
HAL Id: hal-01258754
https://hal.science/hal-01258754v2

Preprint submitted on 20 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Kleene theorem for Petri automata
Paul Brunet

To cite this version:

Paul Brunet. A Kleene theorem for Petri automata. 2016. �hal-01258754v2�

https://hal.science/hal-01258754v2
https://hal.archives-ouvertes.fr

Kleene for Petri

A Kleene theorem for Petri automata

Paul Brunet
Plume team – LIP, Université de Lyon, CNRS, ENS de Lyon, Inria, UCBL

paul.brunet@ens-lyon.fr

Abstract
While studying the equational theory of Kleene Allegories (KAl),
we recently proposed two ways of defining sets of graphs [BP15]:
from KAl expressions, that is, regular expressions with intersection
and converse; and from a new automata model, Petri automata,
based on safe Petri nets. To be able to compare the sets of graphs
generated by KAl expressions, we explained how to construct Petri
automata out of arbitrary KAl expressions.

In the present paper, we describe a reverse transformation: re-
covering an expression from an automaton. This has several conse-
quences. First, it generalises Kleene theorem: the graph languages
specified by Petri automata are precisely the languages denoted by
KAl expressions. Second, this entails that decidability of the equa-
tional theory of Kleene Allegories is equivalent to that of language
equivalence for Petri automata. Third, this transformation may be
used to reason syntactically about the occurrence nets of a safe Petri
net, provided they are parallel series.

Keywords regular expressions, graph language, Petri nets, finite
automata, allegories, intersection, converse, Kleene theorem

1. Introduction
Petri Automata are Petri net-based automata, and are equipped with
an operational semantics allowing them to recognise sets of graphs.
They were introduced in a recent paper [2] to study Kleene Alle-
gory expressions: terms built from a finite alphabet of variables,
with the constants 0 and 1, the unary operators converse and Kleene
star, and the binary operators union, composition and intersection.
To any such expression, one can associate a set of Two Terminal
Series Parallel graphs (called graphs in the sequel) such that two
expressions are universally equivalent when interpreted as binary
relations if and only if their associated sets of graphs are equal.
In [2] we gave a method to build from any Kleene Allegory ex-
pression a Petri automaton recognising the appropriate set of series
parallel graphs.

It is then natural to wonder what is the class of graph languages
recognised by Petri automata. For the usual notion of finite state
automata, the well known Kleene Theorem states that the languages
recognisable by automata are exactly those specifiable by regular
expressions. In this paper we provide a similar theorem for Petri
automata and Kleene Allegory expressions.

[Copyright notice will appear here once ’preprint’ option is removed.]

In the remainder of this introduction, we explain informally
what are the graphs associated with expressions and Petri automata
and we give the outline of the computation of the expression corre-
sponding to a given automaton.

1.1 Expressions
For the bulk of the development, we restrict ourselves to a simpler
setting: we consider expressions over the syntax of Kleene lattices,
that is to say without the converse operation. To any such expres-
sion e, we associate a set G (e) of labelled directed graphs with two
distinguished vertices understood as input and output. A letter a is
associated to a singleton set containing the following graph:

a

The input in this graph is the vertex with the unmarked incoming
arrow, and the output is the other vertex, with the outgoing arrow.
Similarly the constant 1 yields a singleton set containing the graph
where the input is linked to the output by an edge labelled 1. We
define the sequential composition of two such graphs by identify-
ing the output of the first graph with the input of the second one.
We also build the parallel composition (corresponding to the inter-
section operation) of two graphs by identifying both their inputs
and their outputs. For instance G (a ⋅ (b ∩ 1)) simply contains the
graph:

a
b

1

With these constructs we can define the set of graphs associated to
an expression by structural induction: G (1) and G (a) are defined
as before, G (e ∪ f) is the union of G (e) and G (f); G (0) is the
empty set; G (e ⋅ f) (respectively G (e ∩ f)) is the set of graphs
obtained by composing in sequence (resp. in parallel) a graph
in G (e) with a graph in G (f); and finally the graphs in G (e⋆)
are either the graph of 1 or built by sequentially composing any
finite number of graphs from G (e).

1.2 Petri automata
A Petri automaton over the alphabet Σ is defined by:

• a finite set of places (denoted in graphical representations by
round vertices),

• a finite set T of transitions (denoted by rectangular vertices).
Each transition is equipped with a set of input places (incoming
arrows) and a set of outputs. These outputs are pairs of a label
in Σ ∪ {1}, and a place.

• an initial place and a finite set of final configurations, a config-
uration being a set of places.

Here is an example of Petri automaton:

1 2016/1/19

paul.brunet@ens-lyon.fr

A

B

C

D

E

F

a

b

1

c

d

The initial place isA, as denoted by the unmarked incoming arrow.
There is a single final configuration, containing only the place F
(as indicated by the red dotted rectangle). In this paper, we will
restrict ourselves to automata having a single final configuration,
composed of one place.

Runs in such an automaton are plays of a token firing game:
one starts by placing tokens on certain places, and if every place
in the input of a transition holds a token, this transition is enabled
and may be fired. Firing a transition will then remove one token
from each of its inputs, and place one on each output. If the run
starts with a single token on the initial place, we call it initial, and
if it stops with one token on each place of a final configuration it is
final. An accepting run is both initial and final. For instance, here
is a graphical representation of an accepting run in the previous
automaton:

A

B

C

B

E

D

E

F0

1

2

3

a

b

d

c

1

We further impose that Petri automata should be safe, meaning that
at any step of any initial run of the automaton at most one token
is present on each place. The last step to get the language of an
automaton is to generate a graph from any run of the automaton
(called the trace of the run). We do so by considering a graph whose
vertices are the transitions (plus an additional final vertex), and
labelled edges are extrapolated from the outputs of the transitions.
For instance the run from the previous example yields the graph:

0
1

2
3 �

b

a c

d

1

We may thus define the language G (A) of an automaton A as the
set of the traces of its accepting runs. In this paper we only consider
automata whose language contain exclusively parallel series graphs
(because we are only interested in such graphs). As a byproduct
of the construction presented here we show that this property is
decidable.
Remark 1. The definitions we give here are sometimes different
from those stated in [2], but the results apply nonetheless. We
discuss these differences in Section 5.1.

1.3 Main result
The main technical result of this paper is a construction allowing
one to build from an automaton A an expression E (A) such that:

G (A) = G (E (A)).
Before properly describing the construction, we need a compo-

sitional way to represent a local and partial view of a graph. This
will be achieved through the notions of boxes and types. In the same
way a sequence of letters may be a factor of some word, boxes are
meant to represent “slices” of graphs. Formally, ifA andB are sets
of places, a box going from A to B is a labelled directed graph G
with maps from A to the vertices of G and from B to the vertices
of G. For instance, in the run presented before as an example, we
may associate a box to each transition. This yields the following
sequence of boxes:

A

a

b

B

C
d

B

E

c
D

E

1
F

We may compose these boxes by merging the outputs of the first
box with the inputs of the second box, and reducing the graph
by applying the operators ⋅ and ∩ on edges. For instance the first
two boxes above compose to produce the box β, and the whole
sequence can be composed as the box γ:

β = A

a

b ⋅ d

B

E
γ = A

((a ⋅ c) ∩ (b ⋅ d)) ⋅ 1
F

Types in this setting are trees with leaves labelled with places. We
can type a box β with a pair of trees σ⊸ τ if the tree σ composed
with the box β yields the tree τ . For instance the box β has the
type:

A ⊸
B

E

We build a finite state automata whose states are the types, and
whose transitions between the states σ and τ are labelled with
the boxes built from transitions of the Petri automaton with type
σ ⊸ τ . Using the standard Kleene Theorem, this allows us to
produce a regular expression over boxes eA . By changing the set
of letters to finite sets of boxes labelled with expressions, we are
then able to internalise all of the regular operations. This produces
in the end a finite number of boxes with one input (corresponding to
the initial place) and one output (corresponding to the final place),
linked by an edge labelled with a expression. The union of these
expressions is the expression E (A), that denotes the same set of
graphs as A .

The technical difficulty here is the computation of the star of a
set of boxes. For instance, consider the box:

δ = A

B

a

b

A

B

Its star yields all boxes of the following shape, for n ∈N:

δn = A

B

an

bn
A

B

This set of boxes cannot be represented by a finite number of boxes.
However, one must realise that because the two branches of the box
δ are disconnected, they must correspond to concurrent process in
the Petri automaton, and thus can be iterated separately. Intuitively,
the net cannot force two independent processes to perform exactly
the same number of iterations. Because of this, the following box
is the right choice to represent the star of the box δ:

δ⋆ ≡ A

B

a⋆

b⋆
A

B

1.4 Outline
We begin the paper by introducing in Section 2 the expressions and
automata we consider here, and the sets of graphs they represent.
After a few definitions and results about graphs, we detail in Sec-
tion 3 the types and boxes we use, and we establish some facts

2 2016/1/19

about them. Section 4 is dedicated to the main contribution of the
paper, the construction extracting expressions from Petri automata.
Finally we list some consequences of this result, as well as some
links with previous work, in Section 5.

2. Petri automata & expressions
Regular expressions and rationnal languages We recall a few
standard definitions and notations about regular expressions. A reg-
ular expression over the alphabet Σ is a term built from variables
taken in Σ, the constants 1 and 0, the binary operators ⋅ and ∪, and
the unary _⋆. The set is denoted by Reg⟨Σ⟩Σ. The language de-
noted by e, written JeK, is a set of words over Σ defined inductively
by:

JaK ∶= {a} ; J1K ∶= {ε} ; J0K ∶= ∅; Je ∪ fK ∶= JeK ∪ JfK;
Je ⋅ fK ∶= {u ⋅ v ∣ u ∈ JeK and v ∈ JfK} ;

Je⋆K ∶= {u1 ⋅ ... ⋅ un ∣ n ∈N, ∀i, ui ∈ JeK} .
(ε being the empty word.)

If JeK = JfK, we say that regular laws prove the equality of e
and f , written KA ⊧ e = f .

2.1 Expressions
Expressions e, f . . . are built on the signature ⟨1, ⋅,∪,∩, _+⟩1. We
denote by Reg∩Σ the set of expressions over the finite alphabet Σ.
A 2-pointed labelled directed graph G over Σ● ∶= Σ ∪ {1}, simply
called graph in the sequel, is given by a tuple ⟨V,E, ι, o⟩ with a
finite set of vertices V , a set of labelled edges E ⊆ V ×Σ● ×V , and
ι, o ∈ V two distinguished vertices, respectively called input and
output. The sequential composition (written _⋅_) of two graphs with
disjoint sets of vertices can be performed by identifying the output
of the first graph and the input of the second one. Their parallel
composition (written _ ∩ _) consists in merging their inputs and
merging their outputs. See Figure 1 for a graphical description of
these constructions.

We assign to each expression a set of such graphs, called the
graph language of the expression.

Definition 2 (Graph language of an expression: G (e))
The graph language is defined by structural induction as follows:

G (a) ∶= { a }

G (1) ∶= { 1 }

G (0) ∶= ∅
G (e ∪ f) ∶= G (e) ∪ G (f)
G (e ⋅ f) ∶= {E ⋅ F ∣ E ∈ G (e) and F ∈ G (f)}

G (e ∩ f) ∶= {E ∩ F ∣ E ∈ G (e) and F ∈ G (f)}
G (e+) ∶= {E1 ⋅ ... ⋅En ∣ n > 0, ∀i,Ei ∈ G (e)}

∗
Those graphs were introduced independently by Freyd and Sce-

drov [3, page 208], and Andréka and Bredikhin [1] (except for the
way 1 is handled). Notice that the graphs produced by this con-
struction are exactly Two Terminal Series Parallel graphs labelled
with Σ● [8].

2.2 Petri automata
A Petri automaton is a Petri net whose transition’s outputs are
labelled by the set Σ●.

1 Notice that we don’t use the Kleene star, but rather its positive variant. It
is more convenient here to have e⋆ be defined as 1 ∪ e+.

G ∩ F ∶=
G

F

G ⋅ F ∶= G F

Figure 1: Elementary graph constructions

A

B

C D

E

F

G

H I

b

a

c

b

a

c
b

d

a b 1

Figure 2: A Petri automaton. The initial place is A, and the final
configurations is {I}.

Definition 3 (Petri Automaton)
A Petri automaton A over the alphabet Σ is a tuple ⟨P,T , ι, f⟩
where:

• P is a finite set of places,
• T ⊆ P (P) ×P (Σ● × P) is a set of transitions,
• ι ∈ P is the initial place of the automaton,
• f ∈ P is the final place of the automaton.

For each transition t = (t, t) ∈ T , t and t are assumed to be non-
empty; t ⊆ P is the input of t; and t ⊆ Σ● × P is the output of
t. ∗

This definition of Petri automata correspond to what we call
simple Petri automata in [2]. However, this case is general enough,
as discussed in Section 5.1. We use the graphical notation from the
introduction to represent Petri automata; the Petri automaton from
Figure 2 will be used as a running example.

From a configuration ξ ⊆ P , a transition t = (t, t) ∈ T is
enabled if t ⊆ ξ. If so, one may fire t, which produces a new
configuration ξ′ defined by

ξ′ = ξ ∖ t ∪ {p ∈ P ∣ ∃x ∈ Σ ∶ (x, p) ∈ t} .

We write ξ
tÐ→A ξ′ in this case.

In the sequel, we assume all considered Petri automata to be
safe. (I.e., in Petri nets terminology, such that any reachable mark-
ing has at most one token in each place [6]). Formally, with our
definitions: a Petri automaton ⟨P,T , ι, f⟩ is safe if for all configu-
ration ξ ⊆ P reachable from {ι} by firing any number of transitions,
if (t, t) ∈ T is enabled from ξ, p ∈ ξ, and (x, p) ∈ t, then p ∈ t.

Now we recall how to use Petri automata to define languages of
graphs. We first define the runs of an automaton.

Definition 4 (Run, accepting run)
A run ξ in A = ⟨P,T , ι, F ⟩ is a sequence
⟨(ξk)0⩽k⩽n , (tk)0⩽k<n⟩ of configurations and transitions, such that

ξk ⊆ P , tk ∈ T and ∀k < n, ξk
tkÐ→A ξk+1. When ξ0 = {ι} and

ξn = {f}, we call ξ an accepting run. ∗
(Note that a run ξ is uniquely determined by ξ0 and the sequence
(tk): all subsequent configurations can be computed deterministi-
cally.)

Example 5
Consider the following sequence of transitions from the automaton

3 2016/1/19

A

B

G

C

E

G

D

E

G

F

G

I

t0

t1

t2

t3

t4b

a

c

b

a

d

1

Figure 3: An accepting run in the automaton from Figure 2.

0
1

2
3

4 5

b

a

c

b

a
d

1

Figure 4: Trace of the run depicted in Figure 3.

in Figure 2:

ξ = ⟨(ξ0, ξ1, ξ2, ξ3, ξ4, ξ5) , (t0, t1, t2, t3, t4)⟩,
with

ξ0={A} ,
ξ1={B,G} ,
ξ2={C,E,G} ,
ξ3={D,E,G} ,
ξ4={F,G} ,
ξ5={I} .

t0=({A} ,{(b,B), (a,G)}) ,
t1=({B} ,{(c,C), (b,E)}) ,
t2=({C} ,{(a,D)}) ,
t3=({D,E} ,{(d,F)}) ,
t4=({F,G} ,{(1, I)}) .

We have:

{A} t0 // {B,G} t1 // {C,E,G} t2 // {D,E,G} t3 // {F,G} t4 // {I} ,

and since {A} is the initial configuration and {I} is the final one,
this sequence is an accepting run. It can be represented graphically
as in Figure 3. ∎

In [2], the language of a Petri automaton is defined via an
operational semantics, describing the way an automaton “reads”
a graph. For the sake of clarity, we use here a different definition,
more directly related to the set of accepting runs of the automaton.
We associate to each accepting run ξ a 2-graph, written G (ξ),
called the trace of ξ. The language of the automaton is then defined
as the set of traces of its accepting runs.

The trace is constructed by creating a vertex k for each transi-
tion tk = (tk, tk) of the run, plus a final vertex n. We add an edge
(k, x, l) whenever there is some place q such that (x, q) ∈ tk, and
tl is the first transition after tk in the run with q among its inputs,
or l = n if there is no such transition in the run.

Definition 6 (Trace of a run)
Let ξ = ⟨(ξk)0⩽k⩽n , (tk, tk)0⩽k<n⟩ be run. For an index k ⩽ n and
a place q, let ν(k, q) be either the smallest index l such that k ⩽ l
and q ∈ tl, or n if there is no such index.

The trace of ξ is the graph G (ξ) ∶= ⟨{0, . . . , n} ,Eξ,0, n⟩ with

Eξ ∶= {(k, x, ν(k + 1, q)) ∣ (x, q) ∈ tk } .
∗

We write G (A) for the language of a Petri automaton A ,
defined as the set of traces of its accepting runs. The trace of the
run presented in Figure 3 is depicted in Figure 4.
Remark 7. G (A) is different from L (A), as it is defined in [2].
See section Section 5.1 for a more detailed discussion.

a

b

c

d

e

1

Figure 5: Non series parallel graph.

I

B

C

A

D

E

F

a

b

c

e

d

1

Figure 6: Non-SP Petri automaton.

Theorem 8 ([2, Theorem 17]). For any expression e ∈ Reg∩Σ, there
is a Petri automaton A (e) such that

G (e) = G (A (e)) .

2.3 SP-Petri automata
When trying to build expressions out of Petri automata, one im-
mediately encounters a problem: traces of accepting runs are not
necessarily series parallel graphs, which means they cannot be gen-
erated by any expression from Reg∩Σ. For instance the automaton
given in Figure 6 has a single accepting run, whose trace is the
graph draw in Figure 5. To circumvent this problem, we consider
only well-behaved automata: automata whose accepting runs have
parallel-series graphs.

Definition 9 (SP-automata)
An automaton A is said to be an SP-automaton if for any accepting
run ξ in A , G (ξ) is an SP-graph. ∗

Despite its infinitary formulation, this property is decidable. In
fact, the procedure we describe later on would fail (in finite time) if
it is given a non-SP automaton: hence it may be used to decide this
property.2

3. Boxes
Notations We call label space a structure ⟨L, ⋅,∩⟩ such that ⋅
and ∩ are two internal associative binary operations, and ∩ is
commutative. Examples of such spaces include:

WX : the set of SP-graphs labelled by X . It is the free label space
over a finite set of atomic variablesX . We will make no distinc-
tions between this set and the terms over the signature ⟨X, ⋅,∩⟩
quotiented by the label space axioms.

1 : the unit label space.

EX : the set of expressions Reg∩Σ (quotiented by the congruence
generated by label space axioms).

3.1 Graphs
We introduce a few definitions and results about graphs. Unless
otherwise stated, all graphs are labelled with some fixed label
space L.

2 See Remark 18 for more details.

4 2016/1/19

Figure 7: Example of reduced bow tie

DAGs and Series Parallel graphs Given a directed acyclic
graph (DAG) G = ⟨V,E⟩, we may define minG to be the set
of vertices in V with no incoming edge, and maxG the set of ver-
tices with no outgoing edge. A Two Terminal Parallel Series graph
(SP-graph in the following) may be defined as a connected DAG
that does not contain the graph from Figure 5 as a minor, and such
that minG and maxG are both singleton sets. A factor of ⟨V,E⟩
is a graph ⟨V ′,E′⟩ such that:

• V ′ ⊆ V and E′ ⊆ E;
• e ∈ E′ if and only if both its extremities are in V ′.

A prefix of ⟨V,E⟩ is a factor ⟨V ′,E′⟩ such that if there is a path
from x ∈ V to y ∈ V ′, then x ∈ V ′. When considering the graph
as a partial order, a prefix is a downward closed set of vertices.
Similarly, A suffix of ⟨V,E⟩ is an upward closed set, meaning a
factor ⟨V ′,E′⟩ such that if there is a path from x ∈ V ′ to y ∈ V ,
then y ∈ V ′. Finally a slice of ⟨V,E⟩ is a convex set, i.e. a factor
such that if there is a path from x ∈ V ′ to y ∈ V and one from y to
z ∈ V ′, then y ∈ V ′. Any slice may be obtained by removing from
the graph a prefix and a suffix. A graph G is called an SP-slice if it
is a slice of some SP-graph.

We define the SP-rewriting system, enriched with labels taken
from a label space:

a

b

a ∩ b

a b a ⋅ b

(This second rule can only be applied if the middle node on the
left-hand side has no other adjacent edge.)

Given a DAG G, we write G ↓ for the unique normal form of
G with respect to this system. One may notice here that if G is a
non-trivial SP-graph, then G ↓ has always the shape→ ● eÐ→ ●→3,
andG is isomorphic to G (e). This isomorphism means that we will
often assimilate SP-graphs and terms built using the operators ⋅ and
∩.

Trees and bow ties A tree is a DAG T = ⟨V,E⟩ such that either
minT or maxT contains a single node called the root, and for any
two nodes x, y ∈ V there exists at most one path from x to y. If
minT is a singleton, then T is a top-down tree, otherwise it is a
bottom-up tree. A tree is said to be proper if it does not contain any
node with exactly one incoming edge and one outgoing edge. It is
simple enough to check that there is only a finite number of proper
trees with leaves chosen from a finite set.

A bow tie is a DAG G that does not contain the graph from Fig-
ure 5 as a minor and such that there is a node o such that every
node in G either can reach o or is reachable from o. By apply-
ing the SP-rewriting system to a bow tie, we get a bottom-up tree
concatenated with a top-down tree, as illustrated in figure Figure 7
(hence the name). It follows easily that G is an SP-slice if and only
if it is a disjoint union of bow ties.

3 This is sometimes used as the definition of an SP-graph.

A

B

C

D

a
b

c

c

a

E

F

G

b

a

b
A

D

C

=

A

B

C

D

a ⋅ (b ∩ c) ⋅ b

c

a

a

b

A

D

C

Figure 8: Composition of boxes

3.2 Categories of boxes
Definition 10 (Box)
A box from A to B labelled with a label space L is a tuple β =
⟨G, p, p̄⟩ where G is a DAG labelled with L, p ∶ A → minG is a
surjective map and p̄ ∶ B → maxG is a bijective map, respectively
indicating the input ports and output ports. We write β ∶ A → B if
β is a box from A to B. ∗

Examples of such boxes are given in Figures 10 and 11.

Definition 11 (Type)
A type over a set A is a structure τ = ⟨Gτ , lτ ⟩ such that Gτ
is a proper top-down unlabelled tree and lτ is a bijection from
A to maxGτ . The set of types over subsets of a finite set P is
written TP . ∗

Examples of such types are given in Figure 9.
Remark 12. In the sequel we reason about boxes and types modulo
renaming of nodes.

A type τ over A may be seen as a box from {ι} to A la-
belled with 1: we can build the box from {ι} to A τ ∶=
⟨Vτ ,E, [ι↦ rτ], lτ ⟩, with E = {(x,1, y) ∣ (x, y) ∈ Eτ }. Con-
versely, we may forget about the label information in a box: the
erasing of a box β is the box ⌊β⌋ where all labels are replaced by
1. It is quite clear that for any type τ , τ = ⌊ τ ⌋.

One of the most interesting features of boxes is their ability to
compose. Let β = ⟨G1, p

1
, p̄1⟩ ∶ A → B and γ = ⟨G2, p

2
, p̄2⟩ ∶

B → C. We define the relation ∼ over G1 ∪ G2 as the smallest
equivalence relation containing all pairs x, y such that there is some
b ∈ B such that p̄1(b) = x and p

2
(b) = y. The composition of β and

γ, written β ⊙ γ, is defined as ⟨G ↓, p, p̄⟩ ∶ A→ C, where:

• G is the quotient of the disjoint union of G1 and G2 by the
relation ∼;

• the function p (respectively p̄) associates to x ∈ A (resp. ∈ B)
the equivalence class of p

1
(x) (resp. p̄2(x)).

It can be checked that this composition operation is associative and
that for any two boxes β ∶ A → B and γ ∶ B → C, the following
holds:

⌊β ⊙ γ⌋ = ⌊β⌋⊙ ⌊γ⌋. (1)
This operation is illustrated in Figure 8.

Definition 13 (Typed boxes)
Let β ∶ A→ B be a box over L, σ and τ be types respectively over
A and B. β has the type σ⊸ τ if the following holds:

⌊ σ ⊙ β⌋ = τ . (2)

We writeBL
σ⊸τ for the set of boxes over L of type σ⊸ τ , and BL

P

for the set of typed boxes over L with types from TP .
These boxes allow us to define the category BL of types and

typed boxes over L where:

• the objects are types;

5 2016/1/19

A

B

C

D

E

σ ∶

F

G

H

I

τ ∶

Figure 9: Some types σ and τ .

A

B

C

D

E

F

G

I

H
a

b
c

d

a

b

Figure 10: A box in BWX
σ⊸τ .

A

B

C

D

E

A

B

C

D

E

Figure 11: The identity box on
type σ.

• for any two objects σ, τ , the set of morphisms from σ to τ
is BL

σ⊸τ .

∗
(Notice that the type of a box is not unique: a single box may

have multiple types.)
For instance the box in Figure 10 has type σ⊸ τ , with σ and τ

as defined in Figure 9.
Let us verify that BL satisfies the axioms of a category. We

already know that the composition of boxes is associative, but its
remains to be shown that the composition of typed boxes is a typed
box. In other words: BL

σ⊸τ ⊙BL
τ⊸θ ⊆ BL

σ⊸θ .
Let β, γ ∈ BL

σ⊸τ ×BL
τ⊸θ . We need to check that β ⊙ γ ∈ BL

σ⊸θ .

⌊ σ ⊙ (β ⊙ γ)⌋ =⌊(σ ⊙ β)⊙ γ⌋ (Associativity)

=⌊ σ ⊙ β⌋⊙ ⌊γ⌋ (Equation (1))

= τ ⊙ ⌊γ⌋ (β ∈ BL
σ⊸τ)

=⌊ τ ⊙ γ⌋ (Equation (1))

= θ . (γ ∈ BL
τ⊸θ)

The last thing we need is the identity over an arbitrary object τ . If
L is the set of leaves of τ , then we define idτ = ⟨⟨L,∅⟩, lτ , lτ ⟩. It is
immediate to check that idτ ∈ BL

τ⊸τ and that for any typed boxes
β, γ of appropriate types, β⊙ idτ = β and idτ ⊙γ = γ. The identity
box on type τ is displayed in Figure 11.

3.3 Boxes over expressions
Consider boxes labelled with a label space EX . The elements of
EX are expressions taken from Reg∩X , and thus denote languages
of SP-graphs, as defined earlier. This means that we can generate
from such a box a set of boxes labelled with WX , by replacing each
edge labelled with e by a graphG ∈ G (e) ⊆ WX

4. For instance, the
box:

A

B

C

D

E
a

b
a ∪ b

a+ ⋅ b

4 As mentioned before, we make no distinction between SP-graphs and
terms built using letters and the operators ⋅ and ∩.

p1

p2

p3

p4

p5

q1

q2

p4

p5

a

b

↦

a

b

p1

p2

p3

p4

p5

q1

q2

p4

p5

Figure 12: Construction of βt,C

can generate all boxes of the following shapes, for n > 0:

A

B

C

D

E
a

b
a

an ⋅ b

or

A

B

C

D

E
a

b
b

an ⋅ b

It is useful to notice that for any box B ∈ BEX
σ⊸τ , if B generates the

box β, then β ∈ BWX
σ⊸τ . In the following, we will denote by B(B)

the set of boxes generated by a box B labelled with EX .

4. Automata and regular sets of boxes
4.1 A regular expression over boxes
It is then quite easy to generate from an SP-automaton A a regular
expression over boxes eA ∈ Reg⟨BWΣ●

P ⟩ such that:

β1⋯βn ∈ JeA K⇔ {
β1 ⊙⋯⊙ βn = ⟨G, p, p̄⟩ with G ∈ G (A)
β1 ⊙⋯⊙ βn has type ι⊸ f .

Let us fix an SP-automaton A = ⟨P,T , ι, f⟩ over an alphabet
Σ. Its transitions are thus labelled with Σ●. Given automata con-
figurations C and C′, and a transition t such that C

tÐ→A C′,
we can define a box βt,C ∶ C → C′ as follows. Suppose t =
{(a1, q1), . . . , (am, qm)} and C ∖ t = {p1, . . . , pn}. Recall that
because t is a valid transition from C to C′, the sets {q1, . . . , qm}
and {p1, . . . , pn} are disjoint and C′ = {p1, . . . , pn, q1, . . . , qm}.
Thus βt,C is defined as ⟨V,E, p, p̄⟩ where:

• V contains an is the input node x0, a node xi for every place pi
in C ∖ t and a node yi for every output qi.

• p maps every input place p to x0, every every other pi in C ∖ t
to xi.

• p̄ maps every output qi to yi, and the remaining pi to xi.
• for each output (ai, qi), we place an edge (x0, ai, yi) in E.

This construction is illustrated in Figure 12.
We may extend this construction to runs: for every run of length

n ξ = ⟨(ξk)0⩽k⩽n , (tk)0⩽k<n⟩ we define β(ξ) by:

β(ξ) ∶= βt0,ξ0 ⊙⋯⊙ βtn−1,ξn−1 .
It is quite straight-forward to check that for every accepting run ξ,

β(ξ) = G (ξ)ι f

Thus there is no difference between the graphs produced by the
automaton and the boxes corresponding to its accepting runs. We
call a box valid if there is an accepting run ξ with a consecutive
sub-run ξ[i..j] such that β = β(ξ[i..j]). We say in that case that
the run ξ[i..j] witnesses the validity of β. Notice that because A
is an SP-automaton, the graph of a valid box has to be an SP-slice.

6 2016/1/19

The types help us here, as illustrated by the following lemma:

Lemma 14. If β is a valid box with type σ⊸ τ and γ is valid with
type τ ⊸ υ, then β ⊙ γ is a valid box with type σ⊸ γ.

We extend this to words and regular expressions over typed
boxes.

Definition 15 (Valid expression)
An expression e ∈ Reg⟨BWΣ● ⟩ is valid if for all β1⋯βn ∈ JeK, the
composition β1 ⊙⋯⊙ βn is well defined, and the resulting box is
valid. ∗

Given a word w = β1⋯βn, we call the box β1 ⊙ ⋯ ⊙ βn the
compilation of w.

Definition 16 (Box language of e)
If e ∈ Reg⟨BWΣ● ⟩ is valid, then the box language of e, written JeK⊙,
is the set of boxes obtained by compiling the words of JeK. ∗
Definition 17 (Typed expression)
A valid expression e ∈ Reg⟨BWΣ●

P ⟩ has type σ ⊸ τ if for all
β ∈ JeK⊙, β has the type σ⊸ τ . ∗

We may now define a deterministic finite-state automaton as
follows:

• the set of states is TP , the types over the set P of places of A
(as remarked before, this set is finite);

• for every pair of types σ, τ , ifC is the set of leaves of σ, if t ∈ T

can be fired from C and if βt,C ∈ BWΣ●
σ⊸τ we add a transition

(σ,βt,C , τ);

• the initial state is the type ι ;

• the final state is the type f .

Remark 18. This automaton can be computed partially, by enumer-
ating all runs starting from {ι}, and computing the corresponding
boxes and types. Because of the finite number of states in this au-
tomaton this procedure must terminate. If the automaton we were
given is not SP, then the computation will reach a step where we
have a reachable type σ with leaves C and a transition t enabled
at C such that ⌊ σ ⊙ βt,C⌋ does not reduce to a tree. This gives a
decision procedure to check whether A is indeed an SP-automaton.
Using the classic Kleene theorem, we can then compile this au-
tomaton into a regular expression eA ∈ Reg⟨BWΣ●

P ⟩ such that:

1. eA and all its sub-expressions are valid and typed, as defined
earlier, meaning that the words in their languages compile to
valid boxes and that two boxes in the language of the same sub-
expression share a common type5;

2. if ξ is an accepting run of the Petri automaton A , then β(ξ) is
the compilation of some word in JeKA . Thus JeA K⊙ is the set
of all valid boxes of type ι⊸ f .

This allow us to state an important property of the expres-
sion eA :

Lemma 19. Let f, g ∈ Reg⟨BWΣ●
P ⟩ be valid expressions of type σ⊸

τ , such that JfK ⊆ JgK. If eA [f/g] is the expression obtained by
replacing an occurrence of f with g in eA , then the box language
of eA is equal to that of eA [f/g].

Proof. We proceed by mutual inclusion. One direction is straight
forward: all regular operations being increasing, we know that JfK ⊆
JgK entails JeA K ⊆ JeA [f/g]K, thus ensuring JeA K⊙ ⊆ JeA [f/g]K⊙.

5 This property follows from results about typed Kleene Algebra. See for
instance [4, 5, 7].

The property 2 allows us to check the other direction. The typing
ensures that for any words u, v, w and w′, if w and w′ compile
to boxes with the same type then u ⋅ w ⋅ v is valid if and only
if u ⋅ w′ ⋅ v is valid as well, and they have the same type. Thus we
know that JeA [f/g]K⊙ only contain valid boxes of the same type
as the ones from JeA K⊙. As JeA K⊙ is maximal for its type, it must
contain JeA [f/g]K⊙.

4.2 Compiling an expression over boxes into Reg∩Σ
What remains to do is to transform this regular expression over
boxes into an expression from Reg∩Σ. We do so by moving from
typed boxes labelled with WΣ● to finite sets of boxes sharing a
common type and labelled with EΣ● ⊇ WΣ● , thus internalising
the operators. By mapping each box β to {β}, we may translate
this way the expression eA obtained in the previous section to a
new expression eA . The operator ⊙ may be lifted here in a type
preserving way, as a pointwise application:

S ⊙ S′ ∶= {B ⊙B′ ∣ B ∈ S,B′ ∈ S′ } .
We also extend the notion of boxes over WΣ● generated by a box
over EΣ● to a set S simply by stating that B(S) ∶= ⋃B∈SB(B).

Definition 20 (Valid expression)
An expression e ∈ Reg⟨Pf (B

EΣ●
P)⟩ is valid if all S1⋯Sn ∈ JeK, the

composition S1 ⊙⋯⊙ Sn = S is defined and B(S) only contains
valid boxes. ∗

The definition of J_K⊙ we had for valid expressions with let-
ters in B

WΣ●
P can thus be salvaged for expressions with letters in

Pf (B
EΣ●
P). Lemma 14 can be adapted to this setting:

Lemma 21. Let S1 and S2 be finite sets of boxes over EΣ● , such
that

1. ∀β ∈ B(S), β is a valid box with type σ⊸ τ ;
2. ∀γ ∈ B(S′), γ is a valid box with type τ ⊸ υ;

then ∀β ∈ B(S ⊙ S′), β is a valid box with type σ⊸ γ.

A regular expression e with letters in Pf (B
EΣ●
P) represent the

set of boxes
LeM ∶= ⋃

S∈JeK⊙
B(S).

We extend a definition from the previous section to this setting:

Definition 22 (Typed expression)
An expression valid e ∈ Reg⟨Pf (B

EΣ●
P)⟩ has type σ ⊸ τ if all

β ∈ LeM have the type σ⊸ τ . ∗
We can now equate two expressions if they denote the same set

of boxes, introducing the equivalence relation ≡β :

e ≡β f ∶= (LeM = LfM)
Notice that Lemma 19 can be restated for eA :

Lemma 23. Let f, g ∈ Reg⟨Pf (BEΣ●)⟩ be valid expressions of
type σ⊸ τ , such that JfK⊙ ⊆ JgK⊙. Then eA ≡β eA [g/f].

The operator ∪ and ⋅ are easy enough to define on finite sets of
boxes labelled over EΣ● :

S ⋅ S′ ≡β ⋃
B∈S

⋃
B′∈S′

B ⊙B′

S ∪ S′ ≡β {B ∣ B ∈ S ∪ S′ }
The case of _⋆ however is much more interesting. In fact, this is
the main technical difficulty of the present paper, and where most
of the machinery we have introduced up to this point will prove

7 2016/1/19

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

a

a+

b

b

c

A
B
C
D
E

A
B
C
D
E

,

a

b

A
B
C
D
E

A
B
C
D
E

,

b ∩ c
A
B
C
D
E

A
B
C
D
E

, b

a

A
B
C
D
E

A
B
C
D
E

,

c

A
B
C
D
E

A
B
C
D
E

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 13: Elementary decomposition of {β, γ}.

useful. For typing reasons, notice that we only need to compute the
star of a set of boxes of an identity type σ⊸ σ. In the next section,
we show how to compute from a set S of boxes labelled over EΣ●
and having type σ⊸ σ a new finite set of boxes S′ such that:

1. LS⋆M ⊆ LS′M
2. and ∀β ∈ LS′M, β is valid and has type σ⊸ σ.

By Lemma 23 this entails the following equivalence:

eA ≡β eA [S′/ (S⋆)] .
Using these transformation, we now can “compile” the expres-

sion eA into a finite set of boxes of type ι⊸ f . Such
a set may only have the shape:

{ e1
ι f , ...,

en
ι f } .

It is then straightforward to see that LeA M is isomorphic to
G (e1 ∪ ⋯ ∪ en). If we call E (A) the expression e1 ∪ ⋯ ∪ en,
the following theorem holds:

Theorem 24 (Main result). For every SP-automaton A over Σ,
there exists an expression E (A) ∈ Reg∩Σ such that

G (A) = G (E (A)) .

4.3 Staring boxes
Instead of giving a formal description, which would be very in-
volved, we describe the procedure on an example, outlining the
important computation steps. Consider the following set of boxes,
respectively named β and γ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

b

c

a

a+

b

b

c

A

B

C

D

E

A

B

C

D

E

,

b ∩ c

b

a
c

A

B

C

D

E

A

B

C

D

E

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Both these boxes have type σ ⊸ σ, with the σ as shown

in Figure 9. First, we decompose each box, by separating disjoint
non-trivial connected components. The idea behind this step is
that the different connected component correspond to concurrent
processes, and as such may be iterated independently. This yields
the set of five so-called elementary boxes displayed in Figure 13,
respectively named η1 through η5.

One can show that the resulting boxes are always valid and
have the type σ ⊸ σ(a formal proof of the properties of this
decomposition is given in Appendix A). Because β = η1 ⊙ η2 and
γ = η3 ⊙ η4 ⊙ η5, we get that:

J(β ∪ γ)⋆K⊙ ⊆ J(η1 ∪ η2 ∪ η3 ∪ η4 ∪ η5)⋆K⊙

box support
η1 {C,D,E}
η2 {A,B}
η3 {A}
η4 {C,D}
η5 {E}

Figure 14: Supports of the ηi

η3 η2

η1

η4

η5

Figure 15: Graph of ≼

On the other hand, because of Lemma 21 we can establish that the
set L(η1 ∪ η2 ∪ η3 ∪ η4 ∪ η5)⋆M only contains valid boxes of type
σ⊸ σ.

By Lemma 23, we know that we may replace in the expres-
sion eA the sub expression (β ∪ γ)⋆ by (η1 ∪ η2 ∪ η3 ∪ η4 ∪ η5)⋆
without changing the set of produced graphs. This means that we
may continue the computation with the set of elementary boxes
H = {η1, η2, η3, η4, η5}. We define the support of a box with a
single non-trivial connected component as the set of ports that are
mapped inside this component. Figure 14 lists the supports of the
boxes ηi. Notice that for every two boxes η, η′ in H , their supports
are either included one in the other, or of empty intersection. This
can be shown formally by realising that for a box with a single con-
nected component of type σ⊸ σ, the support is the set of leaves of
a sub-tree of σ (i.e. the set of all leaves reachable from some node of
σ). This means we can endow the set {η1, η2, η3, η4, η5} with a pre-
order relation ≼ defined by η ≼ η′ if support(η) ⊆ support(η′).
The graph of the order on our example set is given in Figure 15.

The order has an interesting property: if η and η′ are incompa-
rable, then η⊙ η′ = η′ ⊙ η. Thus (η ∪ η′)⋆ ≡β η⋆ ⋅ η′⋆. With that in
mind we will compute the expression:

(η⋆3 ∪ η2)
⋆ ⋅ ((η⋆4 ⋅ η⋆5) ∪ η1)

⋆
.

The first step in this computation is the computation of the star
of a single box. Notice that we may define easily the star of a
“linear” elementary box, i.e. of the shape:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋮

e
A

B1

⋮

Bn

A

B1

⋮

Bn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⋆

≡β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋮

e+
A

B1

⋮

Bn

A

B1

⋮

Bn

,
⋮

A

B1

⋮

Bn

A

B1

⋮

Bn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
This construction gives us η⋆3 and η⋆5 . Now for general elemen-

tary boxes, notice that the non-trivial connected component of an
elementary box is always a bow tie. Hence we can always decom-
pose such a box η of type σ⊸ σ as δ1⊙δ2 such that the non-trivial
connected component of δ1 is a bottom-up tree, and that of δ2 is a
top-down tree, with the middle node o of the bow tie being the root
of both trees. See Figure 16 for examples. This means that δ2⊙δ1 is
a linear elementary box. Furthermore, the definition of δ1,2 ensures
{η}⋆ ≡β ({δ1} ⋅ {δ2})⋆. The regular laws entail that for every ex-
pressions e and f we have J(e ⋅ f)⋆K = J1 ∪ e ⋅ (f ⋅ e)⋆ ⋅ fK. Thus
we can use the previous construction to get a set of boxes repre-
senting ({δ2} ⋅ {δ1})⋆ ≡β {δ2 ⊙ δ1}⋆, and then compute:

{η}⋆ ≡β {idσ} ∪ {δ1} ⋅ {δ2 ⊙ δ1}⋆ ⋅ {δ2} .

The last thing to do is to compute stars of the shape (S⋆ ∪ η)⋆
where:

• S⋆ is a finite set of boxes computed in an earlier step,
• support(η) contains the “support” of S⋆ : the set of inputs

mapped to a non trivial connected component in some B ∈ S⋆.

8 2016/1/19

η1 = c

a

A
B
C
D
E

A
B

o

⊙
a+

b

b

c

A
B

o

A
B
C
D
E

η2 =

A
B
C
D
E

o

C
D
E

⊙

a

b
o

C
D
E

A
B
C
D
E

η4 =

A
B
C
D
E

A
B

o

E

⊙ b

a

A
B

o

E

A
B
C
D
E

Figure 16: Decomposition as a product of trees of η1, η2 and η4.

Again, we decompose η into δ1 and δ2 as in the previous construc-
tion, and notice that δ2 ⊙S⋆ ⊙ δ1 is set of a linear boxes, along the
same line. We may thus bundle them together in a single box with
a line labelled with the union of their labels. For example:
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e
A

B

C

A

B

C

,
f

A

B

C

A

B

C

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

≡β

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e ∪ f
A

B

C

A

B

C

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
This allow us to produce a set of (two) boxes representing

the star of the box (δ2 ⊙ S⋆ ⊙ δ1). The regular laws allow us to
conclude, by stating that:

(S⋆ ∪ δ1 ⋅ δ2)
⋆ ≡β S⋆ ∪ δ1 ⊙ (δ2 ⊙ S⋆ ⊙ δ1)

⋆ ⊙ δ2
We can now give the bulk of the computation, in Figure 17. The

result is then obtained by performing the composition

(η⋆3 ∪ η2)
⋆ ⊙ ((η⋆4 ∪ η5)

⋆ ∪ η1)
⋆
,

thus yielding 32 boxes: 8 for ((η⋆4 ∪ η⋆5) ∪ η1)⋆ times 4 for
(η⋆4 ∪ η5)⋆.

5. Consequences
5.1 Kleene Allegories
The main motivation for this work was the study of the equational
theory of Kleene Allegories (KAl). In this line of work we con-
sider binary relations and the operations of union (∪), intersec-
tion (∩), composition (⋅), converse (_⌣), transitive closure (_+), and
the constants identity (1) and empty relation (0). Terms made from
those operations and some variables a, b, ⋅ ⋅ ⋅ ∈ Σ constitute the set
Reg⌣∩Σ . A pair e, f ∈ Reg⌣∩Σ is then relationaly equivalent, denoted
Rel ⊧ e = f , if the corresponding equality holds universally when
the expressions are interpreted as binary relations. Notice that we
may restrict expressions so that the operator _⌣ is only applied to
variables, by using the following rewriting system:

(a ∪ b)⌣ → a⌣ ∪ b⌣ 0⌣ → 0 (a+)⌣ → (a⌣)+

(a ⋅ b)⌣ → b⌣ ⋅ a⌣ 1⌣ → 1 a⌣⌣ → a

(a ∩ b)⌣ → a⌣ ∩ b⌣.
The result of this transformation on an expression e is an expression
e′ always satisfying Rel ⊧ e = e′. We may associate to these terms
graph languages, as in Definition 2.

η⋆3 =idσ ∪

(b ∩ c)+
A
B
C
D
E

A
B
C
D
E

(η⋆3 ∪ η2)
⋆ = η⋆3 ∪ η2 ∪

ex+1 a

b

A
B
C
D
E

A
B
C
D
E

with ex1 = (a ∩ b) ∪ ((a ⋅ (b ∩ c)+) ∩ b)

η⋆4 =idσ ∪ η4 ∪ (b ∩ a)+ b

a

A
B
C
D
E

A
B
C
D
E

η⋆5 =idσ ∪

c+

A

B

C

D

E

A

B

C

D

E

((η4 ∪ η5)⋆ ∪ η1)
⋆ =η⋆4 ⊙ η⋆5 ∪ η1∪

c

a

ex+2 a+

b

b

c

A
B
C
D
E

A
B
C
D
E

with ex2 = (a+ ⋅ (b ∩ c) ⋅ (b ∩ a)+ ⋅ (b ∩ a) ⋅ c) ∩ (b ⋅ c+ ⋅ a)
∪ (a+ ⋅ (b ∩ c) ⋅ (b ∩ a)+ ⋅ (b ∩ a) ⋅ c) ∩ (b ⋅ a)
∪ (a+ ⋅ (b ∩ c) ⋅ (b ∩ a) ⋅ c) ∩ (b ⋅ c+ ⋅ a)
∪ (a+ ⋅ (b ∩ c) ⋅ (b ∩ a) ⋅ c) ∩ (b ⋅ a)
∪ (a+ ⋅ (b ∩ c) ⋅ c) ∩ (b ⋅ c+ ⋅ a)

Figure 17: Computation steps

Definition 25 (Graph language of a KAl expression: G ′ (e))
The graph language is defined by structural induction as follows:

G ′ (a) ∶= { a } ; G ′ (a⌣) ∶= { a } ;

G ′ (0) ∶= ∅; G ′ (1) ∶= { } ;

G ′ (e ∪ f) ∶= G ′ (e) ∪ G ′ (f) ;

G ′ (e ⋅ f) ∶= {E ⋅ F ∣ E ∈ G ′ (e) and F ∈ G ′ (f)} ;

G ′ (e ∩ f) ∶= {E ∩ F ∣ E ∈ G ′ (e) and F ∈ G ′ (f)} ;

G ′ (e+) ∶= {E1 ⋅ ... ⋅En ∣ n > 0, ∀i,Ei ∈ G ′ (e)} .
∗

In [2], we showed the following result:

Rel ⊧ e = f ⇔ ◂
G ′ (e) = ◂

G ′ (f).6

6 We need not concern ourselves with the definition of ◂_ here, as it plays
no role in the present result.

9 2016/1/19

Notice that the only two differences between G (_) and G ′ (_)
are the construction for 1 and the case of _⌣. We can mend that gap,
by computing G ′ (e) from G (e). The first step is to consider the
sub-expressions a⌣ as letters, i.e. to see e ∈ Reg⌣∩Σ as an expression
in Reg∩S with S ∶= Σ ∪ {a⌣ ∣ a ∈ Σ}. This means we can apply
G (_) on e, and produce a set of graphs labelled with S. We then
introduce the graph transformation Φ:

Definition 26 (Φ)
Let G = ⟨V,E, ι, o⟩ be a graph labelled with S. Let ≡G be the
smallest equivalence relation on V containing all pairs (i, j) such
that (i,1, j) ∈ E. Then Φ(G) is the graph defined by

Φ(G) ∶= ⟨{[i]G ∣ i ∈ V } ,E′, [ι]G, [o]G⟩
[i]G ∶= {k ∈ V ∣ i ≡G k }

E′ ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
([i]G, x, [j]G)

RRRRRRRRRRRRRRRRR

x ∈ Σ and
∃k ∈ [i]G, l ∈ [j]G ∶

(k, x, l) ∈ E or
(l, x⌣, k) ∈ E

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∗
It is then a simple matter to check that

∀e ∈ Reg⌣∩Σ , G ′(e) = {Φ(G) ∣ G ∈ G (G)} .
In the same paper we also introduced Petri automata, but again

we used a different definition of the language L (A) of an au-
tomaton A . However, this set can be expressed with our notations
as L (A) = ◂Φ (G (A)). A function A (_) was provided, map-
ping an expression e ∈ Reg⌣∩Σ to a Petri automaton A (e) such that
G (A (e)) = G (e).7 Thus:

L (A (e)) = ◂Φ (G (e)).
Theorem 24 allow us to relate the language of any SP-automaton

A to the graph language of E (A):

L (A) = ◂Φ (G (E (A))).
This proves that from a decidability stand point, language equiv-

alence of Petri automata and relational equivalence of KAl expres-
sions. Formally:

∀e, f, Rel ⊧ e = f ⇔L (A (e)) = L (A (f)) (3)
∀A ,B, L (A) = L (B)⇔ Rel ⊧ E (A) = E (B) (4)

One could also read this result from a graph theoretical view-
point. What we show here is that the sets of SP-graphs one may
express trough regular expressions enhanced with a parallel opera-
tor ∩ are exactly those generated by SP-automata.

5.2 Petri nets
The construction presented here can also provide a finite regular
expression with intersection to represent all finite occurrence nets
of a given Petri net N , provided this net is safe and Parallel Se-
ries. In terms of concurrent processes, these two conditions roughly
amount to requiring that there is a bounded number of processes
running at any given time, and that communication between pro-
cesses is synchronous.

More precisely, suppose we are given a net N , with a finite set
P of places and a finite set T ⊆ P (P)×P (Σ × P) of transitions.8

If I,F ⊆ P (P) are respectively a source set and a target set, we

7 The automaton A (e) always satisfied the Parallel Series condition we
required in Section 2.3.
8 Here we stick to the setting of this paper by labelling the outputs of
transitions rather than the transitions themselves. However, one can start
with a net with usual labelled transition, and then simply copy the label of
t to each of its outputs. This would lead to graphs where each node would
have the same label on each outgoing edge, thus effectively labelling the
node rather than the edge.

can produce a Petri automaton A such that the set of occurrence
nets of process going from a source configuration in I to a target
configuration in F is isomorphic to G (A). To achieve this, we add
to the net:

• two new places ι and f and a fresh label #;
• for each source configuration {p1, ..., pn} ∈ I a transition
⟨{ι} ,{⟨#, p1⟩, ..., ⟨#, pn⟩}⟩;

• for each target configuration {q1, ..., qn} ∈ F a transition
⟨{q1, ..., qn} ,{⟨#, f⟩}⟩.

It is then a simple matter of unfolding definitions to see that G (A)
indeed corresponds to the set of occurrence nets we wanted. Of
course, this construction is ill-defined if the net N is not safe for
one of the source configurations in I .

If furthermore the produced automaton is SP, which is again a
property of the net N , then the construction of this paper yields an
expression E (A) representing faithfully the set of occurrence nets
of processes going from any configuration in I to any configuration
in F .

References
[1] H. Andréka and D. Bredikhin. The equational theory of union-free

algebras of relations. Alg. Univ., 33(4):516–532, 1995.

[2] P. Brunet and D. Pous. Petri automata for Kleene allegories. In Proc.
LICS, 2015. to appear.

[3] P. J. Freyd and A. Scedrov. Categories, Allegories. NH, 1990.

[4] D. Kozen. Typed kleene algebra. Technical report, Cornell University,
1998.

[5] B. Möller. Typed kleene algebras. In Mathematics Of Program Con-
struction, Volume 3125 of LNCS. Citeseer, 1999.

[6] T. Murata. Petri nets: Properties, analysis and applications. Proc. of the
IEEE, 77(4):541–580, Apr 1989.

[7] D. Pous. Untyping typed algebras and colouring cyclic linear logic.
Logical Methods in Computer Science, 8(2), 2012.

[8] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series par-
allel digraphs. In Proceedings of the Eleventh Annual ACM Symposium
on Theory of Computing, STOC ’79, pages 1–12, New York, NY, USA,
1979. ACM.

10 2016/1/19

http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1007/BF01225472
http://www.sciencedirect.com/science/article/pii/0022247X65901253
http://store.elsevier.com/Categories-Allegories/P_J_-Freyd/isbn-9780444703682/
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.2168/LMCS-8(2:13)2012
http://dx.doi.org/10.1145/800135.804393
http://dx.doi.org/10.1145/800135.804393

A. Omitted proofs
Definition 27 (Connected component)
A set C of nodes of a graph G = ⟨V,E⟩ is a connected component
if ∀x ∈ C,∀y ∈ V , y is in C if and only if there is a non-oriented
path from x to y in G. ∗

This means any two nodes in C are linked by non-oriented
path, and that the set C is maximal for this property (with the
containment order).

Definition 28 (Elementary boxes)
A box η is said to be elementary if its graph contains a single non-
trivial connected component. ∗
Lemma 29. If η is a valid elementary box, then its graph is
necessarily a bow tie.

Proof. Validity means the graph has to be an SP-slice, and reduced
connected SP-slices are always bow ties.

Definition 30 (Support and target of an elementary box)
Let η be an elementary box. The support (respectively target) of η
is the set of input (resp. output) ports of η which are mapped inside
its unique non-trivial connected component. ∗
Lemma 31. Any valid box β can be decomposed into a set of valid
elementary boxes η1, .., ηp such that:

1. β = η1 ⊙⋯⊙ ηp;
2. ∀i ≠ j, support(ηi) ∩ support(ηj) = ∅;
3. if β has type σ ⊸ σ, then each ηi has the same type and
support(ηi) = target(ηi).

Proof. We number the connected components of β from C1 to Cp.
Suppose β is valid, then there is a run ξ = ξ0

t1Ð→ ⋯ tnÐ→ ξn such
that β = β(ξ) = βt1,ξ0 ⊙⋯⊙βtn,ξn−1 . Notice that for any index i,
the box βti,ξi−1 is elementary (see the definition of βt,C). Thus it
can be associated with a single non-trivial connected component in
β. We introduce the function c ∶ {1, ..., n} → {1, ..., p}, such that
the transition i is associated with the component Cc(i).

The key argument is the following. For any index i, if the set
of output places of transition ti contains a place that appears in
the input of the transition ti+1, then the box βti,ξi−1 ⊙ βti+1,ξi is
elementary. This means that c(i) = c(i+ 1). By contraposition, we
may then deduce that if c(i) ≠ c(i+ 1), then the intersection of the
outputs of ti and the inputs of ti+1 is empty. This can in turn be
used to build a configuration ξ′i such that:

• ξi−1
ti+1ÐÐ→ ξ′i

tiÐ→ ξi+1;
• and βti,ξi−1 ⊙ βti+1,ξi = βti+1,ξi−1 ⊙ βti,ξ′i .

(ξ′ = ξi−1 ∖ ti+1 ∪ {p ∣ ∃a ∶ (a, p) ∈ ti+1 })

This means we may group the transitions that contribute to the
same connected component. Formally we apply a permutation π to
the run ξ, such that:

• π(ξ) = ξ0
tπ(1)ÐÐÐ→ ⋯

tπ(n)ÐÐÐ→ ξn
• β(ξ) = β(π(ξ));
• π(ξ) can be decomposed as a sequence of runs:

π(ξ) = ξ0
χ1Ð→ ξ′1⋯ξ′p−1

χpÐ→ ξn,

such that ti ∈ χj ⇔ c(i) = j.

We now define ηj ∶= β(χj). By construction ηj is valid, it con-
tains only the connected component Cj so it is elementary, and
β = β(ξ) = β(π(ξ)) = η1 ⊙⋯⊙ ηp. Furthermore, for each p ∈ ξ0,

p ∈ support(ηj) if and only if p(p) ∈ Cj . As the connected com-
ponents are pairwise disjoint, so are the supports of the ηj . Fur-
ther analysis of the run π(ξ) also shows that ∀i < j, target(ηi) ∩
support(ηj) = ∅.

If β has type σ⊸ σ, that means that in particular ξ0 = ξn. This
entails the following equality:

⋃
j

support(ηj) =⋃
j

target(ηj).

(The remaining places are those untouched by the execution.)
Hence:

target(η1) ⊆⋃
j

target(ηj) =⋃
j

support(ηj)

=support(η1) ∪ ⋃
1<j

support(ηj)

support(η1) ⊆⋃
j

support(ηj) =⋃
j

target(ηj)

=target(η1) ∪ ⋃
1<j

target(ηj)

We know that ∀1 < j, target(η1) ∩ support(ηj) = ∅, hence
target(η1) ⊆ support(η1). To get the other direction, one has
to notice that the run χ2⋯χp may be executed starting from ξ0
(rather than ξ′1). This is again because of the possibility to exchange
“independent” transitions. Safety of the automaton ensures that

support(η1) ∩ ⋃
1<j

target(ηj) = ∅.

Thus we obtain support(η1) ⊆ target(η1), finally proving
support(η1) = target(η1). This in turn ensures that ξ′1 = ξ0,
and enable us to repeat the proof for η2, ..., ηn.

The last thing to do is to “type check” these elementary boxes.
Let’s detail the computation of the type β outputs when given a tree
σ. Each connected component Cj is a bow tie of centre oj , with
inputs Sj . For each of those, there must be a sub-tree Tj in σ with
leaves Sj (otherwise there would be no way of reducing σ ⊙ β to a
tree). We then remove that sub-tree, and replace it by the top-down
tree rooted in oj . Because all Sj are pairwise disjoint, the trees
Tj are also pairwise disjoint (otherwise they would share some
leaves). With this description of the type-checking, one realises
that 1) each of the ηj contribute to the final type on disjoint sub-
trees 2) and each of them leaves the rest of the tree alone. Because
∀j, Sj = support(ηj) = target(ηj) we can conclude that ηj
replaces the tree with leaves Sj with the tree with leaves Sj , and
thus preserves the type σ⊸ σ.

11 2016/1/19

	Introduction
	Expressions
	Petri automata
	Main result
	Outline

	Petri automata & expressions
	Expressions
	Petri automata
	SP-Petri automata

	Boxes
	Graphs
	Categories of boxes
	Boxes over expressions

	Automata and regular sets of boxes
	A regular expression over boxes
	Compiling expressions
	Staring boxes

	Consequences
	Kleene Allegories
	Petri nets

	Omitted proofs

