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We consider the stochastic multi-armed bandit problem where rewards are distributed according to Gamma probability measures (unknown up to a lower bound on the form factor). To handle this problem, we propose an UCB-like strategy where indexes are multiplicative (sampled mean times a scaling factor). An upper-bound for the associated regret is provided and the proposed strategy is illustrated on some simple experiments.

Introduction

We consider the stochastic multi-armed bandit problem where rewards are distributed according to Gamma laws. A random variable X follows a Gamma law, X ∼ Γ(a, b) with a > 0 the form parameter and b > 0 the scale parameter, if its probability density function satisfies

f (x) = x a-1 e -x b Γ(a)b a I R + (x),
where Γ is the Gamma function and I the indicator function. This encompasses as special cases the exponential distribution (which is of interest in a bandit setting for cognitive radio [START_REF] Jouini | Contribution to learning and decision making under uncertainty for Cognitive Radio[END_REF]), the Erlang distribution or the (scaled) Chi-squared distribution. Therefore, studying stochastic bandits in this setting might be of interest.

A classical approach for stochastic bandits is the so-called UCB (Upper Confidence bound) strategy [START_REF] Auer | Finite-time analysis of the multi-armed bandit problem[END_REF], derived from the [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] inequality. This idea is generalized with the (α,ψ)-UCB strategy, which assumes that the cumulant generating functions (associated to rewards) are bounded by a convex function ψ [START_REF] Bubeck | Regret analysis of stochastic and nonstochastic multi-armed bandit problems[END_REF]. We follow a similar path in this paper. However, we take advantage of the specific structure of the cumulant generating function of a Gamma distribution to introduce a multiplicative form of the Hoeffding inequality, and we take advantage of the fact that the left tail is lighter than the right tail, from which the Γ-UCB(α,a 0 ) strategy is derived.

The proposed approach is actually a (slight) generalization of the MUCB(α) (Multiplicative UCB) strategy of [START_REF] Jouini | Channel selection with Rayleigh fading: A multiarmed bandit framework[END_REF], that handles exponentially distributed rewards (this being a special case of Gamma rewards, with a form factor a = 1). For this (exponential) case, the KL-UCB (Kullbach-Leibler UCB) strategy [START_REF] Garivier | The KL-UCB algorithm for bounded stochastic bandits and beyond[END_REF] or Thompson sampling [START_REF] Korda | Thompson sampling for 1dimensional exponential family bandits[END_REF] could be applied too, as they can generally be adapted to the setting where the rewards belong to the one-parameter canonical exponential family. However, Gamma distributions with unknown shape parameter do not belong to this family, so extension to the case studied in this paper is not direct.

Γ-UCB(α,a 0 )

We consider the basic stochastic multi-armed bandit problem. Each arm i ∈ {1, . . . , K} is associated to a Gamma probability measure ν i , ν i ∼ Γ(a i , b i ). The coefficients a i and b i are unknown (otherwise, the means would be known), but we assume that a lower bound a 0 on the form factors is known: a 0 ≤ min 1≤i≤K a i . At each time step t = 1, 2, . . . , the player chooses an arm I t ∈ {1, . . . , K} (based on past choices and observations) and receives a reward X It,t drawn from ν It , independently from the past. We write µ i the expectation of arm i and define: µ * = max 1≤i≤k µ i and i * ∈ argmax 1≤i≤K µ i . The ideal (but unreachable) strategy would consist in choosing systematically I t = i * . Therefore, the quality of a strategy can be measured with the regret, defined as the cumulative difference (in expectation) between the optimal arm and chosen arms:

R n = nµ * -E[ n t=1 µ It ].
Write T i (s) = s t=1 I It=i the number of times the player selected arm i on the first s rounds and ∆ i = µ *µ i the suboptimality of arm i. The regret can be written equivalently as

R n = K i=1 ∆ i E[T i (n)].
Therefore, a good strategy should control E[T i (n)], the (expected) number of time a suboptimal arm is played. Write μi,s the sample mean of rewards obtained by pulling arm i for s times: μi,s = 1 s s t=1 X i,t . Let also α > 0 be an input parameter. At time t, the proposed Γ-UCB(α,a 0 ) selects

I t ∈ argmax 1≤i≤K μi,T i (t-1) 1 - 2α ln t a 0 T i (t-1) +
, where (•) + = max(•, 0) and with the convention 1 0 = ∞. With a 0 = 1 (the form factor of an exponential distribution), we retrieve the MUCB(α) strategy of [START_REF] Jouini | Channel selection with Rayleigh fading: A multiarmed bandit framework[END_REF].

Regret

In this section, we study the regret encountered by the proposed strategy.

Theorem 1 (Regret bound for Γ-UCB(α,a 0 )) Define ρ i as the ratio between expectations of arms i and i * :

ρ i = µ i µ * .
For ρ ∈ (0, 1), define the function g as

g(ρ) = 3ρ + 1 -(ρ + 1) 1 + 4ρ -ρ 2 ρ 2 . ( 1 
)
Assume that a 0 ≤ min 1≤i≤K a i and that α > 2. Then, the Γ-UCB(α,a 0 ) satisfies

R n ≤ µ * i:ρ i <1 α(1 -ρ i ) a 0 g(ρ i ) ln n + α(1 -ρ i ) α -2 .
To prove this, we will need a multiplicative Hoeffding bound for Gamma random variables.

Lemma 2 (A multiplicative bound for the Gamma case) Let X 1 , . . . , X n be i.i.d. (independent and identically distributed) random variables such that for all i, X i ∼ Γ(a, b). Let a 0 ≤ a. Write µ = E[X 1 ] the common expectation and µ n =1 n n i=1 X i the sample mean. Then, for any δ ∈ (0, 1), we have

P µ n (1 -) + < µ ≤ δ with = 2 ln 1 δ a 0 n and P µ n 1 + > µ ≤ δ with = 2 ln 1 δ a 0 n + ln 1 δ a 0 n .
Proof We start by studying the cumulant generating function of a Gamma random variable 1 , before applying a standard Chernoff argument. Let X ∼ Γ(a, b). The cumulant generative function of the centered random variable Xµ satisfies:

∀λ < 1 b , L X-µ (λ) = ln E[e λ(X-µ) ] = -a(ln(1 -λb) + λb) ≤ λ 2 ab 2 2(1 -λb) . (2) 
In other words, Xµ is sub-gamma on the right tail with variance factor ab 2 and with scale factor b. As X is Gamma, its expectation satisfies µ = E[X] = ab. Therefore, we have

∀λ < 1 b , L X-µ ( λ µ ) ≤ 1 a λ 2 2(1 -λ a ) ≤ 1 a 0 λ 2 2(1 -λ a 0 ) . = ψ(λ). (3) 
On the other hand, Xµ is sub-gaussian on the left tail with variance factor ab 2 :

∀λ > 0, L µ-X (λ) = ln E[e λ(µ-X) ] = -a(ln(1 + λb) -λb) ≤ λ 2 ab 2 2 .
Given that µ = ab, we have

∀λ > 0, L µ-X ( λ µ ) ≤ 1 a λ 2 2 ≤ 1 a 0 λ 2 2 . = ϕ(λ). (4) 
We can now provide the desired bounds using a standard Chernoff argument. For the second one, we have for any 0 < λ < 1 b :

P ( µ n -µ µ > ) = P (e λ n i=1 X i -µ µ > e λn ) ≤ e -λn E[e λ n i=1 X i -µ µ ] (by the Markov's inequality) = e -λn E[e λ X 1 -µ µ ] n (by the i.i.d. assumption) = e -n(λ -L X 1 -µ ( λ µ )
) ≤ e -n(λ -ψ(λ)) (by Eq. ( 3)).

Write ψ * ( ) the Legendre-Fenchel transform of ψ,

ψ * ( ) = sup 0<λ< 1 b (λ -ψ(λ)) = a 0 1 + - √ 1 + 2 .
We therefore have:

P ( µ n -µ µ > ) = P ( µ n 1 + > µ) ≤ e -nψ * ( ) .
Writing δ = e -nψ * ( ) and using the fact that for x > 0,

ψ -1 * (x) = 2x a 0 + x a 0 , we get P µ n 1 + ψ -1 * ( 1 n ln 1 δ ) > µ ≤ δ,
which is the stated second bound.

For the first bound, the proof is similar. We have with the same Chernoff argument:

P ( µ -µ n µ > ) ≤ e -nϕ * ( ) ,
where ϕ * ( ) is the Fenchel-Legendre transform of ϕ(λ), the upper-bound of the cumulant generating function (on the left tail) defined in Eq. ( 4):

ϕ * ( ) = sup λ>0 (λ -ϕ(λ)) = a 0 2 2 .
On the other hand, ( ) . Therefore:

P ( µ-µn µ > ) = P (µ n < µ(1 -)). If 1 -< 0, then P (µ n < µ(1 -)) = P (µ n < 0) = 0 ≤ e -nϕ *
P (µ n < µ(1 -) + ) = P ( µ n (1 -) + < µ) ≤ e -nϕ * ( ) .
Writing δ = e -nϕ * ( ) and using the fact that ϕ -1 * (x) = 2x a 0 , we get the first stated bound:

P µ n 1 -ϕ -1 * ( 1 n ln 1 δ ) + > µ ≤ δ.
The first bound of Lemma 2 states that with probability at least 1δ, we have

µ n 1 - 2 ln 1 δ a 0 n + > µ,
which is the proposed strategy with δ = t -α (optimism in the face of uncertainty based on the upper confidence bound given by Lemma 2). We can now prove the main theorem.

Proof [Theorem 1] To bound the regret R n , we will bound the quantity E[T i (n)]. Assume without loss of generality that I t = i = i * . At least one of the tree following inequalities must be true : μi * ,T i * (t-1)

1 -

2α ln t a 0 T i * (t-1) + ≤ µ * (5) µ i,T i (t-1) 1 + 2α ln t a 0 T i (t-1) + α ln t a 0 T i (t-1) > µ i (6) T i (t -1) < α ln t a 0 g(ρ i ) , (7) 
with g defined in Eq. ( 1). Actually, if all equations were false, we would have μi * ,T i * (t-1)

1 -

2α ln t a 0 T i * (t-1) + > µ * (by (5) false) = µ i ρ i (by definition) > µ i 1 + 2α ln t a 0 T i (t-1) + α ln t a 0 T i (t-1) 1 - 2α ln t a 0 T i (t-1) + (by (7) false) ≥ µ i,T i (t-1) 1 - 2α ln t a 0 T i (t-1) + (by (6) false).
This would mean that I t = i * = i, which is a contradiction. Now, define u as u = α ln n a 0 g(ρ i ) .

We have that

E[T i (n)] = E[ n t=1 I It=i ] ≤ u + n t=u+1
I It=i and ( 7) is false

≤ u + n t=u+1 I (5) or (6) is true ≤ u + n t=u+1
(P ((5) is true) + P ((6) is true)) .

Thus, we have to bound the probabilities of events ( 5) and ( 6), which can be done thanks to Lemma 2. Indeed:

P ((5) is true) = P   ∃s ≤ t : μi * ,s 1 -2α ln t a 0 s + < µ *    ≤ t s=1 P    μi * ,s 1 -2α ln t a 0 s + < µ *    ≤ t s=1 1 t α = 1 t α-1 .
Similarly, one can show that:

P ((6) is true) ≤ 1 t α-1 .
Therefore, we can bound the number of time arm i has been played:

E[T i (n)] ≤ u + 2 n t=u+1 1 t α-1 ≤ α ln n a 0 g(ρ i ) + 1 + ∞ 1 2dt t α-1 = α ln n a 0 g(ρ i ) + α α -2 . KL-UCB MUCB(α > 4) (α > 1,ψ)-UCB Γ-UCB(α > 1,1) lim n→∞ Rn µ * ln n i:ρ i <1 1-ρ i ρ i -1-ln ρ i i:ρ i <1 4α 1-ρ i i:ρ i <1 α(1-ρ i ) h(ρ i ) i:ρ i <1 α(1-ρ i ) g(ρ i )
Table 1: Comparison of bounds (exponential rewards).

Using the fact that

R n = K i=1 ∆ i E[T i (n)] and that ∆ i = µ * (1 -ρ i )
, we obtain the desired bound:

R n ≤ µ * i:ρ i <1 α(1 -ρ i ) a 0 g(ρ i ) ln n + α(1 -ρ i ) α -2 .
This proof is very similar to the one of (α,ψ)-UCB (Bubeck and Cesa-Bianchi, 2012, Ch. 2). The difference is that we consider different convex bounding functions on the left and right tail (regarding the cumulant generating function) and we use a multiplicative concentration inequality instead of an additive one.

Remark 3 (About the constant α) We have kept the proof simple. However, using a peeling argument instead of a simple union bound (as done by [START_REF] Bubeck | Bandits Games and Clustering Foundations[END_REF] for UCB) for bounding the probabilities of events (5) and (6) in the preceding proof should give the same result for any α > 1 (instead of α > 2, and with a different constant term).

Discussion

As far as we know, the sole alternative to Γ-UCB in the studied case is (α,ψ)-UCB (Bubeck and Cesa-Bianchi, 2012, Ch. 2), that we instantiate now for Gamma rewards. Recall the bound (2) on the cumulant generating function of a centered Gamma reward. We assume that upper-bounds on the two parameters are known: a ∞ ≥ max 1≤i≤K a i and b ∞ ≥ max 1≤i≤k b i . A convex function bounding cumulant generating functions of all rewards (on both the left and right tails) is

ψ(λ) = λ 2 a ∞ b 2 ∞ 2(1 -λb ∞ ) .
The associated Legendre-Fenchel transform and its inverse are

ψ * ( ) = a ∞ 1 + a ∞ b ∞ -1 + 2 a ∞ b ∞ and ψ -1 * (x) = b ∞ (x + √ 2a ∞ x).
The (α,ψ)-UCB is therefore For any α > 2 (α > 1 being possible, see remark 3), its regret satisfies

I t ∈ argmax 1≤i≤K μi,T i (t-1) + b ∞ α ln t T i (t -1) + 2αa ∞ ln t T i (t -1) . 0.0 0.2 0.4 0.6 0.8 1.0 ρ 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 1-ρ ρ-1-ln ρ (KL-UCB) 16 1-ρ (MUCB) 1-ρ h(ρ) (ψ-UCB) (1-ρ) g(ρ) (Γ-UCB)
R n ≤ i:∆ i >0    α∆ i a ∞ 1 + ∆ i 2a∞b∞ -1 + ∆ i a∞b∞ ln n + α∆ i α -2    .
More strategies deal with the exponential case (that is, Gamma case with a = 1) such as KL-UCB [START_REF] Garivier | The KL-UCB algorithm for bounded stochastic bandits and beyond[END_REF] with a proper divergence or MUCB [START_REF] Jouini | Channel selection with Rayleigh fading: A multiarmed bandit framework[END_REF]. Therefore, we also compare our bound to their. More precisely, we compare their asymptotic rates in Table 1. For (α,ψ)-UCB, we take a ∞ = 1 and b ∞ = max 1≤i≤K b k = µ * (which is an optimistic setting, the largest mean is exactly known beforehand). In this case, the bound simplifies as

R n ≤ µ * i:ρ i <1 αρ i h(ρ i ) ln n + O(1) , with h(ρ) = 3 -ρ 2 -2 -ρ.
As comparing these analytical expressions is not straightforward, we plot on Fig. 1 (in log-scale) the main term of each bound, as a function of ρ, the ratio between expectations. One can see that KL-UCB provides the better bound. This is not a big surprise, as it matches the lower bound of [START_REF] Leung | Asymptotically efficient adaptive allocation rules[END_REF] [START_REF] Garivier | The KL-UCB algorithm for bounded stochastic bandits and beyond[END_REF]. Γ-UCB has a slightly better bound than MUCB (which is a consequence of the proof, as both strategies are identical for exponential rewards) and (α,ψ)-UCB. We also compare the ratio of these terms on Fig. 2, to see how much better is KL-UCB. This shows that for large enough values of ρ, the regret of Γ-UCB is no more than four times the one of KL-UCB. Notice also that we considered the exponential case to ease the comparison, but Γ-UCB and (α,ψ)-UCB apply more generally to Gamma rewards.

Experiments

In this section, we consider stochastic bandits with exponential rewards. We compare the Γ-UCB(α,1) strategy (therefore, the MUCB strategy) to KL-UCB (with the divergence corresponding to exponential rewards) and (1,ψ)-UCB. For Γ-UCB, we consider two values of α: α = 1 (limit of the theory) and α = 0.5 (beyond). For (1,ψ)-UCB, we take a ∞ = 1, b ∞ = µ * (the most optimistic setting). We consider two experiments. In the first one, arms have expectations {1, 2, 3, 4, 5} (results are provided in Fig. 3). In the second one, arms have expectations {5, 5, 5.1, 5, 5} (results are provided in Fig. 4). This case is harder, as the ratio of expectations ρ is closer to one. Each provided result is averaged over 10 3 independent runs. KL-UCB has a smaller regret than Γ-UCB(1,1), which is better than (1,ψ)-UCB, as predicted in Sec. 3. However, on these experiments, Γ-UCB(0.5, 1) has a smaller regret. If general conclusions cannot be drawn (as this is beyond the theory), this might be a viable empirical alternative.

Conclusion

In this paper, we have proposed a multiplicative UCB strategy for Gamma rewards, extending the original MUCB idea of [START_REF] Jouini | Channel selection with Rayleigh fading: A multiarmed bandit framework[END_REF]. We have derived a regret bound, rather close to the one of KL-UCB in the exponential case. We also experimented the strategy on two simple bandit problems with exponential rewards. With an optimistic choice of the α parameter, Γ-UCB provides a lower regret than KL-UCB on these examples.

Compared to (α,ψ)-UCB (the sole alternative in the Gamma case, as far as we know), the proposed strategy requires a lower bound on the form factor instead of upper bounds on both the form and scale factors, and it provides a better regret, both theoretically and empirically (on the studied exponential cases).

An interesting perspective would be to study if such a multiplicative strategy could be of interest for other kind of distributions (which would depend on the structure of the related cumulant generating function).
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 12 Figure 1: Main term of each bound.
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 4 Figure 3: Exponential rewards with means {1, 2, 3, 4, 5}.

This is largely inspired fromBoucheron et al. (2013, Ch. 2).