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Abstract

We consider the stochastic multi-armed bandit problem where rewards are distributed
according to Gamma probability measures (unknown up to a lower bound on the form
factor). To handle this problem, we propose an UCB-like strategy where indexes are
multiplicative (sampled mean times a scaling factor). An upper-bound for the associated
regret is provided and the proposed strategy is illustrated on some simple experiments.
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1. Introduction

We consider the stochastic multi-armed bandit problem where rewards are distributed ac-
cording to Gamma laws. A random variable X follows a Gamma law, X ∼ Γ(a, b) with
a > 0 the form parameter and b > 0 the scale parameter, if its probability density function
satisfies

f(x) =
xa−1e−

x
b

Γ(a)ba
IR+(x),

where Γ is the Gamma function and I the indicator function. This encompasses as spe-
cial cases the exponential distribution (which is of interest in a bandit setting for cogni-
tive radio (Jouini, 2012)), the Erlang distribution or the (scaled) Chi-squared distribution.
Therefore, studying stochastic bandits in this setting might be of interest.

A classical approach for stochastic bandits is the so-called UCB (Upper Confidence
bound) strategy (Auer et al., 2002), derived from the Hoeffding (1963) inequality. This idea
is generalized with the (α,ψ)-UCB strategy, which assumes that the cumulant generating
functions (associated to rewards) are bounded by a convex function ψ (Bubeck and Cesa-
Bianchi, 2012). We follow a similar path in this paper. However, we take advantage of the
specific structure of the cumulant generating function of a Gamma distribution to introduce
a multiplicative form of the Hoeffding inequality, and we take advantage of the fact that
the left tail is lighter than the right tail, from which the Γ-UCB(α,a0) strategy is derived.

The proposed approach is actually a (slight) generalization of the MUCB(α) (Multi-
plicative UCB) strategy of Jouini and Moy (2012), that handles exponentially distributed
rewards (this being a special case of Gamma rewards, with a form factor a = 1). For this
(exponential) case, the KL-UCB (Kullbach-Leibler UCB) strategy (Garivier and Cappé,
2011) or Thompson sampling (Korda et al., 2013) could be applied too, as they can gen-
erally be adapted to the setting where the rewards belong to the one-parameter canonical
exponential family. However, Gamma distributions with unknown shape parameter do not
belong to this family, so extension to the case studied in this paper is not direct.
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2. Γ-UCB(α,a0)

We consider the basic stochastic multi-armed bandit problem. Each arm i ∈ {1, . . . ,K} is
associated to a Gamma probability measure νi, νi ∼ Γ(ai, bi). The coefficients ai and bi
are unknown (otherwise, the means would be known), but we assume that a lower bound
a0 on the form factors is known: a0 ≤ min1≤i≤K ai. At each time step t = 1, 2, . . . ,
the player chooses an arm It ∈ {1, . . . ,K} (based on past choices and observations) and
receives a reward XIt,t drawn from νIt , independently from the past. We write µi the
expectation of arm i and define: µ∗ = max1≤i≤k µi and i∗ ∈ argmax1≤i≤K µi. The ideal
(but unreachable) strategy would consist in choosing systematically It = i∗. Therefore, the
quality of a strategy can be measured with the regret, defined as the cumulative difference
(in expectation) between the optimal arm and chosen arms:

Rn = nµ∗ − E[

n∑
t=1

µIt ].

Write Ti(s) =
∑s

t=1 IIt=i the number of times the player selected arm i on the first s rounds
and ∆i = µ∗ − µi the suboptimality of arm i. The regret can be written equivalently as
Rn =

∑K
i=1 ∆iE[Ti(n)]. Therefore, a good strategy should control E[Ti(n)], the (expected)

number of time a suboptimal arm is played. Write µ̂i,s the sample mean of rewards obtained
by pulling arm i for s times: µ̂i,s = 1

s

∑s
t=1Xi,t. Let also α > 0 be an input parameter. At

time t, the proposed Γ-UCB(α,a0) selects

It ∈ argmax
1≤i≤K

µ̂i,Ti(t−1)(
1−

√
2α ln t

a0Ti(t−1)

)
+

,

where (·)+ = max(·, 0) and with the convention 1
0 =∞. With a0 = 1 (the form factor of an

exponential distribution), we retrieve the MUCB(α) strategy of Jouini and Moy (2012).

3. Regret

In this section, we study the regret encountered by the proposed strategy.

Theorem 1 (Regret bound for Γ-UCB(α,a0)) Define ρi as the ratio between expecta-
tions of arms i and i∗:

ρi =
µi
µ∗
.

For ρ ∈ (0, 1), define the function g as

g(ρ) =
3ρ+ 1− (ρ+ 1)

√
1 + 4ρ− ρ2

ρ2
. (1)

Assume that a0 ≤ min1≤i≤K ai and that α > 2. Then, the Γ-UCB(α,a0) satisfies

Rn ≤ µ∗
∑
i:ρi<1

(
α(1− ρi)
a0g(ρi)

lnn+
α(1− ρi)
α− 2

)
.
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To prove this, we will need a multiplicative Hoeffding bound for Gamma random variables.

Lemma 2 (A multiplicative bound for the Gamma case) Let X1, . . . , Xn be i.i.d. (in-
dependent and identically distributed) random variables such that for all i, Xi ∼ Γ(a, b). Let
a0 ≤ a. Write µ = E[X1] the common expectation and µn = 1

n

∑n
i=1Xi the sample mean.

Then, for any δ ∈ (0, 1), we have

P

(
µn

(1− ε)+

< µ

)
≤ δ with ε =

√
2 ln 1

δ

a0n
and P

(
µn

1 + ε
> µ

)
≤ δ with ε =

√
2 ln 1

δ

a0n
+

ln 1
δ

a0n
.

Proof We start by studying the cumulant generating function of a Gamma random vari-
able1, before applying a standard Chernoff argument. Let X ∼ Γ(a, b). The cumulant
generative function of the centered random variable X − µ satisfies:

∀λ < 1

b
, LX−µ(λ) = lnE[eλ(X−µ)] = −a(ln(1− λb) + λb) ≤ λ2ab2

2(1− λb) . (2)

In other words, X − µ is sub-gamma on the right tail with variance factor ab2 and with
scale factor b. As X is Gamma, its expectation satisfies µ = E[X] = ab. Therefore, we have

∀λ < 1

b
, LX−µ(

λ

µ
) ≤ 1

a

λ2

2(1− λ
a )
≤ 1

a0

λ2

2(1− λ
a0

)

.
= ψ(λ). (3)

On the other hand, X − µ is sub-gaussian on the left tail with variance factor ab2:

∀λ > 0, Lµ−X(λ) = lnE[eλ(µ−X)] = −a(ln(1 + λb)− λb) ≤ λ2ab2

2
.

Given that µ = ab, we have

∀λ > 0, Lµ−X(
λ

µ
) ≤ 1

a

λ2

2
≤ 1

a0

λ2

2

.
= ϕ(λ). (4)

We can now provide the desired bounds using a standard Chernoff argument. For the
second one, we have for any 0 < λ < 1

b :

P (
µn − µ
µ

> ε) = P (e
λ
∑n
i=1

Xi−µ
µ > eλnε)

≤ e−λnεE[e
λ
∑n
i=1

Xi−µ
µ ] (by the Markov’s inequality)

= e−λnε
(
E[e

λ
X1−µ
µ ]

)n
(by the i.i.d. assumption)

= e
−n(λε−LX1−µ(λ

µ
)) ≤ e−n(λε−ψ(λ)) (by Eq. (3)).

Write ψ∗(ε) the Legendre-Fenchel transform of ψ,

ψ∗(ε) = sup
0<λ< 1

b

(λε− ψ(λ)) = a0

(
1 + ε−

√
1 + 2ε

)
.

1. This is largely inspired from Boucheron et al. (2013, Ch. 2).
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We therefore have:

P (
µn − µ
µ

> ε) = P (
µn

1 + ε
> µ) ≤ e−nψ∗(ε).

Writing δ = e−nψ∗(ε) and using the fact that for x > 0,

ψ−1
∗ (x) =

√
2x

a0
+

x

a0
, we get P

(
µn

1 + ψ−1
∗ ( 1

n ln 1
δ )
> µ

)
≤ δ,

which is the stated second bound.
For the first bound, the proof is similar. We have with the same Chernoff argument:

P (
µ− µn
µ

> ε) ≤ e−nϕ∗(ε),

where ϕ∗(ε) is the Fenchel-Legendre transform of ϕ(λ), the upper-bound of the cumulant
generating function (on the left tail) defined in Eq. (4):

ϕ∗(ε) = sup
λ>0

(λε− ϕ(λ)) =
a0

2
ε2.

On the other hand, P (µ−µnµ > ε) = P (µn < µ(1− ε)). If 1− ε < 0, then P (µn < µ(1− ε)) =

P (µn < 0) = 0 ≤ e−nϕ∗(ε). Therefore:

P (µn < µ(1− ε)+) = P (
µn

(1− ε)+
< µ) ≤ e−nϕ∗(ε).

Writing δ = e−nϕ∗(ε) and using the fact that ϕ−1
∗ (x) =

√
2x
a0

, we get the first stated bound:

P

(
µn(

1− ϕ−1
∗ ( 1

n ln 1
δ )
)

+

> µ

)
≤ δ.

The first bound of Lemma 2 states that with probability at least 1− δ, we have
µn(

1−
√

2 ln 1
δ

a0n

)
+

> µ,

which is the proposed strategy with δ = t−α (optimism in the face of uncertainty based on
the upper confidence bound given by Lemma 2). We can now prove the main theorem.
Proof [Theorem 1] To bound the regret Rn, we will bound the quantity E[Ti(n)]. Assume
without loss of generality that It = i 6= i∗. At least one of the tree following inequalities
must be true :

µ̂i∗,Ti∗ (t−1)(
1−

√
2α ln t

a0Ti∗ (t−1)

)
+

≤ µ∗ (5)

µi,Ti(t−1)

1 +
√

2α ln t
a0Ti(t−1) + α ln t

a0Ti(t−1)

> µi (6)

Ti(t− 1) <
α ln t

a0g(ρi)
, (7)

4



Γ-UCB

with g defined in Eq. (1). Actually, if all equations were false, we would have

µ̂i∗,Ti∗ (t−1)(
1−

√
2α ln t

a0Ti∗ (t−1)

)
+

> µ∗ (by (5) false)

=
µi
ρi

(by definition)

>
µi

(
1 +

√
2α ln t

a0Ti(t−1) + α ln t
a0Ti(t−1)

)
(

1−
√

2α ln t
a0Ti(t−1)

)
+

(by (7) false)

≥
µi,Ti(t−1)(

1−
√

2α ln t
a0Ti(t−1)

)
+

(by (6) false).

This would mean that It = i∗ 6= i, which is a contradiction. Now, define u as

u =

⌈
α lnn

a0g(ρi)

⌉
.

We have that

E[Ti(n)] = E[
n∑
t=1

IIt=i] ≤ u+
n∑

t=u+1

IIt=i and (7) is false

≤ u+

n∑
t=u+1

I(5) or (6) is true

≤ u+
n∑

t=u+1

(P ((5) is true) + P ((6) is true)) .

Thus, we have to bound the probabilities of events (5) and (6), which can be done thanks
to Lemma 2. Indeed:

P ((5) is true) = P

∃s ≤ t :
µ̂i∗,s(

1−
√

2α ln t
a0s

)
+

< µ∗


≤

t∑
s=1

P

 µ̂i∗,s(
1−

√
2α ln t
a0s

)
+

< µ∗


≤

t∑
s=1

1

tα
=

1

tα−1
.

Similarly, one can show that:

P ((6) is true) ≤ 1

tα−1
.

Therefore, we can bound the number of time arm i has been played:

E[Ti(n)] ≤ u+ 2

n∑
t=u+1

1

tα−1
≤ α lnn

a0g(ρi)
+ 1 +

∫ ∞
1

2dt

tα−1
=

α lnn

a0g(ρi)
+

α

α− 2
.
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KL-UCB MUCB(α > 4) (α > 1,ψ)-UCB Γ-UCB(α > 1,1)

limn→∞ Rn
µ∗ lnn

∑
i:ρi<1

1−ρi
ρi−1−ln ρi

∑
i:ρi<1

4α
1−ρi

∑
i:ρi<1

α(1−ρi)
h(ρi)

∑
i:ρi<1

α(1−ρi)
g(ρi)

Table 1: Comparison of bounds (exponential rewards).

Using the fact that Rn =
∑K

i=1 ∆iE[Ti(n)] and that ∆i = µ∗(1− ρi), we obtain the desired
bound:

Rn ≤ µ∗
∑
i:ρi<1

(
α(1− ρi)
a0g(ρi)

lnn+
α(1− ρi)
α− 2

)
.

This proof is very similar to the one of (α,ψ)-UCB (Bubeck and Cesa-Bianchi, 2012,
Ch. 2). The difference is that we consider different convex bounding functions on the left
and right tail (regarding the cumulant generating function) and we use a multiplicative
concentration inequality instead of an additive one.

Remark 3 (About the constant α) We have kept the proof simple. However, using a
peeling argument instead of a simple union bound (as done by Bubeck (2010) for UCB) for
bounding the probabilities of events (5) and (6) in the preceding proof should give the same
result for any α > 1 (instead of α > 2, and with a different constant term).

4. Discussion

As far as we know, the sole alternative to Γ-UCB in the studied case is (α,ψ)-UCB (Bubeck
and Cesa-Bianchi, 2012, Ch. 2), that we instantiate now for Gamma rewards. Recall
the bound (2) on the cumulant generating function of a centered Gamma reward. We
assume that upper-bounds on the two parameters are known: a∞ ≥ max1≤i≤K ai and
b∞ ≥ max1≤i≤k bi. A convex function bounding cumulant generating functions of all re-
wards (on both the left and right tails) is

ψ(λ) =
λ2a∞b2∞

2(1− λb∞)
.

The associated Legendre-Fenchel transform and its inverse are

ψ∗(ε) = a∞

(
1 +

ε

a∞b∞
−
√

1 + 2
ε

a∞b∞

)
and ψ−1

∗ (x) = b∞(x+
√

2a∞x).

The (α,ψ)-UCB is therefore

It ∈ argmax
1≤i≤K

(
µ̂i,Ti(t−1) + b∞

(
α ln t

Ti(t− 1)
+

√
2αa∞ ln t

Ti(t− 1)

))
.
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Figure 1: Main term of each bound.
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Figure 2: Ratio between the terms of Fig. 1.

For any α > 2 (α > 1 being possible, see remark 3), its regret satisfies

Rn ≤
∑
i:∆i>0

 α∆i

a∞
(

1 + ∆i
2a∞b∞

−
√

1 + ∆i
a∞b∞

) lnn+
α∆i

α− 2

 .

More strategies deal with the exponential case (that is, Gamma case with a = 1) such as
KL-UCB (Garivier and Cappé, 2011) with a proper divergence or MUCB (Jouini and Moy,
2012). Therefore, we also compare our bound to their. More precisely, we compare their
asymptotic rates in Table 1. For (α,ψ)-UCB, we take a∞ = 1 and b∞ = max1≤i≤K bk = µ∗
(which is an optimistic setting, the largest mean is exactly known beforehand). In this case,
the bound simplifies as

Rn ≤ µ∗
∑
i:ρi<1

(
αρi
h(ρi)

lnn+O(1)

)
, with h(ρ) =

3− ρ
2
−
√

2− ρ.

As comparing these analytical expressions is not straightforward, we plot on Fig. 1 (in
log-scale) the main term of each bound, as a function of ρ, the ratio between expectations.
One can see that KL-UCB provides the better bound. This is not a big surprise, as it
matches the lower bound of Lai and Robbins (1985) (Garivier and Cappé, 2011). Γ-UCB
has a slightly better bound than MUCB (which is a consequence of the proof, as both
strategies are identical for exponential rewards) and (α,ψ)-UCB. We also compare the ratio
of these terms on Fig. 2, to see how much better is KL-UCB. This shows that for large
enough values of ρ, the regret of Γ-UCB is no more than four times the one of KL-UCB.
Notice also that we considered the exponential case to ease the comparison, but Γ-UCB
and (α,ψ)-UCB apply more generally to Gamma rewards.

5. Experiments

In this section, we consider stochastic bandits with exponential rewards. We compare the
Γ-UCB(α,1) strategy (therefore, the MUCB strategy) to KL-UCB (with the divergence
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Figure 3: Exponential rewards with means
{1, 2, 3, 4, 5}.
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Figure 4: Exponential rewards with means
{5, 5, 5.1, 5, 5}.

corresponding to exponential rewards) and (1,ψ)-UCB. For Γ-UCB, we consider two values
of α: α = 1 (limit of the theory) and α = 0.5 (beyond). For (1,ψ)-UCB, we take a∞ = 1,
b∞ = µ∗ (the most optimistic setting). We consider two experiments. In the first one,
arms have expectations {1, 2, 3, 4, 5} (results are provided in Fig. 3). In the second one,
arms have expectations {5, 5, 5.1, 5, 5} (results are provided in Fig. 4). This case is harder,
as the ratio of expectations ρ is closer to one. Each provided result is averaged over 103

independent runs.
KL-UCB has a smaller regret than Γ-UCB(1,1), which is better than (1,ψ)-UCB, as

predicted in Sec. 3. However, on these experiments, Γ-UCB(0.5, 1) has a smaller regret. If
general conclusions cannot be drawn (as this is beyond the theory), this might be a viable
empirical alternative.

6. Conclusion

In this paper, we have proposed a multiplicative UCB strategy for Gamma rewards, extend-
ing the original MUCB idea of Jouini and Moy (2012). We have derived a regret bound,
rather close to the one of KL-UCB in the exponential case. We also experimented the strat-
egy on two simple bandit problems with exponential rewards. With an optimistic choice of
the α parameter, Γ-UCB provides a lower regret than KL-UCB on these examples.

Compared to (α,ψ)-UCB (the sole alternative in the Gamma case, as far as we know),
the proposed strategy requires a lower bound on the form factor instead of upper bounds
on both the form and scale factors, and it provides a better regret, both theoretically and
empirically (on the studied exponential cases).

An interesting perspective would be to study if such a multiplicative strategy could be of
interest for other kind of distributions (which would depend on the structure of the related
cumulant generating function).
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