
HAL Id: hal-01258701
https://hal.science/hal-01258701

Submitted on 19 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DREAMS about reconfiguration and adaptation in
avionics

Guy Durrieu, Gerhard Fohler, Gautam Gala, Sylvain Girbal, Daniel Gracia
Pérez, Eric Noulard, Claire Pagetti, Simara Pérez

To cite this version:
Guy Durrieu, Gerhard Fohler, Gautam Gala, Sylvain Girbal, Daniel Gracia Pérez, et al.. DREAMS
about reconfiguration and adaptation in avionics. ERTS 2016, Jan 2016, Toulouse, France. �hal-
01258701�

https://hal.science/hal-01258701
https://hal.archives-ouvertes.fr

DREAMS about reconfiguration and adaptation in
avionics

Guy Durrieu∗ Gerhard Fohler† Gautam Gala† Sylvain Girbal ‡ Daniel Gracia Pérez‡ Eric Noulard∗

Claire Pagetti∗ Simara Pérez Zurita †
∗ONERA - France †Technische Universität Kaiserslautern - Germany ‡Thales TRT - France

Abstract—The paper describes the reconfiguration approach
implemented in the DREAMS middleware to cope with failures
and how the concepts are tested on an avionic demonstrator. 1

I. INTRODUCTION

The DREAMS [Oa13] (Distributed REal-Time Architecture
for Mixed Criticality Systems) FP7 project addresses the design
of a cross-domain architecture for executing applications of
different criticality levels in networked multicore embedded
systems.

A. General overview of DREAMS

A DREAMS architecture is composed of several multi-core
chips (such as Freescale T4240 [Fre14]) connected through a
TTEthernet network [KAGS05]. The DREAMS middleware is
in charge of:

1) Ensuring strong temporal and spatial partitioning;
2) Supporting adaptation strategies for mixed-criticality

systems to deal with unpredictable environment situations,
changes in resource availability, and occurrence of faults;

3) Delivering virtualization technologies for ease of design-
ing.

The DREAMS development methodology and tools are based
on model-driven engineering enabling mapping and scheduling
of mixed-criticality applications. Three demonstrators, that
encompass a broad range of application domains (namely
avionics, wind power and healthcare) will be developed and
will highlight the DREAMS results.

The project, started in October 2013 with a duration of
4 years, is in its mid-term progress. At this stage, the basic
software blocks have been developed and will be integrated
next year in the demonstrators.

B. Objective and contributions

This paper focuses on reconfiguration and adaptation strate-
gies and their implementation in the avionic demonstrator.
Those strategies only take place upon failures, with the purpose
to bring the system back to a safe functioning state. We consider
two types of failures:

1) A permanent core failure. Intensive integration of
small devices on chip increases the permanent failures
occurrence due to various phenomena such as aging,
wear-out or infant mortality [Bor05]. When a core is

1The research leading to these results has received funding from
the European FP7-ICT project DREAMS under reference n◦ 610640.

halted, the partitions executing on the failed core are
re-allocated according to pre-computed configurations.
We then speak of reconfiguration;

2) A temporal overload situation, resulting in deadline
miss without corrective action. Such a situation may
occur because the resources are over-utilized in the
nominal mode. However, the timing constraints are
respected in degraded modes, that consist in interrupting
or degrading the execution of best-effort applications.
When a critical application (i.e. that is not best-effort)
detects an internal deadline overrun, the execution moves
temporarily the best-effort applications to a degraded
mode. We then speak of adaptation.

In the following, we describe the resource management pro-
posed in the DREAMS middleware and we define formally the
notions of reconfiguration and adaptation (see Section II). We
then detail the reconfiguration strategies defined for mitigating
the core failures (see Section III) and the adaptation approach
for mitigating the temporal overload situations (see Section IV).
Finally we give the main ideas of the implementation for the
avionic demonstrator and the results obtained by simulation
(see Section V). Related works are discussed in Section VI.

II. RESOURCE MANAGEMENT IN DREAMS

Resource management is a core service provided in the
DREAMS middleware for system wide adaptability of mixed
criticality applications. The approach is based on the Matrix
framework [RF07], but adapted to platforms in which multiple
multi-core chips exist and applications can have several
criticality levels. Furthermore, the concept of service levels in
ACTORS [BBE+11] is extended in DREAMS for its applica-
tion on virtualized hardware resources instead of applications.
The main goals of the integrated resource management are:

• Reconfiguration of a mixed-criticality system upon fore-
seen and unforeseen changes in its operational and
environmental conditions.

• Adaptability mechanisms for securely modifying over
the system without interrupting or interfering with its
execution.

A. Structure of resource managers

Practically, the resource management services are realized
by a Global Resource Manager (GRM) in combination with
a set of Local Resource Managers (LRM). The GRM gathers
information from the LRMs and provides new configurations

for the virtualization of resources (e.g., partition scheduling
tables or resource budgets). The GRM configuration can
include different pre-computed configurations of resources (e.g.,
time-triggered schedules) or parameter ranges (e.g., resource
budgets).

Local resource management services consist of three major
parts: Resource Monitors (MONs), Local Resource Schedulers
(LRSs) and Local Resource Managers (LRMs). The MON
monitors the resource availability and timing of components
(e.g., detection of deadline violations). The LRS performs the
runtime scheduling of resource requests (e.g., execution of
tasks on processor, I/O requests) based on the configuration set
by the LRM. The LRM either adopts the configuration from
the GRM to particular resources (e.g., processor core, memory,
I/O) or selects a new configuration from the ones available
and reports state of the resource (from MON) to the GRM.

LRM LRM LRM

GRM

LRS MON LRS MON

Resource Resource

LRS MON LRS MON

Resource Resource

LRS MON

Resource

Figure 1. Interaction between resource managers

The LRM and the GRM can be organized in a hierarchical
or flat architecture. The flat architecture, shown in Figure 1,
consists of a GRM which controls and supervises all LRMs and
has a complete view of the system. All LRMs are placed at the
same level and they communicate directly to GRM regardless
of which resource they monitor or where they are physically
located. In the hierachical architecture the LRMs can control
underlying LRMs.

B. Implementation choices

DREAMS middleware relies on time and space partitioning
principles [Rad05]. In this paper, we consider that those
principles are implemented at the chip level by the XtratuM
hypervisor [MRC+09], which is a technology involved in the
project. Therefore, applications will be executed by a set of
partitions. A partition is defined by one or multiple slots, each
with a start time and a length. Inside a slot, several tasks can
be executed. In the sequel, we will use the color code shown
in Figure 2.

GRM MON LRM LRS Slot Task

Figure 2. Legend

We consider mixed-critical systems where we differentiate
two types of application.

Definition 1 (Application model). An application can be a:
• critical application. Such an application must respect its

timing constraints and in particular the WCET must fit

in the allocated slots. Moreover, it cannot be stopped
apart if the application encounters an internal error or
if the executive layer fails. A critical application app is
defined as a set of periodic or sporadic tasks app = {τi =
(Ci, AETi, Ti)} where Ci is the WCET, AETi is the
average execution time and Ti is the period or minimal
inter-arrival time;

• best-effort application. Such an application has less strong
constraints. We accept to interrupt them as long as a
minimal QoS (quality of service) is ensured. A best-effort
application is defined as app = (Ui, AUi) where Ui is
the worst-case asked utilization and AUi is the average
utilization.

A configuration consists in defining temporal slots on the
multi-core and mapping the applications in the slots.

Definition 2 (Configuration). A configuration (also denoted
plan in the hypervisor terminology) consists of:

• a major cycle (MaC), the length of which is denoted
MaC_length;

• a set of slots sli distributed over the cores and the MaC.
A slot is defined as sli = ([si, ei], ni) where si is the
start time, ei is the end time and ni is the number of core
where the slot is allocated;

• a mapping of the jobs of critical applications in the slots.
Jobs are unrolled on the MaC and we know for all job
τi,j in which slot slk it belongs to. We know moreover
in which order are executed the jobs inside a slot;

• a mapping of best-effort applications in the slots. For
instance, appi is executed in the slots slj1 , . . . , sljp .

C. Definition of the notions of reconfiguration and adaptation

A reconfiguration consists in moving from one configuration
to another and this happens when a core has failed. An
adaptation consists in degrading a configuration and this occurs
when a temporal overload situation happens. Adaptions are
handled locally by the LRM whereas core failures may be
recovered locally by the LRM or globally by the GRM.

a) Permanent core failures: When a core has failed,
the partitions hosted on it are no longer executed. Such a
situation can be mitigated by an active redundancy (if some
other resource executes the same partitions) or by applying a
reconfiguration. Due to the high number of cores provided by
a DREAMS platform and the overall resource managements,
we decide to incorporate reconfiguration capabilities.

b) Temporal overload situations: The chapter 8 of
[But97] focuses on the overload conditions, that are critical
situations in which the computational demand requested by
the task set exceeds the time available on the processors, and
hence not all tasks can complete within their deadlines. Such a
situation can result for several reasons, e.g. environmental
solicitations or fault of peripheral devices or cohabiting
applications.

In the DREAMS project, we consider IMA platforms where
such problematic situations are usually contained thanks to
the temporal isolation. However, we decided to leverage this

restriction in order to increase the overall utilization of the
multi-core chips. Indeed, we observed that when computing an
upper bound of applications WCET on a multi-core chip and
reserving this amount of time for all of them leads to an over-
provisioning of the platform. As a matter of fact, this WCET
is rarely reached and most of the time, the average execution
time (AET) is much below the capacity of the platform. This
is the reason why we accept a multi-core to be over-utilized by
the applications. Our model is detailed in the definition below.

Definition 3 (Under-provisioned platform). Any multi-core
can be over-utilized in the following way:

•
∑

i
Ci

Ti
+
∑

j Uj > number of cores: the overall utilization
exceeds the multi-core capacity;

•
∑

i
AETi

Ti
+

∑
AUj � number of cores: the overall

average utilization is much below the multi-core capacity;
•

∑
i
Ci

Ti
< number of cores: the overall utilization for the

critical applications fits the multi-core capacity.

This means that the best-effort applications are those leading
to the overtaking of the provisioning. This situation will
be handled as proposed in [KPR+14], which means that
we will monitor regularly the critical applications and if an
internal deadline is exceeded, the best-effort applications will
be interrupted and resumed once the critical applications are
not any longer endangered.

Note that GRM only makes global reconfiguration decisions
when necessary, but it is not required for the continuous
operation of the system. The unique failure mode considered
for the GRM is the loss, due to the permanent failure of
the hosting core. Thus, in case of GRM failure, the overall
system dependability is not compromised as the system will
still keep on executing; just no new global reconfigurations
will be possible.

D. Interaction between GRM and LRMs

The interaction between resource management components
takes place via Sampling and Queuing ports (provided by the
hypervisor). As shown in figure 3, three channels are created
between each GRM-LRM pair:

1) Updates channel: For LRM to send resource status up-
dates to the GRM and request for global reconfiguration.

2) Orders channel: For GRM to send reconfiguration mes-
sages to the LRM.

3) Membership channel: Each LRM periodically sends
a live-signal to the GRM via this channels for the
membership purposes.

GRM

LRM LRM

Updates Channel
Orders Channel
Membership Channel

Figure 3. Comunication between RM components

The properties of the RM communication channels are
summarized in table I. We remind that TTEthernet protocol
[KAGS05] allows several types of traffic:

• rate constraint (RC) traffic: bandwidth guarantee for
each application is predefined and delays and temporal
deviations have defined limits.

• time triggered (TT) traffic: messages are sent over the
network at predefined times and take precedence over all
other traffic types.

• best-effort (BE) traffic: it follows the methods of classical
Ethernet networks. There is no guarantee whether and
when the BE messages can be transmitted, what delays
might occur and if they arrive at the recipient.

Table I
SUMMARY OF RESOURCE MANAGEMENT COMMUNICATION CHANNELS

Communication
Channel

Port Type TTEthernet
Traffic

Source Destination

Updates Queuing TT LRM GRM
Orders Sampling TT GRM LRM
Membership Sampling TT LRM GRM

III. RECONFIGURATION STRATEGY IN CASE OF A CORE
FAILURE

When a failure occurs, a detection mechanism must detect
the problem and a system recovery procedure must bring the
system to a correct state. In the DREAMS project, the detection
is based on monitoring (MON) at the multi-core level and
recovery at the LRM or GRM level. The recovery procedure
is based on pre-defined mode changes executed by the LRM.
This entails that a set of possible configurations is computed
off-line and that a reconfiguration consists in moving from one
configuration to another. The transition steps between mode
changes must be safe.

A. Reconfiguration graphs

Since core failures may be recovered locally by the LRM
or globally by the GRM, we need to distribute the view of the
current configuration between the different stakeholders. The
current configuration is represented as the combination of the
local configurations. The GRM has an up-to-date system wide
vision of the current configuration and stores all the admissible
reconfigurations. Each LRM and each switch store a local
reconfiguration graph detailing local reconfiguration and global
mode changes asked by the GRM.

Definition 4 (Local reconfiguration graphs). A (local) recon-
figuration graph is a tuple 〈Q,→, 99K, q0〉 where:

• Q is a finite set of configurations;
• q0 is the initial configuration;
• →⊆ Q × Q is the set of local transitions from one

configuration to another;
• 99K⊆ Q×Q is the set of transitions from one configuration

to another requested by an other entity.
A reconfiguration graph is stored in each LRM, in each switch
and in the GRM. In an LRM, plain arrows represent local

decisions while dashed arrows represent decisions provided by
the GRM. In the GRM, plain arrows represent local decisions
while dashed arrows represent decisions made by some LRM. A
switch graph only contains dashed arrows and reconfiguration
requests are triggered by the GRM or some LRM.

Since network switch routing tables must be reconfigurable,
we must define the reconfiguration strategies for the different
types of traffic:

• For rate constraint (RC) traffic, the VLs are defined with
their BAG and maximal packet size. Therefore, if an
application is reconfigured on the same multi-core by a
local reconfiguration then it has no impact on the routing
table. If the reconfiguration is global, then several routing
tables must be pre defined.

• For time triggered (TT) traffic, it depends whether the
instant of emission of packets is related to the offset of
the partition slot. If not, then the same reasoning as for
RC traffic applies. Otherwise, we must consider the link
between offsets of local reconfigurations and network TT
messages scheduling.

• For best-effort (BE) traffic, the same reasoning as RC
traffic applies.

The GRM stores the complete view of the system which is
represented as a global reconfiguration graph.

Definition 5 (Global reconfiguration graph). A global reconfig-
uration graph is a tuple 〈Q,→, 99K, q0〉 which consists of the
product of all local reconfiguration graphs 〈Qi,→i, 99Ki, qi0〉
from the LRMs and the switches together with the GRM local
graph 〈QG,→G, 99KG, qG0 〉. More precisely:

• Q = Q1 × . . .×Qn ×QG,
• q0 = (q10 , . . . , q

n
0 , q

G
0),

• →⊆ Q×Q is defined as

((q1, . . . , qn, qG), (p1, . . . , pn, pG)) ∈→
⇐⇒

∃i ∈ {1, . . . , n},
(qi, pi) ∈99Ki ∧∀j 6= i, qj = pj ∧ qG = pG

or (qG, pG) ∈→G ∧∀j, qj = pj

• 99K⊆ Q × Q is defined in a similar way than → by
replacing 99Ki with →i and →G with 99KG.

Figure 4 illustrates the reconfiguration graphs stored by the
different resource managers and switches. The chip on the
right hand side has several pre-defined configurations named
from C1 to C7. The switch on the right hand side has several
pre-defined configurations named from S1 to S3. For the GRM,
we only show the global reconfiguration graph as the product
of all local reconfiguration graphs.

B. Local vs. global decisions

Example 1 (of local reconfiguration). Failure f1 (a core halt)
occurs in the multi-core T1. According to the reconfiguration
graph of T1, the LRM will move to configuration C2. A
message must be sent to the GRM so the latter can maintain
an updated configuration. This is shown in Figure 5.

GRM

C1

C2

C5 C6

C3 C4

C7

S1

S2 S3

C1,S1,C’1,G1

C2,S1,C’1,G1 C3,S2,C’1,G1

C6,S3,C’2,G1

C4,S1,C’1,G1

.

Figure 4. Distributed reconfiguration graphs

GRM

C1

C2

C5 C6

C3 C4

C7

S1

S2 S3

C1,S1,C’1,G1

C2,S1,C’1,G1 C3,S2,C’1,G1

C6,S3,C’2,G1. . .

Figure 5. Local reconfiguration

Example 2 (of global reconfiguration). Failure f5 (a core halt)
occurs in the multi-core T1. According to the reconfiguration
graph of T1, the LRM has no solution. Thus it informs the
GRM. The GRM can apply a global reconfiguration: applica-
tions running on the failed core of T1 will be reconfigured in T2.
The GRM informs (1) T2 to load and execute the applications,
(2) T1 that a reconfiguration is applied, (3) the switches to
reconfigure the routing tables (messages are emitted by T2 and
not T1). An ack by T2 may be expected. This is shown in
Figure 6.

GRM

C1

C2

C5 C6

C3 C4

C7

S1

S2 S3

C1,S1,C’1,G1

C2,S1,C’1,G1 C3,S2,C’1,G1

C6,S3,C’2,G1. . .

Figure 6. Global reconfiguration

C. Detailed specification

In this section, we explain how the resource management
services are implemented at the chip level.

1) MON: executes a service regularly in each core to detect
the core’s health. If the core is working correctly, the service
writes to a shared structure that everything is fine. Otherwise,
if the core has failed, the service is not activated and is not
able to update the shared structure.

The cores update asynchronously the structure at distinct
pre-defined times and check the other cores status at that

MaC
1

MaC
1

MaC
11 1 1 1 1 10 0 0

time
detection

Figure 7. Example of core failure detection on a quad-core.

moment. For example let us consider a quad-core where the
MON service is executed in each core only once per major
cycle (MaC), see Figure 7. Let us suppose that one of the
cores fails just after the MON execution (represented as a red
cross on core 3). The detection will be done by the core 4 in
the next MaC (the time needed for the detection is shown as a
red arrow).

2) LRM: Once a core failure has been detected by the MON,
the latter informs the LRM. The time between the detection by
the MON and the execution of the LRM has a direct influence
on the response time for reconfiguration. This is the reason
why we impose the MON and LRM to have pre-defined slots
next to each other in order to minimize the delay between the
detection and decision. Figure 8 gives an example of a decision
of the LRM after the detection of the failure of core 2.

MaC MaC
time

detection decision

reconfiguration

GRM
update

Figure 8. Example of LRM decision after a core failure detection.

Once the LRM is informed by the MON service of a core
failure, it has two possibilities:

• a local reconfiguration is possible according to its local
reconfiguration. In that case, it asks the LRS to change
the plan at the end of the MaC for the new configuration
one. The reallocated partitions are re-started in a default
state, no context has been stored from the previous execu-
tions. The unchanged partitions continue their execution
transparently. This transition step is then safe;

• no local reconfiguration can recover from the situation.
In that case, the critical tasks are locally reconfigured in
priority if possible (pre-computed configuration) while
some best-effort applications may be removed. Then, the
LRM informs the GRM that some applications cannot be
hosted any longer on the multi-core platform and it is up
to the GRM to find a global reconfiguration.

The DREAMS project requirements state that a critical applica-
tion cannot split onto different cores of a multi-core. Thus, when
a global reconfiguration must be taken, complete applications
are thus reconfigured on different cores. A future work could

consider to parallelize the applicative code onto different cores,
but at the price of modifying the applicative code.

3) LRS: The LRS is more detailed in section IV-B3, because
it plays a more important role for the temporal overload
situations. The LRS is in charge of scheduling the tasks inside
the slots. For the core failure case, it just reads the current
configuration and applies it.

IV. ADAPTATION STRATEGY IN CASE OF A TEMPORAL
OVERLOAD SITUATIONS

In the DREAMS project, we under-provision the platform
to increase the average performance. Such an approach can
in some cases lead to problematic situations where critical
applications may overrun their deadlines. To forbid this timing
failures, a detection mechanism is in charge of analyzing
intermediate deadlines and adapt the processor demands by
interrupting the best-effort applications.

A. Adaptation tables

An adaption consists simply in interrupting the best-effort
applications. It is therefore sufficient to store statically the
partition identifier of the best-effort applications. Since the
adaptation mechanisms are combined with the reconfigura-
tion capabilities due to the core failures management, those
identifiers must be stored for all reachable configurations.

Definition 6 (Adaptation table). An adaptation table consists,
for each configuration defined in the reconfiguration graph, of
a list of applications.

B. Detailed specification

In this section, we explain how the resource management
services are implemented at the chip level.

1) MON: extends the deadline warning detection method
described in [KPR+14]. In this initial work, only standard tasks
sets were considered and the schedule consisted in executing
a task alone on a core. In the DREAMS project, we consider
partitions slots and the MON/LRM/LRS components. The
idea is that each critical application monitors its execution
and checks if the application is in danger of overrunning its
deadline. If it is the case, then the MON service signals to the
LRM that a deadline overrun will probably occur.

The partition slots for critical applications contain internal
observation points which are defined off-line and correspond
to the moments where the MON is executed. We choose to
monitor the temporal behaviour between tasks in the slot. This
way we do not modify the partition code. This illustrated in
Figure 9.

MaC MaC MaC
time

Figure 9. Example of internal deadline failure adaptation when LRM inside
critical tasks.

The monitoring checks if the interferences of the low
criticality tasks can be tolerated by verifying a safety condition.
The safety condition in the initial work [KPR+14] consisted in
checking that in the next observation point we would still have
time to switch to the degraded mode (or isolated mode, in the
sense that only critical applications may run). This required
numerous information, such as the remaining WCET of the
partition Part in isolated execution from the observation point
x until the end. Thanks to the positioning of observation points
between tasks, the safety condition can drastically be simplified
as shown in Eq. 1.

ET(x) ≤ internal deadline(x) (1)

where ET(x) is the monitored execution time of Part until
point x and internal deadline(x) is a pre-computed constant
giving the maximal possible internal deadline.

2) LRM: stores the adaptation graphs and knows which
applications must be suspended. This action is immediate
(compare to the reconfiguration which occurs at the next MaC).
Suspended applications are re-started once all running critical
tasks have not asked to move to the degraded mode.

3) LRS: The LRS starts its execution as soon as a partition
slot starts. The first time the LRS is executed (typically during
plan 0 schedule of the hypervisor) it launches the application
initialization, which sets up its internal state for execution.
After that, the LRS initializes the application tasks schedule
during the different slots and plan configuration.

Afterwards during the major cycles the LRS is executed
at the beginning of each slot and it launches a predefined
and sequential list of partition/application tasks for that slot,
and once all the tasks have been executed the LRS stops its
execution, even if time remains in the current partition slot.
Note that an LRS execution can span multiple partition slots,
but to facilitate the LRS for critical partitions comprehension
we will always suppose that a LRS execution starts and finishes
in the same partition slot.

time

Figure 10. Example of critical partition slot execution.

Figure 10 shows an example of critical partition slot
execution under the control of the LRS. In between the
execution of two tasks the MON and the LRM are executed
to:

• the MON execution collects the performance monitors of
the just executed task and the current execution time of
the slot,

• the LRM execution determines if an adaptation is needed.

V. AVIONIC DEMONSTRATOR

The DREAMS architecture avionic demonstrator will high-
light the reconfiguration capabilities of the middleware. The
demonstrator combines critical applications with non-critical
applications using heterogeneous multi-core platforms, con-
nected using a wired network.

A. Applications involved in the demonstrator

Figure 11 shows the five applications/functions deployed
in the avionics demonstrator, three critical ones and two non-
critical. The critical applications are: (1) a Flight Management
System (FMS, previously described in [DFG+14]), (2) a
Display Management System (DMS), and (3) a Sensors Data
Provider (SDP). The non-critical applications are: (1) an In-
Flight Entertainment (IFE), and (2) the panels.

FMS
Flight

Management
System

DMS
Display

Management
System

SDP
Sensors
Data

Provider

PAN1
Cockpit
Panels

PAN2
Passenger
Panels

IFE
In-Flight

Entertaining
System

Figure 11. Inter-function communication in the avionic use-case

The FMS aims at performing in-flight guidance of aircrafts,
which is based on the use of flight plans selected before
departure, either by the pilot or a dispatcher for airliners. A
flight plan includes basic information such as departure and
arrival points, in-flight waypoints, estimated time en route,
alternate landing airports, expected weather conditions, and
so on. The SDP is the application responsible of collecting
the sensors signals such as the GPS or the anemo-barometric
probes. The SDP packetizes the sensors data and sends them to
the FMS and the DMS. The DMS manages the information to
be displayed on the cockpit panels for the pilots. The DMS also
takes care of sending pilots commands to the FMS. While the
cockpit panels are typically highly critical applications, their
study is out of the scope of the DREAMS avionics demonstrator,
so they are considered as non-critical. The IFE is connected
to the passenger panels to broadcast video streams.

Table II
AVIONIC USE CASE SPECIFICATIONS

Function DAL Max Number of tasks
unavailability (periodic, aperiodic)

FMS B 600ms 26 (10, 16)
SDP A 600ms 5 (4, 1)
DMS A 1000ms 7 (6, 1)
IFE E ∞ NC
Panels E ∞ NC

Table II summarizes the specification of each function
in terms of criticality level (DAL), Maximal Unavailability,
and a brief task set description. The Maximal Unvailabilty
corresponds to the maximum allowed time to perform reconfig-
uration (maximum suspended time for the task due to a failure).
The In-Flight Entertainment and the panels are implemented
in commodity computers with standard OS (i.e., Linux) or in

non-critical partitions, and as such the task description is not
considered (NC) in this study.

B. Demonstrator platform

Three different computing platforms are used for the deploy-
ment of the different applications:

• Freescale T4240 [Fre14] (see Figure 13): The T4240
is a 64bit PPC architecture with 12 cores organized in
3 clusters of 4 cores interconnected connected through
a propietary NoC to 3 different memory controllers,
each one with a dedicated L3 memory cache. A PCIe
TTEthernet card is also attached to the T4240 to satisfy
the network requirements.

Cluster x3

x3

PowerPC
e6500

PowerPC
e6500

PowerPC
e6500

PowerPC
e6500

32KB
L1D

32KB
L1I

32KB
L1D

32KB
L1I

32KB
L1D

32KB
L1I

32KB
L1D

32KB
L1I

2MB L2 Cache

CoreNet Coherency Fabric

DDR3 Controller
512KB
L3

PCIe

TTEth

Figure 13. PowerPC T4240 architecture

• DREAMS Harmonized Platform [Oa13]: The Harmo-
nized Platform is a development board with Xilinx Zynq-
7000 SoC containing ARM Cortex-A9 cores and an FPGA.
The DREAMS hardware solution like the Spidergon NoC,
enhanced NoC interfaces and TTEthernet controller are
implemented on the FPGA. Additionally, three Microblaze
soft processor cores are connected to the NoC. The
DDR memory controller can also be accessed by all the
computing resources via the NoC.

• Regular PC: Regular PCs are used to deploy non-critical
applications like the panels.

The applications are run on top of the XtratuM hypervisor
enhanced with the DREAMS solutions, i.e., the MON, LRM
and the GRM among others. Figure 12 shows one of the tar-
geted deployments of the applications over the aforementioned
hardware platforms.

The communications between the different computing plat-
forms are ensured by: two TTEthernet switches, two PCIe
TTEthernet cards and the TTEthernet controller embedded in
the DREAMS Harmonized Platform. Regular ethernet cards
are used in the PCs, as the applications on those systems don’t
require any safety level communication (i.e., time triggered or
rate constrained). The demonstrator mixes the three types of
traffic supported by TTEthernet:

• best effort for the communication from/to non-critical
applications,

• and time triggered and/or rate constrained for the com-
munication between the critical applications and the
communication between the DREAMS services, as the
communication between GRM and LRMs.

C. Results

Currently, the fault tolerance mechanisms have been im-
plemented in XTRATUM. But the hypervisor has not yet
been ported on the T4240. Therefore, we could not run
experiments on the avionic demonstrator. Instead, we made
several simulations and prepared a series of fault-injection
scenarios to validate the approach.

1) Reconfiguration graph and adaptation table: The initial
configuration q0 in the T4240QS of the left hand side of Figure
12 is defined as 〈MaC_length = 200ms, {sli}, alloc〉 as shown
in Figure 14 whereas TTE stands the TTEthernet driver.

τ1, τ2, τ3, τ4, τ5, τ6, τ7

τ9, τ10, τ11, τ12, τ15τ8

τ17, τ18, τ19, τ20τ16

τ23, τ24, τ25, τ26τ21, τ22

MaC
time

FMS

IFE

TTE

Figure 14. Initial configuration

The adaptation table for this configuration is given by
const int adaptation_point[NB_PARTITION][NB_MAX_POINT]={

{20, 45, 100, 130, 170, 190},
/* partition 0: 6 observation points,

max time to reach point 1 = 20 */
{-1, -1, -1, -1, -1, -1},
/* partition 1: 0 observation point */
{40, 70, 90, 130, -1, -1},
{-1, -1, -1, -1, -1, -1},
{80, 110, 150, -1, -1, -1},
{20, -1, -1, -1, -1, -1},
{90, 120, 180, -1, -1, -1}

};

2) Fault-injection scenario: We have defined some scenarios
that will be used to evaluate the DREAMS Local Resource
Management services. The target architecture in all the scenar-
ios will be based on the avionic demonstrator.

a) Scenario of double core failures: The purpose of
the scenario is to test the local and global reconfiguration
capabilities. The scenario is similar to the one detailed in
examples 1 and 2 of Section III-B. Two faults are injected: (1) a
core fails on the multi-core 2 leading to a local reconfiguration;
(2) a second core fails on the same multi-core leading to a
global reconfiguration whereas DMS is reconfigured on the
second multi-core. To inject the fault, the MON will be modified
not to update the share structure. The objective of this scenario
is to:

• check that the LRM adaptation capabilities do not affect
the safety of critical applications which were not hosted
on failed cores;

Freescale
T4240

Freescale
T4240

Harmonized
Platform

Regular
PC

XtratuM
LRM

TTEth

XtratuM
LRM

TTEth

XtratuM
LRM

TTEth

Linux

Eth

FMS IFE DMS SB

GRM

SDP PAN PAN

TT
Switch

TT
Switch

Figure 12. Avionic demonstrator architecture

• determine the gain due to local reconfigurations versus
global ones;

• compare several timing parameters to improve the recon-
figuration response times.
b) Scenario of temporal overload situation: The second

scenario aims at testing the LRM capacity to interrupt low
criticality tasks. The scenario consists in (1) detecting a deadline
overrun in the FMS partition of multi-core 1; (2) interrupting
the IFE execution after the detection until the end of the FMS
slot. The objective of this scenario is to:

• check that the LRM adaptation capabilities maintain the
predictability of the safety of critical applications;

• compare several timing parameters to assess the interrup-
tion response times and variability of the execution time
of the safety critical applications.

3) Simulation: Since XTRATUM is not ported yet on the
T4240QS, we run the scenarios with the QEMU simulator. The
observed behaviours were those expected. In the next months,
we will port the work on the real target.

VI. RELATED WORK

Reconfiguration for avionic platform has been proposed in
Asaac [ASA04] project for military aircrafts; Diana [EJS+10]
and Scarlett [PBB+12] for the civil domain. In all cases,
reconfigurable IMA was able to change the configuration of the
platform by moving applications hosted on a faulty computing
module to spare computing modules. The main objective of
such an extension was to reduce the cost of unscheduled
maintenance and to improve the operational reliability of the
aircraft while preserving current safety levels. In Diana the
approach was distributed while in Scarlett the reconfiguration
was centralized. In DREAMS, a module is based on a multi-
core architecture and failures depend on this new hardware, and
while the global reconfiguration of the system is centralized
like in Scarlett the modules can perform local reconfigurations
when one of the cores fails.

a) Permanent failures: The standard approach to deal
with permanent failures is based on replicating applications
and components into multiple copies. Such redundancy can
be achieved via hardware or software mechanisms. Since the
avionic demonstrator relies on COTS multi-core, only the
second case could be considered. Most existing approaches
target anomalous behaviours. For instance, the authors of
[SHLR+09] present the symptom based detection and diagnosis
principle, developed during the SWAT (SoftWare Anomaly

Treatment) project, to manage faults in multi-core architectures
running multi-threaded software. For permanent fault, the
detection algorithm is based on a deterministic replay to
diagnose the faulty core and the run-time is in charge of
isolating the failed core.

The authors of [GLSS01] describe a fault-tolerant scheduling
approach to support permanent core failures but they do not
target a real software implementation.

b) Temporal overload situation: The objective of run-time
monitoring is to check on-line, during the real execution, the
timing behaviors of the system and verify if they are compliant
with an abstract view of the expected behavior. If the system
diverges from the specification, then a recovery may be applied.

In [BLS06] and [RRF10], the timing specifications are
expressed with Timed Linear Temporal Logic (TLTL) for-
mulas. Practically, timed automata are used to implement the
valid behaviors and the decision layer stores the automaton
description including the location invariants and the transition
table. The verification function works for each event as follows:
either it is valid and the execution continues or the event is
invalid, in which case a recovery procedure or an error is called.
Such an implementation requires a strong synchronization
between the application and the monitor, and in particular
it is necessary to ensure mutual exclusion. In [BFR13], the
monitoring strategy has been extended for multi-threaded
code. The monitor is decomposed into pieces that apply local
detection while exchanging messages to ensure a coherent
checking.

In the automotive domain, tasks can exhibit a dynamic real-
time behavior, e.g. the period depends on the engine speed. This
variability leads to a continuous change in the configurations
taken into account by the OS schedule on the processors.
We then speak of multi-mode applications that can switch
between different operational modes at run-time. Such a change
of rate may make the system unschedulable and the engine
control inefficient or even unstable. The authors of [NES12]
propose mode changes without violating timing constraint by
pre-computating the possible behaviours. The approach consists
in analyzing all potential run-time scenarios and study in details
the critical ones. The possible recoveries are the following:
degraded functional execution (with restricted WCET), abort
or suspend low criticality tasks.

Several approaches propose resources reallocation based
on information derived from monitoring their utilization, e.g.
the memory accesses. For instance, in [NPB+14] interference-

sensitive WCETs are computed based on a preliminary analysis
of the resource usage of tasks. The shared resources are off-
line partitioned among tasks. A run-time monitoring device
observes the resource usage of each task and suspends the
task that overtakes the allocated capacity. In [NP13] the
approach is extended by allowing safe dynamic changes in
the resource partitioning, when resources are underutilized.
In [YYP+13] an approach has been developed to reserve
memory accesses for critical tasks. A run-time controller has
been implemented which regulates the accesses to the shared
memory and ensures temporal isolation among tasks. An off-
line profiling technique has been proposed in [MDB+13] which
finds the most frequently accessed memory pages in a task.
Then, this information is used to modify the variables position
in the shared caches in order to reduce the interferences.

VII. CONCLUSION

We have described the main ideas of the reconfiguration and
adaptations strategies proposed in the DREAMS middleware.
In the next year, the building blocks will be ported on the
avionic demonstrator and the fault injection scenarios will be
run on it.

The implemented monitoring techniques are simple and can
be improved by defining an adapted set of rules depending
on the current configuration. This is the idea developed
in [GPBB08] where a safety mode automaton is constructed
from the system and the environment. We will study how
such ideas could be applied to increase the quality of the
reconfiguration. Concerning the adaptation, the QoS for the
best-effort applications has not been investigated yet and this
will be also an axis of future work.

Finally, this article has addressed the technical aspects of
the reconfiguration and adaptation strategies. However, in order
to be applied to industrial solutions, the certifiability of the
approach requires further study.

REFERENCES

[ASA04] ASAAC. ASAAC final draft of proposed guidelines for system
issues - volaume 4 : System configuration and reconfiguration,
2004. Aeronautical Radio INC.

[BBE+11] Enrico Bini, Giorgio C. Buttazzo, Johan Eker, Stefan Schorr,
Raphael Guerra, Gerhard Fohler, Karl-Erik Årzén, Vanessa
Romero, and Claudio Scordino. Resource management on
multicore systems: The ACTORS approach. IEEE Micro,
31(3):72–81, 2011.

[BFR13] Olivier Baldellon, Jean-Charles Fabre, and Matthieu Roy. Mino-
tor: Monitoring timing and behavioral properties for dependable
distributed systems. In 19th Pacific Rim International Symposium
on Dependable Computing, PRDC’13, pages 206–215, 2013.

[BLS06] Andreas Bauer, Martin Leucker, and Christian Schallhart. Mon-
itoring of real-time properties. In Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’06),
volume 4337, pages 260–272, 2006.

[Bor05] Shekhar Borkar. Designing reliable systems from unreliable com-
ponents: The challenges of transistor variability and degradation.
IEEE Micro, 25(6):10–16, November 2005.

[But97] Giorgio C. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications, volume 24
of Real-Time Systems Series. Springer, 1997.

[DFG+14] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia
Pérez, Claire Pagetti, and Wolfgang Puffitsch. Predictable flight
management system implementation on a multicore processor.
In Proceedings of the 7th Conference on Embedded Real Time
Software and Systems (ERTS’14), 2014.

[EJS+10] Christian Engel, Eric Jenn, Peter H. Schmitt, Rodrigo Coutinho,
and Tobias Schoofs. Enhanced dispatchability of aircrafts using
multi-static configurations. In Embedded Real Time Software
and Systems Congress (ERTS 2010), Toulouse, France, 2010.

[Fre14] Freescale. T4240 QorIQ: Integrated multicore communications
processor family reference manual, 2014.

[GLSS01] Alain Girault, Christophe Lavarenne, Mihaela Sighireanu, and
Yves Sorel. Generation of fault-tolerant static scheduling for
real-time distributed embedded systems with multi-point links. In
15th International Parallel & Distributed Processing Symposium
(IPDPS-01), page 125, 2001.

[GPBB08] Jérémie Guiochet, David Powell, Etienne Baudin, and Jean-Paul
Blanquart. Online Safety Monitoring Using Safety Modes. In
Workshop on Technical Challenges for Dependable Robots in
Human Environments, pages 1–13, May 2008.

[KAGS05] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus
Steinhammer. The time-triggered ethernet (TTE) design. In
8th International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2005), pages 22–33, 2005.

[KPR+14] Angeliki Kritikakou, Claire Pagetti, Christine Rochange,
Matthieu Roy, Madeleine Faugère, Sylvain Girbal, and Daniel
Gracia Pérez. Distributed run-time wcet controller for concurrent
critical tasks in mixed-critical systems. In Proceedings of the 22th
International Conference on Real-Time and Network Systems
(RTNS’14), pages 139–148, 2014.

[MDB+13] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati,
Marco Caccamo, and Rodolfo Pellizzoni. Real-time cache
management framework for multi-core architectures. In 19th
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’13), pages 45–54, 2013.

[MRC+09] Miguel Masmano, Ismael Ripoll, Alfons Crespo, J.J. Metge, and
Paul Arberet. Xtratum: An open source hypervisor for TSP
embedded systems in aerospace. In DASIA 2009. DAta Systems
In Aerospace., May. Istanbul 2009.

[NES12] Mircea Negrean, Rolf Ernst, , and Simon Schliecker. Mastering
timing challenges for the design of multi-mode applications on
multi-core real-time embedded systems. In Proceedings of the
6th Conference on Embedded Real Time Software and Systems
(ERTS’12), 2012.

[NP13] Jan Nowotsch and Michael Paulitsch. Quality of service capa-
bilities for hard real-time applications on multi-core processors.
In 21st International Conference on Real-Time Networks and
Systems (RTNS’13), pages 151–160, 2013.

[NPB+14] Jan Nowotsch, Michael Paulitsch, Daniel Bühler, Henrik Theiling,
Simon Wegener, and Michael Schmidt. Multi-core interference-
sensitive wcet analysis leveraging runtime resource capacity
enforcement. In 26th Euromicro Conference on Real-Time
Systems (ECRTS’14), 2014.

[Oa13] Roman Obermaisser and al. DREAMS: Distributed REal-time
Architecture for Mixed Criticality Systems. http://dreams-project.
eu, 2013.

[PBB+12] Claire Pagetti, Pierre Bieber, Julien Brunel, Kushal Gupta, Eric
Noulard, Thierry Planche, Francois Vialard, Clément Ketchedji,
Bernard Bésinet, and Philippe Despres. Reconfigurable ima
platform: from safety assessment to test scenarios on the scarlett
demonstrator. In Proceedings of the 6th Conference on Embedded
Real Time Software and Systems and Software (ERTS’12), 2012.

[Rad05] Radio Technical Commission for Aeronautics (RTCA) and EU-
Ropean Organisation for Civil Aviation Equipment (EUROCAE).
DO-297: Software, electronic, integrated modular avionics (ima)
development guidance and certification considerations, 2005.

[RF07] Larisa Rizvanovic and Gerhard Fohler. The matrix - a framework
for real-time resource management for video streaming in net-
works of heterogenous devices. In The International Conference
on Consumer Electronics 2007, January 2007.

[RRF10] Thomas Robert, Matthieu Roy, and Jean-Charles Fabre. Early
Error Detection for Fault Tolerance Strategies. In 18th Interna-
tional Conference on Real-Time and Network Systems (RTNS’10),
pages 159–168, Toulouse, France, 2010.

http://dreams-project.eu
http://dreams-project.eu

[SHLR+09] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran,
Byn Choi, and Sarita V. Adve. mSWAT: Low-cost Hardware Fault
Detection and Diagnosis for Multicore Systems. In Proceedings
of the 42Nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, pages 122–132, 2009.

[YYP+13] Heechul Yun, Gang Yao, R. Pellizzoni, M. Caccamo, and Lui Sha.
MemGuard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms. In 19th Real-
Time and Embedded Technology and Applications Symposium
(RTAS’13), pages 55–64, 2013.

	Introduction
	General overview of DREAMS
	Objective and contributions

	Resource management in DREAMS
	Structure of resource managers
	Implementation choices
	Definition of the notions of reconfiguration and adaptation
	Interaction between GRM and LRMs

	Reconfiguration strategy in case of a core failure
	Reconfiguration graphs
	Local vs. global decisions
	Detailed specification
	MON
	LRM
	LRS

	Adaptation strategy in case of a temporal overload situations
	Adaptation tables
	Detailed specification
	MON
	LRM
	LRS

	Avionic demonstrator
	Applications involved in the demonstrator
	Demonstrator platform
	Results
	Reconfiguration graph and adaptation table
	Fault-injection scenario
	Simulation

	Related work
	Conclusion
	References

