S Demri

D Galmiche

D Larchey-Wendling

D Mery

Separation Logic with One Quantified Variable ‹

We investigate first-order separation logic with one record field restricted to a unique quantified variable (1SL1). Undecidability is known when the number of quantified variables is unbounded and the satisfiability problem is PSPACE-complete for the propositional fragment. We show that the satisfiability problem for 1SL1 is PSPACE-complete and we characterize its expressive power by showing that every formula is equivalent to a Boolean combination of atomic properties. This contributes to our understanding of fragments of first-order separation logic that can specify properties about the memory heap of programs with singly-linked lists. When the number of program variables is fixed, the complexity drops to polynomial time. All the fragments we consider contain the magic wand operator and first-order quantification over a single variable.

Introduction

Separation Logic for Verifying Programs with Pointers. Separation logic [START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF] is a well-known logic for analysing programs with pointers stemming from BI logic [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF]. Such programs have specific errors to be detected and separation logic is used as an assertion language for Hoare-like proof systems [START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF] that are dedicated to verify programs manipulating heaps. Any procedure mechanizing the proof search requires subroutines that check the satisfiability or the validity of formulae from the assertion language. That is why, characterizing the computational complexity of separation logic and its fragments and designing optimal decision procedures remain essential tasks. Separation logic contains a structural separating connective and its adjoint (the separating implication, also known as the magic wand). The main concern of the paper is to study a nontrivial fragment of first-order separation logic with one record field as far as expressive power, decidability and complexity are concerned. Herein, the models of separation logic are pairs made of a variable valuation (store) and a partial function with finite domain (heap), also known as memory states. Decidability and Complexity. The complexity of satisfiability and model-checking problems for separation logic fragments have been quite studied [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF][START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF][START_REF] Cook | Tractable reasoning in a fragment of separation logic[END_REF] (see also new decidability results in [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF] or undecidability results in [START_REF] Brotherston | Undecidability of propositional separation logic and its neighbours[END_REF][START_REF] Larchey-Wendling | The undecidability of boolean BI through phase semantics[END_REF] in an alternative setting). Separation logic is equivalent to a Boolean propositional logic [START_REF] Lozes | Expressivité des logiques spatiales[END_REF][START_REF] Lozes | Separation logic preserves the expressive power of classical logic[END_REF] if first-order quantifiers are disabled. Separation logic without first-order quantifiers is decidable, but it becomes undecidable with first-order quantifiers [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF]. For instance, model-checking and satisfiability for propositional separation logic are PSPACE-complete problems [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF]. Decidable fragments with first-order quantifiers can be found in [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF][START_REF] Brochenin | On the almighty wand[END_REF]. However, these known results crucially rely on the memory model addressing cells with two record fields (undecidability of 2SL in [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF] is by reduction to the first-order theory of a finite binary relation). In order to study decidability or complexity issues for separation logic, two tracks have been observed in the literature. There is the verification approach with decision procedures for fragments of practical use, see e.g. [START_REF] Berdine | Smallfoot: Modular automatic assertion checking with separation logic[END_REF][START_REF] Cook | Tractable reasoning in a fragment of separation logic[END_REF][START_REF] Haase | SeLoger: A Tool for Graph-Based Reasoning in Separation Logic[END_REF]. Alternatively, fragments, extensions or variants of separation logic are considered from a logical viewpoint, see e.g. [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF][START_REF] Brotherston | Undecidability of propositional separation logic and its neighbours[END_REF][START_REF] Larchey-Wendling | The undecidability of boolean BI through phase semantics[END_REF]. Our Contributions. In this paper, we study first-order separation logic with one quantified variable, with an unbounded number of program variables and with one record field (herein called 1SL1). We introduce test formulae that state simple properties about the memory states and we show that every formula in 1SL1 is equivalent to a Boolean combination of test formulae, extending what was done in [START_REF] Lozes | Separation logic preserves the expressive power of classical logic[END_REF][START_REF] Brochenin | Reasoning about sequences of memory states[END_REF] for the propositional case. For instance, separating connectives can be eliminated in a controlled way as well as first-order quantification over the single variable. In that way, we show a quantifier elimination property similar to the one for Presburger arithmetic. This result extends previous ones on propositional separation logic [START_REF] Lozes | Expressivité des logiques spatiales[END_REF][START_REF] Lozes | Separation logic preserves the expressive power of classical logic[END_REF][START_REF] Brochenin | Reasoning about sequences of memory states[END_REF] and this is the first time that this approach is extended to a first-order version of separation logic with the magic wand operator. However, it is the best we can hope for since 1SL with two quantified variables and no program variables (1SL2) has been recently shown undecidable in [START_REF] Demri | Two-variable separation logic and its inner circle[END_REF]. Of course, other extensions of 1SL1 could be considered, for instance to add a bit of arithmetical constraints, but herein we focus on 1SL1 that is theoretically nicely designed, even though it is still unclear how much 1SL1 is useful for formal verification. We also establish that the satisfiability problem for Boolean combinations of test formulae is NP-complete thanks to a saturation algorithm for the theory of memory states with test formulae, paving the way to use SMT solvers to decide 1SL1 (see e.g. the use of such solvers in [START_REF] Piskac | Automating separation logic using SMT[END_REF]). Even though Boolean combinations of test formulae and 1SL1 have identical expressive power, we obtain PSPACE-completeness for model-checking and satisfiability in 1SL1. The conciseness of 1SL1 explains the difference between these two complexities. PSPACE-completeness is still a relatively low complexity but this result can be extended with more than one record field (but still with one quantified variable). This is the best we can hope for with one quantified variable and with the magic wand, that is notoriously known to easily increase complexity. We also show that 1SL1 with a bounded number of program variables has a satisfiability problem that can be solved in polynomial time. Omitted proofs can be found in the technical report [START_REF] Demri | Separation logic with one quantified variable[END_REF].

Preliminaries

First-order separation logic with one selector 1SL

Let PVAR " tx 1 , x 2 , . . .u be a countably infinite set of program variables and FVAR " tu 1 , u 2 , . . .u be a countably infinite set of quantified variables. A mem-ory state (also called a model) is a pair ps, hq such that s is a variable valuation of the form s : PVAR Ñ N (the store) and h is a partial function h : N ã N with finite domain (the heap) and we write domphq to denote its domain and ranphq to denote its range. Two heaps h 1 and h 2 are said to be disjoint, noted h 1 Kh 2 , if their domains are disjoint; when this holds, we write h 1] h 2 to denote the heap corresponding to the disjoint union of the graphs of h 1 and h 2 , hence domph 1] h 2 q " domph 1 q Z domph 2 q. When the domains of h 1 and h 2 are not disjoint, the composition h 1] h 2 is not defined even if h 1 and h 2 have the same values on domph 1 q X domph 2 q.

Formulae of 1SL are built from expressions of the form e ::" x | u where x P PVAR and u P FVAR, and atomic formulae of the form π ::" e " e 1 | e ãÑ e 1 | emp. Formulae are defined by the grammar A ::

" K | π | A ^B | A | A ˚B | A ´B | D u A,
where u P FVAR. The connective ˚is separating conjunction and ´is separating implication, usually called the magic wand. The size of a formula A, written |A|, is defined as the number of symbols required to write it. An assignment is a map f : FVAR Ñ N. The satisfaction relation (is parameterized by assignments (clauses for Boolean connectives are omitted):

ps, hq (f emp iff domphq " H. ps, hq (f e " e 1 iff res " re 1 s, with rxs def " spxq and rus def " fpuq.

ps, hq (f e ãÑ e 1 iff res P domphq and hpresq " re 1 s.

ps, hq

(f A 1 ˚A2 iff h " h 1] h 2 , ps, h 1 q (f A 1 , ps, h 2 q (f A 2 for some h 1 , h 2 . -ps, hq (f A 1 ´A2 iff for all h 1 , if h K h 1 & ps, h 1 q (f A 1 then ps, h] h 1 q (f A 2 .
ps, hq (f D u A iff there is l P N such that ps, hq (fruÞ Ñls A where fru Þ Ñ ls is the assignment equal to f except that u takes the value l.

Whereas 'D' is clearly a first-order quantifier, the connectives ˚and ´are known to be second-order quantifiers. In the paper, we show how to eliminate the three connectives when only one quantified variable is used.

We write 1SL0 to denote the propositional fragment of 1SL, i.e. without any occurrence of a variable from FVAR. Similarly, we write 1SL1 to denote the fragment of 1SL restricted to a single quantified variable, say u. In that case, the satisfaction relation can be denoted by (l where l is understood as the value for the variable under the assignment.

Given q ě 1 and A in 1SL built over x 1 ,. . . , x q , we define its memory threshold thpq, Aq: thpq, Aq def " 1 for atomic formula A; thpq, A 1 ^A2 q def " maxpthpq, A 1 q, thpq, A 2 qq; thpq, A 1 q def " thpq, A 1 q; thpq, D u A 1 q def " thpq, A 1 q; thpq, A 1 ˚A2 q def " thpq, A 1 q `thpq, A 2 q; thpq, A 1 ´A2 q def " q `maxpthpq, A 1 q, thpq, A 2 qq. Lemma 1. Given q ě 1 and a formula A in 1SL, we have 1 ď thpq, Aq ď q ˆ|A|. Let L be a logic among 1SL, 1SL1 and 1SL0. As usual, the satisfiability problem for L takes as input a formula A from L and asks whether there is a memory state ps, hq and an assignment f such that ps, hq (f A. The model-checking problem for L takes as input a formula A from L, a memory state ps, hq and an assignment f for free variables from A and asks whether ps, hq (f A. When checking the satisfiability status of a formula A in 1SL1, we assume that its program variables are contained in tx 1 , . . . , x q u for some q ě 1 and the quantified variable is u. So, PVAR is unbounded but as usual, when dealing with a specific formula, the set of program variables is finite.

Theorem 2. [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF][START_REF] Brochenin | On the almighty wand[END_REF][START_REF] Demri | Two-variable separation logic and its inner circle[END_REF] Satisfiability and model-checking problems for 1SL0 are PSPACEcomplete, satisfiability problem for 1SL is undecidable, even restricted to two variables.

A bunch of properties stated in 1SL1

The logic 1SL1 allows to express different types of properties on memory states. The examples below indeed illustrate the expressivity of 1SL1, and in the paper we characterize precisely what can be expressed in 1SL1.

-The domain of the heap has at least k elements: emp ˚¨¨¨˚ emp (k times).

-The variable x i is allocated in the heap: allocpx i q def " px i ãÑ x i q ´K. -The variable x i points to a location that is a loop: tolooppx i q def " D u px i ãÑ u û ãÑ uq; the variable x i points to a location that is allocated:

toallocpx i q def " D u px i ãÑ u ^allocpuqq.
-Variables x i and x j point to a shared location: convpx i , x j q def " D u px i ãÑ u xj ãÑ uq; there is a location between x i and x j : inbetweenpx i , x j q def " Du px i ãÑ u ^u ãÑ x j q. -Location interpreted by x i has exactly one predecessor can be expressed in 1SL1: pD u u ãÑ x i q ^ pD u u ãÑ x i ˚D u u ãÑ x i q.

-Heap has at least 3 self-loops: pD u u ãÑ uq ˚pD u u ãÑ uq ˚pD u u ãÑ uq.

At the heart of domain partitions

Given ps, hq and a finite set V " tx 1 , . . . , x q u Ď PVAR, we introduce two partitions of domphq depending on V: one partition takes care of self-loops and predecessors of interpretations of program variables, the other one takes care of locations closely related to interpretations of program variables (to be defined below). This allows us to decompose the domain of heaps in such a way that we can easily identify the properties that can be indeed expressed in 1SL1 restricted to the variables in V. We introduce a first partition of the domain of h by distinguishing the self-loops and the predecessors of variable interpretations on the one hand, and the remaining locations in the domain on the other hand: predps, hq def " Ť i predps, h, iq with predps, h, iq def " tl 1 : hpl 1 q " spx i qu for every i P r1, qs; loopps, hq def " tl P domphq : hplq " lu; remps, hq def " domphqzppredps, hq Y loopps, hqq. So, obviously domphq " remps, hq Z ppredps, hq Y loopps, hqq. The sets predps, hq and loopps, hq are not necessarily disjoint. As a consequence of h being a partial function, the sets predps, h, iq and predps, h, jq intersect only if spx i q " spx j q, in which case predps, h, iq " predps, h, jq.

We introduce a second partition of domphq by distinguishing the locations related to a cell involving a program variable interpretation on the one hand, and the remaining locations in the domain on the other hand. So, the sets below are also implicitly parameterized by V: refps, hq def " domphq X spVq, accps, hq def " domphq X hpspVqq, ♥ps, hq def " refps, hq Y accps, hq, ♥ps, hq def " domphqz♥ps, hq. The core of the memory state, written ♥ps, hq, contains the locations l in domphq such that either l is the interpretation of a program variable or it is an image by h of a program variable (that is also in the domain). In the sequel, we need to consider locations that belong to the intersection of sets from different partitions. r r

♥ p ♥ ö ♥ ö ♥ x 1 x 2 x 3 x 4
Here are their formal definitions:

pred ♥ ps, hq def " predps, hqz♥ps, hq, pred ♥ ps, h, iq def " predps, h, iqz♥ps, hq, -loop ♥ ps, hq def " loopps, hqz♥ps, hq, rem ♥ ps, hq def " remps, hqz♥ps, hq.

For instance, pred ♥ ps, hq contains the set of locations l from domphq, that are predecessors of a variable interpretation but no program variable x in tx 1 , . . . , x q u satisfies spxq " l or hpspxqq " l (which means l R ♥ps, hq). The above figure presents a memory state ps, hq with the variables x 1 , . . . ,x 4 . Nodes labelled by '♥' [resp. 'ö', 'p', 'r'] belong to ♥ps, hq [resp. loop ♥ ps, hq, pred ♥ ps, hq, rem ♥ ps, hq]. The introduction of the above sets provides a canonical way to decompose the heap domain, which will be helpful in the sequel.

Lemma 3 (Canonical decomposition)

. For all stores s and heaps h, the following identity holds: domphq " ♥ps, hq Z pred ♥ ps, hq Z loop ♥ ps, hq Z rem ♥ ps, hq.

The proof is by easy verification since predps, hq X loopps, hq Ď ♥ps, hq. Proposition 4. pred ♥ ps, h, iq | i P r1, qs (is a partition of pred ♥ ps, hq.

Remark that both pred ♥ ps, h, iq " H or pred ♥ ps, h, iq " pred ♥ ps, h, jq are possible. Below, we present properties about the canonical decomposition.

Proposition 5. Let s, h, h 1 , h 2 be such that h " h 1] h 2 . Then, ♥ps, hq X domph 1 q " ♥ps, h 1 q Z ∆ps, h 1 , h 2 q with ∆ps, h 1 , h 2 q def " domph 1 q X h 2 pspVqq X spVq X h 1 pspVqq (where X def " NzX).

The set ∆ps, h 1 , h 2 q contains the locations belonging to the core of h and to the domain of h 1 , without being in the core of h 1 . Its expression in Proposition 5 uses only basic set-theoretical operations. From Proposition 5, we conclude that ♥ps, h 1] h 2 q can be different from ♥ps, h 1 q Z ♥ps, h 2 q.

How to count in 1SL1

Let us define a formula that states that loop ♥ ps, hq has size at least k. First, we consider the following set of formulae: T q " tallocpx 1 q, . . . , allocpx q qu Y ttoallocpx 1 q, . . . , toallocpx q qu. For any map f : T q Ñ t0, 1u, we associate a formula A f defined by A f def "

Ź tB | B P T q and fpBq " 1u ^Źt B | B P T q and fpBq " 0u. Formula A f is a conjunction made of literals from T q such that a positive literal B occurs exactly when fpBq " 1 and a negative literal B occurs exactly when fpBq " 0. We write A pos f to denote Ź tB | B P T q and fpBq " 1u. Let us define the formula # loop ě k by pDu u ãÑ uq ˚¨¨¨˚pDu u ãÑ uq (repeated k times). We can express that loop ♥ ps, hq has size at least k (where k ě 1)

with # loop ♥ ě k def " Ž f A f ^´A pos f ˚`# loop ě k ˘¯,
where f spans over the finite set of maps T q Ñ t0, 1u. So, the idea behind the construction of the formula is to divide the heap into two parts: one subheap contains the full core. Then, any loop in the other subheap is out of the core because of the separation. All formulae from the above lemma have threshold polynomial in q `α.

Expressive Completeness

On comparing cardinalities: equipotence

We introduce the notion of equipotence and state a few properties about it. This will be useful in the forthcoming developments. Let α P N. We say that two finite sets X and Y are α-equipotent and we write X " α Y if, either cardpXq " cardpY q or both cardpXq and cardpY q are greater that α. The equipotence relation is also decreasing, i.e. " α2 Ď " α1 holds for all α 1 ď α 2 . We state below two lemmas that will be helpful in the sequel. Lemma 7. Let α P N and X, X 1 , Y, Y 1 be finite sets such that X XX 1 " H, Y XY 1 " H, X " α Y and cardpX 1 q " cardpY 1 q hold. Then X Z X 1 " α Y Z Y 1 holds. Lemma 8. Let α 1 , α 2 P N and X, X 1 , Y 0 be finite sets s.t. X Z X 1 " α1`α2 Y 0 holds. Then there are two finite sets

Y, Y 1 s.t. Y 0 " Y Z Y 1 , X " α1 Y and X 1 " α2 Y 1 hold.

All we need is test formulae

Test formulae express simple properties about the memory states; this includes properties about program variables but also global properties about numbers of predecessors or loops, following the decomposition in Section 2.3. These test formulae allow us to characterize the expressive power of 1SL1, similarly to what has been done in [START_REF] Lozes | Expressivité des logiques spatiales[END_REF][START_REF] Lozes | Separation logic preserves the expressive power of classical logic[END_REF][START_REF] Brochenin | Reasoning about sequences of memory states[END_REF] for 1SL0. Since every formula in 1SL1 is shown equivalent to a Boolean combination of test formulae (forthcoming Theorem 19), this process can be viewed as a means to eliminate separating connectives in a controlled way; elimination is not total since the test formulae require such separating connectives. However, this is analogous to quantifier elimination in Presburger arithmetic for which simple modulo constraints need to be introduced in order to eliminate the quantifiers (of course, modulo constraints are defined with quantifiers but in a controlled way too).

Let us introduce the test formulae. We distinguish two types, leading to distinct sets. There are test formulae that state properties about the direct neighbourhood of program variables whereas others state global properties about the memory states. The test formulae of the form # pred i ♥ ě k are of these two types but they will be included in Size α since these are cardinality constraints. Definition 9 (Test formulae). Given q, α ě 1 , we define sets of test formulae:

Equality def " tx i " x j | i, j P r1, qsu Pattern def " tx i ãÑ x j , convpx i , x j q, inbetweenpx i , x j q | i, j P r1, qsu Y ttoallocpx i q, tolooppx i q, allocpx i q | i P r1, qsu Extra u def " tu ãÑ u, allocpuqu Y tx i " u, x i ãÑ u, u ãÑ x i | i P r1, qsu Size α def " t# pred i ♥ ě k | i P r1, qs, k P r1, αsu Y t# loop ♥ ě k, # rem ♥ ě k | k P r1, αsu Basic def " Equality Y Pattern Test α def " Basic Y Size α Y tKu Basic u def " Basic Y Extra u Test u α def " Test α Y Extra u
Test formulae express simple properties about the memory states, even though quite large formulae in 1SL1 may be needed to express them, while being of memory threshold polynomial in q `α. An atom is a conjunction of test formulae or their negation (literal) such that each formula from Test u α occurs once (saturated conjunction of literals). Any memory state satisfying an atom containing allocpx 1 q ^ # pred 1 ♥ ě 1 ^ # loop ♥ ě 1 ^ # rem ♥ ě 1 (with q " 1) has an empty heap. Lemma 10. Satisfiability of conjunctions of test formulae or their negation can be checked in polynomial time (q and α are not fixed and the bounds k in test formulae from Size α are encoded in binary).

The tedious proof of Lemma 10 is based on a saturation algorithm. The size of a Boolean combination of test formulae is the number of symbols to write it, when integers are encoded in binary (those from Size α). Lemma 10 entails the following complexity characterization, which indeed makes a contrast with the complexity of the satisfiability problem for 1SL1 (see Theorem 28).

Theorem 11. Satisfiability problem for Boolean combinations of test formulae in set Ť

αě1 Test u α (q and α are not fixed, and bounds k are encoded in binary) is NP-complete. Checking the satisfiability status of a Boolean combination of test formulae is typically the kind of tasks that could be performed by an SMT solver, see e.g. [START_REF] De Moura | Z3: An Efficient SMT Solver[END_REF][START_REF] Barrett | CVC4[END_REF]. This is particularly true since no quantification is involved and test formulae are indeed atomic formulae about the theory of memory states.

Lemma 17 (Existence).

Let α ě 1 and let us assume ps, h, l 0 q » α ps 1 , h 1 , l 1 q. We have: (1) for every l P N, there is l 1 P N such that ps, h, lq » u ps 1 , h 1 , l 1 q; (2) for all l, l 1 , ps, h, lq » u ps 1 , h 1 , l 1 q iff ps, h, lq » α ps 1 , h 1 , l 1 q. Now, we state the main property in the section, namely test formulae provide the proper abstraction.

Lemma 18 (Correctness).

For any A in 1SL1 with at most q ě 1 program variables, if ps, h, lq » α ps 1 , h 1 , l 1 q and thpq, Aq ď α then ps, hq (l A iff ps 1 , h 1 q (l 1 A.

The proof is by structural induction on A using Lemma 15,16 and 17. Here is one of our main results characterizing the expressive power of 1SL1.

Theorem 19 (Quantifier Admissibility).

Every formula A in 1SL1 with q program variables is logically equivalent to a Boolean combination of test formulae in Test u thpq,Aq .

The proof of Theorem 19 does not provide a constructive way to eliminate quantifiers, which will be done in Section 4 (see Corollary 30).

Proof. Let α " thpq, Aq and consider the set of literals S α ps, h, lq def " tB | B P Test u α and ps, hq (l Bu Y t B | B P Test u α and ps, hq * l Bu. As Test u α is finite, the set S α ps, h, lq is finite and let us consider the well-defined atom Ź S α ps, h, lq. We have ps

1 , h 1 q (l 1 Ź S α ps, h, lq iff ps, h, lq » α ps 1 , h 1 , l 1 q. The disjunction T A def " Ž t Ź S α ps, h, lq | ps, hq (l Au is a (finite) Boolean combination of test formulae in Test u α because
Ź S α ps, h, lq ranges over the finite set of atoms built from Test u α . By Lemma 18, we get that A is logically equivalent to T A .

[\ When A in 1SL1 has no free occurrence of u, one can show that A is equivalent to a Boolean combination of formulae in Test thpq,Aq . Similarly, when A in 1SL1 has no occurrence of u at all, A is equivalent to a Boolean combination of formulae of the form x i " x j , x i ãÑ x j , allocpx i q and # rem ♥ ě k with the alternative definition ♥ps, hq " tspx i q : spx i q P domphq, i P r1, qsu (see also [START_REF] Lozes | Expressivité des logiques spatiales[END_REF][START_REF] Lozes | Separation logic preserves the expressive power of classical logic[END_REF][START_REF] Brochenin | Reasoning about sequences of memory states[END_REF]). Theorem 19 witnesses that the test formulae we introduced properly abstract memory states when 1SL1 formulae are involved. Test formulae from Definition 9 were not given to us and we had to design such formulae to conclude Theorem 19. Let us see what the test formulae satisfy. Above all, all the test formulae can be expressed in 1SL1, see developments in Section 2.2 and Lemma 6. Then, we aim at avoiding redundancy among the test formulae. Indeed, for any kind of test formulae from Test u α leading to the subset X Ď Test u α (for instance X " t# loop ♥ ě k | k ď αu), there are ps, hq, ps 1 , h 1 q and l, l 1 P N such that (1) for every B P Test u α zX, we have ps, hq (l B iff ps 1 , h 1 q (l 1 B but (2) there is B P X such that not (ps, hq (l B iff ps 1 , h 1 q (l 1 B). When X " t# loop ♥ ě k | k ď αu, clearly, the other test formulae cannot systematically enforce constraints on the cardinality of the set of loops outside of the core. Last but not least, we need to prove that the set of test formulae is expressively complete to get Theorem 19. Lemmas 15, 16 and 17 are helpful to obtain Lemma 18 taking care of the different quantifiers. It is in their proofs that the completeness of the set Test u α is best illustrated. Nevertheless, to apply these lemmas in the proof of Lemma 18, we designed the adequate definition for the function thp¨, ¨q and we arranged different thresholds in their statements. So, there is a real interplay between the definition of thp¨, ¨q and the lemmas used in the proof of Lemma 18.

A small model property can be also proved as a consequence of Theorem 19 and the proof of Lemma 10, for instance.

Corollary 20 (Small Model Property).

Let A be a formula in 1SL1 with q program variables. Then, if A is satisfiable, then there is a memory state ps, hq and l P N such that ps, hq (l A and maxpmaxvalps, hq, lq ď 3pq `1q `pq `3qthpq, Aq.

There is no need to count over thpq, Aq (e.g., for the loops outside the core) and the core uses at most 3q locations. Theorem 19 provides a characterization of the expressive power of 1SL1, which is now easy to differenciate from 1SL2.

Corollary 21. 1SL2 is strictly more expressive than 1SL1.

Deciding 1SL1 Satisfiability and Model-Checking Problems

Abstracting further memory states

Satisfaction of A depends only on the satisfaction of formulae from Test u thpq,Aq . So, to check satisfiability of A, there is no need to build memory states but rather only abstractions in which only the truth value of test formulae matters. In this section we introduce abstract memory states and we show how it matches indistinguihability with respect to test formulae in Test u α (Lemma 24). Then, we use these abstract structures to design a model-checking decision procedure that runs in nondeterministic polynomial space.

Definition 22. Let q, α ě 1. An abstract memory state a over pq, αq is a structure ppV, Eq, l, r, p 1 , . . . , p q q such that:

1. There is a partition P of tx 1 , . . . , x q u such that P Ď V . This encodes the store. 2. pV, Eq is a functional directed graph and a node v in pV, Eq is at distance at most two of some set of variables X in P . This allows to encode only the pseudo-core of memory states and nothing else. 3. l, p 1 , . . . , p q , r P r0, αs and this corresponds to the number of self-loops [resp. numbers of predecessors, number of remaining allocated locations] out of the core, possibly truncated over α. We require that if x i and x j belong to the same set in the partition P , then p i " p j .

Given q, α ě 1, the number of abstract memory states over pq, αq is not only finite but reasonably bounded. Given ps, hq, we define its abstraction absps, hq over pq, αq as the abstract memory state ppV, Eq, l, r, p 1 , . . . , p q q such that l " minploop ♥ ps, hq, αq, r " minprem ♥ ps, hq, αq, p i " minppred ♥ ps, h, iq, αq for every i P r1, qs. -P is a partition of tx 1 , . . . , x q u so that for all x, x 1 , spxq " spx 1 q iff x and x 1 belong to the same set in P .

1: if B is atomic then return AMCppa, uq, Bq; 2: if B " B1 then return not MC(pa, uq, B1); 3: if B " B1 ^B2 then return (MC(pa, uq, B1) and MC(pa, uq, B2)); 4: if B " D u B1 then return J iff there is u 1 such that MC(pa, u 1 q, B1) = J; 5: if B " B1 ˚B2 then return J iff there are pa1, u1q and pa2, u2q such that ˚appa, uq, pa1, u1q, pa2, u2qq and MC(pa1, u1q, B1) = MC(pa2, u2q, B2) = J; 6: if B " B1´B2 then return K iff for some pa 1 , u 1 q and pa 2 , u 2 q such that ˚appa 2 , u 2 q, pa 1 , u 1 q, pa, uqq, MC(pa 1 , u 1 q, B1) = J and MC(pa 2 , u 2 q, B2) = K; Fig. Definition 25. Given pointed abstract memory states pa, uq, pa 1 , u 1 q and pa 2 , u 2 q, we write ˚appa, uq, pa 1 , u 1 q, pa 2 , u 2 qq if there exist l P N, a store s and disjoint heaps h 1 and h 2 such that absps, h 1] h 2 , lq " pa, uq, absps, h 1 , lq " pa 1 , u 1 q and absps, h 2 , lq " pa 2 , u 2 q.

Ternary relation ˚a is not difficult to check even though it is necessary to verify that the abstract disjoint union is properly done. Lemma 26. Given q, α ě 1, the ternary relation ˚a can be decided in polynomial time in q `logpαq for all the pointed abstract memory states built over pq, αq.

A polynomial-space decision procedure

Figure 1 presents a procedure MC(pa, uq, B) returning a Boolean and taking as arguments, a pointed abstract memory state over pq, αq and a formula B with thpq, Bq ď α. All the quantifications over pointed abstract memory states are done over pq, αq. A case analysis is provided depending on the outermost connective. Its structure is standard and mimicks the semantics for 1SL1 except that we deal with abstract memory states. The auxiliary function AMC(pa, uq, B) makes no recursive calls and is dedicated to atomic formulae (see Figure 2). The design of MC is similar to nondeterministic polynomial space procedures, see e.g. [START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF][START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF] and it returns either K or J.

Lemma 27. Let q, α ě 1, pa, uq be a pointed abstract memory state over pq, αq and A be in 1SL1 built over x 1 , . . . , x q s.t. thpq, Aq ď α. The propositions below are equivalent: (I) MCppa, uq, Aq returns J; (II) There exist ps, hq and l P N such that absps, h, lq " pa, uq and ps, hq (l A; (III) For all ps, hq and l P N s.t. absps, h, lq " pa, uq, we have ps, hq (l A. Consequently, we get the following complexity characterization.

Theorem 28. Model-checking and satisfiability pbs. for 1SL1 are PSPACE-complete.

Below, we state two nice by-products of our proof technique.

Corollary 29. Let q ě 1. The satisfiability problem for 1SL1 restricted to formulae with at most q program variables can be solved in polynomial time.

Corollary 30. Given a formula A in 1SL1, computing a Boolean combination of test formulae in Test u thpq,Aq logically equivalent to A can be done in polynomial space (even though the outcome formula can be of exponential size).

Here is another by-product of our proof technique. The PSPACE bound is preserved when formulae are encoded as DAGs instead of trees. The size of a formula is then simply its number of subformulae. This is similar to machine encoding, provides a better conciseness and complexity upper bounds are more difficult to obtain. With this alternative notion of length, thpq, Aq is only bounded by q ˆ2|A| (compare with Lemma 1). Nevertheless, this is fine to get PSPACE upper bound with this encoding since the algorithm to solve the satisfiability problem runs in logarithmic space in α, as we have shown previously.

Conclusion

In [START_REF] Brochenin | On the almighty wand[END_REF], the undecidability of 1SL with a unique record field is shown. 1SL0 is also known to be PSPACE-complete [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF]. In this paper, we provided an extension with a unique quantified variable and we show that the satisfiability problem for 1SL1 is PSPACE-complete by presenting an original and fine-tuned abstraction of memory states. We proved that in 1SL1 separating connectives can be eliminated in a controlled way as well as first-order quantification over the single variable. In that way, we show a quantifier elimination property. Apart from the complexity results and the new abstraction for memory states, we also show a quite surprising result: when the number of program variables is bounded, the satisfiability problem can be solved in polynomial time. Last but not least, we have established that satisfiability problem for Boolean combinations of test formulae is NP-complete. This is reminiscent of decision procedures used in SMT solvers and it is a challenging question to take advantage of these features to decide 1SL1 with an SMT solver. Finally, the design of fragments between 1SL1 and undecidable 1SL2 that can be decided with an adaptation of our method is worth being further investigated.

Fig. 2 .

 2 Fig. 2. Function AMCppa, uq, Bq

 Lemma 6. (I) For any k ě 1, there is a formula # loop ♥ ě k s.t. for any ps, hq, we have ps, hq (# loop ♥ ě k iff cardploop ♥ ps, hqq ě k. (II) For any k ě 1 and any i P r1, qs, there is a formula # pred i ♥ ě k s.t. for any ps, hq, we have ps, hq (# pred i ♥ ě k iff cardppred ♥ ps, h, iqq ě k. (III) For any k ě 1, there is a # rem ♥ ě k s.t. for any ps, hq, we have ps, hq (# rem ♥ ě k iff cardprem ♥ ps, hqq ě k.

 1. Function MCppa, uq, Bq 1: if B is emp then return J iff E " H and all numerical values are zero; 2: if B is xi " xj then return J iff xi, xj P X, for some X P P ;

3: if B is xi " u then return J iff u " X for some X P P such that xi P X; 4: if B is u " u then return J; 5: if B is xi ãÑ xj then return J iff pX, X 1 q P E where xi P X P P and xj P X P P ; 6: if B is xi ãÑ u then return J iff pX, uq P E for some X P P such that xi P X; 7: if B is u ãÑ xi then return J iff either u " P piq or (u P V and there is some X P P such that xi P X and pu, Xq P E); 8: if B is u ãÑ u then return J iff either u " L or pu, uq P E;

Acknowledgments: We warmly thank the anonymous referees for their numerous and helpful suggestions, improving significantly the quality of the paper and its extended version [10]. Great thanks also to Morgan Deters (New York University) for feedback and discussions about this work.

‹ Work partially supported by the ANR grant DynRes (project no. ANR-11-BS02-011)

and by the EU Seventh Framework Programme under grant agreement No. PIOF-GA-2011-301166 (DATAVERIF).

Below, we introduce equivalence relations depending on whether memory states are indistinguishable w.r.t. some set of test formulae. Definition 12. We say that ps, h, lq and ps 1 , h 1 , l 1 q are basically equivalent [resp. extra equivalent, resp. α-equivalent] and we denote ps, h, lq » b ps 1 , h 1 , l 1 q [resp. ps, h, lq » u ps 1 , h 1 , l 1 q, resp. ps, h, lq » α ps 1 , h 1 , l 1 q] when the condition ps, hq (l B iff ps 1 , h 1 q (l 1 B is fulfilled for any B P Basic u [resp. B P Extra u , resp. B P Test u α].

Hence ps, h, lq and ps 1 , h

Proposition 13. ps, h, lq » α ps 1 , h 1 , l 1 q is equivalent to (1) ps, h, lq » b ps 1 , h 1 , l 1 q and (2) pred ♥ ps, h, iq " α pred ♥ ps 1 , h 1 , iq for any i P r1, qs, and (3) loop ♥ ps, hq " α loop ♥ ps 1 , h 1 q and (4) rem ♥ ps, hq " α rem ♥ ps 1 , h 1 q.

The proof is based on the identity Basic u Y Size α " Test u α . The pseudo-core of ps, hq, written p♥ps, hq, is defined as p♥ps, hq " spVq Y hpspVqq and ♥ps, hq is equal to p♥ps, hq X domphq.

Lemma 14 (Bijection between pseudo-cores).

Let l 0 , l 1 P N and ps, hq and ps 1 , h 1 q be two memory states s.t. ps, h, l 0 q » b ps 1 , h 1 , l 1 q. Let R be the binary relation on N defined by: l R l 1 iff (a) [l " l 0 and l 1 " l 1] or (b) there is i P r1, qs s.t. [l " spx i q and l 1 " s 1 px i q] or [l " hpspx i qq and l 1 " h 1 ps 1 px i qq]. Then R is a bijective relation between p♥ps, hq Y tl 0 u and p♥ps 1 , h 1 q Y tl 1 u. Its restriction to ♥ps, hq is in bijection with ♥ps 1 , h 1 q too if case (a) is dropped out from definition of R.

Expressive completeness of 1SL1 with respect to test formulae

Lemmas 15, 16 and 17 below roughly state that the relation » α behaves properly. Each lemma corresponds to a given quantifier, respectively separating conjunction, magic wand and first-order quantifier. Lemma 15 below states how two equivalent memory states can be split, while loosing a bit of precision.

Lemma 15 (Distributivity). Let us consider s, h, h

Given ps, hq, we write maxvalps, hq to denote maxpspVq Y domphq Y ranphqq. Lemma 16 below states how it is possible to add subheaps while partly preserving precision.

Lemma 16. Let α, q ě 1 and l 0 , l 1 0 P N. Assume that ps, h, l 0 q » q`α ps 1 , h 1 , l 1 0 q and h 0 Kh. Then there is h 1 0 Kh 1 such that (1) ps, h 0 , l 0 q » α ps 1 , h 1 0 , l 1 0 q (2) ps, h]h 0 , l 0 q » α ps 1 , h 1] h 1 0 , l 1 0 q; (3) maxvalps 1 , h 1 0 q ď maxvalps 1 , h 1 q `l1 0 `3pq `1qα `1.

Note the precision lost from ps, h, l 0 q » q`α ps 1 , h 1 , l 1 0 q to ps, h 0 , l 0 q » α ps 1 , h 1 0 , l 1 0 q.

-V is made of elements from P as well as of locations from the set below:

`thpspx i qq : spx i q P domphq, i P r1, qsuY thphpspx i qqq : hpspx i qq P domphq, i P r1, qsu ˘ztspx i q : i P r1, qsu -The graph pV, Eq is defined as follows:

1. pX, X 1 q P E if X, X 1 P P and hpspxqq " spx 1 q for some x P X, x 1 P X 1 . 2. pX, lq P E if X P P and hpspxqq " l for some variable x in X and l R tspx i q : i P r1, qsu. 3. pl, l 1 q P E if there is a set X P P such that pX, lq P E and hplq " l 1 and l 1 R tspx i q : i P r1, qsu. 4. pl, Xq P E if there is X 1 P P such that pX 1 , lq P E and hplq " spxq for some x P X and l R tspx i q : i P r1, qsu.

We define abstract memory states to be isomorphic if (1) the partition P is identical, (2) the finite digraphs satisfy the same formulae from Basic when the digraphs are understood as heap graphs restricted to locations at distance at most two from program variables, and (3) all the numerical values are identical. A pointed abstract memory state is a pair pa, uq such that a " ppV, Eq, l, r, p 1 , . . . , p q q is an abstract memory state and u takes one of the following values: u P V and u is at distance at most one from some X P P , or u " L but l ą 0 is required, or u " R but r ą 0 is required, or u " P piq for some i P r1, qs but p i ą 0 is required, or u " D. Given a memory state ps, hq and l P N, we define its abstraction absps, h, lq with respect to pq, αq as the pointed abstract memory state pa, uq such that a " absps, hq and u P V if either l P V and distance is at most one from some X P P , or u " X and there is x P X P P such that spxq " l, -or u def " L if l P loop ♥ ps, hq, or u def " R if l P rem ♥ ps, hq, -or u def " P piq if l P pred ♥ ps, h, iq for some i P r1, qs, -or u def " D if none of the above conditions applies (so l R domphq).

Pointed abstract memory states pa, uq and pa 1 , u 1 q are isomorphic def ô a and a 1 are isomorphic and, u " u 1 or u and u 1 are related by the isomorphism.

Lemma 23. Given a pointed abstract memory state pa, uq over pq, αq, there exist a memory state ps, hq and l P N such that absps, h, lq and pa, uq are isomorphic Abstract memory states is the right way to abstract memory states when the language 1SL1 is involved, which can be formally stated as follows.

Lemma 24. Let ps, hq, ps 1 , h 1 q be memory states and l, l 1 P N. The next three propositions are equivalent: (1) ps, h, lq » α ps 1 , h 1 , l 1 q; (2) absps, h, lq and absps 1 , h 1 , l 1 q are isomorphic; (3) there is a unique atom B from Test u α s.t. ps, hq (l B and ps 1 , h 1 q (l 1 B. Equivalence between (1) and (3) is a consequence of the definition of the relation » α . Hence, a pointed abstract memory state represents an atom of Test u α , except that it is a bit more concise (only space in Opq `logpαqq is required whereas an atom requires polynomial space in q `α).