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Abstract

Due to new regulations and further technological progress in the field of electric vehicles, the research
community faces the new challenge of incorporating the electric energy based restrictions into vehicle routing
problems. One of these restrictions is the limited battery capacity which makes detours to recharging stations
necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric
vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing
Problem with Time Windows and recharging stations (E-FSMFTW) to model decisions to be made with
regards to fleet composition and the actual vehicle routes including the choice of recharging times and
locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost.
Furthermore, we consider time windows at customer locations, which is a common and important constraint
in real-world routing and planning problems. We solve this problem by means of branch-and-price as well as
proposing a hybrid heuristic, which combines an Adaptive Large Neighbourhood Search with an embedded
local search and labelling procedure for intensification. By solving a newly created set of benchmark instances
for the E-FSMFTW and the existing single vehicle type benchmark using an exact method as well, we show
the effectiveness of the proposed approach.

Keywords: Heterogenous Fleet, Electric Vehicle Routing, Efficient constraint handling

1. Introduction

Current research in sustainable and energy efficient mobility is strongly motivated by increasing concerns
about climate change and rising green house gas emissions. The introduction of electrically powered vehicles
is one of the major directions taken in order to address these concerns. Pure battery electric vehicles, as
studied in this work, are only powered by an electric engine, using the energy stored in a rechargeable battery.
One of the main operational challenges in transport applications is their limited range and long recharging
times. Besides acquisition cost, the acceptance of electric vehicles in the transportation business will strongly
depend on methods alleviating the range and recharging limitations. Selecting the right vehicles for specific
transport requirements while minimizing overall cost is therefore of crucial importance.

Companies have a variety of available electric vehicles with certain variability concerning range, payload,
and price to consider (see e.g., AustriaTech (2010)). Especially with electric vehicles, acquisition cost play an
important role in economic considerations of fleet managers. This means that larger vehicles might be able
to serve the transportation needs without recharging operations. But the difference in price, using smaller
vehicles in the fleet mix could reduce the overall cost. However, smaller vehicles have a smaller capacity and
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battery size, thus need to be recharged in order to serve longer tours, which in turn takes time. It is to be
expected that smaller and cheaper vehicles will be used alongside larger vehicles depending on the typical
customer distribution over the urban area. In this work we will show that a fleet composed of different
vehicle types can indeed be beneficial.

We propose to address this task by introducing a new optimization problem, the so-called Electric Fleet
Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations (E-FSMFTW). It com-
bines and subsumes the well known Fleet Size Mix Vehicle Routing Problem with Time Windows (FSMFTW)
and the recently defined Electric Vehicle Routing Problem with Time Windows and Recharging Stations (E-
VRPTW).

1.1. Related Work

Solving and optimizing problems involving tour assignments of vehicles is a well known and well studied
field of research, known as Vehicle Routing Problem (VRP) (Toth and Vigo, 2014). The basic problem variant
is the Capacitated VRP (CVRP), where each customer has a given demand that has to be satisfied, with
respect to a maximum vehicle capacity. The VRP with Time Windows (VRPTW) extends the CVRP by
adding time windows to the depot and the customers. A survey on this problem class is provided in Bräysy
and Gendreau (2005a,b); Toth and Vigo (2014).

The classical VRP has been extended in various ways to account for additional real world aspects. These
more complicated problems are often called ”rich VRPs” or ”multi-attribute VRPs”; see Vidal et al. (2013a).
Our research combines two such streams of research, (1) the use of electrical/zero-emission vehicles in ”green”
VRPs and (2) the analysis of VRPs with heterogeneous fleet. The first stream is part of research in the
field of green logistics. A general survey on the subject is provided in Sbihi and Eglese (2010) and Dekker
et al. (2011). A recent discussion on electric vehicles for distribution goods is provided by Pelletier et al.
(2015). For a summary of the work on non-electric ”green” VRPs, minimizing for example emissions by
speed optimization, we refer to Toth and Vigo (2014) as well.

Erdoǧan and Miller-Hooks (2012) started by extending the CVRP to the Green VRP where tours for
Alternative Fuel Vehicles are optimized. The uneven distribution of Alternative Fuelling Stations (AFS)
leads to the problem of deciding when a vehicle has to visit AFS during its tour (possibly multiple times)
in order to minimize the distance travelled but avert to run out of fuel. Two construction heuristics are
presented: A Clarke and Wright savings heuristic (Clarke and Wright, 1964) that is extended to include
AFS nodes during the merge process, and a Density Based Clustering exploiting spatial properties of the
problem. Both approaches terminate after creating a solution containing a feasible set of routes, which is
then improved by means of local search. The methods were tested on a randomly generated test set as well
as a real world case study considering up to 500 (randomly located) customers and 21 existing AFS. For
smaller random instances the presented methods obtain solutions that are, on average, less than 10% worse
than the best known solutions obtained with CPLEX.

Schneider et al. (2014) adapted the Green VRP to electric vehicles (EV) and added time window con-
straints, introducing the Electric VRPTW with Recharging Stations (E-VRPTW). The aim is to find tours
satisfying charge constraints (the state of charge may never fall below zero) and time window constraints.
The recharging process complicates the time calculations, since the required recharging time depends on
the state of the charge. The problem is solved by a Variable Neighbourhood Search (VNS) approach using
Tabu Search (TS) as local optimization technique. The proposed approach was tested on a new benchmark
set based on the traditional Solomon instances for the VRPTW that have been extended with recharging
stations as well as the instances of Erdoǧan and Miller-Hooks (2012) for the GreenVRP. In addition, the pre-
sented approach has been adapted to solve instances of the related Multi Depot VRP with Inter-depot routes
(MDVRPI) (Crevier et al., 2007; Tarantilis et al., 2008), where vehicles can visit depots between customers
to restock in order satisfy the demand of the customers. The presented methods were able to improve upon
previous results for the GreenVRP and new best solutions have been obtained for the MDVRPI. Based on
the proposed benchmark set, smaller instances allowing a direct comparison with CPLEX have been created.
The comparison shows, that the VNS/TS approach is able to find optimal solutions (where known).

A different electric vehicle routing problem has been presented in Conrad and Figliozzi (2011), the so-
called Recharging VRP (RVRP). Instead of using dedicated recharging stations the authors assume that a set
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of customers provides the option to recharge at their location. The EV can perform a recharging operation
to a certain percentage of the maximum capacity, a so-called ’quick charge’. It is assumed that this takes
a fixed amount of time, independent of the current level of charge. Recharging operations and service at
the customer can be performed simultaneously. Different problem instances are proposed and solved with
various parameter settings using a modified iterative construction and improvement algorithm. The paper
focuses on the analysis of the instance parameters and their contribution to the solutions obtained to generate
meaningful solution bounds for the average tour distance.

Recently, Goeke and Schneider (2015) studied a rich fleet mixing problem where not only conventional
and electric vehicles are considered, but also load-dependent energy consumption based on a real-world
network. They developed an adaptive large neighbourhood search approach with an embedded local search
procedure using an surrogate function to evaluate changes efficiently. In parallel to our work, Desaulniers
et al. (2014) tackled the original E-VRPTW as well as variations concerning variable recharging or allowing a
single stop. They proposed a branch-price-and-cut algorithm with efficient labelling and cutting procedures
applicable for all studied variants. In their computational results, they showed that their approach is able
to solve instances with up to 100 customers, while some instances with 50 customers cannot be solved to
optimality.

The second stream of research related to our work is that of VRPs with heterogeneous fleet. The Mixed
Fleet or Heterogenous VRP considers problems where different types of vehicles are available. It was first
introduced in Golden et al. (1984). Baldacci et al. (2008) identifies five major subclasses differing in the
number of vehicles available (limited, unlimited), whether a fixed cost per vehicle is considered or not and if
the routing cost depend on the vehicle type. The original formulation by Golden et al. (1984) considers an
unlimited number of vehicles with fixed acquisition costs and vehicle type independent routing costs, which
is classified as a Fleet Size and Mix VRP with Fixed costs (FSMF) (Baldacci et al., 2008; Toth and Vigo,
2014).

Liu and Shen (1999) reformulate the FSMF to consider time windows, creating the Fleet Size and Mix
Vehicle Routing Problem with Time Windows (FSMFTW). The so-called En Route time, i.e., the time
between departing from and returning to the depot minus the cumulative service time at the customers in
the respective route is considered as routing cost. The proposed approach was applied to a new benchmark
set based on the well known Solomon instances for the VRPTW. This benchmark extends the 56 VRPTW
instances by providing three classes of vehicle type settings (A,B,C) varying from 3 to 6 vehicle types with
different cost and capacity margins, resulting in 168 problem instances in total.

Bräysy et al. (2008a) propose a three phase multi-start deterministic annealing metaheuristic (MSDA)
to solve the FSMFTW. A threshold acceptance criterion is used where the maximum threshold of accepting
a worse solution is reduced after a number of iteration until no worsening is allowed. The solution itself
is created using a systematic and deterministic multi-phase approach, starting with a modified Clarke and
Wright savings heuristic, followed by a route elimination procedure and a systematic local search where three
operators are applied every single, second or third iteration. The proposed algorithm shows a very good
performance when run for a similar amount of time compared to previous approaches. Furthermore, with
longer run-times new best solutions for almost every instance are obtained.

An Adaptive Memory Program (AMP) was proposed by Repoussis and Tarantilis (2010). A memory
of good solution features (route assignments and orderings) is maintained within an Iterated Local Search
(ILS) using TS as local improvement procedure. A specialized construction heuristic uses the information of
the memory to create new solutions for the following run of the ILS which is repeated until the predefined
maximum runtime has been reached. The approach was able to find new best solutions for over a half of the
instances and found comparable results for the others.

Most solution approaches in the literature use heuristic methods. However, a few exact approaches were
also proposed, most notably by Baldacci et al. (2010). They presented a general exact branch-and-cut-
and-price framework to solve the FSMFTW among others. Their approach was able to solve some larger
benchmark instances to optimality for the first time, however, there are still a number of instances left.

Recently, Vidal et al. (2013b) presented a hybrid evolutionary algorithm using population management
mechanisms and a generalized solution representation with modular evaluation which is able to solve a large
class of VRPs, including the FSMFTW. The approach was able to find new best solutions for many instances
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in a reasonable amount of time.
Further noteworthy research for the FSMFTW can be found in Dullaert et al. (2002), Dell’Amico et al.

(2007), Paraskevopoulos et al. (2008) and Bräysy et al. (2008b).
Recently, Çaǧri Koç et al. (2014) presented a related heterogeneous fleet problem, the Fleet Size and

Mix Pollution-Routing Problem (FSMPRP), focussing on conventional vehicles only. The FSMPRP contains
additional operational details, such as adaptation of travel speed to minimize fuel consumption and CO2
emissions.

1.2. Contributions of this article

We combine the streams of research on the EVRPTW and the FSMFTW and introduce a new vehicle
routing problem: the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and recharg-
ing stations (E-FSMFTW). For this new problem, we introduce a new set of benchmark instances for our
computational experiments as well as for future research in the field.

To define the problem precisely, we provide a mathematical formulation as a MIP model and use a state-
of-the-art branch-and-price algorithm designed for the VRPTW to solve a set of smaller instances to have
benchmarks for heuristic approaches. In addition we applied it to larger instances as well to obtain good lower
bounds for comparison. In order to tackle problem instances of realistic size, we propose a metaheuristic
approach based on Adaptive Large Neighbourhood Search (ALNS) with embedded local search and labelling
procedures. We describe a sophisticated move evaluation process, which enables us to calculate the change
in the objective value using common moves in constant time. We propose to compute optimal positions
of recharging stations in a post-local-search step using a variant of the labelling procedure applied in the
branch-and-price.

The presented computational experiments show that our approach is able to find optimal solutions for
small instances and that high quality feasible solutions can be found for the larger instances. Furthermore,
a sensitivity analysis conducted on additional experiments is included, presenting and discussing the impact
of the fleet mix and the recharging constraint in our problem.

Overview of the article

In Section 2, a mixed-integer linear programming formulation is given alongside detailed formal notation.
Section 3 provides a general insight into the branch-and-price method, and describes the bi-directional
labelling algorithm in detail. Section 4 describes the modules of our ALNS approach in detail. Results of
our experiments for the new benchmark are presented in Section 5. Section 6 provides a short summary and
a conclusion of our work.

2. Problem Description and Model

The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and recharging stations
(E-FSMFTW) consists of finding admissible tours for vehicles of different types such that every customer
is covered by exactly one tour while minimizing acquisition costs and the total distance travelled. Our
formulation is based on Bräysy et al. (2008a) for the FSMVRPTW and Schneider et al. (2014) for the E-
VRPTW. As for the E-VRPTW, a vehicle is also assumed to always recharge to full capacity every time it
visits a recharging station.

2.1. Mixed Integer Programming Model

An instance of the E-FSMFTW consists of a set of customers C, a set of recharging stations F , a depot
node and k different vehicle types. N is defined as a set of nodes N = C ∪F ′ consisting of a set of customers
C and a set of dummy nodes F ′ representing the recharging stations of F multiple times. These copies of
stations are needed in the model to account for multiple visits at the original one (even for the same vehicle)
. u0 and un+1 are used to represent the start and end depot nodes respectively. N0 (Nn+1) denotes the set
of nodes with the start depot node (end depot node) whereas N0,n+1 addresses N ∪ {u0, un+1}. The same
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notation is used for C and F ′. A binary variable xkij is used for indicating whether a vehicle of type k visits
node j after visiting node i.

The maximum capacity of vehicle type k is defined in Qk, and pi is the capacity demand of node i.
Variables qki hold the current load of a vehicle of type k in node i. Similar to the load capacity, Y k is the
maximum energy capacity of vehicle type k and yki is the variable holding the current energy level of a vehicle
of type k in node i. rk represents the assumed energy consumption per distance unit travelled of a vehicle
of type k and gk corresponds to the recharging time per energy unit.

For each node i, a range [ei, li] is defined representing the time windows. The service time of each node
is represented by si and the actual start of service time is stored in variable τi. The distance and the travel
time between two nodes i and j are denoted as dij and tij respectively.

Furthermore, fk is used for the acquisition cost of a vehicle of type k, whereas dij indicate the distance
between node i and j.

The E-FSMFTW can be modelled as follows:

min
∑
k∈V

∑
j∈N

fkxk0j +
∑
k∈V

∑
i∈N0,j∈Nn+1,i6=j

ckijx
k
ij (2.1)

s.t.
∑
k∈V

∑
j∈Nn+1,i6=j

xkij = 1 ∀i ∈ C (2.2)

∑
k∈V

∑
j∈Nn+1,i6=j

xkij ≤ 1 ∀i ∈ F ′ (2.3)

∑
i∈Nn+1,i6=j

xkji −
∑

i∈N0,i6=j

xkij = 0 ∀j ∈ N,∀k ∈ V (2.4)

ej ≤ τj ≤ lj ∀j ∈ N0,n+1 (2.5)

τi + (tij + si)x
k
ij − l0(1− xkij) ≤ τj ∀k ∈ V,∀i ∈ C0,∀j ∈ Nn+1, i 6= j (2.6)

τi + tijx
k
ij + gk(Y k − yki )− (l0 + gkY k)(1− xkij) ≤ τj ∀k ∈ V,∀i ∈ F ′,∀j ∈ Nn+1, i 6= j (2.7)

qkj ≤ qki − pixkij +Qk(1− xkij) ∀k ∈ V,∀i ∈ N0,∀j ∈ Nn+1, i 6= j (2.8)

0 ≤ qkj ≤ Qk ∀k ∈ V,∀j ∈ N0,n+1 (2.9)

0 ≤ ykj ≤ yki − (rkdij)x
k
ij + Y k(1− xkij) ∀k ∈ V,∀i ∈ C, ∀j ∈ Nn+1, i 6= j (2.10)

0 ≤ ykj ≤ Y k − (rkdij)x
k
ij ∀k ∈ V,∀i ∈ F ′0,∀j ∈ Nn+1, i 6= j (2.11)

yk0 = Y k ∀k ∈ V (2.12)

xkij ∈ {0, 1} i ∈ N0, j ∈ Nn+1, i 6= j,∀k ∈ V (2.13)

The problem is a minimization problem with an objective function (2.1) consisting of two parts. The
first part is the sum of the costs of all vehicles used, i.e., if a vehicle is driving from the depot to any other
node than the depot (indicated by a value greater than zero) the corresponding acquisition cost fk is added.
The second part counts the total travelling cost or each car – in the case of the E-FSMFTW, the distance
travelled, i.e., ckij = dij . Equation (2.2) ensures that every customer is visited by any vehicle exactly once
while (2.3) covers the fact that a recharge station does not need to be used in a solution at all. Furthermore,
each dummy node representing a recharge station is restricted to be visited at most once by any vehicle to
ensure correct assignments to node specific variables like the start of service time τi. Equation (2.13) forces
the value of xkij to be either zero or one.

The timing constraints are covered by (2.5) - (2.7). The constraint described in (2.5) ensures that the
start of service time τi has to be inside the time window [ei, li] of node i. Constraint (2.6) ensures that the
starting time of the next node τj has to consider the start time τi plus the service time si of the previous
node i in addition to the travel time tij in case that node i is a customer node or the start depot. If the
previous node is a recharging station, i.e., i ∈ F ′, constraint (2.7) considers the recharge time instead of a
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service time. The recharging time depends on the remaining energy when arriving at the recharging station
yki , the maximum energy capacity of the vehicle Y k and the recharging rate gk.

To ensure that the demand of the customers can be fulfilled by the assigned vehicle k, constraint (2.8)
ensures that the load of the vehicle in the next node qkj depend on the load of the previous node qki plus the

demand pi. Equation (2.9) restricts the load qki never to exceed the maximum capacity Qk of the vehicle k
as well as ensures a positive value.

Constraint (2.10) restricts the current available energy ykj to be smaller than the previous yki and to

consider the energy consumption per km/mile rk when travelling from a customer node i ∈ C to any other
node j ∈ Nn+1. As it is assumed, that a vehicle is recharged to the maximum capacity when visiting a
recharge station, constraint (2.11) ensures that the current load is assumed to be the maximum minus the
consumed amount. Both constraints also ensure that the available energy is always positive in any node
i ∈ N0,n+1.

2.2. Set Partitioning Formulation

To formulate the problem as a generalized set partitioning problem, let Ωk denote the set of all feasible
routes of vehicle type k that satisfy constraints (2.2)-(2.13). Let ckr be the cost of the route r ∈ Ωk and akir
be the number of times node i ∈ C. Furthermore, let λkr be a binary variable equal to 1 if and only if route
r ∈ Ωk is used in the solution. The E-FSMFTW can then be formulated as follows:

min
∑
k∈V

∑
r∈Ωk

ckrλ
k
r (2.14)

∑
k∈V

∑
r∈Ωk

akirλ
k
r = 1,∀i ∈ C (2.15)

∑
r∈Ωk

akir ≤ Uk,∀k ∈ V (2.16)

λkr ∈ {0, 1},∀r ∈ Ωk,∀k ∈ V (2.17)

The objective function (2.14) minimizes the cost of the selected routes, whereas constraint (2.15) ensures
that every request is served once.

As the number of routes is usually very large, enumerating all columns may not be possible. In order to
solve the LP relaxation of such a problem, a so-called restricted master problem (Desrosiers and Lübbecke,
2010) is used whose columns are extended as needed using column generation. Such a restricted master
problem can be optained by replacing Ωk with a set of restricted routes Ω′k as well as replacing (2.17) with
λkr ≥ 0, r ∈ Ω′k.

Additional columns with negative reduced cost to the restricted master problem are created by solving
the corresponding pricing problems (one per vehicle type k):

min fk +
∑

i∈N0,j∈Nn+1,i6=j

ckijx
k
ij −

∑
i∈C,j∈Nn+1

xkijπi (2.18)

subject to constraints (2.2)-(2.13), where πi is the negative reduced cost associated with node i. This type
of pricing problem is also called a Shortest Path Problem with Resource Constraints (SPPRC). The next
section will describe how this general problem is adapted for the E-FSMFTW and how it is solved.

3. Branch and Price Algorithm

The set partitioning formulation described in the previous section is solved using a branch-and-price
algorithm. The algorithm is similar to existing branch-and-price algorithms for the VRPTW (see e.g. De-
saulniers et al. (2008)), but differs in the algorithm for solving the pricing problem since it has to incorporate
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the constraints related to charging. The procedure for solving the pricing problem is described in details in
Section 3.1.

In order to obtain integer solutions, the algorithm branches on the number of vehicles as long as this
number is fractional. Once the number of vehicles used is integer, the algorithm switches to branching on
the original variables. For a pair of nodes i, j ∈ N0, i < j the algorithm computes

∑
k∈V (xkij + xkji) as well

as
∑
k∈V x

k
ij and

∑
k∈V x

k
ji,and ensures that this number is integer. It also ensures that xki,n+1 is integer for

all i ∈ N and all k ∈ V . When both conditions are satisfied an integer solution is obtained
This section will now focus on describing how the new pricing problem - called the Elementary Shortest

Path Problem with Time Windows and Recharging Stations (ESPPTWRS) - is solved using a bi-directional
labelling algorithm. The SPPRC in context of vehicle routing problems is primarily solved using dynamic
programming approaches, so-called labelling algorithms. An overview of SPPRC and solution techniques are
provided in Irnich and Desaulniers (2005).

3.1. Labelling for the ESPPTWRS

In this work, the pricing problem is solved using a bi-directional labelling algorithm. This variant of a
labelling algorithm utilizes a forward (labels are extended by adding an additional visit at the end of the
current path) and a backward (extension by adding a visit before to the current path) labelling procedure.
Labels of both directions are extended in turn until a termination criterion is reached followed by a merging
process of the remaining non-dominated labels.

The procedures follows the general steps (see Irnich and Desaulniers (2005)), but differ in their label
definition, extension and dominance criterion. The description of the labelling algorithm uses a function
style notation to address the value of a field of a specific label, i.e., node(L) refers to the node of label L,
the resources are referred by R1 (L), . . . ,Rγ(L), and prev(L), V(L) for the pointer to the previous label, and
the bit set of unreachable nodes respectively. In the following, the forward and backward cases are covered
first before describing the merging procedure resulting in the final bi-directional algorithm.

3.1.1. Forward Labelling

The forward variant extends the labels in such a way, that the next node is added at the end of the
current path. To ensure feasibility and perform dominance checks efficiently, four resources are used: the
current cost of the path (Rc), the load after visiting the current node (Rq), the earliest begin of service time
at the current node (Rt) and the energy usage since the last visit of a recharging station (Ry). The forward
label denoted as LF = {node, (Rc, Rq, Rt, Ry), prev ,V}

Label extension. An extension of a label LF to a node j, where (node(LF ), j) ∈ A, is feasible if following
constraints are fulfilled:

Rq(LF ) + pj ≤ Qk, Rt(L
F ) + tnode(LF )j ≤ lj , Ry(LF ) + dnode(LF )j · r ≤ Y k (3.1)

The constraints in (3.1) only ensure the feasibility of the next extension, but to reduce the number of labels
created – and thus reducing the overall computational time – more restrictive constraints are introduced.
These harness the requirement to return to the depot and the possibility to recharge along the way.

ln+1 ≥ max(Rt(L
F ) + tnode(LF )j , ej) + tjn+1 +

{
sj j ∈ C
g(Ry(LF ) + dnode(LF )j · r) j ∈ F

(3.2)

Ry(LF ) + dnode(LF )j ≥ min(djn+1, djf ) · r f = min{f |dfj , f ∈ F}, j ∈ C (3.3)

With equation (3.2) it is ensured that the depot can be reached in time to satisfy the latest arrival time,
if the label LF is extended to node j. Apart from the travel time and the possible waiting time at node j,
the time spent in the node has to be accounted for too. There are two possibilities, depending on whether
node j being a customer, where a service time is present, or a recharging station. Due to the fixed recharging
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policy of the problem – always recharging to full capacity – the time spent recharging is calculated using the
information of label LF . By satisfying equation (3.3) it is ensured that a recharging station (or the depot)
can be reached after visiting customer node j.

If (3.1)-(3.3) are valid for an extension of LF to node j, then a new label LFnew is created as follows:

node(LFnew) = j (3.4)

Rc(LFnew) = Rc(LF ) + ĉnode(LF )j (3.5)

Rq(LFnew) =

{
Rq + pj if j ∈ C
Rq if j ∈ F

(3.6)

Rt(L
F
new) = max(Rt(L

F ) + tnode(LF )j , ej)

{
+ sj if j ∈ C
+ g(Ry(LF ) + dnode(LF )j · r) if j ∈ F

(3.7)

Ry(LFnew) =

{
Ry(LF ) + dnode(LF )j · r if j ∈ C
0 if j ∈ F

(3.8)

V(LFnew) = V(LF ) ∪ {j} ∪ unreachables(LFnew) (3.9)

The equations in (3.4)-(3.8) set the last visited node, cost, load, time and consumed energy of label LFnew.
The cost resource uses the modified cost ĉij , which incorporates the dual value of the current pricing problem.
The set of unreachable nodes is updated in equation (3.9) by adding the new node j and – substituted by
the function unreachables(LF ) – all nodes u, (node(LF ), u) ∈ A, violating the capacity or time constraint
in (3.1) and (3.2). The energy constraint is not part of the check for unreachable nodes, as Ry(LF ) can be
replenished, i.e., re-set to 0, see equation(3.8). Therefore a node u might only be temporarily unreachable,
and might lead to an undesired and invalid domination.

Dominance criterion. To reduce the number of labels extended, a label elimination method based on dom-
inance checks (as described in Feillet et al. (2004)) is used. By identifying and removing dominated labels,
the number of labels can be reduced significantly which directly impacts the overall runtime of the algorithm.

For the ESPPTWRS, using forward labelling, the criterion is as follows: a forward label LF1 dominates
LF2 if

node(LF1 ) = node(LF2 ),Rq(LF1 ) ≤ Rq(LF2 ),Rt(L
F
1 ) ≤ Rt(L

F
2 ),Ry(LF1 ) ≥ Ry(LF2 ),

V(LF1 ) ⊆ V(LF2 )
(3.10)

The proof of this criterion is an extension of Feillet et al. (2004). Let LF1 and LF2 be two forward labels
with i = node(LF1 ) = node(LF2 ) where LF1 dominates LF2 according to criterion (3.10). Let j be a node LF1 can
be extended to. If LF2 cannot be extended to j then it is clearly dominated. Otherwise, based on cost, time,
and energy, LF1 dominates LF2 after an extension as well, if they are extended to node j directly. Let assume
a recharge at station f is needed in order to reach j. After recharging at station f , both labels have the
same amount of energy consumed when arriving at node j, i.e., dfj · r, thus the criterion is still fulfilled with
respect to the energy resource. The time resource calculation contains the starting time, travel times from i
to f and further to j and the recharging time at f . As the travel time is equal for both labels, it is omitted
in the further consideration. Due to the direct correlation between the energy consumed and the recharging
time needed, the following can be deduced: Rt(L

F
1 ) + g(Ry(LF1 ) + dif · r) ≤ Rt(L

F
2 ) + g(Ry(LF2 ) + dif · r).

This is true as Rt(L
F
1 ) ≤ Rt(L

F
2 ) and Ry(LF1 ) ≤ Ry(LF2 ) holds as assumed previously. As our method

to update the set of unreachable nodes do not consider the energy constraint, the remaining proof follows
directly from Feillet et al. (2004).

3.1.2. Backward Labelling

For the backward case, the next node in the extension is added at the beginning of the current path. In
addition to the resources used in the forward label, three additional resources are maintained: the minimum
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(Rrs) and the maximum (Rrs) time available to recharge at the first recharging station in the current path;
and the earliest begin of service Rt , with the recharging time for the current energy consumption already
included. In contrast to the forward label, the time resource Rt denote the the latest begin of the route.
The backward label denoted as LB = {node, (Rc, Rq, Rt, Ry,Rt ,Rrs ,Rrs), prev ,V}

Label extension. An extension of a label LB to a node i, where (i,node(LB)) ∈ A, is valid if following
constraints are fulfilled:

pi + Rq(LB) ≤ Qk, Rt(L
B)− si − tinode(LB) ≥ ei, dinode(LB) · r + Ry(LB) ≤ Y k (3.11)

min(Rt(L
B)− si − tinode(LB) − ei + Rrs(LB),Rrs(LB)) ≥ g(Ry(LB) + dinode(LB) · r) (3.12)

Constraints (3.11) ensures the feasibility of the next extension on a basic level by checking the capacity,
time window and energy constraint similar to the forward label constraints. The time needed to recharge at
the next possible recharging station is not yet fully known when visiting a customer. Therefore constraint
(3.12) ensures that after adding node i, a recharge of the energy consumed (rhs) is between the minimal and
maximal recharging time available. Further restrictive constraints are used to reduce the number of labels
created, i.e., equation (3.3) and

e0 + t0i ≤ min(li,Rt(L
B)− tinode(LB)

{
−si) j ∈ C
−∆rs − g(d0i · r)) j ∈ F

, (3.13)

where ∆rs = max(0, g(Ry(LB) + dinode(LB) · r) − Rrs(LB)) represents the additional time needed for the
recharging operation. Notice that the maximum time will never exceeded due to constraint (3.12). With
(3.13), extensions to a node i are prohibited, if the depot cannot be reached after that visit.

If (3.11)-(3.13) and (3.3) are valid for an extension of LB to node i, then a new label LBnew is created as
follows:

node(LBnew) = i (3.14)

Rc(LBnew) = Rc(LB) + ĉinode(LB) (3.15)

Rq(LBnew) =

{
Rq + pj if i ∈ C
Rq if i ∈ F

(3.16)

Rt(L
B
new) = min(li,Rt(L

B)− tinode(LB)

{
−si) i ∈ C
−∆rs) i ∈ F

(3.17)

Ry(LBnew) =

{
Ry(LB) + dinode(LB) · r if i ∈ C
0 if i ∈ F

(3.18)

Rt(L
B
new) = min(li,Rt(L

B)− tinode(LB) −∆rs) (3.19)

Rrs(LBnew) =

{
min(Rt(L

B
new), Y k · g,Rrs(LB) + ∆WT ) if i ∈ C

0 if i ∈ F
(3.20)

Rrs(LBnew) =

{
Rt(L

B
new) if i ∈ C

0 if i ∈ F
(3.21)

V(LBnew) = V(LB) ∪ {i} ∪ unreachables(LFnew) (3.22)

where ∆WT = max(0, li − Rt(L
B) − tinode(LB) − si) denotes the amount of unavoidable waiting time at

customer i and ∆rs = max(0, g(Ry(LB)+dinode(LB) ·r)−Rrs(LB)) the additional recharging time as before.
Again, equations (3.14)-(3.18) set the last visited node, cost, load, time and remaining energy of label

LBnew. Equation (3.19) stores the earliest begin of service with the recharging time of the current energy
consumption included for later use in the dominance checks. With (3.20) and (3.21) the time spent at least
at the next recharging station and the maximum time available are updated. Equation (3.22) updates the
set of unreachable nodes.
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Dominance criterion. A backward label LB1 dominates LB2 if

node(LB1 ) = node(LB2 ),Rq(LB1 ) ≤ Rq(LB2 ),Rt(L
B
1 ) ≥ Rt(L

B
2 ),Ry(LB1 ) ≥ Ry(LB2 ),

V(LB1 ) ⊆ V(LB2 )
(3.23)

Similar to the forward label domination criterion, the capacity, time and energy resources are compared.
However, instead of using the current time at the label, the time with recharging is used. The proof of this
criterion follows the same rules as for the forward label case.

3.1.3. Bi-directional Labelling

By combining forward and backward labelling, the overall number of labels created is expected to be
smaller than for the single directional cases. A bounded version of this method is known to improve the
runtime of ESPPRC for VRP’s as shown by Righini and Salani (2006).

Forward and backward labels are retrieved and extended in turn, using the same extension procedures
and dominance checks as described before. A resource bound was used as suggested by Righini and Salani
(2006). For the ESPPTWRS the time resource is utilized. The labels are extended using priority queues,
which are sorted by the time resource – ascending for the forward labels and descending for the backward
labels. As soon as the time resource of the next element in the queues have met, the extension can be
stopped and a splicing (joining) procedure is called. This is used to combine all remaining non-dominated
labels to obtain a set of feasible ESPPRC paths.

3.2. Heuristic Pricing Algorithm

To accelerate the search, the pricing problem is solved heuristically as long as columns with negative
costs can be generated. This is achieved by iteratively searching on a reduced graph Gl with increasing
complexity, as used by Irnich and Villeneuve (2006). In step l, the reduced graph Gl is build by connecting
each customer node to its (2l − 1) nearest neighbours and the pricing problem is solved in Gl. The algorithm
let l run from 1 to 6 but aborts the search as soon a path with negative reduced cost has been found (i.e.
skipping the more complex graphs if possible).

4. Heuristic Solver

In order to be able to solve benchmark instances of realistic sizes, an heuristic solver has been developed
based on the Adaptive Large Neighbourhood Search (ALNS) described in Ropke and Pisinger (2006) . The
ALNS is combined with a local search procedure for intensification, as well as a labelling procedure to
optimize the position of recharging stations within the routes at certain points during search. First the data
structures for representing, evaluating and improving solutions are described. Then the local search and
labelling procedures are presented. Finally the ALNS including the used destroy and repair operators will
be discussed.

4.1. Representation and Evaluation

The evaluation of solutions in this approach is based on the work of Vidal et al. (2013b), where a sequence-
based evaluation approach is introduced. It exploits the fact that solutions resulting from a bounded number
of edge exchanges and node relocations performed on a solution can also be achieved using a recombination
of a bounded number of sequences of visits of the same solution (see Kindervater and Savelsbergh, 1997;
Vidal et al., 2013b).

For two sequences of nodes σ1 = {u, . . . , v} and σ2 = {u′, . . . , v′} a concatenation results in a new
sequence σ′ = σ1⊕σ2, where the data of σ1 and σ2 has been combined to reflect the data needed to evaluate
σ′ = {u, . . . , v, u′, . . . , v′}. The effectiveness of this approach depends substantially on efficient concatenation
operator. However, as shown in Vidal et al. (2013b), there exists a large number of objective values and
constraints that can be evaluated in O(1).
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Figure 4.1: Example of a shift (relocate) move from r to r′ (dashed line) using data of preprocessed sequences (dashed boxes)
and the concatenation operator ⊕.

Figure 4.1 shows an example of a move evaluation by concatenation of preprocessed sequences. Starting
with two routes, as shown at the top, the changed state (at the bottom) can be evaluated using three
concatenation operations.

In the following, we will present a new constance-ctime concatenation operator for evaluating routes in of
the E-VRPTW. For the E-FSMFTW we restrict these operations to preprocessed sequences using the same
vehicle type. When sequences of different vehicle types are combined, one part has to be recalculated, which
can be done in time linear to the number of nodes.

4.1.1. Concatenation operators from the literature.

According to the categorization introduced by Vidal et al. (2013a), the E-FSMFTW consists of several
EVAL attributes, i.e., capacity, distance, and state of charge, as well as a single ASSIGN attribute: the
vehicle type. For the concatenation of the capacity and distance attributes – and the time attribute to
some extent, – the definitions also presented in Vidal et al. (2013b) are used. The general battery charge
concatenation is based on the work of Schneider et al. (2014) for the E-VRPTW, but was adapted here for
the sequence-based evaluation approach. To simplify the equations, the vehicle type k is omitted in the
following description of the concatenation operators.

Capacity and distance. Both, capacity Q(σ) and distance Dist(σ) can be concatenated by constant opera-
tions:

Q(σ1 ⊕ σ2) = Q(σ1) +Q(σ2) (4.1)

Dist(σ1 ⊕ σ2) = Dist(σ1) + dij +Dist(σ2) (4.2)

where i is the last node of σ1 and j first node of σ2 The load capacity of a concatenation is simply the sum
of both capacities. The distance of a concatenation is the sum of the individual distances plus the distance
from the last node of the first sequence to first node of the second sequence.

State of charge. In order to compute the information concerning the state of charge, four values for each
sequence are required. First, a boolean value f(σ) indicating whether a sequence contains at least one
recharging station. Second, the energy required to reach the first recharging station in the sequence is stored

in
←−
Y (σ). Third,

−→
Y (σ) stores the energy needed to get from the last recharging station to the last node

in the sequence. In sequences with no recharging station both values are set to the total energy needed to
travel through the sequence. The final value EY (σ) stores the overall violation of charge in a sequence, i.e.,
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how much extra energy would be additionally needed to satisfy the constraint.

f(σ1 ⊕ σ2) = f(σ1) ∨ f(σ2) (4.3)

←−
Y (σ1 ⊕ σ2) =

{←−
Y (σ1) if f(σ1)
←−
Y (σ1) + r · dσ1σ2 +

←−
Y (σ2)−∆Y otherwise

(4.4)

−→
Y (σ1 ⊕ σ2) =

{−→
Y (σ2) if f(σ2)
−→
Y (σ1) + r · dσ1σ2 +

−→
Y (σ2)−∆Y otherwise

(4.5)

EY (σ1 ⊕ σ2) = EY (σ1) + EY (σ2) + ∆Y (4.6)

where ∆Y = max{
−→
Y (σ1) + r · dσ1σ2

+
←−
Y (σ2) − Y , 0}. For simplicity, the index of the vehicle type for the

energy consumption r is omitted in these equations.
For the concatenation process, first the additional violation with regards to energy consumption – which

is obtained when combining two sequences – is calculated. This value, denoted as ∆Y , is obtained using
the information of the amount of charge needed from the last charging station of the first sequence to the
first charging station of the second sequence. If such an additional violation exists (∆Y > 0), the amount
is added to the total violation of the new sequence; see (4.6). To avoid counting violations multiple times
throughout concatenations, the value ∆Y is subtracted in Equation (4.4) and (4.5) in the cases where the

first respectively second sequence does not contain a recharging station. This also implies that neither
←−
Y (σ)

nor
−→
Y (σ) will ever exceed the maximum battery charge.

Time windows. An effective way to relax the time window constraint and efficiently calculate the time
window violation was presented by Nagata et al. (2010) and was enhanced by Schneider et al. (2013) in the
context of VRPTW. A time window penalty (TW) counting the cumulative time needed to travel back in
time in order to satisfy the time window constraints is introduced. By ’repairing’ the time using this time
window penalty, violations in one location do not propagate to later locations. The concept of slack variables
presented by Kindervater and Savelsbergh (1997) to evaluate moves efficiently in constant time is used.

Proper concatenation operators for this approach have been presented in Vidal et al. (2013b). In addition
to the duration Dur(σ) and the amount of time window violation TW (σ), the earliest E(σ) and latest
departure L(σ) from the first node are stored.

Dur(σ1 ⊕ σ2) = Dur(σ1) +Dur(σ2) + tσ1σ2
+ ∆WT (4.7)

TW (σ1 ⊕ σ2) = TW (σ1) + TW (σ2) + ∆TW (4.8)

E(σ1 ⊕ σ2) = max{E(σ2)−∆, E(σ1)} −∆WT (4.9)

L(σ1 ⊕ σ2) = min{L(σ2)−∆, L(σ1)}+ ∆TW (4.10)

where ∆ = Dur(σ1)− TW (σ1) + tσ1σ2
, ∆WT = max{E(σ2)−∆−L(σ1), 0} and ∆TW = max{E(σ1) + ∆−

L(σ2), 0}
For each concatenation of two sequences σ1, σ2 the additional waiting time ∆WT is calculated as well as

the additional time window violation ∆TW introduced by the concatenation. These are used to compute
the concatenation values of (4.7)-(4.10) properly. We use ∆ as an auxiliary variable for the time needed to
reach the first node of the second segment σ2.

With this operator definition the time window violations can be calculated, however, the charging times
and its effect on the time calculation are still unaccounted for. In Schneider et al. (2014) a slack-based
approach was presented. Here the authors utilized the concept of time travelling and showed that for
combining two partial routes, {u, . . . , v} and {w, . . . , f, . . . , h}, only a part of the second route has to be
recalculated, i.e., until the first recharging station f is encountered. After recalculating the additional charge
needed at the recharging station as well as the new arrival time, a violation in the time constraint can be
checked using this new time values. In case there is no recharging station in the second part, no recalculation
is needed.
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The complexity of this approach is O(B), where B is the number of nodes prior to the first recharging
station in the second partial route. In most situations, B might only be a small number. However, if
additional nodes are placed prior to the new partial route, the subsequent re-evaluations are going to have
an impact on the performance. In the following, a new concatenation operator is proposed to address this
issue.

4.1.2. An efficient concatenation operator for the E-VRPTW

In this work, the definition for the capacity and distance data concatenation introduced at the beginning
of this chapter is used. However, the energy constraint has a direct impact on the time window constraint.
Therefore the modified time window and energy calculation of Schneider et al. (2014) are adapted and
extended for the sequence-based evaluation approach of Vidal et al. (2013b). As this calculation also depends
on the vehicle type (see state of charge operator), this concatenation operator is also limited to sequence
data concatenations of the same vehicle type. However, as described in the following, this restriction lead to
an efficient constant time operator formulation.

The problem in the calculation of time window violations with recharging is the possibility of increasing
recharging time at the first recharging station due to increasing energy demand by adding additional nodes
before this visit. However, after the first recharging station has been visited, the precise recharging time
required in each following station is known. This is due to the assumption to recharge to full capacity at
each recharging station visit and the nature of the sequence-based evaluation, where a sequence can only be
added before or after another sequence.

To solve this problem, the calculation of the final amount recharged and its effect on the remaining
sequence is delayed by splitting the sequence into three sub-sequences right before and after the first
recharging station encountered. That is, for σ = {u, . . . , v, f, v′, . . . , w}, let ←−σ = {u, . . . , v}, σRC = {f},
−→σ = {v′, . . . , w} , where f ∈ F ′ is the first recharging station in σ. If σ = {u, . . . , w} does not have any
recharging stations, then let ←−σ = {u, . . . , w} and σRC = −→σ = {}. To get the evaluation data for the full se-
quence, constant concatenation operations are performed on the three sub-sequences, i.e., σ =←−σ ⊕σRC⊕−→σ .

The concatenation operator for two sequences σ1 and σ2 is defined as a set of concatenation operations
on the sub-sequences {←−σ1, σ

RC
1 ,−→σ1} and {←−σ2, σ

RC
2 ,−→σ2}. Depending on whether recharging stations exists on

the sequences, there exists four cases:

• no recharging station in both sequences. Both sequences can be linked in a single concatenation
operation σ′ = {←−σ1 ⊕←−σ2, {}, {}}

• no recharging station in σ1, but one in σ2. In this case, the additional distance and time travelled
in σ1 is considered and the changes when combining this information with the first part of σ2 is
calculated, i.e., σ′ = {←−σ1 ⊕←−σ2, σ

RC
2 ,−→σ2}

• a recharging station in σ1 but not in σ2. Although the recharging time of the first recharging
station in σ1 will not change, the information of the second part −→σ has to be updated to account for
the reduced energy capacity available after travelling the additional distance of σ2. The concatenation
of both sequences is therefore σ′ = {←−σ1, σ

RC
1 ,−→σ1 ⊕←−σ2}

• a recharging station in both sequences. If both sequences contain recharging stations, the changes
in σ2 need to be evaluated using two concatenations: First the changes in distance and time for σ2 is
calculated by concatenating −→σ1 with ←−σ2. With the final distance and time bounds stored, the actual
recharging time is calculated by concatenating −→σ1 ⊕←−σ2 with −→σ2. This newly acquired information is
also the second part of the new sequence, i.e., σ′ = {←−σ1, σ

RC
1 ,−→σ1 ⊕←−σ2 ⊕ σRC2 ⊕−→σ2}.

In summary, the concatenation operations for time windows with recharging are as follows:

σ1 ⊕ σ2 =


{←−σ1 ⊕←−σ2, {}, {}} if σRC1 = {}, σRC2 = {}
{←−σ1 ⊕←−σ2,

−→σ2} if σRC1 = {}, σRC2 6= {}
{←−σ1,
−→σ1 ⊕←−σ2} if σRC1 6= {}, σRC2 = {}

{←−σ1,
−→σ1 ⊕←−σ2 ⊕−→σ2} if σRC1 6= {}, σRC2 6= {}

(4.11)
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Equation (4.11) shows that the constraint data of a combination of two sequences can be build using at most
three concatenation operations. The actual values is calculated by combining the data from←−σ , σRC and −→σ ,
i.e., perform two additional concatenation operation ←−σ ⊕ σRC ⊕−→σ . This leads to a total of three constant
time operations per concatenation. By storing additional information, inter-route moves as described in
Schneider et al. (2014) can be evaluated in constant time – regardless of whether recharging stations are
present or not – without the need to recalculate a subsequence. Furthermore, this approach is applicable to
any move resulting from a bounded number of edge changes.

For the E-FSMFTW using differentvehicle types, only preprocessed sequences of the one route can be
used. The new part has to be recalculated using this vehicle type before it can be concatenated. This
recalculation depends on the length of the sequence added, and is thus no longer constant. We therefore
restriced our neighbourhood creation in our local search to consider only moves between routes of the same
vehicle type, and use additional, smaller neighbourhoods for combining different vehicle types.

4.1.3. Feasibility

The feasibility of a route can be checked using the data calculated for the corresponding sequences:

isFeasible(σk) = Q(σk) ≤ Qk ∧ EY (σk) ≤ 0 ∧ TW (σk) ≤ 0 (4.12)

where k ∈ V is the vehicle type used to calculate the penalties. We note that the calculation of Q(σ) is
independent of the vehicle type, but the charge and time window penalty are not. Although identical travel
times for each vehicle are assumed, the time window penalty calculation is influenced by the battery charge
constraint, which itself depends on the vehicle type.

Penalizing infeasibility. The heuristic solver proposed in this paper works with infeasible solutions and uses
penalty values for violations of the constraints (thus relaxing the problem) in the objective function:

obj (σk) = Dist(σk) + ρQ(Q(σk)−Qk) + ρEY EY (σk) + ρTWTW (σk) (4.13)

Each constraint has a corresponding penalty weight ρ which is multiplied with the amount of violation for
each of the three relaxed constraints and added to the total distance travelled. We use ρQ to weight load
capacity violations, ρEY for energy capacity violations and ρTW for time window violations.

4.2. Construction and Insertion

For the construction of an initial solution and later also in the repair step of each iteration of the ALNS,
partial solutions have to be extended, i.e., solutions with at least one customer not being assigned to any
route, in order to create a complete solution. This is done using different insertion based approaches, i.e.,
inserting nodes into existing or newly created routes until all nodes have been assigned. To diversify the
search, the concept of a Restricted Candidate List (RCL) introduced by Hart and Shogan (1987) is employed
to select the next node and insertion position in a probabilistic way. Each position in the RCL is selected
based on its contribution to the sum of all insertion costs in the RCL.

As recharging stations do not have to be part of a route and can be inserted multiple times, a special
procedure is implemented to insert recharging stations during the insertion and construction phase. Besides
trying to insert a node v at position i of a route r, three additional attempts are performed, where a
recharging station f is inserted right before v, a station g right after v, or both. This means a total of four
sequences are tested to be inserted for each node v: {v}, {f, v}, {v, g} and {f, v, g}, where f and g can
be the same station. To determine f, g ∈ F ′, the recharging station which is reachable with the available
energy capacity and which has the smallest additional detour is selected. This approach is myopic in the
sense that just a subset of recharging stations is considered, and that only the direct effect on the value of
the route (and not the effect on future inserts). Furthermore, all previously inserted recharging stations are
kept unchanged.

Similar to the work of Paraskevopoulos et al. (2008) and Repoussis and Tarantilis (2010), an iterative route
construction heuristic is implemented. In each iteration, a single route for each vehicle type is created using
only unassigned nodes until the capacity constraint is violated. These routes are constructed independently,
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(a) 2-Opt. Inverting a sequence of at least
two node. This example shows the inversion
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(b) 2-Opt*. Reconnecting a substring of
one route at node vi with a substring of
another route at wj and vice versa.
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(c) Relocate. Moves a single node vi from
the assigned route prior to wi of another
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(d) Exchange. Swaps (exchanges) two
nodes vi and wj of different routes.
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f

(e) InsertRemoveIF. Inserts or removes a
recharging station f prior to vi.

Figure 4.2: List of all moves used. Solid lines shows the path of the routes after the move is performed and dashed lines the
removed edges.

i.e., nodes can be used in multiple routes, and the route with the best lowest cost is added to the current
partial solution. We use the Average Cost per Unit Transfered (ACUTk) value defined in Paraskevopoulos
et al. (2008) to measure the cost of a tour. This value represents the relative costs of serving the demand of
a route σ of vehicle type k (see Equation 4.14).

ACUT k(σ) = (fk +Dist(σ))/(Q(σ)) (4.14)

The remaining routes are dismissed and the next iteration is performed until no further unassigned nodes
are available.

4.3. Neighbourhoods and Local Search

The approach described in this paper combines the general search methodology of ALNS with a local
search method to intensify the search in each iteration. A mix of well-researched neighbourhoods and
specifically tailored problem specific neighbourhoods is used. First the moves defining these neighbourhoods
are presented followed by a description of the local search method applied.

2-Opt. Figure 4.2a. This intra-route move (i.e., operation on a single route) optimizes a route by inverting
a subsequence. As shown in the figure, this move involves the deletion and reinsertion of two edges as
well as the inversion of the directions between the nodes of the selected sequence. To further reduce the
neighbourhood size and thus the runtime, only moves including subsequences of size two at maximum are
considered.

2-Opt*. Figure 4.2b. The 2-Opt* move removes two edges of two distinct routes of the same vehicle type
and reconnects the remaining sequences as shown in the figure. An additional cross is made at the end of
the route to ensure that the depots are assigned to the same node after the move is performed. As described
in Section 4.1, this restriction is needed to compute the move changes using concatenation efficiently.

Relocate. Figure 4.2c. In this move, a single node is shifted (relocated) from one route in between nodes of
a different route.
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Exchange. Figure 4.2d. This moves switches (exchanges) the position of two nodes assigned to different
routes.

InsertRemoveIF. Figure 4.2e. In this move, a recharging station is inserted prior to a node vi in order to
improve the value of a route due to repairing violations of the battery capacity constraint, or an existing
recharging station is removed from the route. This problem specific move is the only one capable to insert
and/or remove an optional recharging station in the local search procedure.

Resize. All moves described so far only change node assignments or positions but never the vehicle type
assignment. The Resize move changes the vehicle assigned without changing the route itself.

RelocateAndResize. This move works like the Relocate move described before, but with an additional pro-
cedure performed after relocating a node. If a node v is moved from a route ri to rj , the vehicle type of ri
and rj are tried to be changed at the same time in order to benefit from either lower costs from selecting
a cheaper vehicle type or reducing the penalty of constraint violations due to the change to a vehicle type
with more capacities.

In the implementation of this move, the effect of changing the vehicle type on the evaluation process has
to be considered, which requires an additional preprocessing of the subsequences with the new type. In this
approach, the preprocessing is delayed until the neighbourhood is used and store the data from this point
onwards until the route changes again (which triggers a recalculation on the next use of this neighbourhood).

4.3.1. Local Search

The embedded local search procedure utilizes a list of different neighbourhoods, which are searched in a
cyclic manner (see Di Gaspero and Schaerf, 2002; Hiermann et al., 2015). Each neighbourhood is searched
until no further improvement can be found, after which the next neighbourhood in the list is selected and
searched. When the end of the list is reached, the search starts again from the first entry in the list. The
procedure terminates, if a local optimum is reached in every single neighbourhood. By cycling through the
list, it is ensured that a local optimum has been reached in each neighbourhood. Preliminary tests showed
that random ordering of the list of neighbourhoods at the beginning of the local search call improves the
overall performance.

As improvement strategy, a best of 50-policy is used, where the best of the first 50 moves encountered
during a single search iteration is applied. If none of them is an improving move, the search continues
until an improving move is found or the neighbourhood has been searched completely. This way the search
terminates faster than with a best improvement-policy, but it still provides higher quality solutions than first
improvement.

4.3.2. MakeFeasible

As described in section 4.1.3, a varying penalty cost is used to guide the search through the infeasible
search space. To reach a feasible solution using the existing tools, a similar approach as described in Vidal
et al. (2013b) is employed. A feasible solution is tried to be obtained twice by multiplying each penalty
costs by 100 and call the local search procedure. If the solution is still not feasible, the penalty costs are
further multiplied by ten each and the local search is called again. No further attempts are made to make the
solution feasible, i.e. solutions might still be infeasible after applying this repair operator. However, using
this approach, feasible regions close to the infeasible solution may be found at low cost.

4.3.3. Reducing neighbourhood size

The heuristic solver described in this paper depends heavily on the embedded local search procedure,
which in turn uses a number of neighbourhoods to improve the search. As the number of neighbours is large
and computationally expensive, a pruning approach as described in Vidal et al. (2013b) is used to reduce
the number of neighbours considered. In this approach, a set of so-called promising arcs is calculated for
each customer node. This set is then used to prohibit introducing arcs into the solution that are not in this
set. With Equation (4.15), the so-called customer correlations measure is calculated, which is used for the
pruning.
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γ(u, v) = duv + γWT ·max(ev − su − tuv − lu, 0)

+ γTW ·max(eu + su + tuv − lv, 0)
(4.15)

For a customer vi not only the direct distance, but fractions of the waiting (γWT ) and time window
violation (γTW ) are considered as well. The final set of promising arcs Γ(u) consists of the |Γ| closest
customers v with respect to the correlation measure γ(u, v). The same settings as in Vidal et al. (2013b) are
used, setting |Γ| = 40, γWT = 0.2, and γTW = 1.0.

4.4. Labelling Algorithm

Recharging stations are handled explicitly in this work, i.e., stations are added directly as entries in
the routes. As the construction and insertion heuristics described earlier have a rather narrow view on the
positioning of recharging stations in order to keep the runtime low, a post-processing procedure is used to
improve the selection and positioning of recharging stations in a route of fixed visiting orders.

The method employed is a labelling algorithm similar to the procedure described in Section 3.1 for the
ESPPTWRS. However, several simplifications can be derived and exploiting from the fixed visiting order:

Let r be the route for which the optimal assignment of recharging stations r∗ has to be found. Further-
more, let r′ = r \ f ∈ F and ui be the ith node of r′. The set of possible nodes to extend to is restricted
by r′. Only recharging stations and a next customer (or depot) in r′, i.e., node ui+1, can be considered.
Additionally, not every recharging station has to be considered, just a subset relevant for a detour between
u1 and ui+1. The visits are restricted to r′, thus the set of already visited (unreachable) nodes is no longer
necessary.

To exploit this features, a modified forward labelling procedure with a label L′ = {i, (Rc, Rt, Ry), prev , f}
is used, where i is the index in r′. The load resource Rq is omitted in the modified label, as the total demand
will never increase by adding recharging stations. f stores the recharging station used before arriving in
node node ui. Algorithm 1 outlines this modified procedure.

Algorithm 1: Pseudo code of a label setting algorithm for the ESPPTWRS (similar to Ropke and
Cordeau (2009)).

Data: route r′

1 U1 = {(L′ = {1, (0, 0, g · Y ),null , {}})};
2 for i ∈ 1, . . . , |r′| do
3 for L ∈ Ui do
4 if no label in Li dominates L then
5 Li = Li ∪ {L};
6 extend L along arc (ui, ui+1);
7 extend L via all relevant recharging station using arcs (ui, f), (f, ui+1);
8 add all feasible extensions to Ui+1;

9 return path corresponding to the best label in L|r′|

For this procedure, only a single recharging station is assumed to be needed between two consecutive
nodes. We are aware that this assumption might prohibit the labelling procedure to reach an optimum.
However, preliminary experiments with implementations permitting two or three recharging stations between
nodes in r′ showed that the additional computation time leads to no improvement in the overall performance.

This simple but effective procedure is performed for each route after construction, reinsertion and local
search.

4.5. Adaptive Large Neighbourhood Search

The E-FSMFTW is solved using an Adaptive Large Neighbourhood Search (ALNS) as proposed by Ropke
and Pisinger (2006), but extended by an intensification mechanism in form of an embedded Local Search
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Algorithm 2: ALNS main loop

Input: initial solution s
Output: best feasible solution found s∗f

1 s∗ ← s;
2 if isFeasible(s) then s∗f ← s;

3 i, ilastImp ← 0;

4 while i < ηmax and (i− ilastImp) < ηmaxNoImp do
5 s′ ← DestroyAndRepair(s);
6 s′ ← LocalSearch.improve(s′);
7 s′ ← Labelling.optimize(s′);
8 if isBetter(s′, s) then
9 s← s′;

10 if isBetter(s′, s∗) then s∗ ← s′;
11 s′f ←MakeFeasible(s′);

12 if isFeasible(s′f ) and isBetter(s′f , s
∗
f ) then s∗f ← s′f ;

13 ilastImp ← i;

14 updateScore(s’);
15 updatePenalty(s’);

16 if 0 ≡ (i− ilastImp + 1) mod ηR then
17 s← s∗;
18 if 0 ≡ (i+ 1) mod ηL then
19 adaptSelectionScore();
20 i← i+ 1;

21 return s∗f ;

procedure. A general introduction to LNS and its variants and extensions can be found in Pisinger and
Ropke (2010). An outline of the approach proposed in this paper is shown in Algorithm 2.

In Shaw (1998), a search procedure for a larger neighbourhood defined by a destroy and repair operators is
presented. A neighbour is a solution which is reachable by removing some nodes using the destroy operator,
followed by the repair operator.

Ropke and Pisinger (2006) extend this by using learning mechanisms to bias a selection of a variety of
destroy and repair operators effectively. For each phase (destroy or repair) the corresponding operator i is
selected using a roulette wheel based on so-called weights νi. These weights νi are changed to adapt the
algorithm based on the performance of the selected operators for the last couple of iterations. This adaption
is done using exponential smoothing of the observed scores ν̄i. Similar to Ropke and Pisinger (2006), the
score of an operator is increased in the following cases, if the newly generated solution

• is an overall best solution

• has not been accepted before and is better than the current solution

• has not been accepted before and is worse, but was accepted in this iteration

After a learning period (of ηL iterations) this score ν̄i is used to update the selection probabilities of operator
i using the following equation (cf. Ropke and Pisinger, 2006)

νi,j+1 = φ(
ν̄i,j
ai

) + (1− φ)νi,j (4.16)

The weight νi,j+1 of heuristic i in the next period j+1 is calculated using iteration (4.16). The counted score
ν̄i,j for the last period is divided by the number of times the heuristic has been used ai, which influences the
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new score for period j + 1. The step size φ = [0; 1] measures the influence of the new observation compared
to the past. If φ = 1 the score reflects the performance of the previous iteration only.

As described in Section 4.1.3, some constraints are relaxed during search in order to also investigate infea-
sible regions, while penalizing infeasible solutions. The penalties are managed using an adaptive mechanism
as presented in Cordeau et al. (2001). However, instead of adapting the penalty weights in each iteration of
the embedded local search, these values are controlled within the ALNS iteration. The embedded intensifi-
cation procedure is therefore used to improve the newly generated solution towards a local optimum for the
given penalty settings. As the procedure moves rather slowly towards feasible solutions, the repair approach
described in Section 4.3.2 is employed to find these earlier in the search.

During the search two types of best solutions are stored. On the one hand the best feasible solution
is stored and on the other hand the best solution with the current penalty setting is remembered as well.
Every time the penalty values change, the value of the best (possibly infeasible) solution is adapted as well.
This might lead to an objective value for the best solution which is worse than the value for the best feasible
solution. In this case the best is replaced by the best feasible solution. The penalty weight is multiplied by
wi if the constraint i was violated in the last iteration or divide it by the same value if it was satisfied.

To avoid searching too deep in infeasible regions and to escape possible local optima, a restarting mech-
anism is used. After a certain number of iterations (ηR) with no overall improvement the current solution is
reset to the best overall solution found so far. In contrast to other restarting mechanisms, only the current
solution is changed and no other values (e.g., no change in the penalty values).

Similar to the original ALNS, an SA approach to handle the acceptance of new solutions generated in an
iteration was tested. However, preliminary experiments showed that using an ’accept only improvements’
policy yields better results for the given problem. This might be due to the use of adaptive penalties and
the restart mechanism, which already contributes to the diversification process sufficiently.

An important aspect of ALNS is the number and functionality of the operators used. In the remainder
of this section the applied operators will be presented.

4.5.1. Destroy operators.

A solution is destroyed by removing at least q nodes from the current solution, where q is a random
number between [ζmax, ζmin].

The RandomRemoval operator simply removes q nodes from the current solution randomly with equal
probability.

RandomAndRelatedRemoval operator is based on the definition of Shaw (1998) where nodes are
iteratively select and removed at random (with equal probability). Following that, a node is selected which
is similar using an RCL of five nodes and roulette wheel selection and remove it as well. The similarity of
nodes is calculated using the relatedness measure (4.15). The procedure continues until at least q nodes have
been removed in total.

A similar operator is the WorstAndRelatedRemoval. Here, however, a node is first selected and
removed based on the detour needed to travel in the solution induced by it. This is done using an RCL of
the five worst nodes where a roulette wheel is used based on the detour cost. Then up to q − 1 additional
nodes are removed based on their relatedness to the selected node. The relatedness is again calculated using
(4.15).

With the ability to remove whole routes the InefficientRouteAndNeighbourRemoval starts by se-
lecting and removing a route at random using roulette wheel based on the ACUT (4.14). Then neighbouring
routes are selected and removed iteratively – starting from the route with the smallest maximum distance
between any pair of nodes – until at least q nodes have been removed in total.

The TargetRemoval operator is similar to the target operator used by Dell’Amico et al. (2007) but
simplified. Instead of trying different combinations of a target route, a single node is considered, the so-
called target node. The node with the highest contribution to the total distance of its assigned tour is
selected. Afterwards, routes based on the minimum distance from any node of a route to the target node
are selected and removed. Starting from the route with the highest minimum distance, they are destroyed
until at least q − 1 nodes have been removed.
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4.5.2. Insertion Based Repair.

The repair operators are all based on insertion heuristics with the ability to insert recharging stations as
described in Section 4.2.

The first basic SequentialNodeInsertion heuristic implemented is a myopic but fast approach. Nodes
are processed in a sequential manner based on the removal order. One after another, the insertion cost of each
route and position is calculated first, followed by the selection using a RCL containing the five best options.
To handle different vehicle types, the vehicle type assignment is changed if necessary (when a constraint is
violated) and add the resulting costs to the insertion costs. This is also done in the other insertion heuristics.
When used as a repair operator in the ALNS, the sequential order of the insertion depends on removal order
of the nodes .

The second heuristic is a ParallelRegretInsertion approach. Basic parallel greedy insertion heuristics
tend to place ’difficult’ nodes late in the process, leaving only a few possibilities. To avoid this behaviour,
the regret heuristic uses a so-called regret value which represents the expected costs of inserting a node not
in this iteration but in a future iteration. Such heuristics have been used by Potvin and Rousseau (1993) for
the VRPTW and by Trick (1992) for the Generalized Assignment Problem. The regret value for a node v
is obtained as follows. For each route σi in the current partial solution, the position and cost ci of the best
insertion (based on the objective value) of v into σi is calculated . Let l ∈ L be the index of the routes where
L is sorted based on cl, i.e., l ≤ l′ if cl ≤ cl′ . The regret value is calculated considering the k best insertion
costs using following equation:

regret(v) =

k∑
i=2

(cli − cl1) (4.17)

The SemiParallelConstruction heuristic used to create the initial solution can be easily modified to
work as a repair operator too. Instead of creating a full solution from scratch this approach starts with the
partial (destroyed) solution and creates new routes without considering existing ones.

A variant, the SemiParallelInsertion procedure, extends the previous approach as also existing routes
are considered. Instead of creating only new routes, existing routes are extended by inserting unassigned
nodes until the capacity constraint is violated.

5. Computational Results

In this section we present computational results of the proposed ALNS approach for solving the E-
FSMFTW. We use our branch-and-price solver – further refered as BnP – to obtain optimal solutions for
smaller instances, and lower bounds for larger instances of our new benchmark.

Our experiments using the BnP procedure were run on a cluster system on single 3.3 GHz cores (Intel
Xeon 2643) and a maximum of 7 GB RAM, running on with CentOS (Red Hat Enterprise Linux). The
solver uses Cplex 12.6 through the Open Solver Interface (OSI; v0.105.2).

The experiments with the ALNS were run on a single core of a cluster system with an Intel Core2 Quad
CPU Q6600 with 2.40 GHz where a memory of 4 GB RAM is shared between 4 cores, operating on the
Linux distribution openSuse 12.1 (Asparagus) 64 Bit. The ALNS with embedded local search and labelling
is a single-thread implementation in Java 7 and was run using the Java Runtime Environment 1.7, Update
25 (JRE 7u25).

In calibrating the parameters of our ALNS approach, we mostly relied on parameters chosen in the
literature. Indeed, in our experience ALNS is a rather robust approach which is not very sensitive w.r.t
parameters. After some preliminary experiments on a reduced number of instances we chose the parameter
setting as shown in Table 5.1, if not stated otherwise. Ten test runs were performed and average and best
results are reported.

We also tested our approach for the related E-VRPTW with both proposed solver. The BnP was able
to prove all results on the small instances reported by Schneider et al. (2014) to be optimal. For the larger
instances, six instances were solved to optimality. The results are presented in the appendix. Our heuristic
solver was also able to obtain two new best solutions for the larger instances, with an average gap to the
best known below one percent (see Goeke and Schneider (2015)).
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5.1. E-FSMFTW Benchmark Instances

Our benchmark instances are based on the modified Solomon instances of Schneider et al. (2014) and
the description of the vehicle type classes of Liu and Shen (1999). The instances of Schneider et al. (2014)
consists of six data sets varying in the distribution of the customers, i.e., whether they are clustered (C),
randomly distributed (R) or a combination of both (RC). Furthermore, they are divided in instances with a
shorter (1) or a longer (2) scheduling horizon. In Liu and Shen (1999), the vehicle types are defined for each
of these instance sets, differing in their acquisition cost. These vehicle types are extended for our problem by
energy consumption per km/mile, battery size and recharging rate. The consumption and recharging rate is
directly taken from the instances of Schneider et al. (2014) and set as the same value for each vehicle type.
For the battery size we use the value defined in the E-VRPTW instances as base value and scale it upon the
rank of the vehicle types as follows: Given an instance with |V | vehicle types defined by Liu and Shen (1999)
and the battery size Y for the E-VRPTW, we set the battery size of vehicle type k for the E-FSMFTW to

Y k = (1.0 + (s · (k/|V |)− (s/2)) · Y, (5.1)

where s = 0.1 · |V |. Using this approach we encourage the use of larger vehicles due to their larger battery
size which leads to a different fleet composition compared to the non-electrical vehicles used by Liu and Shen
(1999). Although a different choice of the recharging and energy consumption factors may result in more
realistic scenarios, we note that this could be easily included in our model and algorithms. However, changes
in the battery size and other energy related factors have to be weighted against each other to avoid vehicle
type dominations.

5.2. Results on small E-FSMFTW instances

For the exact approach we solve the smaller sets created by Schneider et al. (2014) using our BnP solver
(which uses CoinOR and CPLEX12.6) with the model and modifications described in Section 2. The sizes of
these instances are either 5, 10 or 15 customers with 2 to 8 recharging stations. In preliminary experiements
we tried to solve these smaller instances with the MIP model also described in Section 2 using branch-and-
bound only. However, only 5 customer instances could be solved, but almost none of the instances with 10
and 15 customer within a 12 hours runtime.

Table 5.2 presents the comparison of the proposed ALNS with the BnP for the 15 customer instances.
The results for 5 and 10 customer instances can be found in Appendix A. The BnP was able to obtain an
optimal solution within the time limit of two hours for all instances. We show the objective value (obj) and
the included sum of the acquisition costs (F ) for the optimal fleet composition specified in the column mix
as well as the runtime in seconds (t[s]). The fleet composition is presented as in Repoussis and Tarantilis
(2010), where the vehicle type is referenced using capital letters (starting with the cheapest vehicle type
using the letter ’A’ ) and the number of vehicles used shown superscript after the corresponding letter. The
objective of the initial solution (i.e., the improved solution after construction using LS and the labelling
procedure) is shown in the column init. For the ALNS solutions we present these values for the best solution
(obj) as well as the average objective function (obj) of all ten runs.

The BnP is able to find the optimal solutions for all of the instances in a matter of seconds in most cases,
only for one instance it took several minutes. Our ALNS approach is able to obtain optimal solutions in all
cases as well, requiring less than a minute of runtime.

general ALNS penalty

ηmax 2000 ηR 200 ρQ, ρEY , ρTW 10
|Γ| 40 ηL 50 ρmin

Q , ρmin
EY , ρmin

TW 0.1

(γWT , γTW ) (0.2,1.0) φ 0.8 ρmax
Q ρmax

EY , ρmax
TW 5000

|RCL| 5 [ζmin, ζmax] [0.05,0.15] wi 1.1

Table 5.1: Parameters of the ALNS with embedded LS/labelling approach
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BnP init. ALNS

type name obj F mix t[s] obj obj obj F mix t[s]

A c103c15 1291,03 900 A3 1,54 1596,11 1291,46 1291,03 900 A3 30,16
c106c15 1253,59 900 A3 0,18 1532,38 1253,59 1253,59 900 A3 29,25
c202c15 2403,35 2000 A2 0,79 3419,19 2403,35 2403,35 2000 A2 38,51
c208c15 2325,89 2000 A2 2,22 2327,88 2325,89 2325,89 2000 A2 32,00
r102c15 850,58 390 A3B3 0,13 943,28 854,99 850,58 390 A3B3 30,11
r105c15 760,13 380 B3C1 1,04 889,40 762,48 760,13 380 B3C1 24,80
r202c15 1311,24 900 A2 4,26 1397,12 1316,84 1311,24 900 A2 54,90
r209c15 1033,50 700 B1 1,25 2029,22 1033,50 1033,50 700 B1 38,33
rc103c15 840,97 420 A2B2 0,10 912,16 840,98 840,97 420 A2B2 31,08
rc108c15 1013,70 570 A2B1C1 4,52 1204,29 1033,14 1013,70 570 A2B1C1 28,06
rc202c15 1101,61 700 A1C1 0,43 1434,09 1101,61 1101,61 700 A1C1 33,55
rc204c15 810,90 500 A1B1 953,47 925,38 810,90 810,90 500 A1B1 32,54

B c103c15 571,03 180 A3 1,28 649,36 571,78 571,03 180 A3 32,91
c106c15 533,59 180 A3 0,08 576,30 538,28 533,59 180 A3 32,90
c202c15 803,35 400 A2 0,29 1020,57 803,35 803,35 400 A2 36,84
c208c15 725,89 400 A2 1,29 927,88 725,89 725,89 400 A2 28,45
r102c15 511,55 90 A3B2C1 0,21 580,80 514,84 511,55 90 A3B2C1 33,74
r105c15 436,89 98 B3D1 0,29 566,99 436,89 436,89 98 B3D1 26,02
r202c15 591,24 180 A2 3,54 673,31 591,24 591,24 180 A2 44,64
r209c15 473,50 140 B1 1,71 709,59 473,50 473,50 140 B1 38,03
rc103c15 499,67 102 A1B3 0,31 632,91 499,67 499,67 102 A1B3 26,04
rc108c15 514,78 132 A1C2 0,21 755,78 514,78 514,78 132 A1C2 26,60
rc202c15 541,61 140 A1C1 0,42 586,78 541,61 541,61 140 A1C1 30,86
rc204c15 410,90 100 A1B1 26,55 563,39 410,90 410,90 100 A1B1 35,27

C c103c15 481,03 90 A3 0,84 496,48 481,64 481,03 90 A3 25,78
c106c15 415,13 140 A2B1 0,12 452,38 440,52 415,13 140 A2B1 28,98
c202c15 603,35 200 A2 0,73 693,34 607,82 603,35 200 A2 36,52
c208c15 525,89 200 A2 2,05 627,21 526,29 525,89 200 A2 23,07
r102c15 465,94 46 A2B1C2 0,00 551,82 467,00 465,94 46 A2B1C2 30,32
r105c15 387,89 49 B3D1 0,64 552,71 387,94 387,89 49 B3D1 22,55
r202c15 495,64 115 A1B1 1,08 568,08 495,64 495,64 115 A1B1 33,19
r209c15 403,50 70 B1 1,30 486,61 403,50 403,50 70 B1 32,96
rc103c15 448,67 51 A1B3 0,13 587,04 448,67 448,67 51 A1B3 25,52
rc108c15 445,25 75 B1C2 0,21 714,44 445,95 445,25 75 B1C2 24,81
rc202c15 471,61 70 A1C1 0,17 567,12 471,61 471,61 70 A1C1 26,54
rc204c15 360,90 50 A1B1 22,25 585,51 360,90 360,90 50 A1B1 31,00

dev. % 0,01 0,00

Table 5.2: Results for the E-FSMFTW instances with 15 customers compared to BnP

5.3. Results on larger E-FSMFTW instances

In order to further evaluate the performance of our algorithm, we conduct experiments on the larger
benchmark instances (as described earlier in this section). We test four settings of our approach denoted as

• ALNS 2000 as our default settings, with a limit of 2000 iterations,

• ALNS 800
1500 using a limit of 1500 iterations or 800 iterations without an improvement,

• ALNS 800 with a limit of 800 iterations and

• ALNS
800

1500 where we use the same termination criteria as ALNS 800
1500, but without calling the labelling

algorithm described in Section 4.4

Table 5.3 shows the average deviations from the best solutions (BKS) we have been able to find by the
BnP algorithm or in ten runs (obj) as well as the average runtime in minutes (t[m]) grouped by instance
type (C,R,RC).

As expected the best average performance is achieved using a setting with a higher iteration limit
(ALNS 2000) which itself results in higher runtime (∼25 minutes on average). However, terminating ear-
lier (ALNS 800

1500) reduces the runtime by around one third while keeping the average solution quality on a
high level. Although almost 2% worse than the best known solutions the fast variant (ALNS 800) is around
60% faster than the default variant, on average.
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ALNS2000 ALNS800
1500 ALNS800 ALNS

800
1500

type name obj t[m] obj t[m] obj t[m] obj t[m]

A C1 0,24 17,68 0,28 12,80 0,44 7,35 0,45 13.64
C2 0,39 42,54 0,61 24,36 0,61 19,21 0,78 26,58
R1 0,89 15,51 1,24 11,64 1,69 6,49 1,34 12,60
R2 0,87 45,90 1,12 30,76 1,31 18,03 1,12 33,70
RC1 1,23 14,92 1,39 11,18 2,21 6,35 1,74 12,08
RC2 0,61 16,04 0,68 11,98 1,06 6,55 0,86 12,62
avg. 0,66 25,68 0,84 17,38 1,15 10,70 1,00 18,84

B C1 0,48 14,68 0,62 10,38 0,78 6,09 0,84 11,23
C2 1,08 37,05 1,24 18,92 1,29 14,81 1,62 20,73
R1 1,47 15,19 1,70 11,28 2,49 6,26 1,82 12,39
R2 1,30 29,48 1,49 20,82 2,20 11,85 1,70 23,19
RC1 1,40 14,57 1,79 10,73 2,37 6,08 1,92 11,65
RC2 1,43 18,87 1,54 13,34 1,80 7,55 1,83 14,89
avg. 1,17 21,47 1,38 14,32 1,82 8,71 1,59 15,77

C C1 0,43 14,77 0,39 10,45 0,72 6,02 0,56 11,33
C2 0,89 31,95 0,96 18,50 1,07 13,08 1,23 21,11
R1 1,59 15,51 1,76 11,44 2,57 6,29 1,90 12,40
R2 1,70 28,72 1,97 20,22 2,33 11,37 1,99 22,36
RC1 1,40 14,80 1,76 10,90 2,43 6,08 1,65 11,60
RC2 1,29 19,71 1,53 13,70 2,01 7,87 1,59 15,26
avg. 1,23 20,83 1,40 14,26 1,90 8,41 1,49 15,72

Table 5.3: Average deviation from the best known solution and average runtime for all E-FSMFTW instances.

When comparing the fast approach ALNS 800
1500 including the labelling procedure with the version without

labelling, one can observe that, on average, the labelling procedure increases solution quality while slightly
reducing the overall runtime. This is due to the termination criterion of 800 iterations without improvement.
Furthermore, a detailed analysis of our test runs shows, that the contribution of the labelling procedure to
the overall runtime is only around 1%.

For future reference, we included the results for each of the newly proposed instances in the appendix.

5.4. Sensitivity analysis of the E-FSMFTW instances

In this work we proposed instances for using different types of electric vehicles. To analyse the gain of
considering a fleet mix, we conducted experiments where the set of vehicle types is reduced to a single one.
Table 5.4 shows the average objective value over 10 runs grouped by instance type (C,R,RC) for each vehicle
type set (A,B,C). The best known solution (BKS), i.e., the best solution found in any run (heuristic or BnP),
is shown in the third column. The fourth shows the average objective value for runs using all vehicle types.
The following columns uses only a single vehicle type (A,B,C,D,E, or F) and tries to solve the instance with
this restriction. In case of the R1 instances, the algorithm couldn’t find a single feasible solution using only
the first vehicle type (A) due to customers with demands larger than the vehicle’s transport capacity. In the
other cases, where no values are provided, the instances do not have more than three (C1), four (C2, R2,
RC1), or five (R1) vehicle types defined.

As we can see in the results, considering the whole mix of vehicles does indeed improve the quality of
the solution. In some cases, where good solutions uses only a single type, the algorithm tends to produce
slightly inferior results on average. This can be seen in Table 5.5, where the average fleet mix is presented as
defined before. For most instances, the mix does not only contain two, but three and four different vehicles
used in the final solution.

To evaluate the impact on the number of recharging stations available in the instances, Table 5.6 shows
three values for the best known solution (BKS) and again for the mix (All) and single vehicle case (A,B,C,D,E,
or F): First the number of recharging stations used in total (#rs), followed by the number of distinct
recharging stations visited ({rs}) and the average number of visits per route (rs). In terms of number
of visits to recharging stations per vehicle, we see that at most two are visited on average. Even when
increasing the transport capacity (by using larger vehicles), the number does not increase over two as well.
These results are in line with the ones in Desaulniers et al. (2014), where the impact of allowing only a
single or multiple visits to recharging stations per route was presented. Allowing multiple visits does lead
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type name BKS All Only A Only B Only C Only D Only E Only F

A C1 7141,24 7156,84 7157,37 9735,86 15310,54 – – –
C2 5708,36 5731,47 5724,10 6287,15 8645,76 11439,26 – –
R1 4104,28 4138,51 n.a. 4411,49 4162,40 4800,86 7564,91 –
R2 3145,79 3171,16 3168,48 3728,16 4542,67 7592,27 – –
RC1 5000,13 5046,58 6112,60 5293,53 5544,67 7203,49 – –
RC2 4211,63 4228,28 4335,74 4298,72 4380,71 5090,72 5542,89 9145,25

dev min 0,22% 0,23% 2,07% 1,42% 16,97% 31,61% 117,14%
avg 0,60% 5,28% 13,40% 37,76% 64,73% 57,97% 117,14%

B C1 2450,12 2459,95 2582,36 2797,31 3867,05 – – –
C2 1703,79 1723,50 1715,41 1801,14 2242,43 2794,94 – –
R1 1885,69 1908,91 n.a. 2482,07 2010,20 1975,35 2507,54 –
R2 1335,32 1357,48 1352,04 1455,14 1646,23 2267,73 – –
RC1 2182,13 2208,12 3995,52 2638,15 2274,61 2551,96 – –
RC2 1683,90 1710,72 2172,11 1765,76 1718,01 1855,14 1984,55 2775,84

dev min 0,40% 0,68% 4,86% 2,03% 4,75% 17,85% 64,85%
avg 1,21% 23,89% 14,37% 20,93% 33,15% 25,42% 64,85%

C C1 1762,33 1768,21 2007,27 1916,76 2455,76 – – –
C2 1197,63 1211,77 1206,19 1240,43 1440,83 1713,66 – –
R1 1566,55 1588,42 n.a. 2239,99 1740,83 1622,22 1860,29 –
R2 1109,18 1127,32 1129,40 1171,62 1281,25 1605,60 – –
RC1 1794,58 1818,69 3727,44 2303,84 1861,39 1964,59 – –
RC2 1356,02 1378,07 1901,78 1452,22 1385,61 1441,87 1528,52 1969,90

dev min 0,33% 0,71% 3,57% 2,18% 3,55% 12,72% 45,27%
avg 1,25% 32,88% 16,07% 15,37% 21,44% 15,74% 45,27%

Table 5.4: Average objective value from the best known solutions (BKS) and average results of 10 runs using all or only a single
vehicle type (A,B,C,D,E,F) for all E-FSMFTW instances.

to a lower objective value for these instances, as was expected. On average, although, for our instances we
see that the best known solutions tend to have less than one stop per route scheduled. This differs from the
E-VRPTW results, where more than one station was scheduled per route on average. We deduce that this
is a feature of using a mix of vehicles, where larger vehicles with more battery capacity are used, which in
turn need fewer (or no) recharging operations during their route.

The instances we propose consists – like the original instances for the E-VRPTW – of 21 recharging
stations per instance. As we can deduce from the results, not even half of the recharging stations are needed
in the solutions obtained (on average, less than a third are needed). Most distinct recharging stations are used
in the instances with random spatial distribution and short time windows (R1). This was to be expected, as
the tight time windows forces vehicles to travel larger distances between visits, thus covering a larger area.
The fewest are visited on the set of instances with larger time windows and a combination of clustered and
spatial distribution (RC2).

We also conducted the same set of experiments on the same instances, but without the energy constraint.
The problem is therefore relaxed to the FSMF problem with a minimal distance as objective. Table 5.7
shows the comparison of the objective value when allowing a mix or restricting the fleet to a single type as in
Table 5.4. The results are very similar, also showing a gain of using a mix, but also a lower objective value
in general due to the missing detours. However, experimental results do not show any significant differences
between the two problem variants in terms of gap between the mix and restricted types. Table 5.8 shows a
compact view on these results. From these results we can see, that the total number of vehicles required is
only slightly higher, with up to a single vehicle more on average. We then compared the fleet composition
with the E-FSMFTW variant, to see whether the mix might be different, but the results showed a similar
distribution of vehicle types in both variants. We therefore can conclude, that the transport capacity is
a dominant factor in finding a good fleet composition. Including the energy constraint does not influence
the distribution of vehicles in the fleet. However, the constraint requires different routing decisions with
additional detours to recharging stations. This can be deduced from the comparison of the objective value,
where the E-FSMFTW is, as expected, always higher. The table showing the average fleet composition can
be found in the appendix as well.
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type name BKS All Only A Only B Only C Only D Only E Only F

A C1 A19,0 A19,0 A19,0 B10,9 C10,6 – – –
C2 A5,0 A5,0 A5,0 B4,0 C4,0 D4,0 – –
R1 A0,3B1,6C16,5D0,7 A0,3B2,4C15,4D1,0 n.a. B30,1 C19,1 D14,0 E12,7 –
R2 A5,0 A5,0 A5,0 B4,0 C3,0 D2,7 – –
RC1 A3,3B6,8C7,3 A4,1B7,4C6,6D0,1 A44,0 B22,1 C13,6 D12,9 – –
RC2 A5,6B4,5C1,1 A6,0B4,1C1,3 A18,0 B9,0 C6,0 D5,0 E4,0 F 3,2

B C1 A5,7B6,7 A5,8B6,6 A19,0 B11,1 C10,6 – – –
C2 A5,0 A4,7B0,2C<0,1 A5,0 B4,0 C4,0 D4,0 – –
R1 A0,3B1,1C5,0D7,3E0,9 A0,3B1,1C5,3D7,7E0,6 n.a. B30,3 C19,3 D14,2 E12,8 –
R2 A5,0 A5,0 A5,0 B4,0 C3,0 D2,6 – –
RC1 A0,8B3,8C9,0D0,9 A0,8B4,2C8,0D1,4 A44,6 B22,2 C13,8 D13,1 – –
RC2 A0,9B1,3C4,9 A1,5B1,7C3,6D0,6E<0,1 A18,0 B9,0 C6,0 D5,0 E4,0 F 3,2

C C1 A9,0B5,0 A9,1B5,0 A19,0 B11,0 C10,5 – – –
C2 A2,9B1,1C0,4 A3,3B0,8C0,4 A5,0 B4,0 C4,0 D4,0 – –
R1 A0,1B0,9C4,1D7,5E1,5 A0,2B1,0C4,4D7,4E1,3 n.a. B30,4 C19,3 D14,3 E12,9 –
R2 A5,0 A4,9B0,1C<0,1 A5,0 B4,0 C3,1 D2,7 – –
RC1 A0,6B2,9C8,4D2,1 A0,7B3,1C7,8D2,5 A45,0 B22,3 C14,0 D13,1 – –
RC2 A0,9B0,6C4,1D0,9 A1,3B1,3C3,3D1,0E0,1 A18,0 B9,0 C6,1 D5,0 E4,1 F 3,3

Table 5.5: Average fleet mix from the best known solutions (BKS) and average results of 10 runs using all or only a single
vehicle type (A,B,C,D,E,F) for all E-FSMFTW instances.

6. Conclusion

In this paper, we introduced a new fleet composition and routing problem using electric vehicles: the
E-FSMFTW considers multiple vehicle types differing in their capacities and costs. Each vehicle has the
possibility of recharging on tour at dedicated recharging stations. Each recharge operation consumes an
amount of time depending on the distance travelled and the resulting battery charge. This adds additional
complexity to the problem since time windows at customer locations have to be observed.

We proposed a hybrid solution method based on Adaptive Large Neighbourhood Search (ALNS) extended
with an embedded intensification mechanism. This intensification was done using intelligent local search
for route improvement and efficient labelling procedures for the optimal placement of charging stations.
For defining the problem rigorously, we also provided a MIP formulation and presented a Set-Partitioning
formulation which was solved using a branch-and-price procedure. We constructed a new benchmark set for
the E-FSMFTW and performed extensive computational experiments with our branch-and-price solver and
our extended ALNS. On small instances, the ALNS was able to find all optimal solutions. We also presented
results of our algorithms on larger instances, comparable in size to those of benchmark instances published
for related problems. For these our heuristic solver is able to find solutions within a gap of around one
percent to the best known solution. Several of these best known solution have been proven optimal by our
branch-and-price procedure.

A sensitivity analysis was conducted, showing the expected benefit of considering a fleet mix of different
vehicle types. Furthermore, usage of recharging stations in the obtained results was investigated. Our
computational study shows that not even half of the recharging stations are used in the current benchmark
instances, and at most one is visited per vehicle in good solutions.

Since our work extends the research on E-VRPTW, it also shares some of the limiting assumptions of
this model. We assume that the vehicle is always charged to full capacity every time a vehicle reaches a
recharging station. While this can be partly defended by the fact that in reality drivers will prefer to do this
rather than to leave with a partially charged vehicle, it would be interesting to relax this limiting assumption.
Furthermore, like most of the vehicle routing literature we assume that the resource (energy) consumption
rate is constant and does not depend on the carrying load of the vehicles. A more realistic modeling of
this aspect e.g. in the sense of the pollution-routing problem (Bektas and Laporte, 2011) will be one of the
subjects of future work focusing on extending and applying our model to real world cases.
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type name BKS All Only A Only B Only C Only D Only E Only F

A C1 #rs 17,22 16,91 16,61 9,43 8,64 – – –
{rs} 8,00 8,57 8,28 6,67 6,30 – – –
rs 0,91 0,89 0,87 0,87 0,82 – – –

C2 #rs 6,38 6,83 6,70 5,44 4,21 3,43 – –
{rs} 5,63 6,30 6,21 5,05 3,99 3,24 – –
rs 1,28 1,37 1,34 1,36 1,05 0,86 – –

R1 #rs 17,83 19,23 n.a. 26,48 19,21 15,47 13,20 –
{rs} 11,83 12,02 n.a. 13,38 12,09 11,06 10,21 –
rs 0,93 1,00 – 0,88 1,00 1,10 1,04 –

R2 #rs 2,82 3,01 2,94 2,99 3,43 3,42 – –
{rs} 2,73 2,91 2,82 2,86 3,25 3,26 – –
rs 0,56 0,60 0,59 0,75 1,14 1,28 – –

RC1 #rs 18,13 18,12 46,31 23,13 16,98 13,49 – –
{rs} 9,50 9,89 9,23 10,04 10,16 9,22 – –
rs 1,05 1,00 1,05 1,05 1,25 1,04 – –

RC2 #rs 0,25 0,48 0,64 0,70 2,03 2,39 3,66 4,33
{rs} 0,25 0,48 0,59 0,66 1,84 2,28 3,43 4,04
rs 0,03 0,04 0,04 0,08 0,34 0,48 0,92 1,38

B C1 #rs 9,67 9,78 15,96 9,68 8,50 – – –
{rs} 6,67 6,66 8,09 6,23 6,23 – – –
rs 0,69 0,70 0,84 0,88 0,81 – – –

C2 #rs 5,75 6,51 6,58 5,46 3,76 3,25 – –
{rs} 5,63 6,08 6,09 5,13 3,71 3,18 – –
rs 1,15 1,32 1,32 1,37 0,94 0,81 – –

R1 #rs 14,42 15,16 n.a. 26,23 18,69 14,55 12,52 –
{rs} 11,25 11,27 n.a. 13,33 12,02 10,64 9,90 –
rs 0,98 1,01 – 0,87 0,97 1,02 0,98 –

R2 #rs 2,91 2,92 2,75 2,85 3,43 3,46 – –
{rs} 2,82 2,73 2,61 2,74 3,27 3,35 – –
rs 0,58 0,58 0,55 0,71 1,14 1,31 – –

RC1 #rs 16,75 16,23 46,11 23,07 16,93 12,89 – –
{rs} 9,50 9,67 9,38 9,76 9,91 9,05 – –
rs 1,17 1,12 1,03 1,04 1,23 0,99 – –

RC2 #rs 1,13 1,25 0,68 0,40 1,86 2,36 3,41 3,90
{rs} 0,88 1,23 0,56 0,38 1,69 2,16 3,31 3,71
rs 0,19 0,19 0,04 0,04 0,31 0,47 0,85 1,22

C C1 #rs 9,44 9,70 15,41 9,64 8,28 – – –
{rs} 6,33 6,56 7,68 6,11 6,18 – – –
rs 0,77 0,79 0,81 0,87 0,78 – – –

C2 #rs 5,13 5,99 6,13 5,43 3,89 3,30 – –
{rs} 5,13 5,65 5,65 5,08 3,79 3,20 – –
rs 1,18 1,33 1,22 1,36 0,97 0,83 – –

R1 #rs 15,00 15,04 n.a. 26,24 18,38 14,56 12,33 –
{rs} 10,58 11,09 n.a. 13,33 12,02 10,85 9,62 –
rs 1,04 1,04 – 0,86 0,95 1,02 0,95 –

R2 #rs 2,64 2,66 2,86 2,74 3,34 3,42 – –
{rs} 2,45 2,55 2,75 2,63 3,25 3,31 – –
rs 0,53 0,53 0,57 0,68 1,08 1,30 – –

RC1 #rs 15,63 15,45 45,00 22,51 16,86 12,77 – –
{rs} 9,50 9,39 9,39 9,79 9,44 8,85 – –
rs 1,10 1,09 1,00 1,01 1,21 0,97 – –

RC2 #rs 1,38 1,58 0,55 0,51 1,81 2,38 3,19 3,66
{rs} 1,25 1,53 0,53 0,49 1,71 2,15 3,09 3,47
rs 0,25 0,25 0,03 0,06 0,30 0,48 0,78 1,13

avg #rs 9,03 9,27 14,35 11,27 8,90 7,41 8,05 3,96
{rs} 6,11 6,37 5,32 6,31 6,16 5,72 6,59 3,74
rs 0,80 0,83 0,75 0,82 0,91 0,93 0,92 1,24

Table 5.6: Average total number of recharging stations used (#rs), number of distinct recharging stations used ({rs}), and
average number of recharging stations visited per vehicle (rs) from the best known solutions (BKS) and average results of 10
runs using all or only a single vehicle type (A,B,C,D,E,F) for all E-FSMFTW instances.
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type name BKS All Only A Only B Only C Only D Only E Only F

A C1 7116,04 7132,50 7129,85 9182,20 13988,17 – – –
C2 5676,01 5686,60 5686,13 6269,85 8636,52 10779,75 – –
R1 4044,53 4077,80 n.a. 4368,87 4097,34 4568,51 6810,36 –
R2 3144,30 3170,36 3168,11 3720,51 4540,06 7501,06 – –
RC1 4871,55 4928,88 6055,38 5240,69 5154,38 6504,40 – –
RC2 4206,42 4226,43 4335,28 4301,09 4372,71 5082,41 5527,46 9030,47

dev min 0,19% 0,18% 2,25% 1,31% 12,96% 31,41% 114,68%
avg 0,62% 5,70% 12,61% 34,03% 59,16% 49,89% 114,68%

B C1 2413,50 2421,93 2562,76 2622,39 3572,68 – – –
C2 1675,58 1687,79 1684,81 1783,23 2233,35 2684,60 – –
R1 1812,56 1830,90 n.a. 2445,79 1962,27 1878,99 2293,91 –
R2 1333,01 1350,26 1352,64 1450,82 1638,60 2246,12 – –
RC1 2071,01 2094,06 3940,12 2596,31 2137,55 2367,54 – –
RC2 1683,40 1707,95 2173,45 1766,28 1716,46 1850,72 1974,44 2748,00

dev min 0,35% 0,55% 4,92% 1,96% 3,66% 17,29% 63,24%
avg 0,99% 25,51% 14,86% 19,61% 31,33% 21,92% 63,24%

C C1 1712,62 1719,22 1987,72 1797,05 2269,90 – – –
C2 1168,94 1177,18 1176,21 1222,31 1430,15 1667,08 – –
R1 1488,37 1504,60 n.a. 2205,23 1694,02 1539,12 1722,84 –
R2 1107,74 1126,69 1125,50 1170,56 1274,69 1591,38 – –
RC1 1693,89 1713,18 3671,52 2264,07 1754,29 1842,05 – –
RC2 1354,96 1374,39 1902,49 1450,66 1385,43 1442,51 1522,21 1955,02

dev min 0,39% 0,62% 4,57% 2,25% 3,41% 12,34% 44,29%
avg 1,08% 35,09% 17,34% 14,93% 20,98% 14,05% 44,29%

Table 5.7: Average objective value from the best known solutions (BKS) and average results of 10 runs using all or only a single
vehicle type (A,B,C,D,E,F) for all E-FSMFTW instances solved using no energy restrictions.

type variant BKS All Only A Only B Only C Only D Only E Only F

A FSM obj 4735,68 4763,13 5173,46 5401,52 6612,70 6729,07 6297,20 9030,47
m 12,4 12,6 17,3 13,9 9,4 7,5 8,4 3,1

EFSM obj 4776,56 4803,70 5196,57 5510,81 6897,89 7042,40 6756,10 9145,25
m 12,9 13,1 17,3 14,0 9,8 7,9 9,2 3,2

B FSM obj 1813,84 1831,06 2280,25 2108,51 2186,16 2180,38 2166,12 2748,00
m 9,5 9,7 17,4 13,9 9,5 7,5 8,5 3,2

EFSM obj 1855,83 1877,10 2299,50 2153,71 2266,33 2260,97 2298,34 2775,84
m 10,1 10,3 17,4 14,1 9,8 8,0 9,3 3,2

C FSM obj 1414,31 1429,28 1915,27 1696,58 1631,03 1608,25 1642,59 1955,02
m 8,8 9,0 17,5 13,9 9,5 7,6 8,5 3,2

EFSM obj 1457,97 1475,78 1935,73 1731,97 1689,07 1661,47 1727,58 1969,90
m 9,5 9,7 17,5 14,1 9,9 8,0 9,4 3,3

avg FSM obj 2654.61 2674.49 3122.99 3068.87 3476.63 3505.90 3368.64 4577.83
m 10.2 10.4 17.4 13.9 9.5 7.5 8.5 3.2

EFSM obj 2696.79 2718.86 3143.93 3132.16 3617.76 3654.95 3594.01 4630.33
m 10.9 11.0 17.4 14.1 9.8 8.0 9.3 3.2

Table 5.8: Average objective value (obj) and total vehicles used (m) from the best known solutions (BKS) and average results
of 10 runs using all or only a single vehicle type (A,B,C,D,E,F) for all E-FSMFTW instances solved without (FSM) or with
energy restriction (EFSM).
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Appendix A. Detailed Branch-and-Price Results

E-VRPTW. Table A.1 shows more detailed results for the E-VRPTW instances by Schneider et al. (2014).
An upper bound of the best feasible integer solution (m,obj) found during the search is presented where
available. If the upper bound is proven optimal, the field of column (opt.) is marked with an X.

The BnP approach calculated 24 lower bounds, 20 upper bounds, from which 6 are proven to be optimal.

name LB m obj opt. t[s] name LB m obj opt. t[s]

c101 121053.83 12 1053.83 X 41.84 r107 109339.714 12 1170.87 28800.00
c102 111051.38 11 1051.38 X 6253.38 r109 115959.121 13 1311.19 28800.00
c105 111075.37 11 1075.37 X 5513.96 r110 105679.642 - - 28800.00
c106 102267.114 11 1063.11 28800.00 r111 107582.835 12 1145.34 28800.00
c107 100035.954 11 1083.12 28800.00 rc101 146056.597 15 1823.23 28800.00
c108 98768.154 11 1150.51 28800.00 rc102 134062.462 14 1661.76 28800.00
c109 95413.933 - - 28800.00 rc103 117271.134 13 1366.96 28800.00
r101 171859.51 17 1859.51 X 261.63 rc104 103517.437 - - 28800.00
r102 151659.87 15 1659.87 X 1626.49 rc105 128516.809 14 1502.65 28800.00
r103 131267.35 13 1267.35 X 8827.98 rc106 121502.420 13 1425.70 28800.00
r105 134710.929 14 1471.98 28800.00 rc107 108830.543 13 1431.56 28800.00
r106 125294.609 13 1321.08 28800.00 rc108 103567.304 - - 28800.00

Table A.1: Results for the E-VRPTW instances using branch-and-price. Only instances where a lower bound (LB) was
calculated inside the time limit of eight hours are presented.

E-FSMFTW. Table A.1 shows more detailed results for the E-FSMFTW instances used in our studies. An
upper bound of the best feasible integer solution (obj) found during the search is presented where available.
If the upper bound is proven optimal, the field of column (opt.) is marked with an X.

Our BnP approach calculated 75 lower bounds, 51 upper bounds with 7 also proven to be optimal.
To results for each instance of the proposed new benchmark set is shown in Table A.3, A.4 and A.5. Here

we show the best known solution obtained using BnP or any run in our experiments, the average of 10 runs
using our algorithm as well as the fleet mix.

To complete our results, we also show the results obtained for the smaller benchmarks with only 5 and
10 customers similar to Table 5.2 in Table A.6 and A.7.

The additional results on the fleet composition using the E-FSMFTW instances but without the energy
restriction is shown in Table A.8.
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BKS ALNS2000

name objLB obj mix obj mix t[m]

c101 6837,24 7180,42 A19,0 7190,21 A19,0 17,53
c102 6798,17 7154,50 A19,0 7162,24 A19,0 17,95
c103 6790,93 7126,29 A19,0 7149,31 A19,0 18,30
c104 − 7100,22 A19,0 7110,43 A19,0 17,75
c105 6819,32 7155,23 A19,0 7182,56 A19,0 17,60
c106 6808,44 7146,88 A19,0 7168,94 A19,0 17,69
c107 6807,76 7156,18 A19,0 7171,04 A19,0 17,42
c108 6798,54 7141,49 A19,0 7153,77 A19,0 17,53
c109 6786,90 7120,33 A19,0 7132,19 A19,0 17,32

c201 − 5737,57 A5,0 5757,53 A5,0 39,28
c202 − 5744,65 A5,0 5765,52 A5,0 42,22
c203 − 5726,08 A5,0 5751,99 A5,0 47,69
c204 − 5705,82 A5,0 5727,18 A5,0 50,91
c205 − 5703,48 A5,0 5725,41 A5,0 46,16
c206 − 5708,77 A5,0 5714,39 A5,0 31,20
c207 − 5697,99 A5,0 5713,44 A5,0 32,58
c208 − 5685,40 A5,0 5707,65 A5,0 50,23

r101 4318,92 * 4379,13 A1,0B12,0C11,0 4465,51 A1,0B10,9C11,6D0,1 14,47
r102 4136,22 * 4195,82 B6,0C15,0 4270,92 A0,2B5,8C14,6D0,3 14,97
r103 4008,24 4103,35 B4,0C16,0 4130,86 A0,2B1,8C16,6D0,5 16,43
r104 − 4007,28 B1,0C18,0 4025,60 A0,2B1,1C16,4D0,9 15,27
r105 4101,14 * 4178,40 B4,0C16,0 4215,34 A0,3B2,8C16,7D0,1 15,37
r106 4037,00 4120,23 A1,0B1,0C16,0D1,0 4155,24 A0,3B1,3C16,8D0,6 15,54
r107 3963,15 4057,06 C17,0D1,0 4093,59 A0,1B1,0C15,6D1,5 15,30
r108 − 3992,57 A1,0C18,0 4025,75 A0,3B0,8C15,0D1,9 15,77
r109 3979,57 4067,14 C17,0D1,0 4110,98 A0,2B1,1C16,3D1,0 15,58
r110 3926,28 4024,71 A1,0C18,0 4045,96 A0,2B0,1C16,1D1,5 15,73
r111 3929,35 4023,38 C17,0D1,0 4048,42 A0,2B0,6C16,6D1,0 15,93
r112 − 4001,87 A1,0C15,0D2,0 4023,01 A0,2B0,1C15,2D2,1 15,80

r201 − 3413,93 A5,0 3432,83 A5,0 42,20
r202 − 3270,49 A5,0 3295,26 A5,0 44,95
r203 − 3136,47 A5,0 3169,97 A5,0 49,40
r204 − 3008,01 A5,0 3026,09 A5,0 46,32
r205 − 3234,26 A5,0 3261,16 A5,0 40,89
r206 − 3172,50 A5,0 3194,12 A5,0 47,73
r207 − 3079,39 A5,0 3099,52 A5,0 46,87
r208 − 3010,51 A5,0 3026,57 A5,0 51,26
r209 − 3142,72 A5,0 3161,57 A5,0 45,06
r210 − 3110,90 A5,0 3143,79 A5,0 45,94
r211 − 3041,93 A5,0 3079,24 A5,0 44,29

rc101 5143,23 * 5272,30 A7,0B13,0C3,0 5346,49 A6,8B12,5C3,4 14,13
rc102 4979,41 5121,53 A7,0B9,0C5,0 5180,03 A6,2B9,3C5,2 14,63
rc103 4807,28 4958,51 A4,0B5,0C8,0 5007,37 A3,8B7,1C6,7D0,2 14,53
rc104 − 4804,00 B3,0C10,0 4862,65 A2,3B3,0C9,5 16,03
rc105 4946,54 5074,43 A4,0B7,0C7,0 5117,09 A4,6B9,5C5,5 14,48
rc106 4881,09 5028,28 A2,0B8,0C7,0 5102,46 A3,2B9,5C5,9 14,69
rc107 4740,98 4864,78 A2,0B4,0C9,0 4913,90 A2,6B4,5C8,6 15,24
rc108 4704,02 4814,33 A4,0B3,0C9,0 4862,41 A2,8B2,8C9,2D0,2 15,64

rc201 − 4346,25 A8,0B5,0 4361,17 A8,3B4,7C0,1 14,27
rc202 − 4273,74 A6,0B6,0 4295,27 A7,8B4,8C0,2 14,59
rc203 − 4152,94 A7,0B4,0C1,0 4186,28 A5,7B4,8C0,9 15,98
rc204 − 4113,49 A3,0B3,0C3,0 4127,11 A3,8B4,1C2,0 19,18
rc205 − 4246,52 A6,0B6,0 4273,59 A7,9B4,9C0,1 14,86
rc206 − 4237,75 A5,0B5,0C1,0 4270,25 A5,7B5,1C0,7 15,09
rc207 − 4177,23 A2,0B8,0 4199,60 A3,9B4,8C1,5 16,20
rc208 − 4097,04 A2,0B2,0C4,0 4122,12 A3,3B3,9C2,3 18,13

avg. 4776,24 A6,1B2,1C4,7D0,1 4803,80 A6,2B2,2C4,5 25,68
dev. 0,58

Table A.3: Results for the E-FSMFTW instances, vehicle type A. * mark solutions found by BnP only. The deviation from the
best known solution (BKS) is in percent.
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BKS ALNS2000

name objLB obj mix obj mix t[m]

c101 2421,26 2495,00 A9,0B5,0 2505,73 A9,6B4,7 14,43
c102 2365,06 2445,99 A9,0B5,0 2450,73 A9,0B5,0 14,41
c103 2344,13 2438,54 A9,0B5,0 2452,40 A9,0B5,0 15,03
c104 − 2404,97 A9,0B5,0 2428,95 A9,0B5,0 15,07
c105 2381,63 2472,93 A9,0B5,0 2475,95 A9,2B4,9 14,45
c106 2364,51 2462,54 A9,0B5,0 2468,13 A9,2B4,9 14,71
c107 2361,28 2458,37 A9,0B5,0 2461,32 A9,0B5,0 14,60
c108 2349,75 2450,17 A9,0B5,0 2463,02 A9,4B4,8 14,33
c109 2324,91 2436,41 A9,0B5,0 2452,57 A9,8B4,6 15,07

c201 − 1730,41 A1,0B3,0 1739,26 A4,6B0,3 35,76
c202 − 1737,57 A5,0 1745,24 A4,3B0,4C0,1 38,14
c203 − 1716,29 A5,0 1742,76 A4,3B0,4C0,1 39,38
c204 − 1699,07 A1,0B3,0 1709,43 A3,8B0,9 37,02
c205 − 1697,01 A5,0 1715,09 A5,0 37,83
c206 − 1693,15 A5,0 1712,38 A4,4B0,2C0,2 36,78
c207 − 1694,61 A5,0 1710,70 A4,0B0,5C0,2 35,05
c208 − 1681,47 A5,0 1707,11 A4,4B0,2C0,2 36,46

r101 2249,14 * 2249,14 A2,0B2,0C12,0D4,0 2281,28 A1,0B4,3C12,6D2,9 13,68

r102 2047,89 * 2047,89 B2,0C9,0D6,0 2095,87 A0,5B2,4C11,9D3,9 14,45

r103 1858,41 1894,98 B2,0C4,0D9,0 1927,52 A0,3B0,9C6,4D7,8E0,1 15,11
r104 − 1747,65 C1,0D10,0E1,0 1775,33 A0,2B0,2C2,4D8,8E1,2 15,28
r105 1997,75 * 1997,75 B2,0C9,0D6,0 2030,12 A0,3B1,1C8,7D6,4E0,1 15,08

r106 1894,42 * 1932,63 B2,0C3,0D10,0 1963,88 A0,3B1,1C6,6D7,3E0,3 14,51
r107 1765,41 1824,88 B1,0C2,0D9,0E1,0 1844,20 B0,7C2,4D8,9E1,1 15,50
r108 − 1729,18 C1,0D10,0E1,0 1753,09 A0,1B0,1C1,5D9,3E1,3 16,27
r109 1820,20 1871,54 B1,0C2,0D11,0 1904,12 A0,2B0,6C4,5D9,0E0,3 15,37
r110 1715,23 1759,69 D11,0E1,0 1793,48 A0,3B0,1C3,3D9,0E0,8 15,54
r111 1722,60 1786,97 A1,0C3,0D7,0E2,0 1808,36 A0,2B0,1C3,4D9,1E0,7 15,66
r112 − 1721,79 D11,0E1,0 1746,02 B0,1C1,5D9,7E1,1 15,77

r201 − 1594,58 A5,0 1618,25 A5,0 31,21
r202 − 1468,05 A5,0 1479,42 A5,0 29,61
r203 − 1340,00 A5,0 1354,24 A5,0 30,70
r204 − 1203,89 A5,0 1211,63 A5,0 27,35
r205 − 1430,70 A5,0 1455,08 A5,0 30,16
r206 − 1361,69 A5,0 1376,34 A5,0 31,35
r207 − 1256,22 A5,0 1268,66 A5,0 28,18
r208 − 1198,39 A5,0 1208,89 A5,0 29,02
r209 − 1333,33 A5,0 1345,50 A5,0 30,30
r210 − 1314,16 A5,0 1324,07 A5,0 30,07
r211 − 1231,38 A5,0 1244,73 A5,0 26,30

rc101 2419,13 * 2514,50 A2,0B10,0C7,0 2560,33 A1,6B8,9C6,7D0,9 13,71
rc102 2255,88 2330,50 A2,0B4,0C10,0 2359,92 A2,4B4,8C9,1D0,2 14,35
rc103 2037,34 2105,84 A1,0B4,0C7,0D2,0 2136,78 A1,4B3,6C6,8D2,3 14,14
rc104 − 1986,35 A2,0C9,0D2,0 2002,33 A0,6B1,4C7,1D3,1 15,56
rc105 2197,44 2259,97 B7,0C6,0D2,0 2287,95 A0,7B6,0C6,8D1,7 13,87
rc106 2130,48 2209,73 B4,0C9,0D1,0 2232,05 A0,7B4,0C8,7D1,1 14,50
rc107 1955,42 2037,25 C11,0D1,0 2050,20 A0,3B1,2C9,2D1,8 15,43
rc108 1892,58 1962,87 B2,0C7,0D3,0 1995,41 A0,1B1,3C7,6D2,9 14,99

rc201 − 1899,99 A3,0B6,0C1,0 1931,42 A3,3B4,0C2,1D0,1 15,69
rc202 − 1807,30 A3,0B1,0C3,0D1,0 1825,07 A2,7B2,1C2,9D0,6 16,19
rc203 − 1642,43 A1,0B1,0C5,0 1660,93 A1,7B1,1C3,6D0,7E0,1 19,00
rc204 − 1521,80 C6,0 1543,04 A0,6B0,6C3,8D1,2 22,13
rc205 − 1753,79 A1,0B1,0C5,0 1774,22 A1,5B1,7C4,1D0,2 19,03
rc206 − 1751,75 A2,0B2,0C4,0 1767,75 A1,4B1,9C4,0D0,2 17,79
rc207 − 1616,96 A1,0B1,0C5,0 1640,23 A0,6B1,0C4,2D0,7 19,07
rc208 − 1497,95 C6,0 1520,76 A0,4B0,1C3,2D1,7E0,2 22,03

avg. 1857,06 A3,4B1,9C2,6D2,1E0,1 1875,70 A3,5B1,8C2,8 21,47
dev. 1,00

Table A.4: Results for the E-FSMFTW instances, vehicle type B. * mark solutions found by BnP only; underscored are proven
to be optimal. The deviation from the best known solution (BKS) is in percent.

34



BKS ALNS2000

name objLB obj mix obj mix t[m]

c101 1809,93 * 1809,93 A7,0B6,0 1816,06 A7,0B6,0 14,08

c102 1724,01 1759,73 A7,0B6,0 1766,14 A6,8B6,1 14,36
c103 1694,21 1755,02 A7,0B6,0 1759,20 A6,6B6,2 15,09
c104 − 1719,67 A5,0B7,0 1735,86 A5,2B6,6C0,2 15,60
c105 1736,30 1783,25 A7,0B6,0 1785,43 A5,8B6,6 14,51
c106 1720,11 1774,77 A7,0B6,0 1777,67 A6,2B6,4 14,64
c107 1709,23 1764,02 A5,0B7,0 1768,33 A5,8B6,6 14,57
c108 1701,28 1761,41 A5,0B7,0 1769,76 A5,4B6,8 14,80
c109 1666,58 1740,18 A5,0B7,0 1749,07 A5,0B7,0 15,30

c201 − 1210,41 A1,0B3,0 1213,63 A1,3B2,4C0,3 31,30
c202 − 1209,73 A1,0B3,0 1220,97 A2,0B1,5C0,6 34,17
c203 − 1212,34 A2,0B1,0C1,0 1227,69 A2,9B0,7C0,7 33,07
c204 − 1179,25 A1,0B3,0 1199,37 A2,0B2,0C0,2 32,15
c205 − 1188,92 A2,0B1,0C1,0 1195,24 A2,3B0,9C0,9 31,64
c206 − 1183,42 A2,0B1,0C1,0 1192,30 A2,6B0,8C0,8 31,01
c207 − 1183,42 A2,0B1,0C1,0 1190,37 A2,6B0,8C0,8 31,44
c208 − 1181,47 A5,0 1192,96 A3,5B0,5C0,5 30,82

r101 1954,00 * 1954,00 A3,0B2,0C9,0D6,0 1977,89 A0,6B2,3C12,2D4,7 14,36

r102 1757,13 * 1757,13 B1,0C12,0D5,0 1791,03 A0,7B2,3C9,9D5,4E0,1 14,67

r103 1555,92 * 1597,73 B1,0C5,0D9,0 1618,81 A0,5B0,8C4,8D8,4E0,5 15,52
r104 − 1424,30 C1,0D9,0E2,0 1448,31 B0,4C1,6D8,3E2,0 16,20
r105 1699,34 * 1699,34 B2,0C7,0D6,0E1,0 1728,12 A0,3B1,6C7,6D6,5E0,6 14,68

r106 1588,26 * 1604,55 A1,0C3,0D9,0E1,0 1635,42 A0,4B1,2C4,5D7,2E1,5 14,67
r107 1449,56 1490,04 B1,0C1,0D7,0E3,0 1514,01 A0,1B0,3C1,9D8,0E2,1 15,99
r108 − 1399,27 B1,0D9,0E2,0 1417,39 A0,2B0,4C1,4D7,3E2,6 16,42
r109 1510,93 * 1550,40 C5,0D8,0E1,0 1580,14 A0,2B0,3C4,5D8,5E0,8 15,65
r110 1392,62 1446,48 B2,0C1,0D8,0E2,0 1471,66 B0,4C2,6D7,9E1,8 15,64
r111 1401,57 * 1438,81 B1,0C3,0D7,0E2,0 1479,75 B0,2C2,5D9,2E1,1 16,16
r112 1334,62 1389,87 C2,0D5,0E4,0 1403,82 C1,5D7,7E2,5 16,10

r201 − 1366,63 A5,0 1378,77 A5,2 29,69
r202 − 1236,97 A5,0 1249,65 A5,0 29,13
r203 − 1104,85 A5,0 1124,07 A5,0 30,23
r204 − 977,72 A5,0 983,97 A5,0 26,81
r205 − 1217,77 A5,0 1232,63 A4,9B0,1 29,15
r206 − 1136,83 A5,0 1155,47 A4,9B0,1 30,95
r207 − 1031,22 A5,0 1057,22 A5,0 26,31
r208 − 971,15 A5,0 984,87 A4,4B0,3C0,1 28,21
r209 − 1099,24 A5,0 1117,68 A5,0 29,62
r210 − 1087,21 A5,0 1100,27 A4,6B0,3 29,88
r211 − 1006,38 A5,0 1026,07 A4,9B0,1 25,93

rc101 2051,31 * 2134,30 B11,0C6,0D1,0 2153,24 A1,3B7,4C6,9D2,1 13,80
rc102 1890,93 * 1947,71 A2,0B4,0C9,0D1,0 1972,85 A1,5B4,3C8,6D1,5 14,68
rc103 1666,70 1736,25 A1,0B2,0C7,0D3,0 1764,22 A1,1B3,4C6,8D2,6 14,54
rc104 1525,90 1595,44 B1,0C8,0D3,0 1614,09 A0,3B1,3C7,0D3,6 15,80
rc105 1823,42 1885,63 B4,0C7,0D3,0 1900,42 A0,1B5,3C7,5D2,0 14,14
rc106 1759,37 1823,89 B3,0C9,0D2,0 1844,99 A0,9B2,8C9,4D1,3 15,18
rc107 1581,57 1639,84 B1,0C8,0D3,0 1675,58 A0,1B1,5C7,8D3,0 15,31
rc108 1509,49 1578,51 B2,0C6,0D4,0 1601,47 A0,1B0,9C6,7D4,0 14,98

rc201 1580,15 1589,99 A3,0B6,0C1,0 1617,52 A3,1B3,9C2,2D0,2 15,64
rc202 − 1485,13 A2,0B1,0C2,0D2,0 1497,99 A1,9B2,5C2,5D0,9 16,72
rc203 − 1310,37 A1,0B1,0C5,0 1333,25 A1,1B1,4C3,5D0,4E0,4 19,35
rc204 − 1183,16 C2,0D3,0 1193,93 A0,7C2,7D2,3 22,69
rc205 − 1424,75 A1,0C3,0D2,0 1440,00 A0,8B1,1C4,0D0,5E0,2 20,95
rc206 − 1431,21 A1,0B4,0C3,0 1439,17 A1,0B2,6C3,4D0,4 18,11
rc207 − 1277,71 C6,0 1299,14 A0,4B0,4C3,7D1,3E0,1 21,30
rc208 − 1161,57 C2,0D3,0 1171,52 A0,1C2,8D2,0E0,3 22,91

avg. 1458,70 A2,5B2,2C2,4D2,1E0,3 1474,22 A2,6B2,1C2,6 20,83
dev. 1,06

Table A.5: Results for the E-FSMFTW instances, vehicle type C. * mark solutions found by BnP only; underscored are proven
to be optimal. The deviation from the best known solution (BKS) is in percent.

35
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type name obj F mix t[s] obj obj obj F mix t[s]

A c101c5 857,75 600 A2 0,01 867,33 857,75 857,75 600 A2 16,56
c103c5 476,05 300 A1 0,01 493,15 476,05 476,05 300 A1 12,72
c206c5 1261,88 1000 A1 0,02 2262,46 1262,19 1261,88 1000 A1 13,07
c208c5 1164,34 1000 A1 0,03 1164,34 1164,34 1164,34 1000 A1 10,76
r104c5 327,25 190 A1C1 0,08 393,52 327,25 327,25 190 A1C1 12,83
r105c5 346,08 190 A1C1 0,02 422,92 346,08 346,08 190 A1C1 11,51
r202c5 609,18 450 A1 0,04 618,86 609,18 609,18 450 A1 9,78
r203c5 645,63 450 A1 0,02 1095,63 645,63 645,63 450 A1 11,78
rc105c5 511,96 270 A2B1 0,02 524,99 511,96 511,96 270 A2B1 8,51
rc108c5 532,04 360 A1B2 0,01 640,51 532,04 532,04 210 A1B1 10,87
rc204c5 496,74 300 A2 0,19 496,74 496,74 496,74 300 A2 7,31
rc208c5 328,89 150 A1 0,08 502,91 328,89 328,89 150 A1 9,04

B c101c5 377,75 120 A2 0,01 387,33 377,75 377,75 120 A2 13,51
c103c5 236,05 60 A1 0,01 287,11 236,05 236,05 60 A1 8,79
c206c5 461,88 200 A1 0,03 662,46 461,88 461,88 200 A1 9,39
c208c5 364,34 200 A1 0,03 364,34 364,34 364,34 200 A1 6,84
r104c5 175,25 38 A1C1 0,01 233,52 175,25 175,25 38 A1C1 6,97
r105c5 194,08 38 A1C1 0,01 194,08 194,08 194,08 38 A1C1 7,84
r202c5 249,18 90 A1 0,01 249,18 249,18 249,18 90 A1 6,77
r203c5 285,63 90 A1 0,01 285,63 285,63 285,63 90 A1 6,65
rc105c5 295,96 54 A2B1 0,01 295,96 295,96 295,96 54 A2B1 9,28
rc108c5 313,93 30 B1 0,01 313,93 313,93 313,93 60 B2 10,36
rc204c5 255,55 70 B1 0,03 260,35 255,79 255,55 70 B1 10,09
rc208c5 208,89 30 A1 0,03 208,89 208,89 208,89 30 A1 8,61

C c101c5 317,75 60 A2 0,01 340,04 317,75 317,75 60 A2 10,26
c103c5 206,05 30 A1 0,01 233,84 206,05 206,05 30 A1 8,89
c206c5 361,88 100 A1 0,01 445,98 361,88 361,88 100 A1 9,69
c208c5 264,34 100 A1 0,01 265,55 264,34 264,34 100 A1 8,70
r104c5 156,25 19 A1C1 0,01 213,52 156,25 156,25 19 A1C1 8,64
r105c5 175,08 19 A1C1 0,01 175,08 175,08 175,08 19 A1C1 7,73
r202c5 204,18 45 A1 0,04 222,43 204,18 204,18 45 A1 6,43
r203c5 240,63 45 A1 0,02 263.46 240,63 240,63 45 A1 7,62
rc105c5 268,96 27 A2B1 0,02 308,99 268,96 268,96 27 A2B1 8,01
rc108c5 283,93 30 B2 0,01 408,35 283,93 283,93 30 B2 10,07
rc204c5 220,55 35 B1 0,06 228,06 220,86 220,55 35 B1 9,59
rc208c5 193,89 15 A1 0,07 212,31 193,89 193,89 15 A1 7,55

dev. % 0,01 0,00

Table A.6: Results for the E-FSMFTW instances with 5 customers compared to BnP
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BnP init. ALNS

type name obj F mix t[s] obj obj obj F mix t[s]

A c101c10 1302,15 900 A3 0,17 1302,15 1302,15 1302,15 900 A3 14,24
c104c10 902,71 600 A2 1,10 917,07 902,71 902,71 600 A2 18,25
c202c10 1304,32 1000 A1 0,09 2268,00 1493,84 1304,32 1000 A1 14,83
c205c10 2631,97 2400 A1B1 0,15 2693,16 2631,97 2631,97 2400 A1B1 14,39
r102c10 595,34 320 A2B1C1 0,31 787,67 595,34 595,34 320 A2B1C1 13,67
r103c10 478,07 270 A1B1C1 4,35 651,73 478,23 478,07 270 A1B1C1 14,22
r201c10 1138,38 900 A2 0,31 1156,54 1140,45 1138,38 900 A2 16,30
r203c10 952,16 700 B1 0,93 1424,84 0 956,50 952,16 700 B1 13,77
rc102c10 1100,27 660 A1B2C1 0,03 1190,05 1100,27 1100,27 660 A1B2C1 16,16
rc108c10 693,27 240 A4 0,06 816,19 693,27 693,27 240 A4 20,83
rc201c10 684,63 300 A2 2,69 842,74 684,88 684,63 300 A2 18,03
rc205c10 1064,59 700 A1C1 0,63 1246,55 1067,44 1064,59 700 A1C1 17,27

B c101c10 582,15 180 A3 0,03 648,14 582,15 582,15 180 A3 15,26
c104c10 422,71 120 A2 0,55 534,28 422,71 422,71 120 A2 18,51
c202c10 504,32 200 A1 0,07 669,77 548,61 504,32 200 A1 14,19
c205c10 711,97 480 A1B1 0,06 972,74 711,97 711,97 480 A1B1 14,50
r102c10 325,19 76 A1B1D1 0,02 507,67 325,19 325,19 76 A1B1D1 14,13
r103c10 262,07 54 A1B1C1 0,54 335,48 262,07 262,07 54 A1B1C1 17,51
r201c10 418,38 180 A2 0,11 471,79 418,38 418,38 180 A2 16,98
r203c10 392,16 140 B1 0,33 496,63 438,29 392,16 140 B1 13,81
rc102c10 572,27 132 A1B2C1 0,02 626,05 572,27 572,27 132 A1B2C1 13,57
rc108c10 422,12 72 A1B2 0,01 538,15 422,12 422,12 72 A1B2 15,82
rc201c10 429,17 90 A3 0,46 476,30 429,17 429,17 90 A3 26,72
rc205c10 504,59 140 A1C1 0,17 575,21 504,59 504,59 140 A1C1 22,62

C c101c10 492,15 90 A3 0,15 536,90 492,15 492,15 90 A3 16,39
c104c10 362,71 60 A2 0,19 419.47 362,71 362,71 60 A2 16,60
c202c10 404,32 100 A1 0,17 449,44 413,84 404,32 100 A1 14,55
c205c10 471,97 240 A1B1 0,07 499,03 471,97 471,97 240 A1B1 10,45
r102c10 287,19 38 A1B1D1 0,04 472,67 287,19 287,19 38 A1B1D1 12,09
r103c10 235,07 27 A1B1C1 0,25 299,73 235,07 235,07 27 A1B1C1 20,27
r201c10 328,38 90 A2 0,31 342,99 328,38 328,38 90 A2 17,55
r203c10 322,16 70 B1 0,95 378,32 350,29 322,16 70 B1 13,12
rc102c10 498,51 75 B3C1 0,03 548,05 498,51 498,51 75 B3C1 13,09
rc108c10 386,12 36 A1B2 0,05 484,44 386,12 386,12 36 A1B2 14,76
rc201c10 384,17 45 A3 0,52 426,96 384,17 384,17 45 A3 19,28
rc205c10 429,69 95 A1D1 0,13 451,47 429,69 429,69 95 A1D1 16,06

dev. % 1,18 0,00

Table A.7: Results for the E-FSMFTW instances with 10 customers compared to BnP

type name BKS All Only A Only B Only C Only D Only E Only F

A C1 A19,0 A19,0 A19,0 B10,2 C9,6 – – –
C2 A5,0 A5,0 A5,0 B4,0 C4,0 D3,8 – –
R1 A0,3B0,8C16,8D0,8 A0,3B1,1C15,8D1,3 n.a. B30,0 C19,0 D13,4 E11,3 –
R2 A5,0 A5,0 A5,0 B4,0 C3,0 D2,6 – –
RC1 A2,5B2,8C9,5 A3,4B4,6C8,2D0,1 A44,0 B22,0 C12,6 D11,5 – –
RC2 A5,4B4,6C1,1 A5,6B4,4C1,2 A18,0 B9,0 C6,0 D5,0 E4,0 F 3,1

B C1 A7,7B5,7 A7,9B5,5 A19,0 B10,2 C9,6 – – –
C2 A5,0 A4,7B0,2C<0,1 A5,0 B4,0 C4,0 D3,8 – –
R1 A0,1B0,7C3,9D7,4E1,3 A0,1B0,5C3,6D8,1E1,1 n.a. B30,1 C19,1 D13,5 E11,5 –
R2 A5,0 A5,0 A5,0 B4,0 C3,0 D2,6 – –
RC1 A0,8B2,1C8,1D1,9 A0,8B2,5C7,7D2,1 A44,4 B22,0 C12,8 D11,6 – –
RC2 A0,9B1,0C4,9D0,1 A1,5B1,7C3,5D0,6E<0,1 A18,0 B9,0 C6,0 D5,0 E4,0 F 3,2

C C1 A4,0B7,3C0,1 A4,3B7,3C<0,1 A19,0 B10,2 C9,7 – – –
C2 A1,9B1,3C0,9 A2,7B1,0C0,6 A5,0 B4,0 C4,0 D3,8 – –
R1 A0,3B0,3C3,2D6,4E2,4 A0,3B0,5C3,1D6,6E2,3 n.a. B30,3 C19,1 D13,6 E11,5 –
R2 A5,0 A4,9B0,1 A5,0 B4,0 C3,1 D2,6 – –
RC1 A0,8B1,8C6,1D3,8 A0,7B2,2C6,4D3,4 A45,0 B22,1 C12,9 D11,9 – –
RC2 A0,9B0,9C3,6D1,1 A1,3B1,2C3,2D1,1E0,1 A18,0 B9,0 C6,1 D5,0 E4,0 F 3,2

Table A.8: Average fleet mix from the best known solutions (BKS) and average results of 10 runs using all or only a single
vehicle type (A,B,C,D,E,F) for all E-FSMFTW instances using no energy restrictions.
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