 1 2 verify pT2q, and that l 2 " l 1 iff l 1 2 " l 1 1 holds:

if l 2 " l 1 then we define l 1 2 " l 1 1 . In case, Property 2 obviously holds for l 1 2 since it holds for l 1 1 . Since l 1 T l 0 l 1 1 holds then l 1 {l 1 1 verify pT2q, and thus l 2 {l 1 2 verify pT2q. Since l 2 " l 1 and l 1 2 " l 1 1 , the property l 2 " l 1 iff l 1 2 " l 1 1 holds; if l 2 P spVq then we define l 1 2 to be the unique location such that l 2 R l l 1 2 . Then l 1 2 P p♥pm 1 q Ď p♥pm 1 0 q and as a consequence, Property 2 holds for l 1 2 . From R l Ď T l we deduce l 2 T l l 1 2 and as a consequence, l 2 {l 1 2 verify pT2q. We have l 1 R spVq hence we deduce l 1 1 R s 1 pVq using l 1 T l l 1 1 and pT10q. We have l 2 P spVq hence we deduce l 1 2 P s 1 pVq using l 2 T l l 1 2 and pT10q. We derive both l 1 ‰ l 2 and l 1 1 ‰ l 1 2 . Thus the property l 2 " l 1 iff l 1 2 " l 1 1 holds; otherwise we have l 2 R spVq and l 1 ‰ l 2 an we define l 1 2 " maxvalpm 1 0 q `2. Hence Property 2 holds for l 1 2 . Moreover, as l 1 1 ď maxvalpm 1 0 q `1, we deduce l 1 1 ‰ l 1 2 . Thus the property l 2 " l 1 iff l 1 2 " l 1 1 holds. Finally we have l 2 R spVq and l 1 2 R s 1 pVq (because l 1 2 ą maxvalpp♥pm 1 0 qq). Hence l 2 {l 1 2 verify pT2q. We apply Lemma 3.25 (C2) with Hypothesis (a) and (b) and we get Property 3 and 4. [ \

C Proofs of Section 4

Corollary 4.12 1SL2 is strictly more expressive than 1SL1.

Proof Let A be the sentence in 1SL2 that states that there is a path of length 3 between x 1 and x 2 in the memory state and nothing else, for instance

Ṡuppose that there is a sentence A 1 in 1SL1 whose models are precisely the memory states defined by A. Let us show that this leads to a contradiction.

By Theorem 4.11, there is a Boolean combination A 2 of test formulae from Test u thpq,A 1 q for some q ě 1 such that A 1 and A 2 are equivalent. Let s be the store with spx 1 q " 0 and spx 2 q " 3. Let h 1 be the heap such that h 1 p0q " 1, h 1 p1q " 2 and h 1 p2q " 3. Similarly, let h 2 be the heap such that h 2 p0q " 1, h 2 p1q " 2 and h 2 p4q " 3. And let l " 0 for instance (any other value would fit). We note that ps, h 1 q ( l A and therefore ps, h 1 q ( l A 1 by assumption. Similarly, ps, h 2 q * l A and therefore ps, h 2 q * l A 1 by assumption. However, it is worth noting that for every test formula B from Ť αě1 Testα, we have ps, h 1 q ( l B iff ps, h 2 q ( l B, which leads to a contradiction because A 1 is a Boolean combination of formulae from Ť αě1 Testα.

[ \ Lemma 4.15 Let q ě 1 and m P N. Let A be an 1SL1 formula with program variables in V " tx 1 , . . . , xqu and ps, h, lq be a pointed memory state. If we assume maxvalps, h, lq φpAq ď m then bmc `q, m, V, A, ps, h, lq ˘" tt iff ps, hq ( l A

Proof We proceed by induction on A and we prove the double implication, assuming that maxvalps, h, lq `ϕpAq ď m holds: if A is atomic then bmc `q, m, V, A, ps, h, lq ˘" amc `q, V, A, ps, h, lq ˘. The correctness of amc is obvious and left to the reader;

if A is A 1 then bmc `q, m, V, A, ps, h, lq ˘" not bmc `q, m, V, A 1 , ps, h, lq We deduce the equivalences bmc `q, m, V, A, ps, h, lq ˘" tt iff bmc `q, m, V, A 1 , ps, h, lq ˘‰ tt iff ps, hq * l A 1 iff ps, hq ( l A using the induction hypothesis; if A is A 1 ^A2 then bmc `q, m, V, A, ps, h, lq ˘" bmc `q, m, V, A 1 , ps, h, lq ˘and bmc `q, m, V, A 2 , ps, h, lq We deduce the equivalences bmc `q, m, V, A, ps, h, lq ˘" tt iff bmc `q, m, V, A 1 , ps, h, lq ˘"

tt and bmc `q, m, V, A 2 , ps, h, lq ˘" tt iff ps, hq ( l A 1 and ps, hq ( l A 2 iff ps, hq ( l A using the induction hypotheses;

if A is Du A 1 , let us assume bmc `q, m, V, Du A 1 , ps, h, lq ˘" tt and prove ps, hq ( l Du A 1 . By definition, there exists l 0 ď m such that l 0 `ϕpA 1 q ď m and bmc `q, m, V, A 1 , ps, h, l 0 q ˘" tt. We have maxvalps, hq `ϕpA 1 q ď maxvalps, h, lq `ϕpAq ď m by Proposition 4.13 item 1. Hence we deduce maxvalps, h, l 0 q `ϕpA 1 q ď m. By induction hypothesis we get ps, hq ( l 0 A 1 and thus ps, hq ( l Du A 1 . Now let us assume ps, hq ( l Du A 1 and prove bmc `q, m, V, Du A 1 , ps, h, lq ˘" tt. By Corollary 4.5, there exists l 0 ď maxvalps, hq `1 such that ps, hq ( l 0 A 1 . We have maxvalps, hq `1 `ϕpA 1 q ď maxvalps, h, lq `ϕpAq ď m by Proposition 4.13 item 1. Hence we get both l 0 `ϕpA 1 q ď m and maxvalps, hq `ϕpA 1 q ď m and we deduce maxvalps, h, l 0 q `ϕpA 1 q ď m. By induction we derive bmc `q, m, V, A 1 , ps, h, l 0 q ˘" tt. By definition of bmc, we conclude bmc `q, m, V, Du A 1 , ps, h, lq ˘" tt; or l " h i with x i ãÑ u P P. As P is closed under the rule x i ãÑ u u ãÑ u tolooppx i q we get tolooppx i q P P. From the earlier cases B " x i ãÑ u and B " tolooppx i q we deduce ps, hq ( l x i ãÑ u and ps, hq ( l tolooppx i q hence ps, hq ( l u ãÑ u; or l " 0 and tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ uu X P " H. Then p0, 0q P H by the definition of H and we deduce ps, hq ( l u ãÑ u;

if B is allocpuq. Let us first assume ps, hq ( l allocpuq and show allocpuq P P. According to the definition of L, for l P L we have three cases: either l " spx i q with x i "u P P for some i P r1, qs. We deduce spx i q P domphq and thus ps, hq ( l convpx i , x i q. Using the earlier case B " convpx i , x i q, we get convpx i , x i q P P.

But P is closed under the rule

allocpuq hence allocpuq P P; or l " h i with x i ãÑ u P P for some i P r1, qs. Using the earlier case B " x i ãÑ u, we deduce ps, hq ( l x i ãÑu and then ps, hq ( l toallocpx i q. Hence we get toallocpx i q P P (from the earlier case B " toallocpx i q). As P is closed under the rule toallocpx i q x i ãÑ u allocpuq we get allocpuq P P; or l " 0. Then p0, vq P H for some v P N. Using characteristic Property P4 we deduce tx 1 " u, . . . , xq " u, x 1 ãÑ u, . . . , xq ãÑ uu X P " H and:

either v " spx i q and u ãÑ x i P P for some i P r1, qs. As P is closed under the rule u ãÑ x i allocpuq we get allocpuq P P; or v " 0 and u ãÑ u P P and tu ãÑ x 1 , . . . , u ãÑ xqu X P " H. As P is closed under the rule u ãÑ u allocpuq we get allocpuq P P; or v " 2q `1 and allocpuq P P and tu ãÑ x 1 , . . . , u ãÑ xq, u ãÑ uu X P " H; Now let us assume allocpuq P P and let us show ps, hq ( l allocpuq. We have three cases for l P L:

either l " spx i q with x i " u P P for some i P r1, qs. As P is closed under the rules

we get convpx i , x i q P P and thus ps, hq ( l convpx i , x i q from the earlier case B " convpx i , x i q. Hence l " spx i q P domphq and we deduce ps, hq ( l allocpuq; or l " h i with x i ãÑ u P P and tx 1 " u, . . . , xq " uu X P " H. As P is closed under the rules x i ãÑ u allocpuq toallocpx i q we get toallocpx i q P P. We derive ps, hq ( l x i ãÑu (from the earlier case B " x i ãÑu) and ps, hq ( l toallocpx i q (from the earlier case B " toallocpx i q). Hence we get ps, hq ( l allocpuq;

Proof Let us first consider the case where pB `, B ´, Sq is 1-consistent (which is the weakest of the assumptions of 1-, 2-or 3-consistency). We define a cardinality assignment pp 1 , . . . , pq, l, rq by: p i " max a ˇˇDk P r1, qs, x i " x k P clpB `q ^# pred ♥ px k q ě a P S ( for i P r1, qs l " max a ˇˇ# loop ♥ ě a P S ( r " max a ˇˇ# rem ♥ ě a P S ( where we assume maxpHq " 0. Since pB `, B ´, Sq is 1-consistent, we check that the following properties hold for any a P N and all i, j P r1, qs:

Property (P0) let us assume x i " x j P clpB `q and let us show p i ď p j . Let a P N and k P r1, qs be such that x i " x k P clpB `q and # pred ♥ px k q ě a P S. Let us show a ď p j . Since clpB `q is closed under rules

we deduce x j "x k P clpB `q. Hence by definition of p j (max), we get a ď p j . We conclude p i ď p j . The relation p j ď p i is derived directly because x j " x i P clpB `q holds as well;

Property (P1) if # pred ♥ px i q ě a P S then, as clpB `q is closed under rule

we deduce x i " x i P clpB `q and thus a ď p i by definition of p i ;

Property (P2) let us assume # pred ♥ px i q ě a P S and let us show p i ă a. Hence, let b P N and k P r1, qs be such that x i " x k P clpB `q and # pred ♥ px k q ě b P S and let us show b ă a. From x i " x k P clpB `q we deduce x k " x i P clpB `q. As we also have t# pred ♥ px k q ě b, # pred ♥ px i q ě au Ď S, by Property C1.2 (which holds for 1consistency) we deduce b ă a. We conclude p i ă a; From Property (P0), we deduce that in the pre-canonical model ps, h, lq of clpB `q, if spx i q " spx j q then p i " p j by Proposition 5.3. Now we show that the conjunction of the formulae in B `Y B ´Y S is satisfiable if one of following properties hold: (S1) if pB `, B ´, Sq is 1-consistent and either allocpuq R clpB `q or pEq u YTouqXclpB `q ‰ H; (S2) if pB `, B ´, Sq is 2-consistent and pEq u Y Tou Y Fmu Y tu ãÑ uuq X clpB `q ‰ H; (S3) if pB `, B ´, Sq is 3-consistent.

Let us show (S1). We assume that pB `, B ´, Sq is 1-consistent and either allocpuq R clpB `q or pEq u Y Touq X clpB `q ‰ H hold, and we show that B `Y B ´Y S is satisfiable. We consider the canonical pre-model ps, h, lq of clpB `q; see Proposition 5.3. If allocpuq R clpB `q holds then l R domphq; and if pEq u YTouqXclpB `q ‰ H holds then l P p♥ps, hq. As domphq Ď ♥ps, hqYtlu, under any of the two hypothesis allocpuq R clpB `q or pEq u YTouqXclpB `q ‰ H we have domphq Ď ♥ps, hq. Hence pred ♥ ps, h, iq " loop ♥ ps, hq " rem ♥ ps, hq " H for any i P r1, qs. Using Proposition 5.5 with Property (P0), there exists a heap h 1 such that ps, h, lq » b ps, h 1 , lq and cardppred ♥ ps, h 1 , iqq " p i , cardploop ♥ ps, h 1 qq " l and cardprem ♥ ps, h 1 qq " r. By Properties (P1-6), we derive that ps, h 1 , lq satisfies all the formulae of S. For instance, if # loop ♥ ě a P S then by (P4) we have cardploop ♥ ps, h 1 qq " l ă a and thus ps, h 1 q ( l # loop ♥ ě a. From ps, h, lq » b ps, h 1 , lq, B ´X clpB `q " H and Proposition 5.3, we deduce that ps, h 1 , lq satisfies all the formulae of B `Y B ´. Hence the conjunction of B `Y B ´Y S is satisfiable.

Let us show (S2). We assume that pB `, B ´, Sq is 2-consistent and pEq u Y Tou Y Fmu Y tuãÑuuqXclpB `q ‰ H and We show that B `Y B ´Y S is satisfiable. We can further assume that allocpuq P clpB `q and pEq u Y Touq X clpB `q " H because otherwise, as pB `, B ´, Sq is 1-consistent, by Property (S1) we already have that B `Y B ´Y S is satisfiable. Hence have either Fmu X clpB `q ‰ H or u ãÑ u P clpB `q:

if u ãÑ x i P clpB `q for some i P r1, qs. In the canonical pre-model ps, h, lq of clpB `q, we have l P pred ♥ ps, h, iq. But since domphq Ď ♥ps, hq Y tlu, we deduce pred ♥ ps, h, jq " tlu if spx i q " spx j q, pred ♥ ps, h, jq " H if spx i q ‰ spx j q and loop ♥ ps, hq " rem ♥ ps, hq " H. We consider two sub-cases depending on t # pred ♥ px j q ě 1 | x i " x j P clpB `qu X S:

if t # pred ♥ px j q ě 1 | x i " x j P clpB `qu X S " H. Then let us define a new cardinality assignment pp 1 1 , . . . , p 1 q , l, rq by p 1 j " maxp1, p j q if x i "x j P clpB `q, p 1 j " p j if x i " x j R clpB `q. Let us show that pp 1 1 , . . . , p 1 q , l, rq satisfies the requirements of Proposition 5.5 for the canonical pre-model ps, h, lq of clpB `q: spx j q " spx k q implies x j " x k P clpB `q implies p j " p k implies p 1 j " p 1 k for any j, k P r1, qs; if x i " x j P clpB `q then cardppred ♥ ps, h, jqq " 1 ď maxp1, p j q " p 1 j ; if x i " x j R clpB `q then cardppred ♥ ps, h, jqq " 0 ď p 1 j ; cardploop ♥ ps, hqq " 0 ď l; cardprem ♥ ps, hqq " 0 ď r. Using the cardinality assignment pp 1 1 , . . . , p 1 q , l, rq, we extend the canonical pre-model ps, h, lq of clpB `q using Proposition 5.5 and we get a heap h 1 such that ps, h, lq » b ps, h 1 , lq, cardppred ♥ ps, h 1 , jqq " maxp1, p j q if spx i q " spx j q, cardppred ♥ ps, h 1 , jqq " p j if spx i q ‰ spx j q, cardploop ♥ ps, h 1 qq " l and cardprem ♥ ps, h 1 qq " r. From the equivalence ps, h, lq » b ps, h 1 , lq we deduce that ps, h 1 , lq satisfies all the formulae of B `Y B ´. Let us check that ps, h 1 , lq satisfies the formulae of S:

' if # pred ♥ px j q ě a P S then by Property (P1) we have a ď p j ď p 1 j " cardppred ♥ ps, h 1 , jqq, hence ps, h 1 q ( l # pred ♥ px j q ě a; ' if # pred ♥ px j q ě a P S then either x i " x j P clpB `q in which case a ą 1 and thus cardppred ♥ ps, h 1 , jqq " maxp1, p j q ă a by Property (P2), or x i " x j R clpB `q in which case cardppred ♥ ps, h 1 , jqq " p j ă a by Property (P2). In any case we have ps, h 1 q ( l # pred ♥ px j q ě a; ' if # loop ♥ ě a P S then by Property (P3) we get cardploop ♥ ps, h 1 qq " l ě a, hence ps, h 1 q ( l # loop ♥ ě a; ' if # loop ♥ ě a P S then by Property (P4) we get cardploop ♥ ps, h 1 qq " l ă a, hence ps, h 1 q ( l # loop ♥ ě a; ' if # rem ♥ ě a P S then by Property (P5) we get cardprem ♥ ps, h 1 qq " r ě a, hence ps, h 1 q ( l # rem ♥ ě a; ' if # rem ♥ ě a P S then by Property (P6) we get cardprem ♥ ps, h 1 qq " r ă a, hence ps, h 1 q ( l # rem ♥ ě a; We deduce that ps, h 1 , lq satisfies the conjunction of the formulae of B `Y B ´Y S; if t # pred ♥ px j q ě 1 | x i " x j P clpB `qu X S ‰ H. Then there exists some j P r1, qs such that # pred ♥ px j q ě 1 P S and x i " x j P clpB `q. Then by Condition C2.1,