
HAL Id: hal-01258816
https://hal.science/hal-01258816

Submitted on 19 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Soft-max boosting
Matthieu Geist

To cite this version:
Matthieu Geist. Soft-max boosting. Machine Learning, 2015, 100 (2), pp.305-332. �10.1007/s10994-
015-5491-2�. �hal-01258816�

https://hal.science/hal-01258816
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Soft-max boosting

Matthieu Geist

Received: date / Accepted: date

Abstract The standard multi-class classification risk, based on the binary
loss, is rarely directly minimized. This is due to (i) the lack of convexity
and (ii) the lack of smoothness (and even continuity). The classic approach
consists in minimizing instead a convex surrogate. In this paper, we propose to
replace the usually considered deterministic decision rule by a stochastic one,
which allows obtaining a smooth risk (generalizing the expected binary loss,
and more generally the cost-sensitive loss). Practically, this (empirical) risk
is minimized by performing a gradient descent in the function space linearly
spanned by a base learner (a.k.a. boosting). We provide a convergence analysis
of the resulting algorithm and experiment it on a bunch of synthetic and real-
world data sets (with noiseless and noisy domains, compared to convex and
non-convex boosters).

1 Introduction

The ideal multi-class classification task can be defined as the minimization
(over some hypothesis space) of the expected binary loss (or equivalently, as
minimizing the probability of predicting a wrong label). However, this risk is
rarely directly minimized, notably because of (i) its lack of smoothness (and
even continuity) and (ii) its lack of convexity. The classical approach consists
in minimizing instead a convex (and possibly smooth) surrogate, such as the
hinge loss (used in Support Vector Machines [23]), the exponential loss (used
notably in AdaBoost [6], as shown for example in [17]) or the logit loss (for
example used in [7]), among others. If using such surrogates does not come
without guarantees [1], we propose an alternative approach in this article,
focusing directly on the primary loss of interest.

Matthieu Geist
CentraleSupélec, IMS - MaLIS Research Group & UMI 2958 (GeorgiaTech-CNRS)
E-mail: matthieu.geist@centralesupelec.fr

2 Matthieu Geist

The aforementioned classification methods are based on a deterministic
decision rule. Here, we propose to use instead a stochastic decision rule. This
does not provide a convex optimization problem, but at least we gain smooth-
ness. The resulting (empirical) risk has then to be minimized. In order to
ease the choice of the hypothesis space, we minimize this risk by performing
a gradient descent in the function space linearly spanned by a base (or weak)
learner. This is indeed a boosting [21] approach (seen as a functional gradient
descent [17,9], which is not the sole nor the original view of boosting). To
sum up, this article introduces a boosting approach that directly minimizes
the expected (cost-sensitive) binary loss.

The paper is organized as follows. Sec. 2 states the problem and introduces
and motivates the considered risk, that generalizes strictly the usual expected
(cost-sensitive) binary loss. Sec. 3 shows how this risk can be minimized using
a boosting approach and introduces the related algorithm, named sm-boost
(for soft-max boosting). The proposed method is analyzed in Sec. 4. We show
mainly that the algorithm converges to a solution such that the related func-
tional gradient is null, at a given rate. We also discuss informally the quality
of the related solution (easy formal response being not available due to the
lack of convexity). In Sec. 5, we discuss the choice of meta-parameters for sm-
boost and present briefly AdaBoost.MH and SAMME, two efficient multi-class
generalizations of AdaBoost which are natural competitors to sm-boost. We
then compare all algorithms on a bunch of synthetic and real-world data sets.
We also compare sm-boost to another non-convex booster, MartiBoost, on a
challenging (for convex boosters) noisy toy problem. Eventually, we open some
perspectives in Sec. 6.

2 Problem statement

Let DN = {(xi, yi)1≤i≤N} be a data set, with xi ∈ X , a compact subset of
Rd, and yi ∈ Y, a finite set of labels. The inputs xi are sampled according to
some unknown distribution ρ(x) and the outputs yi are provided by an oracle
(formally an unknown conditional distribution P(y|x)). Let c ∈ RX×Y

2

+ be a
(bounded) cost function: c(xi, yi, y) is the cost (or loss) for choosing the label
y instead of the oracle response yi for the input xi. This encompasses notably
the classical binary loss, on which we will focus in the experimental section
(Sec. 5):

c(xi, yi, y) = I{y 6=yi} =
{

1 if y 6= yi

0 else
.

Let G be a subset of (deterministic) functions mapping inputs to labels (that
is, deterministic decision rules), G ⊂ YX . The “ideal” (possibly cost-sensitive)
multi-class classification problem may be defined as the minimization of the

Soft-max boosting 3

risk related to the above defined cost:

min
g∈G

R(g) with R(g) =
∫
X

∑
y∈Y

c(x, y, g(x))P(y|x)ρ(x)dx

= EX,Y [c(X,Y, g(X))]. (1)

The input and oracle distributions being only known through the data set,
practically the related empirical risk is considered:

RN (g) = 1
N

N∑
i=1

c(xi, yi, g(xi)).

Notably, specialized to the binary loss, this gives:

RN (g) = 1
N

N∑
i=1

I{yi 6=g(xi)}.

There are two major issues with this risk. First, it is not convex, many local
minimum may exist. Second, it is not smooth (or even continuous here), which
may prevent to practically minimize it. The classical approach to overcome
this problem consists in minimizing a convex (and possibly smooth) surrogate
to this risk (for example, exponential or logit loss instead of the binary one).
Here, we propose an alternative approach: we replace the deterministic decision
rule by a stochastic one, parameterized through a soft-max distribution. By
doing so, we do not gain convexity, but we gain smoothness. We also strictly
generalize the “ideal” risk (deterministic decision rules being a special case of
stochastic ones). What we argue in the sequel is that minimizing directly the
risk of interest is a viable alternative to standard approaches.

2.1 Proposed risk

Let Ψ be a subset of RX×Y . A function ψ ∈ Ψ can be understood as a score
function, ranking different labels for a given input. In classification, it is quite
usual to define a deterministic decision rule as gψ(x) = argmaxy∈Y ψ(x, y).
Here, we propose instead to build a stochastic decision rule based on a soft-
max conditional distribution. Let ∆Y be the set of distributions over Y. For
ψ ∈ Ψ , we define the decision rule gψ ∈ ∆XY as:

gψ(y|x) = eψ(x,y)∑
z∈Y e

ψ(x,z) . (2)

Then, what we propose to do is to consider directly the ideal risk provided in
Eq. (1), and to minimize it over stochastic decision rules of the form given in

4 Matthieu Geist

Eq. (2), instead of minimizing it over deterministic decision rules:

R(gψ) = EX,Y [EZ∼gψ(.|X)[gψ(Z|X)c(X,Y, Z)]]

= EX,Y [
∑
z∈Y

gψ(z|X)c(X,Y, z)] (3)

=
∫
X

∑
y∈Y

∑
z∈Y

c(x, y, z)gψ(z|x)P(y|x)ρ(x)dx.

As the input and oracle distributions are only known through the data, we
consider the following empirical risk:

min
ψ∈Ψ

RN (ψ) with RN (ψ) = 1
N

N∑
i=1

Ey∼gψ(.|xi)[c(xi, yi, y)] (4)

= 1
N

N∑
i=1

∑
y∈Y

gψ(y|xi)c(xi, yi, y).

2.2 Motivation

As said before, the common technique in classification consists in minimizing
a convex surrogate to the risk of interest. The resulting optimization problem
becomes tractable, but one may wonder if minimizing such a convex proxy still
results in a good accuracy. This is known as the problem of calibration, which
studies how small the suboptimality gap, measured in term of the surrogate
risk, should be to achieve a suboptimality gap, measured in term of the risk
of interest, of a given size. This has been studied in the binary cost-insensitive
case [1], in the binary cost-sensitive case [24] and in the cost-sensitive multi-
classe case [20], for the convex surrogate proposed in [14].

However, it has also been advocated recently that a surrogate loss function
should be guess-averse [2], in the sense that the loss should encourage more
correct classifications than arbitrary guesses. If all popular binary surrogate
losses are guess averse, things become less clear in the cost-sensitive multi-class
case. Notably, it shown in [2] that the convex surrogate of [14] based on the
exponential function, shown to be calibrated in [20], is not guess averse (and
the question remains open for this surrogate based on other convex functions).

To sum up, choosing the right convex surrogate to the cost-sensitive multi-
class risk of Eq. (1) is no an easy task. Moreover, in the case of boosting,
it has been shown that convex boosters are necessarily sensitive to noise [16]
(this point will be further addressed in Sec. 5.5). What we propose here is to
minimize directly the risk of interest, given in Eq. (1), but parameterized by
the stochastic decision rule of Eq. (2) instead of the classical deterministic one,
which provides the risk of Eq. (3). As deterministic decision rules are a special
case of stochastic one, this is a generalization of the risk of interest rather
than a surrogate. Moreover, the resulting optimization problem is smooth (see
Sec. 4), and is thus tractable.

Soft-max boosting 5

Yet, one may still wonder if this changes the problem at hand. Notably, as
the decision rule is stochastic, one may think that risk (3) ultimately estimates
conditional probabilities (of labels conditioned on inputs) and thus that it is
a kind of logistic regression. This is not the case: ultimately, risk (3) provides
the same solution as risk (1), as formalized below.

Proposition 1 Assume that the cost function corresponds to a single label
problem, in the sense that:

Card
(

argmin
y∈Y

E[c(X,Y, y)|X]
)

= 1 almost surely.

Assume also that there exists a measurable function g∗ ∈ YX such that

g∗(x) = argmin
y∈Y

E[c(X,Y, y)|X = x],

which is the minimizer of R(g) = EX,Y [c(X,Y, g(X))] over g ∈ YX . Then, the
minimizer of R(gψ) = EX,Y [

∑
z∈Y gψ(z|X)c(X,Y, z)] over gψ ∈ ∆XY is:

g∗ψ(y|x) = I{y=g∗(x)}.

Proof Assume that R admits a minimizer gψ 6= g∗ψ. Write c(x, y) the expected
cost for choosing y in x, c(x, y) = E[c(X,Y, y)|X = x], and U the set of points
where the minimizers disagree:

U = {x ∈ X |gψ(.|x) 6= g∗ψ(.|x)}.

If P(U) = 0, the minimizers are equal almost surely. Else, for all x ∈ U we
have:∑

z∈Y
c(x, z)gψ(z|x) = c(x, g∗(x))gψ(g∗(x)|x) +

∑
z 6=g∗(x)

c(x, z)gψ(z|x)

> c(x, g∗(x)){gψ(g∗(x)|x) +
∑

z 6=g∗(x)

gψ(z|x)}

= c(x, g∗(x)) =
∑
z∈Y

c(x, z)g∗ψ(z|x) almost surely.

Therefore, R(gψ) > R(g∗ψ) and gψ is not a minimizer. ut

We have just shown that, in the single label case, minimizing the risk over
stochastic decision rules does not change the solution. In the multi-label case,
the stochastic minimizer can distribute its probability masses over minimizers
of the expected cost E[c(X,Y, z)|X = x] without changing the risk, which is
better than choosing a single label (as would do the deterministic minimizer).

Now that we have motivated the use of this risk, it will be shown how its
empirical counterpart can be minimized and what guarantees it might offer.

6 Matthieu Geist

3 A boosting approach

In this section, we minimize the risk defined in Eq. (4) using a boosting ap-
proach. To do so, we frame boosting as a functional gradient descent [17] to
derive the proposed sm-boost (soft-max boosting) algorithm. First, we intro-
duce the relevant related Hilbert space, following [9].

3.1 Relevant Hilbert space

With a slight abuse of notations, we will see equivalently a function from RX×Y
as a function from (RY)X . Notably, we will write:

ψ(x) = (ψ(x, y))y∈Y ∈ RY

and gψ(x) = (gψ(y|x))y∈Y ∈ ∆Y ⊂ RY .

Let 〈., .〉 be the Euclidian inner product in RY and ‖.‖ be the associated
norm. Assume that the input space X is measurable and let µ be a probability
measure. The function space L2(X ,RY , µ) is the set of all equivalence classes
of functions ψ ∈ (RY)X such that the Lebesgue integral

∫
X ‖ψ(x)‖2dµ is finite.

This Hilbert space has a natural inner product:

〈ψ, φ〉µ =
∫
X
〈ψ(x), φ(x)〉dµ

=
∫
X

∑
y∈Y

ψ(x, y)φ(x, y)dµ.

As the quantity of interest is the empirical risk, the natural probability measure
to be considered is ρ̂, involved by the data set DN . We write 〈., .〉N the related
inner product, defined as:

〈ψ, φ〉N = 1
N

N∑
i=1
〈ψ(xi), φ(xi)〉

= 1
N

N∑
i=1

∑
y∈Y

ψ(xi, y)φ(xi, y).

We also adopt the following notation for the cost c, evaluated in the training
points:

ci = (c(xi, yi, y))y∈Y = (ci(y))y∈Y ∈ RY . (5)

This way, the considered empirical risk (defined in Eq. (4)) can be written as
follows:

RN (ψ) = 1
N

N∑
i=1
〈ci, gψ(xi)〉 = 1

N

N∑
i=1

∑
y∈Y

ci(y)gψ(y|xi).

Soft-max boosting 7

We will compute a decision rule gψ by performing a gradient descent on RN (ψ)
(according to ψ).

However, to do so, one has to compute the gradient of functionals over
the Hilbert space L2(X ,RY , ρ̂). We consider here the Fréchet derivative. Let
J : L2(X ,RY , ρ̂)→ R be a functional (practically, it will be RN), its (Fréchet)
derivative is the linear operator ∇J(ψ) satisfying

lim
φ→0

‖J(ψ + φ)− J(ψ)− 〈∇J(ψ), φ〉N‖
‖φ‖N

= 0.

It can also be implicitly defined as

J(ψ + φ) = J(ψ) + 〈∇J(ψ), φ〉N + o(‖φ‖N).

3.2 Restricted gradient descent

The issue with functions representing the functional gradient is that they are
hard to manipulate and do not generalize well to new inputs. Instead of being
directly followed, the gradient is projected on a restriction set of allowable
directions (practically, the set of hypotheses generated by a weak learner).
This is termed as restricted gradient descent in [9].

Let H ⊂ RX×Y be the hypothesis space generated by a weak learner. The
closest function h′ to a gradient ∇J(ψ) along a candidate direction h is given
by the vector projection:

h′ = 〈∇J(ψ), h〉N
‖h‖2

N

h.

The function h∗ minimizing the resulting projection error actually maximises
the projected length:

h∗ = argmax
h∈H

〈∇J(ψ), h〉N
‖h‖N

. (6)

This projection operation, proposed in [9], generalizes the one of [17] to func-
tions other than classifiers (yet, this is the case we will consider practically).

Boosting can be seen as a gradient descent in a function space, the func-
tional gradient being projected on the hypothesis space generated by a base
(or weak) learner. This is summarized in Alg. 1 for the minimization of a
functional J .

3.3 The softmax boosting algorithm

The functional we are interested in here is RN (ψ), provided in Eq. (4). A first
thing to do is to compute its functional gradient, which is done below.

8 Matthieu Geist

Algorithm 1: Basic boosting algorithm
Inputs;
Initial function ψ0 ;
Learning rates (αt)t>0 ;
Hypothesis space H ;
for t = 1, 2, . . . T do

Compute the gradient ∇t = ∇J(ψt−1) ;
Project ∇t onto H (see Eq. (6)), finding nearest directions h∗t ;

Update ψ : ψt = ψt−1 − αt
〈h∗t ,∇t〉N
‖h∗
t
‖2
N

h∗t ;

Proposition 2 Let ey ∈ RY be a vector such that all components are set to
0, except the one corresponding to y which is set to 1. Define ∆ψci(y) as the
centered cost according to the probability measure gψ induced by ψ, for the
input xi (the notation ci(y) being defined in Eq. (5)):

∆ψci(y) = ci(y)−
∑
z∈Y

gψ(z|xi)ci(z) = ci(y)− Ez∼gψ(.|xi)[ci(z)].

The functional gradient of RN (ψ) is the set

∇RN (ψ) =

φ ∈ (RY)X : φ(xi) =
∑
y∈Y

gψ(y|xi)∆ψci(y)ey

 .

Proof Recall that the considered gradient is defined according to the inner
product under the empirical measure ρ̂. Therefore, only the values taken in
the data points xi do matter. Let φ ∈ ∇RN (ψ), we have:

φ(xi) = ∇〈ci, gψ(xi)〉

=
∑
y∈Y

ci(y)∇gψ(y|xi).

Using a log-trick and the definition of gψ (see Eq. (2)):

∇gψ(y|x) = gψ(y|x)∇ ln gψ(y|x)

= gψ(y|x)∇{ψ(x, y)− ln
∑
z∈Y

eψ(x,z)}

= gψ(y|x)(∇ψ(x, y)−
∑
z∈Y e

ψ(x,z)∇ψ(x, z)∑
z∈Y e

ψ(x,z))

= gψ(y|x)(∇ψ(x, y)−
∑
z∈Y

gψ(z|x)∇ψ(x, z)).

Soft-max boosting 9

Therefore, we have:

φ(xi) =
∑
y∈Y

ci(y)gψ(y|xi)(∇ψ(xi, y)−
∑
z∈Y

gψ(z|xi)∇ψ(xi, z))

=
∑
y∈Y

ci(y)gψ(y|xi)(ey −
∑
z∈Y

gψ(z|xi)ez)

=
∑
y∈Y

ci(y)gψ(y|xi)ey − (
∑
y∈Y

ci(y)gψ(y|xi))(
∑
z∈Y

gψ(z|xi)ez)

=
∑
y∈Y

gψ(y|xi)ey(ci(y)−
∑
y∈Y

ci(y)gψ(y|xi))

=
∑
y∈Y

gψ(y|xi)ey∆ψci(y).

This concludes the proof. ut

Thanks to this result, the inner product between a function h ∈ H and the
functional gradient ∇RN (ψ) is given by:

〈∇RN (ψ), h〉N = 1
N

N∑
i=1
〈φ(xi), h(xi)〉, with φ ∈ ∇RN (ψ)

= 1
N

N∑
i=1

∑
y∈Y

gψ(y|xi)∆ψci(y)h(xi, y).

For the rest of this paper, we will focus on hypothesis spaces generated by
binary classifiers as weak learners, that is:

H ⊂ {−1,+1}X×Y .

Let K = |Y| denote the cardinal of the finite set Y. For binary classifiers, we
have:

∀h ∈ H, ‖h‖2
N = 1

N

N∑
i=1

∑
y∈Y

h(xi, y)2 = K.

Therefore, projecting the gradient ontoH reduces to maximizing 〈∇RN (ψ), h〉:

h∗ ∈ argmax
h∈H

1
N

N∑
i=1

∑
y∈Y

gψ(y|xi)∆ψci(y)h(xi, y).

Consequently, using the proposed approach (projected functional gradient de-
scent on RN), the initial (possibly cost-sensitive) multi-class classification
problem is reduced to a series of weighted binary classification problems.

10 Matthieu Geist

Yet, it has been shown that introducing randomization in a boosting pro-
cedure can improve the estimation accuracy [8]. The inner product to be max-
imized is indeed an expectation:

〈∇RN (ψ), h〉N = 1
N

N∑
i=1

∑
y∈Y

gψ(y|xi)∆ψci(y)h(xi, y)

= Ex,y∼ρ̂(x)gψ(y|x)[∆ψci(y)h(xi, y)]. (7)

So, to introduce randomization, we propose to sampleM inputs {(xj , zj)1≤j≤M}
from the distribution ρ̂(x)gψ(z|x) (the probability of a couple (xj , zj) being
thus 1

N gψ(zj |xj)). The candidate direction is then computed as:

h∗ ∈ argmax
h∈H

RM (h) with RM (h) = 1
M

M∑
j=1

∆ψcj(zj)h(xj , zj). (8)

This is a weighted binary classification problem with inputs (xj , yj)1≤j≤M ,
weights |∆ψcj(zj)| and outputs sgn(∆ψcj(zj)).

Algorithm 2: Softmax boosting (sm-boost)

Inputs;
Data set {(xi, yi)1≤i≤N} ;
Weak learner (H) ;
Learning rates (αk)k>0 ;
Number of samples to be drawn for projection M ;
Initialization;
Initialize ψ0 = 0 ;
for t = 1, 2, . . . T do

Draw M inputs for the weighted binary classif. ;
(xj , zj)1≤j≤M ∼ ρ̂(x)gψt−1 (z|x) ;

Solve h∗t as the solution of the weighted binary classification problem with ;
inputs: (xj , zj)1≤j≤M ;
weights: (|∆ψt−1cj(zj)|)1≤j≤M ;
outputs: (sgn(∆ψt−1cj(zj))1≤j≤M ;

Update the score function ;
ψt = ψt−1 − αt

〈∇RN (ψt−1),h∗t 〉N
‖h∗
t
‖2
N

h∗t ;

Output the final hypothesis gψT ;

The proposed approach is summarized in Alg. 2. Choosing ψ0 = 0 is a
natural default initialization, as it corresponds to a uniform decision rule (equi-
probability for each label). There are three meta-parameters: the weak learner
(H), the learning rates ((αt)t>0) and the number of samples to be drawn at
each iteration (M). We will discuss them in Sec. 5, partly based on the analysis

Soft-max boosting 11

to be done in the next section (Sec. 4). Before, it may be useful to provide a
quick and intuitive explanation of the rationale behind the algorithm.

At step t, the algorithm has already computed a stochastic decision rule
gψt−1(y|x). For a given input xi, using this decision rule, we pay an average cost
(or loss) of Ey∼gψt−1 (.|xi)[ci(y)]. For a given label y, if the cost ci(y) is higher
than the expected cost, then the binary classifier will have a target of +1, with
a weight proportional to the absolute difference between the label cost and the
payed averaged cost (that is, |∆ψt−1cj(y)|). Ideally, we have h∗t (xi, y) = +1.
Given the update rule, this means that the probability of choosing this label
will decrease in the next decision rule, gψt . Similarly, if the cost ci(y) is lower
than the expected cost, then the probability of choosing this label will increase.

We also discuss briefly the computational cost of this algorithm. At each
iteration, the decision rule must be updated, for all labels and inputs of
the data set, which can be done in O(NK). Drawing the M inputs can be
done by performing a binary search of M random samples (uniform distri-
bution) in the cumulative sum of computed probabilities, which has a cost
of O(NK + M log(NK)). Computing the weights and outputs used by the
base learners has a cost of O(MK). The cost for training the weak learner
depends on the weak learner. For example, constructing a decision tree (the
base learner considered in this paper) with M samples has roughly a cost of
O(M log(M)) [19]. Here, we train K weak learners, each with Mi data points
(satisfying

∑K
i=1 Mi = M). As

∑K
i=1 Mi log(Mi) = M log(M)+

∑K
i=1 Mi log(Mi

M) ≤
M log(M), the cost would be of O(M log(M)) (practically, less than training
one classifier with all data points). This gives a rough total cost per iteration
of O(NK +M log(MNK)).

4 Analysis

Using a stochastic decision rule allows gaining some smoothness, as shown in
the next lemma. However, it does not transform the related optimization prob-
lem (minimization of RN (ψ)) into a convex one. Smoothness will allow showing
that the norm of the functional gradient tends to 0 (at a given rate), but the
lack of convexity prevents from providing easily stronger results. Nevertheless,
we will also discuss informally the quality of the computed solution.

Lemma 1 Without loss of generality, assume that c ∈ [0, 1]X×Y2 . The func-
tional RN (ψ) defined in Eq. (4) is 1-Lipschitz-smooth:

∀ψ, φ ∈ L2(X ,RY , ρ̂), ‖∇RN (ψ)−∇RN (φ)‖N ≤ ‖ψ − φ‖N .

Proof To prove this result, we will first study the function F ∈ (R)RK defined
as

F (u) =
K∑
k=1

αkfk(u) with αk ∈ [0, 1] and fk(u) = eu
>ek∑K

l=1 e
u>el

.

12 Matthieu Geist

We will show that F is 1-Lipschitz-smooth. To do so, we first compute its
gradient (resp. to u ∈ RK). Similarly to the proof of Prop. 2, we have:

∇F (u) =
K∑
k=1

fk(u)
(
αk −

K∑
l=1

αlfl(u)
)
ek

=
K∑
k=1

fk(u) (αk − F (u)) ek.

Next, we compute its Hessian H(u) = ∇∇>F (u):

H(u) = ∇{
K∑
k=1

fk(u)(αk − F (u))e>k }

=
K∑
k=1

(αk − F (u))(∇fk(u))e>k −
K∑
k=1

fk(u)(∇F (u))e>k

=
K∑
k=1

(αk − F (u))fk(u)(ek −
K∑
l=1

fl(u)el)e>k

−
K∑
k=1

fk(u)(
K∑
l=1

fl(u)(αl − F (u))el)e>k

=
K∑
k=1

(αk − F (u))fk(u)(1− fk(u))eke>k −
K∑
k=1

(αk − F (u))f2
k (u)eke>k

=
K∑
k=1

fk(u)(1− 2fk(u))(αk − F (u))eke>k .

From this expression, one can see that the convexity of F is far from being
guaranteed (H being a diagonal matrix with possibly negative elements). Let
v ∈ RK , we have

‖H(u)v‖2 = v>H(u)>H(u)v

=
K∑
k=1

f2
k (u)(1− 2fk(u))2(αk − F (u))2v2

i ≤
K∑
k=1

v2
i = ‖v‖2.

Therefore, the induced norm of the Hessian satisfies ‖H(u)‖ ≤ 1, for all u ∈
RK . This shows that F is 1-Lipschitz-smooth, so

‖∇F (u)−∇F (v)‖ = ‖
K∑
k=1
{fk(u)(αk − F (u))− fk(v)(αk − F (v))}ek‖

≤ ‖u− v‖.

Soft-max boosting 13

Going back to the functional of interest, we have (through Prop. 2):

‖∇RN (ψ)−∇RN (φ)‖2
N = 1

N

N∑
i=1
‖
∑
y∈Y
{gψ(y|xi)∆ψci(y)−gφ(y|xi)∆φci(y)}ey‖2.

Thanks to the preceding result (u plays the role of ψ(xi), v of φ(xi), αy of
ci(y)), we have for all 1 ≤ i ≤ N :

‖
∑
y∈Y
{gψ(y|xi)∆ψci(y)− gφ(y|xi)∆φci(y)}ey‖ ≤ ‖ψ(xi)− φ(xi)‖.

Therefore:

‖∇RN (ψ)−∇RN (φ)‖2
N ≤

1
N

N∑
i=1
‖ψ(xi)− φ(xi)‖2 = ‖ψ − φ‖2

N .

This concludes the proof. ut

This smoothness result is a key to show that sm-boost converges to a
solution such that the (functional) gradient is null. For that, we must do some
assumption on the capability of the hypothesis space H to approximate well
the projected gradient.

Definition 1 The hypothesis space H has an edge γ ∈]0, 1[if for every gra-
dient ∇RN (ψ), there exists a function h ∈ H such that:

〈∇RN (ψ), h〉N ≥ γ‖∇RN (ψ)‖N‖h‖N .

This definition of edge has been introduced in [9]. For example, if H is a space
of binary classifier that is able to do (strictly) better than random guessing
for the provided data set and for any associated weights, then H has an edge
γ > 0 (see Th. 1 and related discussion in [9] for more details).

The proposed convergence result can now be provided.

Theorem 1 Assume that H has an edge γ > 0. Without loss of generality,
assume also that c ∈ [0, 1]X×Y2 . Let (ψt)t≥0 be the sequence of functions com-
puted by the sm-boost algorithm for the learning rate αt = 1 (for all t > 0).
We have that:

lim
t→∞

‖∇RN (ψt)‖N = 0.

Moreover, we have the following convergence rate:

min
1≤t≤T+1

‖∇RN (ψt)‖N ≤
1
γ

√
2
T
.

Proof The proof is basically an adaptation of the convergence of standard
gradient descent for a smooth minimized function (e.g., see [18]). Thanks to
the smoothness result of Lemma 1, we have that for any ψ, φ ∈ L2(X ,RY , ρ̂)
(again, see [18] for example):

|RN (φ)−RN (ψ)− 〈∇RN (ψ), φ− ψ〉N | ≤
1
2‖φ− ψ‖

2
N .

14 Matthieu Geist

Notably, for ψt and ψt−1:

RN (ψt) ≤ RN (ψt−1) + 〈∇RN (ψt−1), ψt − ψt−1〉N + 1
2‖ψt − ψt−1‖2

N .

From the update rule, we have:

ψt − ψt−1 = −αt
〈∇RN (ψt−1), h∗t 〉N

‖h∗t ‖2
N

h∗t .

Therefore, we have:

RN (ψt) ≤ RN (ψt−1)− αt(1−
αt
2)
(
〈∇RN (ψt−1), h∗t 〉N

‖h∗t ‖N

)2
.

The quantity αt(1− αt
2) is maximized for αt = 1 and the edge assumption im-

plies that 〈∇RN (ψt−1), h∗t 〉N ≥ γ‖∇RN (ψt−1)‖N‖h∗t ‖N . Therefore, we have:

RN (ψt) ≤ RN (ψt−1)− γ2

2 ‖∇RN (ψt−1)‖2
N

⇔ RN (ψt−1)−RN (ψt) ≥
γ2

2 ‖∇RN (ψt−1)‖2
N .

Summing this last inequality over t, we get

γ2

2

T−1∑
t=0
‖∇RN (ψt)‖2

N ≤ RN (ψ0)−RN (ψT) ≤ 1.

The last (rightmost) inequality results from the assumption that the cost is
positive and bounded by 1. This allows concluding with bot results:

lim
t→∞

‖∇RN (ψt)‖N = 0 and min
1≤t≤T+1

‖∇RN (ψt)‖N ≤
1
γ

√
2
T
.

This concludes the proof. ut

This result tells us that sm-boost will converge to a decision rule such
that the functional gradient is null. However, it is rather weak as it does not
tell anything about the quality of the solution. We can end up in a local
minima, or even just in a stationary point. Indeed, without convexity, it might
be difficult to tell more. Moreover, this result does not tell anything about
the generalization capability of the computed estimator (a question we will
address experimentally in this paper, but not theoretically).

Yet, some informal insights regarding the computed solution can be gained
by looking at the norm of the gradient (which we know to ultimately go to
zero). We have (again according to Prop. 2):

‖∇RN (ψ)‖2
N = 1

N

N∑
i=1

∑
y∈Y

(gψ(y|xi)∆ψci(y))2
.

Soft-max boosting 15

For the gradient to be small, each term
∑
y∈Y(gψ(y|xi)∆ψci(y))2 has to be

small. Let fix xi. This in turn means that for any y, either ∆ψci(y) is small, or
gψ(y|xi) is small. For simplicity, we identify here Y with {1, . . . ,K}. For the
cost-insensitive multi-class classification case, and without loss of generality,
assume that the correct label is 1:

ci =
(
0 1 . . . 1

)>
.

Let η1 = gψ(1|xi) be the probability of choosing the right label (and similarly,
ηj = gψ(j|xi)). In this case, the expected cost is

∑
y∈Y gψ(y|xi)ci(y) = 1− η1.

As a result, we have ∆ψci(1) = −(1−η1) and ∆ψci(k > 1) = η1. Consequently,
we can write

∑
y∈Y

(gψ(y|xi)∆ψci(y))2 = η2
1

(1− η1)2 +
K∑
j=2

η2
j

 .

For this quantity to be small, we should have either η1 ≈ 1 or η1 ≈ 0. In
the first case, the right label is chosen. The second case is more problematic:
the probabilities are distributed among any combination of labels, except the
good one. However, let ψ′ be a function in the neighborhood of ψ, such that
η′1 = η1 + ε, all other things being equal (notably, the probabilities do not
change for other inputs). Then, we have that

RN (ψ′) = RN (ψ)− ε

N
.

This means that ψ cannot be a local minimum, as an arbitrarily small per-
turbation can lead to a lower risk. This let hope that η1 ≈ 1 is more likely to
happen and that sm-boost computes a good solution. This has to be confirmed
experimentally.

5 Experimental results

In this section, we provide experimental results on both synthetic (Sec. 5.3)
and real-world (Sec. 5.4) data sets. The proposed approach will be compared
to AdaBoost.MH [22], a state-of-the-art boosting algorithm that uses the same
type of base learner, and to SAMME [26] (Stagewise Additive Modeling using
a Multi-Class Exponential loss function), a more recent multi-class extension
of AdaBoost, to be briefly presented in Sec. 5.2. It will appear that sm-boost
is less sensitive to noise. Yet, it is known that convex boosters (what are
AdaBoost.MH and SAMME) are not noise-tolerant [16]. Therefore, sm-boost
will be compared to another non-convex booster, MartiBoost [15] (Martingale
Boosting) on a challenging toy problem [15] in Sec. 5.5. First, we discuss the
choice of meta-parameters for sm-boost.

16 Matthieu Geist

5.1 Meta-parameters

There are three meta-parameters to be chosen in sm-boost: the base learner
(H), the learning rate (αi) and the number of samples to be drawn for each
projection (M).

When using binary classifiers as base learners, sm-boost reduces (cost-
sensitive) multi-class classification to weighted binary classification. However,
the inputs of those intermediate steps are a concatenation of original inputs
and labels, sampled in the set {(xi, y)1≤i≤N,y∈Y}. There are multiple solutions
to this. For example, labels can be considered as they are, or they can be
binarized. However, a standard classifier will more likely handle inputs from X ,
the original input set. Let F ⊂ {−1,+1}X be the hypothesis space generated
by such a base learner, we will consider H = FY . More precisely, writing δy
the Dirac in y ∈ Y, we consider:

H = {h(x, y) =
∑
z∈Y

δz(y)fz(x) such that ∀z ∈ Y, fz ∈ F}.

The binary classification objective function (8) can thus be written as:

RM (h) = 1
M

M∑
j=1

∆ψcj(zj)h(xj , zj) =
∑
y∈Y

RM,y(fy)

with RM,y(f) = 1
M

M∑
j=1

δy(zj)∆ψcj(zj)f(xj).

Therefore, computing h∗ amounts to solving K weighted binary classification
problems:

argmax
h∈H

RM (h) =
(

argmax
f∈F

RM,y(f)
)
y∈Y

.

There remains to choose F . In all forthcoming experiments, we consider clas-
sification trees (the CART algorithm [3] provided in the scikit-learn li-
brary [19]), growth in a best-first fashion to a maximum of 12 leafs.

The second meta-parameter to be chosen is the learning rate. Recall that
Th. 1 holds for the simple choice αt = 1, for all t > 0. Yet, we will practically
consider a more aggressive (yet still simple) learning rate. Recall that the
“global” learning rate is

αt
〈∇RN (ψt−1), h∗t 〉N

‖h∗t ‖2
N

.

First, for binary classifiers, we have ‖h∗t ‖2
N = K. In order to be insensi-

tive to the number of classes, we choose αt to be proportional to the num-
ber of classes. Second, recall that theoretically h∗t is computed to maximize
〈∇RN (ψt−1), h〉N , which is indeed an expectation, see Eq. (7). In order to in-
troduce randomization, we have replaced this expectation by the Monte Carlo

Soft-max boosting 17

estimate RM (see Sec. 3.3). Therefore, it is natural to consider RM (h∗t) in-
stead of 〈∇RN (ψt−1), h∗t 〉N (this initial inner product being somehow more
conservative). To sum up, in all forthcoming experiments the learning rate
will be

αt = K
RM (h∗t)

〈∇RN (ψt−1), h∗t 〉N

⇔ αt
〈∇RN (ψt−1), h∗t 〉N

‖h∗t ‖2
N

= RM (h∗t) = 1
M

M∑
j=1

∆ψt−1cj(zj)h∗t (xj , zj),

with (xj , zj)1≤j≤M the samples drawn at the tth iteration.
The last meta-parameter is M , the number of samples to be drawn for

training the weak learner at each iteration. With a default initialization ψ0 = 0,
the initial decision rule is uniformly random and NK samples are candidate for
sampling. Asymptotically, the decision rule is likely to become deterministic
(at least for single-label multi-class classification, as seen in Sec. 4), so there
will be N candidate samples for sampling. Therefore, M = N seems to be a
good default choice, corresponding roughly to an adaptive subsampling. In all
forthcoming experiments, we set M = N .

5.2 Competitors

We present briefly the algorithms to which sm-boost will be compared, namely
AdaBoost.MH [22] and SAMME [26]. The presentation of MartiBoost [15],
that can handle only binary classification problems, is postponed to Sec. 5.5.

5.2.1 The AdaBoost.MH algorithm

AdaBoost, introduced in [6], is the first boosting algorithm, dedicated to the
binary classification problem. It has been shown [17,7] that AdaBoost is indeed
a functional gradient descent minimizing the expected exponential loss (so, a
convex surrogate to the risk based on the binary loss), with a learning rate
computed using an exact line search (which is analytically possible in this
case, contrary to sm-boost). AdaBoost.MH [22] is a multi-class generalization
of AdaBoost based on Hamming loss.

There are indeed many generalizations of AdaBoost to the multi-class
setting. However, AdaBoost.MH provides competitive results [22,13] and it
has been argued that with large samples, it has optimal classification perfor-
mance [25]. Moreover, the underlying mechanistic of sm-boost is very close
to the one of AdaBoost.MH (training weak learners on re-weighted samples
of the original data set) and both algorithms are based on the same type of
weak learners (H ⊂ {−1,+1}X×Y), which makes comparisons easier and more
reasonable.

18 Matthieu Geist

AdaBoost.MH is summarized in Alg. 3, using the same notations as sm-
boost to ease the comparison. Here, the cost c belongs to {−1,+1}X×Y2 (in-
stead of {0,+1}X×Y2 for the binary loss considered so far):

c(xi, yi, y) = 2Iy 6=yi − 1 (instead of Iy 6=yi).

The algorithm also maintains a distribution w used to train successive weak
learners, this distribution being updated according to the related results.

Algorithm 3: AdaBoost.MH
Inputs;
Data set {(xi, yi)1≤i≤N} ;
Weak learner (H) ;
Initialization;
Initialize ψ0 = 0 ;
Set the initial distribution: w0(xi, y) = 1

NK
, 1 ≤ i ≤ N , y ∈ Y ;

for t = 1, 2, . . . T do
Solve h∗t as the solution of the weighted binary classification problem with ;

inputs: (xi, y)1≤i≤N,y∈Y ;
weights: (wt−1(xi, y))1≤i≤N,y∈Y ;
outputs: (−ci(y))1≤i≤N,y∈Y ;

Compute the edge γt and the learning rate αt ;
γt = −

∑N

i=1

∑
y∈Y wt−1(xi, y)h∗t (xi, y)ci(y) ;

αt = 1
2 ln 1+γt

1−γt
;

Update the distribution w, for all 1 ≤ i ≤ N , y ∈ Y ;

wt(xi, y) = wt−1(xi,y)eαtci(y)h∗
t

(xi,y)∑N

j=1

∑
z∈Y

wt−1(xj ,z)eαtcj(z)h∗
t

(xj,z) ;

Update the score function ;
ψt = ψt−1 + αth∗t ;
Output the final hypothesis ;
the deterministic decision rule is x→ argmaxy∈Y (sgn(ψT (x, y))) ;

There are strong similarities between AdaBoost.MH and sm-boost. Both
algorithms re-weight samples of the original data set to train similar weak
classifiers. Consider the (global) learning rate of sm-boost,

1
M

M∑
j=1

∆ψt−1cj(zj)h∗t (xj , zj),

it is also an edge (as the sum of weighted prediction-target products). More-
over, for a small edge γ (one can easily show that γ ∈]0, 1] for a weak binary
classifier doing better than random guessing), one has 1

2 ln 1+γ
1−γ = γ + o(γ2).

Therefore, both algorithms share a similar learning rate when the edge is small.
There are also strong differences. The weighting scheme, as well as the targets

Soft-max boosting 19

for intermediate binary classifiers, are different (the target being adaptive for
sm-boost, contrary to AdaBoost.MH), and they output different decision rule
(respectively deterministic and stochastic). This was to be expected, as both
approaches attempt to minimize different risks.

The only meta-parameter of AdaBoost.MH is the base learner. In all forth-
coming experiments, we use the same weak learner as for sm-boost. Notice that
AdaBoost.MH has a higher computational cost: sm-boost requires training K
classifiers with M = N samples divided up among those classifiers, while Ad-
aBoost.MH requires training K classifiers with N samples each.

5.2.2 The SAMME algorithm

SAMME [26] is a more recent multi-class extension of AdaBost, that does
no reduce to multiple two-class problems. It is obtained as a forward stage-
wise additive modeling approach that minimizes an exponential loss for multi-
class classification. In other words, the considered weak learners have to solve
weighted multi-class classification problems. SAMME is summarized in Alg. 4
(and is exactly AdaBoost for the case K = 2).

Algorithm 4: SAMME
Inputs;
Data set {(xi, yi)1≤i≤N} ;
Weak learner (H) ;
Initialization;
Initialize ψ0 = 0 ;
Set the initial distribution: w0(xi) = 1

N
, 1 ≤ i ≤ N ;

for t = 1, 2, . . . T do
Solve h∗t as the solution of the weighted multi-class classification problem with ;

inputs: (xi)1≤i≤N ;
weights: (wt−1(xi))1≤i≤N ;
outputs: (yi)1≤i≤N ;

Compute the error εt and the learning rate αt ;
εt =

∑N

i=1 wt−1(xi)I{yi 6=h∗t (xi)} ;
αt = ln 1−εt

εt
+ ln(K − 1) ;

Update the distribution w, for all 1 ≤ i ≤ N ;

wt(xi) = wt−1(xi)e
αtI{yi 6=h∗t (xi)}∑N

j=1
wt−1(xj)e

αtI{yj 6=h∗t (xj)}
;

Update the score function ;
ψt(x, y) = ψt−1(x, y) + αtI{h∗

t
(x)=y} ;

Output the final hypothesis ;
the deterministic decision rule is x→ argmaxy∈Y (ψT (x, y)) ;

The only meta-parameter of SAMME is the base learner. As for sm-boost
and AdaBoost.MH, we consider classification trees. Yet, recall that these al-

20 Matthieu Geist

gorithms have to train one weak learner per class (with tress growth in a
best-first fashion to a maximum of 12 leafs), while SAMME trains only one
weak learner per iteration (that performs multi-class classification rather than
binary classification). Therefore, to have a fair comparison, the base learner is
here a classification tree growth to a maximum of (K − 1) · 12 leafs1 .

5.3 Synthetic problems

The first considered experiment are synthetic and randomly generated multi-
class classification problems, inspired from [10] (Madelon data set) and whose
implementation is provided in [19]. Sampling such a problem is parameterized
by dinfo (the number of informative features), dred (the number of redundant
features that are random linear combination of informative ones), drep (the
number of repeated features), duseless (the number of useless features, drawn
at random), K (the number of classes), CK (the number of cluster per classes),
β (the fraction of samples whose classes are randomly exchanged) and N (the
number of training samples). With these parameters, a classification problem
is sampled by creating clusters of points normally distributed (standard devi-
ation of one) about vertices of a dinfo-dimensional hypercube and assigning an
equal number of cluster to each class. Interdependences between these features
are introduced and various type of further noise are added to the data, as de-
scribed above. Moreover, the features are shifted by a random value drawn in
[−1, 1] and scaled by another random value drawn in [1, 100]. This provide a
classification problem with d = dinfo + dred + drep + duseless features and K
classes.

5.3.1 Comparison to AdaBoost.MH

We generated 1000 such problems with dinfo ∼ U[2,10] (U denotes the uniform
distribution), dred ∼ U[0,3], drep ∼ U[0,3], duseless ∼ U[0,3], K ∼ U[2,5], CK ∼
U[2,5], β ∼ U[0,0.25] and N ∼ U[300,3000]. For each problem, we also sampled
Ntest = 10000 data points (with noiseless labels) to estimate the true risk (so,
not used in the training set, of which we recall the size to be drawn randomly).
For each such problem, we trained AdaBoost.MH and sm-boost for T = 1000
iterations.

By training error (an error being denoted generically ε in the following),
we mean the empirical risk (with the binary loss) on training data, and by
testing (or generalization) error we mean the estimation of the true risk (still

1 For the stochastic decision rule used in sm-boost, we have that, for any ϕ ∈ RX ,

gψ(y|x) =
eψ(x,y)∑
z∈Y e

ψ(x,z) =
eψ(x,y)+ϕ(x)∑
z∈Y e

ψ(x,z)+ϕ(x) .

Therefore, there is some redundancy among the K trained weak classifiers, and there is
indeed K − 1 degrees of liberty. That explains the choice of (K − 1) · 12 leafs (rather than
K · 12 leafs).

Soft-max boosting 21

0.0 0.2 0.4 0.6 0.8 1.0

AdaBoost.MH

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

train error, 10 trees

0.0 0.2 0.4 0.6 0.8 1.0

AdaBoost.MH

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

train error, 100 trees

0.0 0.2 0.4 0.6 0.8 1.0

AdaBoost.MH

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

train error, 1000 trees

0.0 0.2 0.4 0.6 0.8 1.0

AdaBoost.MH

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

test error, 10 trees

0.0 0.2 0.4 0.6 0.8 1.0

AdaBoost.MH

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

test error, 100 trees

0.0 0.2 0.4 0.6 0.8 1.0

AdaBoost.MH

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

test error, 1000 trees

Fig. 1 Synthetic problems, AdaBoost.MH versus sm-boost.

with the binary loss, with noiseless labels here) based on testing data (sampled
independently). In Fig. 1, we compare for both algorithms the training error
(first row) and the testing error (second row) after respectively 10, 100 and
1000 iterations (first to third column). Each graph provides εAdaBoost.MH in
abscissa and εsm-boost in ordinate. A point above the line y = x (in red) means
that εAdaBoost.MH < εsm-boost (AdaBoost.MH is better), and a point under the
line (in blue) means that εAdaBoost.MH > εsm-boost (sm-boost is better).

One can see on Fig. 1 that AdaBoost.MH provides almost always a lower
training error. This might appear surprising, as sm-boost directly attempt to
minimize this error, contrary to AdaBoost.MH. However, the exponential loss
is a good surrogate to the binary one, the underlying optimization problem
is convex (not the case for sm-boost), and the learning rate is computed by
an exact line search (again, not the case for sm-boost). So, this is not such a
big surprise. Yet, regarding the generalization error, sm-boost is competitive,
and often better than AdaBoost.MH for large number of iterations (despite
the lack of convexity and of an optimal learning rate).

To get more insights into the difference of performance, Fig. 2 provides
histograms of the difference of errors, εAdaBoost.MH − εsm-boost, for the same
cases (training and testing error for T = 10, 100 and 1000 iterations). This
confirms the above observations.

22 Matthieu Geist

0.2 0.1 0.0 0.1 0.2
0

20

40

60

80

100
train error, 10 trees

0.2 0.1 0.0 0.1 0.2
0

10

20

30

40

50

60

70
train error, 100 trees

0.2 0.1 0.0 0.1 0.2
0

10

20

30

40

50

60

70
train error, 1000 trees

0.10 0.05 0.00 0.05 0.10
0

20

40

60

80

100

120

140

160
test error, 10 trees

0.10 0.05 0.00 0.05 0.10
0

20

40

60

80

100

120

140

160

180
test error, 100 trees

0.10 0.05 0.00 0.05 0.10
0

50

100

150

200
test error, 1000 trees

Fig. 2 Synthetic problems, histograms of εAdaBoost.MH − εsm-boost.

0.0 0.2 0.4 0.6 0.8 1.0

SAMME

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

train error, 10 trees

0.0 0.2 0.4 0.6 0.8 1.0

SAMME

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

train error, 100 trees

0.0 0.2 0.4 0.6 0.8 1.0

SAMME

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

train error, 1000 trees

0.0 0.2 0.4 0.6 0.8 1.0

SAMME

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

test error, 10 trees

0.0 0.2 0.4 0.6 0.8 1.0

SAMME

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

test error, 100 trees

0.0 0.2 0.4 0.6 0.8 1.0

SAMME

0.0

0.2

0.4

0.6

0.8

1.0

sm
-b

o
o
st

test error, 1000 trees

Fig. 3 Synthetic problems, SAMME versus sm-boost.

Soft-max boosting 23

0.2 0.1 0.0 0.1 0.2
0

20

40

60

80

100

120

140

160
train error, 10 trees

0.2 0.1 0.0 0.1 0.2
0

10

20

30

40

50

60

70

80
train error, 100 trees

0.2 0.1 0.0 0.1 0.2
0

10

20

30

40

50

60

70
train error, 1000 trees

0.10 0.05 0.00 0.05 0.10
0

20

40

60

80

100

120

140

160

180
test error, 10 trees

0.10 0.05 0.00 0.05 0.10
0

50

100

150

200
test error, 100 trees

0.10 0.05 0.00 0.05 0.10
0

50

100

150

200

250
test error, 1000 trees

Fig. 4 Synthetic problems, histograms of εSAMME − εsm-boost.

5.3.2 Comparison to SAMME

The same experience has been performed to compare SAMME and sm-boost
(1000 problems were generated, with the same random laws for drawing prob-
lems meta-parameters, and both algorithms were trained for T = 1000 itera-
tions, for each random problem). Results are provided in Fig. 3 (comparison
of training and testing errors after respectively 10, 100 and 1000 iterations)
and Fig. 4 (histograms of the difference of errors). The same conclusions can
be drawn (higher training error and lower generalization error for sm-boost).

5.4 Real-world data sets

In this section, we show the results of running sm-boost on a collection of
data sets from the libsvm repository 2 (these data sets coming from various
repositories, such as UCI or Statlog for example). Each data set comes with
pre-specified training and testing sets and is summarized in Table 1.

We compare AdaBoost.MH, SAMME and sm-boost using these pre-specified
sets, and provide results after respectively T = 10, T = 100 an T = 1000 it-
erations (or trees) in Table 2. It can be seen that AdaBoost.MH or SAMME
almost always provide a lower error, and that the difference of errors tends to
decrease with the number of iterations (but still in disfavor of sm-boost).

2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

24 Matthieu Geist

Table 1 Benchmark data sets.
Data set # train # test # features # classes
dna 2000 1186 180 3
letter 15000 5000 16 26
mnist 60000 10000 784 10
pendigits 7494 3498 16 10
satimage 4435 2000 36 6
segment 210 2100 19 10
splice 1000 2175 60 2
vowel 528 462 10 11

Table 2 Test error (%) rates on considered data sets.

T = 10 T = 100 T = 1000
dna AdaBoost.MH 5.14 3.96 4.05

SAMME 6.15 4.64 4.46
sm-boost 6.49 4.89 4.13

letter AdaBoost.MH 15.0 3.72 2.34
SAMME 13.0 3.68 2.84
sm-boost 26.9 10.7 5.40

mnist AdaBoost.MH 12.7 4.14 1.76
SAMME 10.8 3.72 2.52
sm-boost 14.0 7.12 3.56

pendigits AdaBoost.MH 4.86 2.43 2.17
SAMME 3.03 2.49 2.29
sm-boost 8.23 4.57 2.83

satimage AdaBoost.MH 13.0 10.0 9.20
SAMME 13.7 9.85 8.8
sm-boost 12.9 10.8 8.95

segment AdaBoost.MH 5.90 6.00 6.38
SAMME 10.86 10.86 10.86
sm-boost 9.19 6.95 6.19

splice AdaBoost.MH 2.94 2.71 2.53
SAMME 5.75 3.17 2.71
sm-boost 4.64 3.63 3.08

vowel AdaBoost.MH 49.4 44.6 42.9
SAMME 47.8 39.4 38.3
sm-boost 56.9 45.7 46.3

To get a larger picture of what happens for this testing error (as well as
for the learning one), we ran 25 independent runs (shuffled data, using the
same train and test sizes). Fig. 5 provides the learning (left subfigures) and
testing (right) errors (mean ± standard deviation represented) as a function of
the number of iterations, for each data set. The trend of Table 2 is confirmed:
consistently lower AdaBoost.MH or SAMME error and usually diminishing
difference of errors. This also provides some insight on the learning error: the
ones of AdaBoost.MH and SAMME diminishe more rapidly to a lower value.

Recall the results of the synthetic experiments (Sec. 5.3). If learning errors
have a similar behavior, it is not the case for testing errors (sm-boost is gen-
erally better, for a large number of iterations, in the synthetic experiments).

Soft-max boosting 25

dna

0 200 400 600 800 1000

trees

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.02

0.04

0.06

0.08

0.10

0.12

0.14

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

letter

0 200 400 600 800 1000

trees

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

mnist

0 200 400 600 800 1000

trees

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

pendigits

0 200 400 600 800 1000

trees

0.05

0.00

0.05

0.10

0.15

0.20

0.25

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.00

0.05

0.10

0.15

0.20

0.25

0.30

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

satimage

0 200 400 600 800 1000

trees

0.05

0.00

0.05

0.10

0.15

0.20

0.25

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

segment

0 200 400 600 800 1000

trees

0.1

0.0

0.1

0.2

0.3

0.4

0.5

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6
te

st
 e

rr
o
r

AdaBoost.MH

SAMME

sm-boost

splice

0 200 400 600 800 1000

trees

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

vowel

0 200 400 600 800 1000

trees

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

Fig. 5 Train and test error curves for the considered data sets.

26 Matthieu Geist

Table 3 Test error (%) rates on considered data sets with corrupted labels (20% of samples
have randomly exchanged labels). In parentheses we recall the noiseless results of Table 2.

T = 10 T = 100 T = 1000
dna AdaBoost.MH 8.26 (5.14) 7.67 (3.96) 7.25 (4.05)

SAMME 13.8 (6.15) 10.5 (4.64) 8.85 (4.46)
sm-boost 6.15 (6.49) 4.64 (4.89) 6.24 (4.13)

letter AdaBoost.MH 26.2 (15.0) 15.1 (3.72) 8.58 (2.34)
SAMME 25.8 (13.0) 11.6 (3.68) 6.84 (2.84)
sm-boost 29.2 (26.9) 13.2 (10.7) 6.98 (5.40)

mnist AdaBoost.MH 19.8 (12.7) 11.5 (4.14) 7.01 (1.76)
SAMME 17.4 (10.8) 12.1 (3.72) 5.48 (2.52)
sm-boost 14.1 (14.0) 6.96 (7.12) 3.78 (3.56)

pendigits AdaBoost.MH 10.9 (4.86) 7.63 (2.43) 5.77 (2.17)
SAMME 11.7 (3.03) 6.66 (2.49) 4.49 (2.29)
sm-boost 9.06 (8.23) 3.97 (4.57) 3.06 (2.83)

satimage AdaBoost.MH 16.7 (13.0) 12.8 (10.0) 10.9 (9.20)
SAMME 17.3 (13.7) 12.9 (9.85) 10.7 (8.8)
sm-boost 13.8 (12.9) 11.8 (10.8) 10.4 (8.95)

segment AdaBoost.MH 15.6 (5.90) 13.8 (6.00) 13.9 (6.38)
SAMME 17.0 (10.86) 14.0 (10.86) 13.0 (10.86)
sm-boost 15.9 (9.19) 12.4 (6.95) 12.0 (6.19)

splice AdaBoost.MH 16.9 (2.94) 16.7 (2.71) 14.9 (2.53)
SAMME 18.3 (5.75) 17.2 (3.17) 14.3 (2.71)
sm-boost 9.15 (4.64) 10.7 (3.63) 13.1 (3.08)

vowel AdaBoost.MH 55.8 (49.4) 47.2 (44.6) 47.6 (42.9)
SAMME 54.1 (47.8) 44.6 (39.4) 41.3 (38.3)
sm-boost 52.8 (56.9) 48.9 (45.7) 43.7 (46.3)

However, recall that various type of noises were introduced in the data in
Sec. 5.3, which is not the case for real data (at least, not willingly).

Therefore, we corrupted the real-world data sets by randomly exchanging
labels of 20% of samples. We provide results after respectively T = 10, T = 100
an T = 1000 iterations (or trees) in Table 3, recalling in parentheses the
noiseless results from Table 2. We also provide a larger picture of what happens
with Fig. 6 (similar to Fig. 5, but with noisy data). The trend regarding the
learning errors is the same, but the trend regarding the testing error is reversed:
now, sm-boost provides almost always lower errors.

To summarize these experimental results, sm-boost appears to be competi-
tive with AdaBoost.MH and SAMME. It provides higher generalization errors
for the considered standard real-world data set, but it is more robust to noisy
data (real data sets and synthetic experiments). Also, there might exist better
choices for the learning rate or the number of samples to be drawn at each
iteration, for sm-boost. This algorithm is also slower to train (as seen on the
train error curves), and increasing the number of iterations could improve the
generalization error. If sm-boost is clearly not the ultimate classification algo-
rithm, these experiments show that minimizing directly the risk of interest is
a viable alternative to more standard approaches.

Soft-max boosting 27

dna

0 200 400 600 800 1000

trees

0.00

0.05

0.10

0.15

0.20

0.25

0.30

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

letter

0 200 400 600 800 1000

trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

mnist

0 200 400 600 800 1000

trees

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

pendigits

0 200 400 600 800 1000

trees

0.1

0.0

0.1

0.2

0.3

0.4

0.5

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

satimage

0 200 400 600 800 1000

trees

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.05

0.10

0.15

0.20

0.25

0.30

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

segment

0 200 400 600 800 1000

trees

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
te

st
 e

rr
o
r

AdaBoost.MH

SAMME

sm-boost

splice

0 200 400 600 800 1000

trees

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.05

0.10

0.15

0.20

0.25

0.30

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

vowel

0 200 400 600 800 1000

trees

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tr
a
in

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

0 200 400 600 800 1000

trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 e
rr

o
r

AdaBoost.MH

SAMME

sm-boost

Fig. 6 Train and test error curves for the considered data sets, with corrupted labels.

28 Matthieu Geist

5.5 About non-convex boosters

Previous experiments have shown that sm-boost is less sensitive to noise than
AdaBoost.MH and SAMME. However, it has been shown in [16] that convex
potential boosters (what are AdaBoost and its generalizations, among others,
and what is not sm-boost) are defeated by random classification noise. There
exist non-convex boosters (e.g. [4,5,11,15]). Yet, as far as we know, these al-
gorithms are dedicated to the cost-insensitive binary classification problem,
and cannot be extended easily to the cost-sensitive multi-class problem. Nev-
ertheless, we compare in this section sm-boost to another non-convex booster,
MartiBoost [15] (Martingale Boosting), that comes with theoretical guaran-
tees (notably regarding tolerance to noise). Algorithms (sm-boost, MartiBoost
and SAMME, that results in AdaBoost in the binary case) will be compared
on the challenging (for convex problem) toy problem proposed in [16].

5.5.1 Martingale Boosting

MartiBoost [15] constructs a branching program with L + 1 layers in a grid
graph structure, where layer l has l nodes (see Fig. 7, left). Each node of
the first L layers corresponds to a weak learner (therefore, there is a total of
T = L(L+1)

2 weak learners). Once trained, prediction is done as follows. A new
input x is presented to the top root node. The corresponding weak learner
predicts the label, +1 or 0, which results in routing the example x respectively
to the right or to the left in the next layer. This procedure is repeated until
the sample reaches the last layer. If the last node is in the right part of the
last layer (if its index is greater than L

2), then the final prediction is +1, else
it is 0.

Training such a branching program assumes the availability of a two-sided
weak learner (roughly, a weak learner that provides the same accuracy for
both positive and negative examples). The program is trained layer by layer.
The empirical distribution (corresponding to the training set) is filtered until
reaching an untrained node (samples being routed through already trained
nodes). Then this filtered distribution is used to train the two-sided weak
learner. However, usual weak learners are one-sided (they try to minimize the
expected binary loss). Yet, such a weak learner can be used to simulate a two-
sided one. To do so, the filtered distribution is balanced (such that positive
and negative samples have the same cumulated probability masses) before
training, and the resulting decision rule is randomized (such that it outputs
each label equally often). For more details, see [15].

5.5.2 Considered toy problem

The toy problem we consider has been proposed in [16]. Each training set con-
sists of 4000 samples, divided into three groups: 1000 “large margin examples”,
1000 “pullers” and 2000 “penalizers”. Each labeled example (x, y) in the set
is generated as follows. The label y is chosen randomly in {0, 1} (with equal

Soft-max boosting 29

Branching Programm

Results

0 10 20 30 40 50 60

% of corrupted labels

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

 e
rr

o
r

Martiboost

SAMME

sm-boost

Fig. 7 (Left) the branching programm constructed by MartiBoost. (Right) results on the
challenging noisy toy problem.

probability). The input x is a 21-dimensional binary vector with components
x1, . . . , x21. Each large margin example assigns x1 = · · · = x21 = y. Each
puller sets x1 = · · · = x11 = y and x12 = · · · = x21 = 1 − y. Penalizers are
chosen at random in three stages: the values of a random subset of five of the
first eleven components are set to y, the values of a random subset of six of the
last ten components are also set to y, and the remaining ten components are
set to 1−y. If base learners are decision stumps associated to each component,
a majority vote over them leads to a correct classification of all samples. Yet,
noise is added in the training set: each label y is corrupted with classification
noise (that is, set to 1− y) with probability p (with 0 ≤ p ≤ 0.5). Eventually,
each testing set consists of 10000 samples (2500 large margin examples, 2500
pullers and 5000 penalizers), with uncorrupted labels.

5.5.3 Results

We compare sm-boost to SAMME (so, AdaBoost in this binary case) and
MartiBoost, for varying levels of noise (p varying from 0 to 0.5 by steps of
0.05). For all boosters, weak learners are decision stumps (classification trees
with two leafs). SAMME and sm-boost are trained for T = 1000 iterations
(thus T = 1000 weak learners). MartiBoost is trained for L = 300 stages (thus
T = 45150 weak learners). For each level of noise, the experiment (generating
a training set, as depicted before, to train all algorithms, and generating a
testing set to evaluate them) is repeated 100 times. Results are presented in
Fig. 7 (right), that shows for each algorithm the test error after training as
function of the noise level (mean ± standard deviation represented).

Without noise, all boosters have a perfect accuracy. SAMME’s performance
degrades with as low as 5% of noise (and this result is consistent with the one
in [16]). MartiBoost accuracy decreases when the level of noise increases. Yet,
the test error always remains below the noise level. On the other hand, sm-
boost has a perfect accuracy for a large range of noise, that deteriorates to
reach the accuracy of MartiBoost after 40% of corrupted labels.

30 Matthieu Geist

6 Conclusion

This paper has introduced sm-boost, a boosting algorithm which directly min-
imizes the expected binary loss, considering a stochastic decision rule param-
eterized by a soft-max conditional distribution. Its convergence has been ana-
lyzed and discussed. The proposed approach has also been compared empiri-
cally to AdaBoost.MH and SAMME, and has been shown to be competitive,
especially in the case of noisy data (AdaBoost.MH and SAMME remaining
more efficient, regarding both learning and testing errors, for clean data). As
it is known that convex boosters are sensitive to noise, we also compared sm-
boost to another non-convex booster, MartiBoost. The proposed algorithm
appears to be more robust to noise.

As said before, we argue that minimizing directly the risk of interest is a vi-
able alternative to more standard approaches. It is all the more true that some
interesting perspectives exist. First, the proposed algorithm can be directly
applied to cost-sensitive and multi-label multi-class classification (through the
definition of the cost function c), which is not so straightforward for usual con-
vex surrogates, as discussed in Sec. 2.2. Empirical evaluations on such problems
is an interesting perspective. The analysis we provide is somehow weak, no-
tably due to the lack of convexity; it would be interesting to study to what
extent it could be improved (notably based on a margin point of view). Espe-
cially, two aspect should be studied: the quality of the reached local minimum
(a question to which we provided an informal answer) and the generalization
capability of the proposed estimator (empirical results show that sm-boost has
a good generalization capability, this should be studied theoretically). The in-
troduced risk is minimized using a naive (functional) gradient descent. Other
(more efficient) optimization techniques may be envisioned. From a more prac-
tical point of view, the considered weak learners are quite simple (as we train
K classifiers at each iteration). It has been shown that using such base learners
does not provide the best results for AdaBoost.MH [13]. Therefore, sm-boost
could be improved by using weak learners that take advantage of the particular
inputs (original input-label tuple) [12,13]. Finally, extending this idea (mini-
mizing directly the loss of interest through a stochastic decision rule) beyond
boosting (for example to learning in Reproducing Kernel Hilbert Spaces) is
worth being studied.

References

1. Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk bounds.
Journal of the American Statistical Association 101(473), 138–156 (2006)

2. Beijbom, O., Saberian, M., Kriegman, D., Vasconcelos, N.: Guess-Averse Loss Func-
tions For Cost-Sensitive Multiclass Boosting. In: International Conference on Machine
Learning (ICML), pp. 586–594 (2014)

3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees.
CRC press (1984)

4. Freund, Y.: Boosting a weak learning algorithm by majority. Information and compu-
tation 121(2), 256–285 (1995)

Soft-max boosting 31

5. Freund, Y.: An adaptive version of the boost by majority algorithm. Machine learning
43(3), 293–318 (2001)

6. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and
an application to boosting. In: Computational learning theory, pp. 23–37. Springer
(1995)

7. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view
of boosting. The annals of statistics 28(2), 337–407 (2000)

8. Friedman, J.H.: Stochastic gradient boosting. Computational Statistics & Data Analysis
38(4), 367–378 (2002)

9. Grubb, A., Bagnell, J.A.: Generalized boosting algorithms for convex optimization. In:
International Conference on Machine Learning (ICML) (2011)

10. Guyon, I.: Design of experiments of the nips 2003 variable selection benchmark. In:
NIPS 2003 workshop on feature extraction and feature selection (2003)

11. Kalaia, A.T., Servediob, R.A.: Boosting in the presence of noise. Journal of Computer
and System Sciences 71, 266–290 (2005)

12. Kégl, B., Busa-Fekete, R.: Boosting products of base classifiers. In: International Con-
ference on Machine Learning (ICML), pp. 497–504. ACM (2009)

13. Kégl, B.: The return of AdaBoost.MH: multi-class Hamming trees. In: International
Conference on Learning Representations (ICLR) (2014)

14. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines: Theory and ap-
plication to the classification of microarray data and satellite radiance data. Journal of
the American Statistical Association 99(465), 67–81 (2004)

15. Long, P.M., Servedio, R.A.: Martingale Boosting. In: Conference on Learning Theory
(COLT), pp. 79–94. Springer-Verlag (2005)

16. Long, P.M., Servedio, R.A.: Random Classification Noise Defeats All Convex Potential
Boosters. Machine Learning 78(3), 287–304 (2010)

17. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent
in function space. Tech. rep., Australian National University (1999)

18. Nesterov, Y.: Introductory lectures on convex optimization: A basic course. Springer
(2004)

19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, 2825–2830 (2011)

20. Pires, B.A., Ghavamzadeh, M., Szepesvári, C.: Cost-sensitive Multiclass Classification
Risk Bounds. In: International Conference on Machine Learning (ICML) (2013)

21. Schapire, R.E., Freund, Y.: Boosting: Foundations and algorithms. MIT Press (2012)
22. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predic-

tions. Machine learning 37(3), 297–336 (1999)
23. Schölkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regulariza-

tion, optimization, and beyond. MIT press (2002)
24. Steinwart, I.: How to compare different loss functions and their risks. Constructive

Approximation 26(2), 225–287 (2007)
25. Zhang, T.: Statistical analysis of some multi-category large margin classification meth-

ods. The Journal of Machine Learning Research 5, 1225–1251 (2004)
26. Zhu, J., Zou, H., Rosset, S., Hastie, T.: Multi-class AdaBoost. Statistics and Its Interface

2, 249–360 (2009)

	Introduction
	Problem statement
	A boosting approach
	Analysis
	Experimental results
	Conclusion

