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This paper studies the asymptotic behaviour of the principal eigenfunction of the adjoint Neumann problem for a convection diffusion operator defined in a long cylinder. The operator coefficients are 1periodic in the longitudinal variable. Depending on the sign of the so-called longitudinal drift (a weighted average of the coefficients), we prove that this principal eigenfunction is equal to the product of a specified periodic function and of an exponential, up to the addition of fast decaying boundary layer terms.

Introduction

We study the asymptotic behavior, for ε > 0 going to 0, of the solution p ε of the following boundary value problem

   -div a(y)∇p ε -div b(y)p ε = 0 in Q ε , a(y)∇p ε • n + b(y) • np ε = 0 on ∂Q ε , (1) 
where Q ε = (0, 1/ε)×G is a long cylinder in the direction e 1 of cross section G.

The above problem is the adjoint of the Neumann problem for the standard convection diffusion operator Au = -div a(y)∇u + b(y) • ∇u which admits 0 as a first eigenvalue with the corresponding constant first eigenfunction.

Therefore, by the Krein-Rutman theorem, there exists a unique solution p ε of (1), up to a multiplicative constant (see Lemma 1 below).

Our main results (Theorems 3 and 6) can be summarized as follows. The asymptotic behavior of p ε depends on the sign of the so-called longitudinal effective drift b 1 which is a kind of weighted average of the velocity field b(y), in the axial direction e 1 , defined by [START_REF] Chipot | Elliptic problems with periodic data: an asymptotic analysis[END_REF]. Denote by y 1 = y • e 1 the longitudinal variable. If b 1 > 0, then, under a proper normalization, there exists a constant θ 0 > 0 and a 1-periodic in the variable y 1 function p θ 0 (y) > 0 such that p ε (y) ≈ e -θ 0 y 1 p θ 0 (y),

where the approximation is up to the addition of boundary layer terms concentrating at both extremities of the cylinder and decaying faster to zero than the main limit e -θ 0 y 1 p θ 0 (y). If b 1 = 0, then the same holds true with θ 0 = 0. If b 1 < 0, a symmetric situation occurs with θ 0 < 0.

There are many motivations to study the asymptotic behavior of [START_REF] Allaire | Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions[END_REF].

First, it appears as a simplified model of reaction-diffusion equations with asymmetric potentials as studied in [START_REF] Perthame | Asymmetric potentials and motor effect: a homogenization approach[END_REF], [START_REF] Perthame | A homogenization approach to flashing ratchets[END_REF], [START_REF] Mirrahimi | A homogenization approach for the motion of motor proteins[END_REF]. The simplification is that (1) is a scalar equation (representing a single species instead of two) but the addition of the convective term makes it non trivial (clearly, if b(y) = 0, then p ε (y) is a constant). The fact that, asymptotically as ε goes to 0, the solution p ε concentrates at one end of the cylinder, depending on the sign of the exponent θ 0 , or equivalently of the drift b 1 , is a manifestation of the so-called motor effect. This phenomenon was first studied by homogenization methods in [START_REF] Perthame | Asymmetric potentials and motor effect: a homogenization approach[END_REF]: their result was weaker (albeit more general) in the sense that it gives an asymptotic behavior for the logarithm of the solution, namely log p ε (y) ≈ -θ 0 y 1 .

The key tool in [START_REF] Perthame | Asymmetric potentials and motor effect: a homogenization approach[END_REF] was the homogenization of a Hamilton-Jacobi equation, obtained by a logarithmic change of unknowns. The homogenization techniques for Hamilton-Jacobi type equations with (locally-) periodic coefficients were developed in [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF], [START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF].

A second motivation is the homogenization of convection-diffusion-reaction equations in periodic heterogeneous media. There are many applications such as transport in porous media [START_REF] Allaire | Homogenization approach to the dispersion theory for reactive transport through porous media[END_REF], [START_REF] Allaire | Homogenization and concentration for a diffusion equation with large convection in a bounded domain[END_REF] or nuclear reactor physics [START_REF] Capdeboscq | Homogenization of a neutronic critical diffusion problem with drift[END_REF]. Indeed, by rescaling the space variable as x = εy, (1) is equivalent to

       -div a( x ε )∇p ε - 1 ε div b( x ε )p ε = 0 in εQ ε , a( x ε )∇p ε • n + 1 ε b( x ε ) • np ε = 0 on ε∂Q ε , (2) 
where εQ ε is now a cylinder of length 1 and small cross section εG. This geometrical setting is the usual one for homogenization since the cylinder has now a fixed length. The case of Dirichlet boundary conditions for [START_REF] Allaire | Homogenization of periodic systems with large potentials[END_REF] at both extremities of the cylinder is by now well-known. Actually, in such a case, one can consider a more general domain Ω, not necessarily a thin cylinder. Of course, in the case of Dirichlet boundary conditions, the first eigenvalue is usually not zero. In any case, the asymptotic behavior of the first eigenfunction is completely understood, even for more complicated systems [START_REF] Capdeboscq | Homogenization of a diffusion with drift[END_REF], [START_REF] Allaire | Homogenization of periodic systems with large potentials[END_REF], [START_REF] Allaire | Homogenization of periodic non self-adjoint problems with large drift and potential[END_REF], [START_REF] Allaire | Homogenization and concentration for a diffusion equation with large convection in a bounded domain[END_REF]. The case of Neumann boundary conditions is far from being fully understood and there are very few works which address it. All of them address merely the 1-d case or the present almost 1-d setting of a thin cylinder. Apart from the previously cited work [START_REF] Perthame | Asymmetric potentials and motor effect: a homogenization approach[END_REF], [START_REF] Perthame | A homogenization approach to flashing ratchets[END_REF], [START_REF] Mirrahimi | A homogenization approach for the motion of motor proteins[END_REF], let us mention [START_REF] Allaire | Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions[END_REF] which, being 1-d, heavily relies on methods of ordinary differential equations. Our present setting is more general than that of [START_REF] Allaire | Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions[END_REF] since all operators are d-dimensional but, still, we consider only cylinders (and not general domains) in order to force the direction of the drift vector b 1 along the cylinder axis. Nevertheless, the main difference with [START_REF] Allaire | Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions[END_REF] is the presence of delicate boudary layer terms at the cylinder ends. Our present results in the Neumann case are quite different from that in the Dirichlet case, as explained in Remark 5.

It should also be noted that the principal eigenvalue of the problem studied in this paper is equal to zero. It follows from the fact that this problem is the adjoint to a homogeneous Neumann problem for a convection-diffusion operator. This makes a difference with [START_REF] Allaire | Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions[END_REF] where a generic Fourier boundary condition is imposed at the end points of the interval. This might lead to a different behaviour of the solution.

A third motivation is the homogenization of the following "primal" parabolic

problem            ∂u ε ∂t + 1 ε b( x ε )∇u ε -div a( x ε )∇u ε = 0 in R + × εQ ε , a( x ε )∇u ε • n = 0 on R + × ε∂Q ε , u ε (0, x) = u init (x) in εQ ε . (3) 
Since the first eigenfunction of the primal problem is a constant, associated to the zero first eigenvalue, we know that for each ε > 0 the solution u ε converges to a constant as t goes to ∞. However, the value of this constant depends precisely on the adjoint solution p ε of (2) since we easily find by integration by parts that

d dt εQε u ε (t, x) p ε (x) dx = 0.
Therefore, in order to find the limit, as ε → 0, of this constant, equal to εQε u init (x) p ε (x) dx, one has to investigate the limit behaviour of p ε . This is an additional motivation for studying the adjoint problem [START_REF] Allaire | Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions[END_REF]. In particular, only the behavior of the initial data close to the left hand y 1 = 0 of the cylinder will matter if b 1 > 0 and conversely otherwise.

A fourth motivation comes from studying stochastic diffusion processes in the cylinder. Indeed, under proper normalization, the solution of problem (1), respectively of (2), coincides with the density of the invariant measure of a diffusion process ξ ε t with generator A = -div a(y)∇ +b(y)•∇ (respectively,

A ε = -div a(x/ε)∇ + ε -1 b(x/ε) • ∇ )
and with reflection at the cylinder boundary, see [START_REF] Kang | Characterization of stationary distributions of reflected diffusions[END_REF] for further details. Furthermore, the time evolution of the law of non-stationary distribution of the said diffusion process is described by equation [START_REF] Allaire | Homogenization approach to the dispersion theory for reactive transport through porous media[END_REF]. The results of this work can be used for determining the limit behaviour of the effective covariance of additive functionals of ξ ε

• . Finally we acknowledge that other authors have been studying the limit behaviour of solutions and eigenpairs of elliptic problems, stated in asymptotically long cylinder: see e.g. [START_REF] Chipot | On the asymptotic behaviour of the solution of elliptic problems in cylindrical domains becoming unbounded[END_REF], [START_REF] Chipot | On the asymptotic behaviour of the eigenmodes for elliptic problems in domains becoming unbounded[END_REF] and [START_REF] Chipot | Elliptic problems with periodic data: an asymptotic analysis[END_REF].

The content of our paper is as follows. The next section 2 gives a precise description of problem [START_REF] Allaire | Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions[END_REF] with all the necessary assumptions and definitions. Section 3 gives our main result (Theorem 3) in the case b 1 > 0. Section 4 deals with the case b 1 = 0 (see Theorem 6). Eventually Section 5 explains how our results can be extended to coefficients with minimal regularity.

Notation. As usual, C denotes a constant which may vary from place to place but is always independent of ε, except otherwise mentioned.

Statement of the problem

Given a smooth bounded connected domain G ⊂ R d-1 and a small positive parameter ε, we define a cylinder

Q ε = {y ∈ R d : 0 < y 1 < 1 ε , , y ′ := (y 2 , . . . , y d ) ∈ G}.
Let A be the linear convection-diffusion operator defined in Q ε , with a symmetric matrix a, and Neumann boundary conditions

Au = -div a(y)∇u + b(y) • ∇u, a(y)∇u • n = 0 on ∂Q ε , (4) 
and its adjoint A * defined by

A * u = -div a(y)∇u -div(b(y)u), a(y)∇u•n+b(y)•nu = 0 on ∂Q ε . (5)
We consider the corresponding Neumann problem

   -div a(y)∇u + b(y) • ∇u = 0 in Q ε , a(y)∇u • n = 0 on ∂Q ε , (6) 
and its adjoint problem

   -div a(y)∇p ε -div b(y)p ε = 0 in Q ε , a(y)∇p ε • n + b(y) • np ε = 0 on ∂Q ε . (7) 
Here and in what follows n = n(y) stands for the external normal on ∂Q ε and v 1 • v 2 denotes the inner product of vectors v 1 and v 2 in R d .

We assume that the coefficients of A satisfy the following properties.

A1. Uniform ellipticity. The matrix a ij is real, symmetric, positive definite:

there exists Λ > 0 such that a ij L ∞ (Qε) ≤ Λ -1 , 1 ≤ i, j ≤ d, b i L ∞ (Qε) ≤ Λ -1 , 1 ≤ i ≤ d, a ij (y)ξ i ξ j ≥ Λ|ξ| 2 for all y ∈ Q ε and ξ ∈ R d .
A2. Periodicity. All the coefficients a ij (y) and b i (y) are bounded and 1periodic in the axial variable y 1 .

For presentation simplicity we also assume that all the coefficients are sufficiently regular. In Section 5 we show that this last assumption can be discarded. The symmetry of a is assumed just for presentational simplicity.

Our approach also applies in the case of a non-symmetric matrix a. Moreover, if the entries of a are W 1,∞ regular, the non-symmetric case is reduced to the symmetric one.

Lemma 1. For each ε > 0 problem [START_REF] Capdeboscq | Homogenization of a neutronic critical diffusion problem with drift[END_REF] has a unique, up to a multiplicative constant, solution. Under a proper normalization this solution is positive in

Q ε .
Proof. By the maximum principle, any solution of problem ( 6) is equal to a constant. Consider the spectral problem related to problem [START_REF] Capdeboscq | Homogenization of a diffusion with drift[END_REF] and obtained by replacing 0 on the right-hand side of the equation in [START_REF] Capdeboscq | Homogenization of a diffusion with drift[END_REF] with λu. By the Krein-Rutman theorem (see [START_REF] Krasnoselskij | Positive Linear Systems: the Method of Positive Operators[END_REF]), λ = 0 is the eigenvalue of this operator with the smallest real part. By the same theorem for each ε > 0 problem [START_REF] Capdeboscq | Homogenization of a neutronic critical diffusion problem with drift[END_REF] has a unique, up to a multiplicative constant, solution. This solution does not change sign. This implies the desired statement.

We now introduce several auxiliary problems and definitions. Denoting

Y = (0, 1) × G and ∂ l Y = [0, 1] × ∂G, we consider the following problem        -div a(y)∇p 0 (y) -div b(y)p 0 (y) = 0 in Y, a(y)∇p 0 (y) • n(y) + b(y) • n(y)p 0 (y) = 0 on ∂ l Y p 0 is 1-periodic in y 1 . (8) 
Using the Krein-Rutman theorem one can show (see [START_REF] Pankratova | On the behaviour at infinity of solutions to stationary convection-diffudion equation in a cylinder[END_REF]) that this problem has a unique up to a multiplicative constant solution. Moreover, this solution does not change sign. In truth p 0 is the first eigenfunction corresponding to the first eigenvalue λ 0 = 0 of the cell spectral problem for the adjoint operator A * defined by [START_REF] Allaire | Homogenization and concentration for a diffusion equation with large convection in a bounded domain[END_REF]. In order to fix the normalization, we assume from now on that Y p 0 (y) dy = 1.

Next, we define the effective drift which governs the asymptotic behavior of problem [START_REF] Capdeboscq | Homogenization of a neutronic critical diffusion problem with drift[END_REF] (see [START_REF] Piatnitski | Averaging of a singularly perturbed equation with rapidly oscillating coefficients in a layer[END_REF]).

Definition 1. For the operator A, defined by (4), we introduce its so-called longitudinal effective drift, given by

b 1 = Y a∇p 0 + bp 0 • e 1 dy, (10) 
where p 0 is the first adjoint eigenfunction, solution of (8) and normalized by [START_REF] Chipot | On the asymptotic behaviour of the eigenmodes for elliptic problems in domains becoming unbounded[END_REF], and e 1 is the first coordinate vector in R d .

Note that, in Definition 1, we take advantage of the fact that the first eigenfunction of the cell spectral problem for the operator A is constant, equal to 1. If p 0 was not normalized by [START_REF] Chipot | On the asymptotic behaviour of the eigenmodes for elliptic problems in domains becoming unbounded[END_REF], then b 1 should be divided by Y p 0 (y) dy.

In the sequel, we consider separately two cases, namely b 1 = 0 and b 1 = 0.

In the first case we assume for the sake of definiteness that b 1 > 0. The opposite case is reduced to this one by replacing y 1 with -y 1 .

3 Main results for positive effective drift b 1 > 0

In this section we formulate our main result when b 1 > 0.

Lemma 2. Let b 1 > 0. Then under the normalization condition

max Qε p ε (y) = 1 ( 11 
)
the following limit relation holds:

lim ε→0 max y ′ ∈G p ε ε -1 , y ′ = 0. ( 12 
)
Furthermore,

p ε (y) ≤ Ce -κy 1 , y ∈ Q ε , (13) 
for some κ > 0 and C > 0 that do not depend on ε.

Proof. In a first step, we prove a uniform local Harnack inequality for p ε , using a reflexion argument. Denote by Q r,s a finite cylinder {y ∈ R d : r < y 1 < s, y ′ ∈ G} and by G s the cross section {y ∈ R d : y 1 = s, y ′ ∈ G}.

We then introduce the functions

ãε (y) = a(y), in Q ε a(-y 1 , y ′ ), in Q -ε -1 ,0 , pε (y) = p ε (y), in Q ε p ε (-y 1 , y ′ ), in Q -ε -1 ,0 , bε (y) = b(y), in Q ε (-b 1 (-y 1 , y ′ ), b ′ (-y 1 , y ′ )), in Q -ε -1 ,0
and extend them periodically in the infinite cylinder Q -∞,∞ . with the period 2ε -1 in y 1 . The function pε satisfies the equation

-div ãε (y)∇p ε (y) -div bε (y)p ε (y) = 0 in Q -∞,∞ , ãε (y)∇p ε (y) • n(y) + bε (y) • n(y)p ε (y) = 0 on ∂Q -∞,∞ .
Making one more reflection with respect to ∂G we may assume that pε satisfies the equation -div ãε (y)∇p ε (y) -div bε (y)p ε (y) = 0 in a larger cylinder (-∞, +∞)× G with G ⊂ G. Therefore (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Corollary 8.21 ]), pε satisfies the Harnack inequality uniformly in ε. So does p ε . This

means that for any r ∈ [0, ε -1 -1] the inequality holds max Q r,r+1 p ε ≤ C min Q r,r+1
p ε with a constant C that does not depend on ε, nor on r.

In a second step, we prove the asymptotic decay of p ε by a contradiction argument. We represent p ε as a sum of two functions p ε = p -,ε + p +,ε , where p -,ε and p +,ε solve the following problems:

       -div a(y)∇p -,ε (y) -div b(y)p -,ε (y) = 0 in Q ε , a(y)∇p -,ε (y)•n(y) + b(y) • n(y)p -,ε (y) = 0 on ∂ l Q ε , p -,ε = p ε on G 0 , p -,ε = 0 on G 1/ε , (14) 
and

       -div a(y)∇p +,ε (y) -div b(y)p +,ε (y) = 0 in Q ε , a(y)∇p +,ε (y) • n(y) + b(y) • n(y)p +,ε (y) = 0 on ∂ l Q ε , p +,ε = 0 on G 0 , p +,ε = p ε on G 1/ε , (15) 
with

∂ l Q ε = ∂Q ε \ (G 0 ∪ G 1/ε ) being the lateral boundary of Q ε . Due to
the fact that Dirichlet conditions are imposed on the cylinder bases, both problems ( 14) and ( 15) are well posed for each ε > 0, so that the functions p ±,ε are uniquely defined. The reduction to problems ( 14) and ( 15) with Dirichlet boundary conditions allows us to use some previous results of [START_REF] Pankratova | On the behaviour at infinity of solutions to stationary convection-diffudion equation in a cylinder[END_REF].

We now use factorization techniques (see [START_REF] Allaire | Homogenization of periodic systems with large potentials[END_REF] and references therein) to simplify the above equations. It amounts to factorize the unknown by p 0 (y)

and to multiply the equations by the primal first eigenfunction (which, in the case of ( 4) is equal to 1). Defining q ±,ε by the identity p ±,ε (y) = p 0 (y)q ±,ε (y) [START_REF] Mirrahimi | A homogenization approach for the motion of motor proteins[END_REF] and using equation ( 8) for p 0 , ( 14) and ( 15) become, after straightforward rearrangements,

       -div p 0 (y)a(y)∇q -,ε (y) -b(y)∇q -,ε (y) = 0 in Q ε , p 0 (y)a(y)∇q -,ε (y)•n(y) = 0 on ∂ l Q ε , q -,ε = p ε (p 0 ) -1 on G 0 , q -,ε = 0 on G 1/ε , (17) 
and

       -div p 0 (y)a(y)∇q +,ε (y) -b(y)∇q +,ε (y) = 0 in Q ε , p 0 (y)a(y)∇q +,ε (y) • n(y) = 0 on ∂ l Q ε , q +,ε = 0 on G 0 , q +,ε = p ε (p 0 ) -1 on G 1/ε , (18) 
with b(y) = a(y)∇p 0 (y) + b(y)p 0 (y). By the definition of p 0 we have

div b(y) = 0, b(y) • n = 0 on ∂ l Q ε , Y b(y) • e 1 dy = b 1 , (19) 
where b 1 is precisely the longitudinal effective drift, introduced in Definition 1. Let us denote by Ǎ the operator appearing in ( 17) and ( 18 By contradiction with [START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF], assume now that, for a subsequence, max

G 1/ε (p ε )
does not go to zero as ε → 0. Then by the Harnack inequality

0 < C ≤ p ε (ε -1 , y ′ ) ≤ 1, 0 < C ≤ q +,ε (ε -1 , y ′ ).
Because the effective drift of à is negative, as a consequence of [17, Theorem 6.1 and Lemma 6.3] and by Corollary 12 in the Appendix, there are constants

C ε , 0 < C ≤ C ε ≤ C 1 , and κ > 0 such that |q -,ε | ≤ e -κ/ε , |q +,ε -C ε | ≤ e -κ/ε in Q 1 3ε , 2 3ε
.

Considering the definition of q ±,ε and p ±,ε , we derive from that last inequalities that

|p ε (y) -C ε p 0 (y)| ≤ e -κ/ε in Q 1 3ε , 2 3ε . ( 20 
)
By local elliptic estimates the last inequality implies

p ε -C ε p 0 H 1 (Q s,s+1 ) ≤ Ce -κ/ε , 1 3ε ≤ s ≤ 2 3ε -1. ( 21 
)
On the other hand, integrating (7) on Q 0,r , we get The assumption that (13) does not hold leads to a contradiction in exactly the same way. This completes the proof.

One of the key ingredients of our study is the following auxiliary problem stated in a semi-infinite cylinder

Q ∞ = (0, ∞) × G: -div a(y)∇p ∞ (y) -div b(y)p ∞ ) = 0 in Q ∞ , a(y)∇p ∞ (y) • n(y) + b(y) • n(y)p ∞ (y) = 0 on ∂Q ∞ . (23) 
The boundary condition at +∞ reads lim

y 1 →∞ p ∞ (y) = 0. ( 24 
)
We also widely use the exponential, or so-called Gelfand, transformation of the operators A and A * defined on Y by

A θ v(y) = e -θy 1 A(e θy 1 v(y)), A * θ v(y) = e θy 1 A * (e -θy 1 v(y)), θ ∈ R,
with the corresponding Neumann-type boundary conditions on ∂ l Y . Denote by λ(θ) the principal eigenvalue of A θ and A * θ on Y in the space of 1-periodic in y 1 functions. By the Krein-Rutman theorem, λ(θ) is real and simple for each θ ∈ R. Moreover, according to [START_REF] Capdeboscq | Homogenization of a diffusion with drift[END_REF], λ(θ) is a smooth strictly concave function of θ that tends to -∞, as θ → ±∞.

Under our standing assumptions λ(0) = 0. It can also be checked (see [START_REF] Capdeboscq | Homogenization of a diffusion with drift[END_REF]) that λ ′ (0) > 0 if and only if b 1 > 0. Therefore, there is a unique θ 0 > 0 such that λ(θ 0 ) = 0. We denote by p θ 0 the corresponding periodic in y 1 eigenfunction of A * θ 0 which is normalized in such a way that Y p θ 0 (y) dy = 1.

Lemma 3. Let b 1 > 0.
Then problem (23), ( 24) has a unique up to a multiplicative constant bounded solution p ∞ . This solution decays exponentially, as y 1 → ∞. Moreover, p ∞ admits the following representation:

p ∞ (y) = e -θ 0 y 1 p θ 0 (y) + p - bl (y), (25) 
where, for some

θ 1 > θ 0 , |p - bl (y)| ≤ Ce -θ 1 y 1 .
Remark 1. In representation (25), the function p - bl is a boundary layer which decays exponentially faster than the main term as y 1 goes to +∞. 

-div a(y)∇p(y) -div b(y)p) = 0 in Q ∞ , p = 0 on G 0 , a(y)∇p(y) • n(y) + b(y) • n(y)p(y) = 0 on ∂ l Q ∞ .
Although 0 still belongs to the spectrum of this problem, there is no localized eigenfunction related to 0. The only solution of this problem with an additional condition (24) is the function identically equal to zero.

Proof of Lemma 3. Consider the function p ε introduced in (7) on the cylinder Q ε . From [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF] and Lemma 2, there exists a constant C > 0, which does not depend on ε, such that 0 < C ≤ max G 0 p ε ≤ 1. Indeed, due to (13), the maximum of p ε is attained in a finite cylinder that does not depend on ε. Then the lower bound follows from the Harnack inequality. Since the coefficients in [START_REF] Capdeboscq | Homogenization of a neutronic critical diffusion problem with drift[END_REF] do not depend on ε, then, according to [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF], p ε are uniformly in ε Hölder continuous functions in the whole domain Q ε . Passing to the limit ε → 0 in the family p ε (up to a subsequence), we obtain a function p ∞ which solves problem (23), (24) and satisfies estimate (13) for all y ∈ Q ∞ . Indeed, the fact that p ∞ satisfies the equation ( 23) in Q ∞ and the boundary condition on the lateral boundary and on G 0 is evident. It is

also clear that max Q∞ p ∞ = 1.
Let us show that with a properly chosen constant c the function cp ∞ admits representation (25). To this end we notice that the function p ∞ coincides with a solution to the following problem

         A * v = 0 in Q ∞ , a∇v • n + b • nv = 0 on ∂Q ∞ \G 0 , v(0, y ′ ) = p ∞ (0, y ′ ), lim y 1 →∞ v = 0. (26) 
Consider the operator defined on H 1/2 (G) that maps the Dirichlet boundary condition on G 0 into the trace on G 1 of the solution of (26). We denote this operator by S so that

v(1, y ′ ) = Sp ∞ (0, y ′ ).
Due to smoothing properties of elliptic equations, the operator S is well defined and compact in the space of continuous functions on G. It also follows by the maximum principle that S maps the cone of positive functions into itself. Then according to [START_REF] Krasnoselskij | Positive Linear Systems: the Method of Positive Operators[END_REF] the principal eigenvalue, µ 1 say, of S is real simple and positive, and all other points of the spectrum belong to the ball of radius μ with μ < µ 1 . Denote by v 1 the eigenfunction corresponding to µ 1 . Since S n v tends to zero, as n → ∞, for any solution v of (26),

we have µ 1 < 1. It is then easy to check that θ 0 = -log µ 1 , and that v 1 (y ′ ) = p θ 0 (0, y ′ ). Letting θ 1 = -log μ, we obtain from [START_REF] Krasnoselskij | Positive Linear Systems: the Method of Positive Operators[END_REF] that

S n p ∞ (0, y ′ ) = c 0 e θ 0 n v 1 (y ′ ) + ṽ(n, y ′ )
with c 0 > 0 and |ṽ(n, y ′ )| ≤ Ce -θ 1 n . This implies the representation

p ∞ (y) = c 0 e -θ 0 y 1 p θ 0 (y) + p - bl (y) (27) 
with |p - bl (y)| ≤ Ce -θ 1 y 1 . Dividing this relation by c 0 yields (25). We proceed with the uniqueness. Suppose that in addition to p ∞ there is another solution p 1,∞ of problem (23), (24). Denote by v 1 a solution to problem (26) with p ∞ (0, y ′ ) replaced with p 1,∞ (0, y ′ ). Then v 1 = p 1,∞ , and v 1 (n, y ′ ) = S n p 1,∞ (0, y ′ ). Therefore, this solution also admits representation (27) with some constant c 1 0 which need not be positive. We set q(y) = p 1,∞ (y)(p ∞ (y)) -1 . Due to (25) and Hölder continuity of p 1,∞ (p ∞ ) -1 , q(y) satisfies the estimate |q| ≤ C 2 . Moreover, q(y) converges to a constant as y 1 → ∞. We denote this constant by q inf . It is easy to check that q solves in mum and the minimum of q over the cross section G r . We have lim r→∞ M(r) = lim r→∞ m(r) = q inf . If q = const, then either M(r) > q inf , or m(r) < q inf for some r. This contradicts the maximum principle.

Q ∞ the following problem -div â(y)∇q(y) + b(y)∇q(y) = 0 in Q ∞ , â ( 
Lemma 4. Let b 1 > 0. There exists a constant c ε such that

p ε (y) = c ε p - ε (y) + e -θ 0 y 1 p θ 0 (y) + p + ε (y) , (28) 
where

|p - ε (y)| ≤ ce -θ 1 y 1 , |p + ε (y)| ≤ c e -θ 0 /ε e θ 2 (y 1 -ε -1 ) + e -θ 1 /ε (29)
with constants θ 1 > θ 0 and θ 2 > 0. Moreover, as ε → 0,

c ε -→ c 0 , p ε -→ c 0 p ∞ uniformly in Q ∞ ,
with c 0 defined in (27).

Remark 2. In formula (28), the functions p - ε and p + ε are boundary layers which are exponentially smaller than the main term e -θ 0 y 1 p θ 0 (y) for 1 <<

y 1 << ε -1 .
Proof. We represent p ε as the sum of solutions to the following two problems:

         -div a(y)∇ p -,ε (y) -div b(y) p -,ε (y) = 0 in Q ∞ , a(y)∇ p -,ε (y)•n(y) + b(y) • n(y) p -,ε (y) = 0 on ∂ l Q ∞ , p -,ε = p ε on G 0 , lim y 1 →∞ p -,ε = 0, (30) 
and

       -div a(y)∇ p +,ε (y) -div b(y) p +,ε (y) = 0 in Q ε , a(y)∇ p +,ε (y) • n(y) + b(y) • n(y) p +,ε (y) = 0 on ∂ l Q ε , p +,ε = 0 on G 0 , p +,ε = p ε -p -,ε . on G 1/ε (31) 
In exactly the same way as in the proof of Lemma 3 one can show that

p -,ε = c ε p - ε (y) + e -θ 0 y 1 p θ 0 (y) in Q ∞ , (32) 
where |p - ε (y)| ≤ ce -θ 1 y 1 with θ 1 > θ 0 , as defined in the proof of Lemma 3. Moreover, since p ε (0, y ′ ) converges to p ∞ (0, y ′ ), we have c ε → c 0 and

p - ε → (p ∞ -e -θ 0 y 1 p θ 0 ) = p - bl .
It follows from (32) and the standard elliptic estimates that Gr a(y)∇ p -,ε (y)

• n + b(y) • n p -,ε (y) dy ′ = lim z→∞ Gz a(y)∇ p -,ε (y) • n + b(y) • n p -,ε (y) dy ′ = 0.
In the same way as in the proof of Lemma 2 this implies that

min p ε (ε -1 , •) < max p -,ε (ε -1 , •), min p -,ε (ε -1 , •) < max p ε (ε -1 , •).
Making the same factorization as in ( 16) and applying the results from [START_REF] Pankratova | On the behaviour at infinity of solutions to stationary convection-diffudion equation in a cylinder[END_REF],

see also Theorem 11 and Corollary 12 in the Appendix, one can check that there exist constants C > 0 and θ > 0 such that

| p +,ε (y) -C ε p 0 (y)| ≤ C(e -θ 0 y 1 + e θ(y 1 -1/ε) ) p ε (ε -1 , •) -p -,ε (ε -1 , •) L ∞ (33)
with a constant C ε that satisfies the inequalities

min(p ε (ε -1 , •) -p -,ε (ε -1 , •)) ≤ C ε ≤ max(p ε (ε -1 , •) -p -,ε (ε -1 , •)).
From the last three relations and (32) we obtain

p +,ε (y) ≤ Ce -ε -1 θ 0 e -θ 2 (y 1 -ε -1 )
with θ 2 > 0. Combining the last estimate with (32) yields the desired representation of p ε . Other statements are straightforward consequences of the uniqueness of a solution to problem (23).

Consider the scaled and shifted functions P ε = e θ 0 /ε p ε y 1 + 1 ε , y ′ . These functions are defined in the cylinder Q -1 ε ,0 = -1 ε , 0 × G. We assume first that 1 ε is integer. Then the coefficients with shifted argument coincide with the original coefficients. It follows from the previous Lemma and the standard elliptic estimates (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that

0 < C ≤ P ε (0, y ′ ) ≤ C 1 ; P ε (y) -c ε e -θ 0 y 1 p θ 0 (y) ≤ C 1 e θ 2 y 1 + e θ 0 ε -1 e -θ 1 (ε -1 +y 1 ) in Q -1
ε ,0 , where 0 < c ≤ c ε ≤ c 1 , the constants c, C, c 1 and C 1 do not depend on ε.

Moreover, P ε is uniformly in ε Hölder continuous in any finite cylinder Q -L,0 . Therefore P ε converges for a subsequence, as ε → 0, locally uniformly and weakly in H 1 loc to a function P ∞ such that

0 < C ≤ P ∞ (0, y ′ ) ≤ C 1 ; P ∞ (y)-c 0 e -θ 0 y 1 p θ 0 (y) ≤ C 1 e θ 2 y 1 in Q -∞,0 . (34)
Passing to the limit in the integral identity of problem

-div a(y)∇P ε (y) -div b(y)P ε (y)(y) = 0 in Q -1 ε ,0 , a(y)∇P ε (y)(y) • n(y) + b(y) • n(y)P ε (y)(y) = 0 on ∂Q -1 ε ,0 , (35) 
we conclude that P ∞ satisfies the equation

-div a(y)∇P ∞ (y) -div b(y)P ∞ (y)(y) = 0 in Q -∞,0 , a(y)∇P ∞ (y)(y) • n(y) + b(y) • n(y)P ∞ (y)(y) = 0 on ∂Q -∞,0 . (36) 
In the same way as in the proof of Lemma 3 one can show that a solution of problem (36) that satisfies the estimate

P ∞ (y) = c 0 e -θ 0 y 1 p θ 0 (y) 1 + o(1) in Q -∞,0 .
is unique. Furthermore, taking into account (34) one can check that P ∞ (y) = c 0 e -θ 0 y 1 p θ 0 (y) + c 0 p + bl (y), where |p + bl (y)| ≤ ce θ 2 y 1 . This implies that e θ 0 /ε p + ε (y) converges to p + bl (y 1 -1 ε , y ′ ) uniformly in Q ε . We summarize the results of this section in the following statement. Theorem 3. Let conditions A1.-A2. be fulfilled, and assume that b 1 > 0.

Then, under a proper normalization, the solution of problem (7) admits the following representation:

p ε (y) = e -θ 0 y 1 p θ 0 (y) + p - ε (y) + p + ε (y), (37) 
where, for some constants θ 1 > θ 0 and θ 2 > 0,

|p - ε (y)| ≤ Ce -θ 1 y 1 , |p + ε (y)| ≤ C e -θ 1 /ε + e -θ 0 ε e θ 2 (y 1 -1 ε ) . ( 38 
)
Moreover, p - ε converges to p - bl uniformly in Q ε , and e θ 0 /ε p + ε (y) converges to Remark 4. In formula (37), the functions p - ε and p + ε are boundary layers which are exponentially smaller than the main term e -θ 0 y 1 p θ 0 (y) for 1 << y 1 << ε -1 . Notice that (37) holds under a normalization of p ε that differs from that in [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF]. More precisely, we have to divide p ε by the constant c ε defined in Lemma 4. 

p + bl (y 1 -1 ε , y ′ ) uniformly in Q ε .
= λ ε p ε Dir in Q ε , a(y)∇p ε Dir • n + b(y) • np ε Dir = 0 on ∂ l Q ε , p ε Dir = 0 on G 0 ∪ G 1/ε . ( 39 
)
Indeed, after some simple adaptation, the results of [START_REF] Capdeboscq | Homogenization of a diffusion with drift[END_REF], [START_REF] Capdeboscq | Homogenization of a neutronic critical diffusion problem with drift[END_REF] show that the solution p ε Dir (y) of (39) satisfies

p ε Dir ( x ε ) ≈ e -θ 0 x 1 ε p θ 0 ( x ε )p 1 (x 1 ),
where p 1 (x 1 ) is the first eigenfunction of an homogenized problem in the segment (0, 1) (which is the limit of the rescaled cylinder εQ ε ) with Dirichlet boundary condition. Typically p 1 is a cosine function. Furthermore, the approximation is not merely up to the addition of boundary layers ; rather, homogenization correctors have to be added to improve the approximation.

The absence of homogenized problem for the Neumann case studied in the present paper is thus in sharp contrast with the Dirichlet case of [START_REF] Capdeboscq | Homogenization of a diffusion with drift[END_REF], [START_REF] Capdeboscq | Homogenization of a neutronic critical diffusion problem with drift[END_REF].

4 Main result for vanishing effective drift b 1 = 0

In the case b 1 = 0, we shall prove (see Theorem 6) that the function p ε is exponentially close, in the interior part of the cylinder, to the periodic eigenfunction p 0 , solution of ( 8). In the vicinity of the cylinder bases the difference between p ε and p 0 is an exponential boundary layer.

The construction of the boundary layers relies on the following statement. 

|p ∞ -cp 0 | ≤ Ce -ϑy 1 . (40) 
Proof. Consider a sequence of problems [START_REF] Capdeboscq | Homogenization of a neutronic critical diffusion problem with drift[END_REF] and the corresponding solutions Representing p ε (y) = p 0 (y)q * ,ε (y), we arrive at the following problem

         -div â(y)∇q * ,ε (y) -div b(y)q * ,ε (y) = 0 in Q ε , â(y)∇q * ,ε (y) • n(y) + b(y) • n(y)q * ,ε (y) = 0 on ∂ l Q ε , â(y)∇q * ,ε (y) • n(y) + b(y) • n(y)q * ,ε (y) = 0 on G 0 ∪ G 1/ε . (41) 
Observe that by the definition of p 0 we have div b(y)q * ,ε (y

) = b(y)∇q * ,ε (y) in Q ε , b(y) • n(y) = 0 on ∂ l Q ε . (42) Therefore, max Qε q * ,ε = max G 0 ∪G 1 ε q * ,ε , min Qε q * ,ε = min G 0 ∪G 1 ε q * ,ε . (43) 
Indeed, due to (42) the equation in (41) takes the form

-div â(y)∇q * ,ε (y) -b(y)∇q * ,ε (y) = 0, y ∈ Q ε , â(y)∇q * ,ε (y) • n(y) = 0 on ∂ l Q ε .
Since q * ,ε satisfies homogeneous Neumann condition on the lateral boundary, q * ,ε cannot attain its maximum (or minimum) in the interior of Q ε nor on the lateral boundary, unless q * ,ε is a constant.

Lemma 6. The inequalities hold true

max G 0 q * ,ε ≥ min G 1 ε q * ,ε , min G 0 q * ,ε ≤ max G 1 ε q * ,ε .
Proof. Assume that min

G 0 q * ,ε > max G 1 ε q * ,ε . Then there is κ ∈ R such that min G 0 q * ,ε > κ > max G 1 ε q * ,ε . (44) 
Consider an auxiliary problem

               -div â(y)∇q κ,ε (y) -div b(y)q κ,ε (y) = 0 in Q ε , -â(y)∇q κ,ε (y) • n(y) = 0 on ∂ l Q ε , q κ,ε (y) = q * ,ε (y) on G 0 , q κ,ε (y) = κ on G 1/ε . (45) 
By the maximum principle and due to (44), the minimum of q κ,ε over Q ε is attained on G 1/ε , and furthermore

â(y)∇q κ,ε • n < 0 on G 1/ε .
Integrating this relation over G 1/ε and considering the fact that

G 1/ε b(y) • n dy ′ = 0, we get G 1/ε â(y)∇q κ,ε • n -b • nq κ,ε dy ′ < 0.
Therefore,

G 1/ε â(y)∇(q κ,ε -q * ,ε ) • n -b • n(q κ,ε -q * ,ε ) dy ′ < 0 on G 1/ε . (46) 
On the other hand, the function (q κ,ε -q * ,ε ) has its minimum at G 0 , and thus, by the strong maximum principle,

a(y) ∂ ∂n (q κ,ε -q * ,ε ) < 0 on G 0 . (47) 
Integrating equations ( 41) and (45) over Q ε , taking the difference of the resulting relations and integrating by parts, we obtain 0 = -

G 1/ε â(y)∇(q κ,ε -q * ,ε ) • n -b(y) • n(q κ,ε -q * ,ε ) dy ′ - G 0 â(y)∇(q κ,ε -q * ,ε ) • n -b(y) • n(q κ,ε -q * ,ε ) dy ′ < 0.
We arrived at contradiction. This completes the proof of Lemma 6.

It follows from our normalization condition for p ε , the definition of q * ,ε and the properties of p 0 that C ≤ max Qε q * ,ε ≤ C -1 . Combining these estimates with Lemma 6 and the Harnack inequality yields

C ≤ min Qε q * ,ε ≤ max Qε q * ,ε ≤ C -1
for a positive constant C that does not depend on ε. Passing to the limit in (41), as ε → 0, we obtain a solution of the following problem

         -div â(y)∇q * ,0 (y) -div b(y)q * ,0 (y) = 0 in Q ∞ , â(y)∇q * ,0 (y) • n(y) = 0 on ∂ l Q ∞ , â(y)∇q * ,0 (y) • n(y) + b(y) • n(y)q * ,0 (y) = 0 on G 0 , (48) 
such that C ≤ inf Q∞ q * ,0 ≤ sup Q∞ q * ,0 ≤ C -1
. This proves the existence of a positive bounded solution. Estimate (40) follows from [17, Theorem 6.1 and Lemma 6.3]. The uniqueness can be proved in the same way as in the previous section.

Lemma 7. For each ε > 0 there is a unique constant κ = κ(ε) such that for the solution of problem (45) the following relation is fulfilled

J κ := G 0 -â(y)∇q κ,ε • n -b(y) • nq κ,ε dy ′ = 0. ( 49 
)
Proof. In the same way as in the proof of Lemma 6 one can show that J κ > 0 if κ > max G 0 q κ,ε , and J κ < 0 if κ < max G 0 q κ,ε . Since J κ is a continuous function of κ, the existence of desired κ follows. The uniqueness is straightforward.

Lemma 8. As ε → 0, the sequence q κ(ε),ε converges to q * ,0 .

Proof. By the definition of q κ,ε we have q κ(ε),ε (0, y ′ ) = q * ,ε (0, y ′ ). Passing to the limit one can easily check that the limit function q * ,0 is a bounded solution to the following problem:

       -div â(y)∇q * ,0 (y) -div b(y)q * ,0 (y) = 0 in Q ∞ , â(y)∇q * ,0 (y) • n(y) = 0 on ∂ l Q ∞ ,
q * ,0 (y) = q * ,0 (y) on G 0 .

The desired statement is now a consequence of the uniqueness result obtained in [START_REF] Pankratova | On the behaviour at infinity of solutions to stationary convection-diffudion equation in a cylinder[END_REF].

We now turn to the main result of this section. Let p ∞ be a bounded solution of problem (23) such that |p ∞ -p 0 | ≤ ce -ϑy 1 , ϑ > 0. In addition to p ∞ we also introduce a function P ∞ γ as a bounded solution to the following problem

-div a(y)∇P ∞ γ (y) -div b(y)P ∞ γ (y)) = 0 in Q -∞,γ -a(y)∇P ∞ γ (y) • n(y) -b(y) • n(y)P ∞ γ (y) = 0 on ∂Q -∞,γ (50) 
with Q -∞,γ = (-∞, γ) × G. By Lemma 5 such a solution exists and is unique up to a multiplicative constant. Due to periodicity of the coefficients,

P ∞ γ (y 1 + 1, y ′ ) = P ∞ γ+1 (y).
As we did with p ∞ , we normalize P ∞ γ in such a way that (P ∞ γ -p 0 ) → 0 as y 1 → -∞.

Theorem 6. Let b 1 = 0. Then, under a proper normalization, there exists

ϑ > 0 such that |p ε (y) -(p ∞ (y) + P ∞ 1/ε (y) -p 0 (y))| ≤ C ε (e -ϑy 1 + e ϑ(y 1 -1/ε) )
where C ε → 0 as ε → 0, so that

p ε -(p ∞ + P ∞ 1/ε -p 0 ) L ∞ (Qε) -→ 0.
Remark 7. Theorem 6 states that p ε is equal to the 1-periodic eigenfunction p 0 , solution of ( 8), up to the addition of boundary layers which are exponentially small for 1 << y 1 << ε -1 . The boundary layers are precisely (p ∞ -p 0 )

on the left and (P ∞ 1/ε -p 0 ) on the right of the cylinder.

Proof. In addition to problem (45) we also consider a problem

               -div â(y)∇q κ 1 ,ε -(y) -div b(y)q κ 1 ,ε -(y) = 0 in Q ε , -â(y)∇q κ 1 ,ε -(y) • n(y) = 0 on ∂ l Q ε , q κ 1 ,ε -(y) = q * ,ε (y) on G 1/ε , q κ 1 ,ε -(y) = κ 1 on G 0 . (51) 
By Lemma 7 there is a constant κ 1 = κ 1 (ε) such that

J 1,κ 1 := G 1/ε â(y)∇q κ 1 ,ε - • n -b(y) • nq κ 1 ,ε - dy ′ = 0. ( 52 
)
Choosing now the constants κ and κ 1 in such a way that relations (49) and

(52) hold true, it is straightforward to check that the function qε (y) = q * ,ε (y) -q κ(ε),ε (y) -q

κ 1 (ε),ε - (y) 
solves the following problem

               -div â(y)∇q ε (y) -div b(y)q ε (y) = 0 in Q ε , -â(y)∇q ε (y) • n(y) = 0 on ∂ l Q ε , qε (y) = -κ on G 1/ε , qε (y) = -κ 1 on G 0 , (53) 
and satisfies the relation

G 0 â(y)∇q ε • n -b(y) • nq ε dy ′ = 0. ( 54 
)
By the same arguments as in the proof of Lemma 6 we conclude that κ 1 = κ.

Choosing now a normalization condition in such a way that κ = 1, we see that q * ,ε (y) = q κ,ε (y) + q κ,ε -(y) -1, and p ε (y) = q κ,ε (y)p 0 (y) + q κ,ε -(y)p 0 (y) -p 0 (y).

Consider a bounded solution of the problem

       -div â(y)∇q ∞,ε 0 (y) -div b(y)q ∞,ε 0 (y) = 0 in Q ∞ , â(y)∇q ∞,ε 0 (y) • n(y) = 0 on ∂ l Q ∞ , q ∞,ε 0 (y) = q * ,ε (y) on G 0 .
By the arguments used in the proof of Lemma 6 and the maximum principle, one can deduce that, for some ϑ > 0,

q ∞,ε 0 -q κ,ε L ∞ (Qε) ≤ ce -ϑ/ε ,
and, since κ = 1, this yields

|q κ,ε (y) -1| ≤ ce -ϑy 1 , |q κ,ε -(y) -1| ≤ ce ϑ(y 1 -(1/ε)) .
Sending the length of the cylinder to ∞, we obtain

|q * ,0 (y) -1| ≤ ce -ϑy 1 , |q * ,0 -(y 1 -1, y ′ ) -1| ≤ ce ϑ(y 1 -(1/ε))
Taking into account the relations p ∞ (y) = q * ,0 (y)p 0 (y) and P ∞ 1/ε (y) = q * ,0 -(1/εy 1 , y ′ )p 0 (y), we deduce the desired statements from the last three formulae. This completes the proof. p 0 and recalling Definition 1 of the longitudinal effective drift, we conclude after simple computations that the effective longitudinal drift of à (the operator appearing in ( 17) and ( 18)) is -Y (1/p 0 (y))dy Under our standing assumptions this drift is negative.

By contradiction with [START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF], assume now that, for a subsequence, max G 1 ε (p ε ) does not go to zero as ε → 0. Then by the Harnack inequality

0 < C ≤ p ε (ε -1 , y ′ ) ≤ 1, 0 < C ≤ q +,ε (ε -1 , y ′ ).
According to [START_REF] Pankratova | On the behaviour at infinity of solutions to stationary convection-diffudion equation in a cylinder[END_REF] and Corollary 12, because the effective drift of à is negative,

there are constants C ε , 0 < C ≤ C ε ≤ C 1 , and κ > 0 such that |q -,ε | ≤ e -κ/ε , |q +,ε -C ε | ≤ e -κ/ε in Q 1 3ε , 2 3ε
.

Considering the definition of q ±,ε and p ±,ε , we derive from that last inequalities that

|p ε (y) -C ε p 0 (y)| ≤ e -κ/ε in Q 1 3ε , 2 3ε . (58) 
By the local elliptic estimates the last inequality implies

p ε -C ε p 0 H 1 (Q s,s+1 ) ≤ Ce -κ/ε , 1 3ε ≤ s ≤ 2 3ε -1. (59) 
On the other hand, integrating (7) on Q 0,r , we get The proof of Lemma 6 should be modified as follows. Assuming by contradiction that max

G 1/ε q * ,ε < min G 0
q * ,ε and taking a constant κ that satisfies the inequality max

G 1/ε q * ,ε < κ < min G 0
q * ,ε , we consider the auxiliary problem

       -div p 2 0 (y)a(y)∇q κ,ε (y) -p 2 0 (y)b(y)∇q κ,ε (y) = 0 in Q ε , p 2 0 (y)a(y)∇q κ,ε (y)•n(y) = 0 on ∂ l Q ε , q κ,ε = p ε (p 0 ) -1 on G 0 , q κ,ε = κ on G 1/ε . (62) 
Subtract the equation in (62) from the equation in (61), multiply the difference by (p 0 (y)) -1 and integrate the resulting relation over Q ε . After integration by parts and straightforward rearrangements this yields

- G 0 a∇ p 0 (q * ,ε -q κ,ε ) • n + b • n p 0 (q * ,ε -q κ,ε ) dy ′ - G 1 ε a∇ p 0 (q * ,ε -q κ,ε ) • n + b • n p 0 (q * ,ε -q κ,ε ) dy ′ = 0. ( 63 
)
Since q * ,ε -q κ,ε = 0 on G 0 and p 0 (q * ,ε -q κ,ε ) ≤ 0 in Q ε , the first term on the left-hand side of ( 63) is non-positive. By the definition of q * ,ε ,

G 1 ε a∇(p 0 q * ,ε ) • n + b • n p 0 q * ,ε dy ′ = 0.
We also have

G 1 ε a∇ p 0 q κ,ε • n + b • n p 0 q κ,ε dy ′ = G 1 ε p 0 a∇q κ,ε • n dy ′ + κb 1 = G 1 ε p 0 a∇q κ,ε • n dy ′ Since q κ,ε = κ on G 1 ε
and q κ,ε ≥ κ in Q ε , the integral on the right-hand side here is non-negative, and, therefore, the second term on the left-hand side of (63) is non-positive.

Consider now two constants κ 1 and κ 2 such that max

G 1/ε q * ,ε < κ 1 < κ 2 < min G 0
q * ,ε . Writing down the equation for the difference q κ 1 ,ε -q κ 2 ,ε , multiplying this equation by (p 0 ) -1 (q κ 1 ,ε -q κ 2 ,ε ) and integrating the resulting relation of this problem as ε → 0. Making the logarithmic transform of p ε we reduce the above problem to homogenization problem for a perturbed Hamilton-Jacobi type equation. Then we can use the approaches developed in [START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF], [START_REF] Perthame | A homogenization approach to flashing ratchets[END_REF]. Additional difficulties here are due to the fact that the homogenization is combined with the dimension reduction. We should also derive the effective boundary conditions at the end points of the interval where the limit equation is stated. The work on this problem is in progress.

Fourier boundary conditions on the cylinder bases. Instead of adjoint Neumann boundary conditions on the cylinder bases in (1) one can consider the spectral problem with arbitrary Fourier boundary conditions on the bases.

In this case the principal eigenvalue need not be equal to zero any more.

In the 1-d case this problem has been investigated in [START_REF] Allaire | Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions[END_REF]. In the multidimensional case, making again a logarithmic transformation of the principal eigenfunction, one can reduce the studied spectral problem to an appropriate boundary value problem for the corresponding perturbed Hamilton-Jacobi type equation. The derivation of effective boundary conditions for the effective Hamilton-Jacobi equation is getting rather non-trivial in this case. This work is also in progress.

Elliptic systems. We believe that in the case of cooperative systems to which the maximum principle applies the results of this work hold true and can be proved by the same methods (but we did not check this). For more general elliptic systems the question is completely open.

Appendix

In this Appendix for the reader convenience we formulate the key results from [START_REF] Pankratova | On the behaviour at infinity of solutions to stationary convection-diffudion equation in a cylinder[END_REF] and provide a number of corollaries of these results. (66)

By Theorem 11 this problem has a unique solution. Moreover,

|v ε + (y)| ≤ C( v 0 L ∞ (G) + v 1 L ∞ (G)
)e γ(y 1 -ε -1 ) .

Clearly, the function v + v ε + -v ε satisfies the equation and the boundary condition on the lateral boundary in (65). On the bases of Q ε we have

|v + v ε + -v ε | G 0 ≤ C( v 0 L ∞ (G) + v 1 L ∞ (G) )e -γε -1 , |v + v ε + -v ε | G ε -1 ≤ C v 0 L ∞ (G) e -γε -1 .
Then, by the maximum principle,

|v + v ε + -v ε | ≤ C( v 0 L ∞ (G) + v 1 L ∞ (G) )e -γε -1
in Q ε . This yields the desired bound.

  ), namely Ǎu = -div p 0 (y)a(y)∇u -b(y) • ∇u in Y, p 0 (y)a(y)∇u(y) • n = 0 on ∂ l Y, with its adjoint Ǎ * Ǎ * u = -div p 0 (y)a(y)∇u + b(y) • ∇u(y) in Y, p 0 (y)a(y)∇u(y) • n = 0 on ∂ l Y. It is easy to check that the kernel of Ǎ * in the unit cell Y , with 1-periodic boundary conditions in y 1 , is equal to a constant. Considering our normalization for the kernel of adjoint operator and recalling Definition 1 of the longitudinal effective drift, we conclude after simple computations that the effective longitudinal drift of Ǎ is -|Y | -1 b 1 . Under our standing assumptions this drift is negative.

  Gr a(y)∇p ε (y) • n + b(y) • np ε (y) dy ′ = 0, while integrating (8) on Q s,r shows that the following surface integral is constant Gr a(y)∇p 0 (y) • n + b(y) • np 0 (y) dy ′ = b 1 > 0 (22) for all r ∈ [0, 1/ε]. Since C ε ≥ C > 0, the last two relations contradict (20), (21). Thus, (12) holds true.

  Notice that, according to Lemma 3, in the case b 1 > 0 problem (23) has a unique L 2 (Q ∞ ) eigenfunction related to the eigenvalue 0. If we replace in (23) the Neumann boundary condition at the cylinder base with the Dirichlet condition, then the modified problem reads

  y)∇q(y) • n(y) = 0 on ∂Q ∞ with â = (p ∞ ) 2 a and b = (p ∞ ) 2 b. It readily follows from the Harnack inequality that the coefficients â and b are locally uniformly bounded, and â is locally uniformly elliptic. Denote by M(r) and m(r) respectively the maxi-

Proof.

  It suffices to introduce a new normalization of p ε dividing it by the constant c ε defined in Lemma 4. Then, dividing relation (28) by c ε and considering estimates (29) in Lemma 4, one concludes that, under the new normalization, p ε satisfies (37)-(38), and the announced convergence of p - ε and e θ 0 /ε p + ε (y) holds.

Remark 5 .-

 5 If in problem (7) we consider Dirichlet boundary condition at both ends G 0 and G 1/ε of the cylinder (still keeping the lateral Neumann boundary conditions on ∂ l Q ε ), then the asymptotic behavior, predicted by Theorem 3, changes completely. Of course, in such a case, the first eigenvalue λ ε is not zero anymore and, denoting the first eigenfunction p ε Dir (y), div a(y)∇p ε Dir -div b(y)p ε Dir

Lemma 5 .

 5 Let b 1 = 0. Then problem (23) has a unique, up to a multiplicative constant, bounded solution. Moreover, there are constants ϑ > 0, C > 0 and c such that

p ε normalized in such a way that max Qε p ε = 1 .

 1 Denote â(y) = p 0 (y)a(y), b(y) = a(y)∇p 0 (y) + p 0 (y)b(y).

  with its adjoint à * à * u = -div p 2 0 (y)a(y)∇u + div(p 2 0 (y)b(y)u), -p 2 0 (y)a(y)∇u(y)• n(y) + p 2 0 (y)b(y) • n(y)u(u) = 0 on ∂ l Y.It is easy to check that the kernel of à * in the unit cell Y , with 1-periodic boundary conditions in y 1 , is equal to 1/p 0 . Considering the normalized func-

  Gr a(y)∇p ε (y) • n + b(y) • np ε (y) dy ′ = 0, while integrating (8) on Q s,r shows that the following surface integral is constant Gr a(y)∇p 0 (y) • n + b(y) • np 0 (y) dy ′ = b 1 > 0 (60)

  Let, as in (23), Q ∞ = (0, ∞) × G, and consider the following problem        -div a(y)∇v(y) + b(y)∇v(y) = 0 in Q ∞ , a(y)∇v(y) • n(y) = 0 on (0, +∞) × ∂G,v(y) = v 0 (y) on G 0 ; (64) here v 0 is a given function, v 0 ∈ L ∞ (G) ∩ H 1/2 (G).Theorem 11. (see[START_REF] Pankratova | On the behaviour at infinity of solutions to stationary convection-diffudion equation in a cylinder[END_REF] Theorem 6.1]) If b 1 < 0, then for any constant c there is a solution of (64) that converges to c as y 1 → +∞. Such a solution (with a fixed limit c) is unique.If b 1 ≥ 0, then problem (64) has a unique bounded solution.In both cases any bounded solution v of problem (64) converges to a constant at exponential rate that is there exist constants γ > 0, c and C 0 such that|v(y) -c| ≤ C 0 e -γy 1 ,and the constant γ does not depend on v 0 .In the case b 1 ≥ 0 we denote by c(v 0 ) the unique constant to which the bounded solution converges at infinity.Consider also in the cylinderQ ε the problem              -div a(y)∇v ε (y) + b(y)∇v ε (y) = 0 in Q ε , a(y)∇v ε (y) • n(y) = 0 on (0, ε -1 ) × ∂G, v ε (y) = v 0 (y) on G 0 , v ε (y) = v 1 (y) on G ε -1 . (65)As a consequence of Theorem 11 we haveCorollary 12. Let b 1 > 0. Then |v ε (y) -c(v 0 )| ≤ C v 0 L ∞ (G) e -γy 1 + v 1 L ∞ (G) e γ(y 1 -ε -1 )with a constant C that does not depend on v 0 and v 1 .Proof. Let v be a solution of problem (64) with Dirichlet boundary condition v 0 on G 0 . Then by Theorem 11 we have |v(y) -c(v 0 )| ≤ C v 0 L ∞ (G) e -γy 1 .In the cylinder Q -∞,ε -1 consider the following problem             -div a(y)∇v ε + (y) + b(y)∇v ε + (y) = 0 in Q -∞,ε -1 , a(y)∇v ε + (y) • n(y) = 0 on (-∞, ε -1 ) × ∂G, v ε + (y) = v 1 (y) -c(v 0 ) on G ε -1 , v ε + (y) → 0, as y 1 → -∞.

Equations with non-smooth coefficients

In this section we show that the regularity assumption that was imposed in the previous sections can be discarded. We assume here that conditions A1. and A2. are fulfilled and that the entries of the matrix a(•) and the components of the vector field b(•) are merely L ∞ (Y ) functions. Under these assumptions the proof of Lemma 1 remains unchanged. Proof. The proof of the uniform local Harnack inequality did not use any regularity of the coefficients. Thus, this inequality holds. We now change the factorization which lead to equations ( 17) and [START_REF] Perthame | Asymmetric potentials and motor effect: a homogenization approach[END_REF] in the proof of Lemma 2. We do so because of regularity issues (see the discussion in Remark 8). Letting p ±,ε (y) = p 0 (y)q ±,ε (y)

and multiplying the resulting equation by p 0 (y), after straightforward rear-

and

Let us denote by à the following operator

. Thus, (12) holds true.

The assumption that [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] does not hold leads to a contradiction in exactly the same way. This completes the proof.

Remark 8. It is a common practice to write down the factorized equations for q -,ε and q +,ε in the form [START_REF] Pankratova | On the behaviour at infinity of solutions to stationary convection-diffudion equation in a cylinder[END_REF] and [START_REF] Perthame | Asymmetric potentials and motor effect: a homogenization approach[END_REF]. The advantage of this representation is the divergence-free structure of b = a∇p 0 + bp 0 . Indeed, In the proofs of Lemma 3 and Lemma 4 we did not use regularity of the coefficients. Therefore, the statements of these Lemmata hold under our standing assumptions. Then Theorem 3 also remains valid.

Theorem 9. Let assumptions A1.-A2. be fulfilled, and assume that the coefficients of equations (7) are bounded measurable functions. Then all the statements of Theorem 3 hold true.

The case b 1 = 0

In the case of non-smooth coefficients we cannot use equation ( 41) any more because its coefficients need not be bounded. Instead, we write down the problem for q * ,ε in the following form

which is equivalent to (41) for smooth coefficients. This implies by the maximum principle relations (43).

over Q ε , after integration by parts and straightforward rearrangements we obtain

The first integral on the left-hand side is equal to zero because q κ 1 ,ε -q κ 2 ,ε = 0 on G 0 . Since q κ 1 ,ε = q κ 2 ,ε in Q ε , the third integral is strictly positive.

Therefore,

and for at least one of the constants κ 1 and κ 2 equality (63) is contradictory.

This completes the proof of Lemma 6. Other statements in Section 4 can be justified in exactly the same way as in the smooth case. We arrive at the following result.

Theorem 10. Let assumptions A1.-A2. be fulfilled, and assume that the coefficients of equations (7) are bounded measurable functions. Then all the statements of Theorem 6 hold true.

Perspectives

In this short section we discuss possible generalizations of the results of this work.

Operators with locally periodic coefficients. Consider the problem

Under the assumption that a(x, y) and b(x, y) are periodic in y 1 and a uniform ellipticity assumption one can study the logarithmic asymptotics of a solution