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A Model-Point Approach to Indifference Pricing of

Life Insurance Portfolios with Dependent Lives ∗

C. BLANCHET-SCALLIET† D. DOROBANTU‡ Y. SALHI§

January 14, 2016

Abstract

In this paper, we study the pricing of life insurance portfolios in the presence of depen-

dent lives. We assume that an insurer with an initial exposure to n mortality-contingent

contracts wanted to acquire a second portfolio constituted of m individuals. The policyhold-

ers’ lifetimes in these portfolios are correlated with a Farlie-Gumbel-Morgenstern (FGM)

copula, which induces a dependency between the two portfolios. In this setting, we com-

pute the indifference price charged by the insurer endowed with an exponential utility. The

optimal price is characterized as a solution to a backward differential equation (BSDE).

The latter can be decomposed into (n − 1)n! auxiliary BSDEs. In this general case, the

derivation of the indifference price is computationally infeasible. Therefore, while focusing

on the example of death benefit contracts, we develop a model point based approach in

order to ease the computation of the price. It consists on replacing each portfolio with a

single policyholder that replicates some risk metrics of interest. Also, the two representative

agents should adequately reproduce the observed dependency between the initial portfolios.

Keywords: indifference pricing, representative contract, utility maximization, life insurance.

JEL classification: G11; G13; G22;

Introduction

Life insurance risks, especially mortality and longevity, have gained importance not only among

practitioners but also from an academic point of view. Many insurance companies are exposed

to these risks and are continuously invited by regulators to manage them accurately. Various
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strategies have been developed trying to fully or partially hedge out such risks Barrieu et al.

(2012). Among these strategies, the natural hedge between the mortality component and the

longevity risk component arises as a key element of insurers mitigation techniques Cox and Lin

(2007).

Aside from the hedging problem of such risks, the pricing is also of paramount importance.

In fact, the insurance market is inherently incomplete to the extent that no unique pricing

probability measure is available. Thus, various pricing procedures have been proposed in the

literature: using indifference pricing as in Ludkovski and Young (2008), the Sharpe ration as in

Bayraktar et al. (2009) or characterizing the price via the good deal bounds in Delong (2012).

In Ludkovski and Young (2008), an indifference pricing procedure is developed using a fully

stochastic framework that extends the original pricing approach introduced by Hodges and

Neuberger (1989) to mortality-contingent claims.

In this paper, we consider the indifference pricing of mortality contingent claims when the

utility is exponential. Unlike Ludkovski and Young (2008), we consider an insurer with initial

exposure to such a risk, holding a portfolio of n policies. The latter intended to sell m more

contracts to individuals that are correlated to the initial exposure. The dependence between

individuals’ lifetimes and thus portfolios is due, for example, to medical breakthroughs or

environmental factors that affect a whole population. Also, portfolios of different age structures

may be dependent or even negatively dependent. Indeed, as noted by Marceau and Gaillardetz

(1999), Milevsky and Promislow (2001) and Cairns et al. (2004) among others, insurers may

be intended to mix different life insurance contracts and portfolios in order to naturally hedge

the underlying risk. The authors explore impacts of mortality changes on life insurance and

annuities separately, and investigates a simple combination of life and pure endowment life

contracts.

To take into account this dependency we consider the density framework introduced in

El Karoui et al. (2013) that relates individuals’ death times in such a way that the death of

one impacts the intensity of the remaining individuals. The density approach, considered in

this paper, provides a new vision for modeling the dependency of deaths among a population

not only from a theoretical point of view but also for practical use. According to El Karoui

et al. (2013), this amounts to saying that one individual’s intensity will have a jump when the

another individual is deceased. More precisely, the dependence effect arises due to the fact

that the occurrence of first death helps localize the other death occurrences in the support

of its conditional law. The exponential indifference price and the hedging strategy for the

guaranteed payments process is derived from the solution to the utility optimization problem.

We lay the emphasis on the dependency between the policyholders and thus consider a general

portfolio not only with heterogeneous lives, i.e. dependent policyholders whose lives are not

necessarily governed by the same hazard rate. By doing so, we implicitly consider that the

underlying individuals are not homogeneous with regard to their health status or other relevant

risk characteristics. We further assume that the portfolio itself lacks of homogeneity in the sense

that the policyholders may attain different term insurance contracts sharing the same duration.

In Section 1, we formulate the problem of indifference pricing of an insurer with constant

relative risk aversion. In order to derive the price for selling m additional contracts, we first

focus on the value function of the insurer when she does not sell the m contracts and the value

function when she does. The first optimization problem is well studied in the literature for
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n = 1, we here give a slight generalization following the same reasoning as in Kharroubi and

Lim (2014). In the presence of the m contracts we also use the same reasoning considered in

Kharroubi and Lim (2014) to characterize the optimal value function of the optimization prob-

lem in terms of a solution of backward stochastic differential solutions (BSDE). The different

BSDEs involved are given in Section 2. Then, the indifference price is solely determined by the

solution of these BSDEs.

For the sake of applicability, we should note that the derivation of the indifference price

when n > 1 and m > 1 is not feasible. Indeed since the death times are not ordered, to compute

the value functions, we need to solve (n− 1)n! BSDEs. So, it is difficult to use these results in

numerical analyzes. Similar problems have been encountered by Ludkovski and Young (2008).

Therefore, to overcome this numerical issue we consider that the insurer rely on a model point

which consists on the construction of a representative policy for each portfolio. This policy is

determined in such a way that the statistical characteristics as well as the risk profile of the

aggregate exposure is replicated. By doing so, we consider two representative agents holding

a contract that matches the n (resp. m) policyholders’ risk and an expected payment being

close the initial one. The two model points also replicate the correlation between the initial

portfolios. The correlation structure is parametrized using an FGM copula. In Subsection 2.1

we give the main characteristics of these agents: mortality intensities, guaranteed amounts and

the correlation through the parameter of the FGM copula.

The remainder is organized as follows. In Section 1 we formulate the indifference pricing

problem in the general setting of an insurer holding an exposure on a portfolio of n policyholders

wanting to sell m additional contracts. Before, we introduce the financial and insurance mar-

kets. The latter is characterized by some policies whose payments are contingent on the death

of the individual. In the presence of multiple lives we consider a particular type of dependency

through the use of a copula and characterize the joint law as well as the intensity dynamic.

Hence, in Section 2, we focus on the solution of the optimization problem using the BSDE

tools. We also introduce the representative agents replicating the main risk characteristics of

the initial exposures as well as the sold portfolio. In Section 3, the efficiency of the aggregation

method is illustrated on synthetic portfolios with a given age structure, and the sensitivity of

the construction methodology to the main portfolio parametrization is investigated. We also

give the indifference price for death benefit contracts and analyze the impact of the size of

the considered portfolio, the mortality profile, the dependence structure and other relevant

financial risk factors.

1 Financial market, insurance contacts and mathematical set-

ting

In this section, we introduce the mathematical framework used to represent the financial market

as well as the insurance contracts considered throughout the sequel. Some useful and classical

assumptions are also introduced.

1.1 Financial model. Let (Ω,G,P) be a complete probability space equipped with a standard

(one-dimensional) Brownian motion W = (Wt)t≥0. We denote by F := (Ft)t≥0 the right
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continuous complete filtration generated by W .

We consider a financial market on the time interval [0, T ] where T > 0 corresponds to

the term of the insurance contracts. The financial market consists of a riskless money market

account with a constant interest rate r and a reference portfolio of risky assets. The price

processes Ŝ0 = (Ŝ0
t )t∈[0,T ] of the riskless bond and Ŝ = (Ŝt)t∈[0,T ] of a share of the underlying

risky portfolio are assumed to be solutions of the linear stochastic differential equations

dŜ0
t = rŜ0

t dt, Ŝ0
0 = 1 ,

dŜt = Ŝt(µtdt+ σtdWt), Ŝ0 = s0 ≥ 0 ,

for t ∈ [0, T ], where µ and σ are F-predictable processes satisfying the classical assumptions to

avoid arbitrage opportunities.

Assumption 1.

(i) The processes µ and σ are bounded.

(ii) The process σ is lower bounded by a positive constant σ .

1.2 Insurance contracts. We consider term life insurance contracts, which provide coverage

to policyholders for a limited period of time T . Two common examples are a pure endowment

that pays an amount c at time T if the individual is alive at that time, and a temporary life

annuity that pays c per unit of time as long as the individual is alive, but at most until T .

Another example for such contacts is death benefits contracts for which a beneficiary receives

the guaranteed amount if the insured dies during the term of the contract, i.e. before T .

We assume that an insurance company issued n contracts with different sums at risk ci.

Each individual i ∈ {1, · · · , n} pays an upfront price and has a guaranteed amount ci. All the

contracts have a maturity T . Such an exposure is contingent on the death of the individuals.

Thus, we consider a family of random times τ = (τ1, · · · , τn) taking values on Rn+ to represent

the death times. In other words, each policyholder i has a remaining lifetime τ i. Moreover,

the insurer exposure on each individual denotes F i. Here, in the case of term life insurance the

guaranteed amount is F iτ i∧T = ci1{τ i<T}.

In our setting, we consider that an individual’s death has no impact on the financial

market. Therefore, the vector τ is assumed to be independent of F. However, the insurer’s

investment strategies can depend both on the market evolution and on the policyholders’ re-

maining lifetimes. Therefore, we introduce the following filtrations Gi := (Git)t≥0, i ≤ n is

defined by

Gi := F ∨ D1 ∨ · · · ∨ Di,

for any t ≥ 0, where Dk = (Dkt )t≥0, Dkt =
⋂
s>t D̃ks and D̃kt := σ(1{τk≤s} , s ∈ [0, t]). Note

that under the assumption of the independence of the vector τ and the financial market, the

process W remains a G-Brownian motion, see El Karoui et al. (2013) for more details.

Let P(τ i < .) be the marginal distribution of the r.v. τ i. We assume that the death times

are dependent and propose to link the marginal distributions to their joint distribution using
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a Farlie-Gumbel-Morgenstern (FGM) copula family defined as:

Cθ(u1, . . . , un) =
n∏
i=1

ui

1 +
n∑
k=2

∑
1≤j1≤...jk≤n

θj1...jk(1− uj1) . . . (1− ujk)

 , (1.1)

with (u1, . . . , un) ∈ [0, 1]n and −1 ≤ θj1...jk ≤ 1 for all j1, . . . , jk, see Jaworski et al. (2010, page

19). In other words, we have

P
(
τ1 < u1, . . . , τn < un

)
= Cθ

(
P(τ1 < u1), . . . ,P(τn < un)

)
, (u1, . . . , un) ∈ Rn, (1.2)

For the sake of applicability, we let each random variable τ i have an exponential marginal

distribution with parameters λi. The following result gives a closed form formula for the joint

density γ of (τ1, . . . , τn).

Lemma 1. Let (u1, . . . , un) ∈ Rn+. The joint density is given by

1

S
γ(u1, . . . , un) =

n∑
k=1

∑
1≤j1≤···≤jk≤n

(−1)ndj1...jke
−λj1uj1−···−λjkujk + d,

where S = (−1)n
∏
i=1,...,n λie

−λiui and

dj1 = 2
[
(−1)n−1

∑
i1 6=j1

θj1i1 + (−1)n−2
∑

i1,i2 6=j1

θj1i1i2 · · ·+
∑

i1...in−2 6=j1

θj1i1...in−2 − θ1...n

]
,

dj1j2 = 4
[
(−1)nθj1j2 · · · −

∑
i1...in−3 6=j1

θj1j2i1...in−3 + θ1...n

]
,

dj1j2j3 = 8
[
(−1)nθj1j2j3 · · ·+

∑
i1...in−3 6=j1

θj1j2j3i1...in−4 − θ1...n

]
,

...

dj1...jn = (−2)nθ1...n,

d = (−1)n · · ·+
∑

1≤i1···≤in−2≤n
θi1...in−2 −

∑
1≤i1···≤in−1≤n

θi1...in−1 + θ1...n.

The conditional density of death time τ1 conditional on τ2, . . . , τn defined as

γ(u1|u2, . . . , un) =
γ(u1, . . . , un)∫∞

0 γ(u1, . . . , un)du1

with the denominator given by the explicit formula

∫ ∞
0

γ(u1, . . . , un)du1 = eλ1u1

 n∑
k=1

∑
2≤j1≤...jk≤n

dj1...jke
−λj1uj1−···−λjkujk + d+

d1

2

+
1

2

n−1∑
k=1

∑
2≤j1≤...jk≤n

d1j1...jke
−λj1uj1−···−λjkujk

 .
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Proof. Following standard calculations, we easily find the results.

For each i ∈ {1, · · · , n}, we introduce the death indicator process H i = (H i
t)t≥0 defined as

H i
t := 1{τ i≤t} for all t ≥ 0. The following result ensures the existence of the G-intensities (see

Kharroubi and Lim (2014)).

Proposition 1. For all i = 1, · · · , n, H i
t admits a G-intensity λit such that H i

t −
∫ t∧τ i

0 λisds is

a G-martingale.

In our context the intensity λi is known as mortality intensity and is bounded. The dynamics

of the intensities λit, for i = 1, · · · , n, can be completely deduced from the joint density, see

El Karoui et al. (2013). In the particular case of two individuals, we can easily write

λ1
t = 1{τ2>t}

∫∞
t γ(t, θ2)dθ2∫∞

t

∫∞
θ1
γ(θ1, θ2)dθ1dθ2

+ 1{τ2≤t}
γ(t, τ2)∫∞

t γ(θ1, τ2)dθ1
, (1.3)

λ2
t = 1{τ1>t}

∫∞
t γ(θ1, t)dθ1∫∞

t

∫∞
θ1
γ(θ1, θ2)dθ1dθ2

+ 1{τ1≤t}
γ(τ1, t)∫∞

t γ(τ1, θ2)dθ2
.

The above framework will serve to characterize the dependence structure between individuals’

lifetimes, which are due, for example, to medical breakthroughs or environmental factors that

affect a whole population. These play a crucial role in the risk management for life insurance

risks. Moreover, the density approach provides a new vision for modeling the dependency of

deaths among a population not only from a theoretical point of view but also for a practical

use. Remark that (1.3) amount to saying that one individual’s intensity will have a jump when

the other individual is deceased. More precisely, the dependence effect arises due to the fact

that the arrival of first death helps localize the other death occurrence in the support of its

conditional law. Similar interpretation can also be drawn when it comes to the characterization

of a portfolio of n individuals. In this case, we can also derive a similar closed form expression

of the intensities as in (1.3). On the other hand, the density framework encompasses the tra-

ditional case of (conditionally) independent lives, see El Karoui et al. (2013). The conditional

independence can arise, for example, when death occurrences share some common random

factors. This is the case, for example, of the celebrated Carter and Lee (1992) model which

introduce a dependence on the mortality intensities for a given population through a shared

Gaussian factor.

1.3 Strategies and utility function. The insurer can trade on the above assets and her

trading strategy is defined as a Gn-predictable process π = (πt)0≤t≤T when
∫
π dSS is well-

defined where S = (St)t∈[0,T ] the discounted value of Ŝ is defined as St = e−rtŜt. The process π

describes the discounted amount of money invested in the portfolio of risky assets. Assuming

that the investment strategy of the insurer is self-financed and denoted Xπ = (Xπ
t )t∈[0,T ] ,the

discounted value of the insurer portfolio with initial capital 0 and following the strategy π, can

be described as:

Xπ
t =

∫ t

0
πs(µs − r) ds+

∫ t

0
πsσs dWs .
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We denote Xx,π
t as the discounted wealth at time t, when the initial capital x ≥ 0 and the

investment strategy is π. We will assume that the insurance company aims at maximizing the

expected value of the utility of her terminal wealth at time T . Thus, let U be the exponential

utility function with risk aversion coefficient α > 0, that is:

∀ y ∈ R, U(y) = −e−αy.

In the following definition, we introduce the set of admissible strategies for the insurer, making

usual restrictions that ensure the existence and some integrability properties for the processes

involved.

Definition 1. For any Gn-stopping times w and v satisfying 0 ≤ w ≤ v ≤ T , the set of

admissible trading strategies AGn [w, v] consists of all Gn-predictable processes π = (πt)w≤t≤v
which satisfy

E
[ ∫ v

w

∣∣πt∣∣2dt] < ∞ ,

and
{

exp(−αXπ
ϑ ), ϑ is a Gn-stopping time with values in [w, v]

}
is an uniformly integrable

family.

2 Utility maximization and indifference pricing

The main objective of this section is to characterize the optimal price p∗, if it exists, which

makes the insurer indifferent between not selling a new portfolio with m contracts, as described

above, and selling it for the price p∗. For this purpose, let τn+i, for i = 1, . . . ,m, be the death

time of an individual in the new portfolio (which will be sold). Then, let V (x) and Ṽ (x) be the

value functions associated with the maximum expected utility problem and defined for x ≥ 0

as

V (x) := sup
π∈AGn [0,T∧(τ1∨···∨τn)]

E
[
U
(
x+Xπ

T∧(τ1∨···∨τn) −
n∑
j=1

F jT∧τ j

)]
,

and

Ṽ (x) := sup
π∈AGn+m [0,T∧(τ1∨···∨τn+m)]

E
[
U
(
x+Xπ

T∧(τ1∨···∨τn+m) −
n+m∑
j=1

F jT∧τ j

)]
.

Then, the optimal price p∗ that makes the insurer indifferent towards such an additional expo-

sure is given as:

p∗ = inf
{
p > 0, V (x) ≤ Ṽ (x+ p)

}
. (2.1)

Whenever a solution of the above problem exists, it will be called an indifference price.

Notice that the latter will not depend on the initial wealth x, invested by the insurer, since

the utility function is the exponential function. This can be easily seen from the special

multiplicative factoring of x in the expressions of V (x) and Ṽ (x) above. Therefore, in what

7



follows we consider the case x = 0 and for simplicity of notation, we write V (resp. Ṽ ), instead

of V (0) (resp. Ṽ (0)).

The case of selling a new portfolio can be thought as if the insurer already holds a portfolio

of termed insurance contracts seeks, for example, to buy an entire second portfolio with the

same termination date T . An appealing example, may be borrowed from reinsurance industry.

Generally, reinsurers are massively exposed to mortality risk. Inherent in some pure endowment

or death benefit contracts, they reinsure and seek to purchase longevity-sensitive contracts, for

e.g. temporary life annuities, in order to hedge out the initial exposure to mortality. Moreover,

mixing different pure life insurance may also motivate such an acquisition, see e.g. Marceau and

Gaillardetz (1999), Milevsky and Promislow (2001) and Cairns et al. (2004) which investigate

the issue of natural hedging considered also in Cox and Lin (2007). The former explores the

impact of mortality changes on life insurance and annuities separately, or investigates a simple

combination of life and pure endowment life contracts.

Remark 1. If we consider n contracts in the first portfolio held by the reinsurer and m in the

second one, the indifference price could be determined using the backward stochastic differential

equations (BSDE) tools. This is based on generalization of the result of Kharroubi and Lim

(2011, 2012) when m = 1 and n = 0. However, as we may see later, it is difficult to use these

results in numerical analyzes (too long to compute). Since the death times are not ordered, to

compute Ṽ , we need to solve (n− 1)n! BSDEs (for more details see Appendix A.1). Therefore,

for the sake of applicability, we propose to reduce the dimensionality of our problem by replacing

each portfolio by a representative contract.

2.1 Representative contract construction. Here, we propose to replace each portfolio

by a representative contract. Such an idea is widely used in practical applications. Indeed, it

is common to consider grouping policies into model cells and replace all policies in each group

with a representative policy, see Goffard and Guerrault (2015). Recall that each portfolio is

composed of contracts not only of different guarantees, but also of individuals of ages and hence

different mortality profiles. Therefore, the representative contracts are characterized by a death

time and a guaranteed amount. To find the representative contracts for the two portfolios, we

consider a virtual world on which we define two random times τ and τ̃ (the representative

agents’ death times ) satisfying the following conditions.

Assumption 2.

(i) τ and τ̃ are exponentially-distributed r.v.’s with intensity λ and λ̃ respectively;

(ii) τ is independent of (τ i, i = 1 . . . , n);

(iii) τ̃ is independent of (τ i, i = n+ 1, . . . , n+m);

(iv) Let c (resp. c̃) be the representative endowment for the first (resp. second) portfolio,

defined as follows:

c = c1g(λ1) + · · ·+ cng(λn),

with g(x) =
x

x+ r
(1− e−(x+r)T ). Note that c̃ is given by a similar formula;
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(v) τ and τ̃ are correlated by a FGM copula.

These assumptions can be read as follows. First, (ii) and (iii) amount to seeing that the repre-

sentative agent for each portfolio evolves in a virtual world. That is, the representative contract

is completely independent of the initial portfolio and it is only linked to the latter through its

specific characteristic. In assumption (iv) we require that the representative agent reproduces

the guaranteed amount of the considered portfolio. This aggregated amount is weighted by

g(λi) = E[e−rτ i1{τ i<T}] in order to reproduce the expected discounted exposure of the insurer.

Since we consider a virtual world, we have the independence between the representative agents’

death times (τ and τ̃) and the death time τ i of each agent of the initial group, with i = 1, . . . , n

for the first group and i = n + 1, . . . , n + m for the second one. However, in order to main-

tain the same correlation between the initial portfolios, the two random times τ and τ̃ will be

correlated. The correlation translates the initial portfolios correlation and it is defined by an

FGM copula (assumption (v) ).

To fully characterize the representative agents, we should determine their mortality profiles.

Thus, we are looking for the intensities which lead to having the same risk (of the representative

contract and the portfolio) and an expected cash-flows as close as possible to the initial portfolio.

In the following, we detail the computation of λ (the same reasoning applies to find λ̃). Since

the risk of the initial portfolio and the required contract are the same, then λ is solution of

f(λ) =
1

c2
Var

[
n∑
i=1

cie
−rτ i1{τ i<T}

]
, (2.2)

where

f(x) = Var[e−rτ1{τ<T}] =
x

x+ 2r

(
1− e−(x+2r)T

)
−
(

x

x+ r

)2 (
1− e−(x+r)T

)2
,

and c defined as in Assumption 2.

Equation (2.2) has two solutions l1 and l2 such that l1 ≤ λ∗ ≤ l2, where the function f

reaches its maximum at λ∗. Using the independence hypothesis between τ and (τ i, i = 1, . . . , n),

we choose li, i = 1 or 2, which minimizes the expected present value of the insurer portfolio’s

liability, i.e.
∣∣E[
∑n

i=1 cie
−rτ i1{τ i<T}] − E[ce−rτ1{τ<T}]

∣∣. It is easy to verify that our problem

has an unique solution since λ→ E[e−rτ1{τ<T}] = g(λ) is an increasing function. Consequently,

given the intensity λ, we define τ as

τ = inf{t > 0 : λt ≥ X},

where X is an exponential random variable with parameter equal to 1, i.e. P(X ≥ t) = e−t.

Next, we characterize the correlation between τ and τ̃ . The two random times are corre-

lated by the FGM copula given by

c(u, v) = uv[1 + θ(1− u)(1− v)], θ ∈ [−1 1], (u, v) ∈ [0, 1]2.

Therefore, we choose θ so that the variance of the aggregate portfolio, with the additional m

policyholders, is best replicated by the addition of the representative agents. Formally, the
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coefficient θ is set as the solution of the minimization problem:

min
θ∈[−1 1]

∣∣∣∣∣Var

(
n+m∑
i=1

cie
−rτ i1{τ i<T}

)
−Var

(
ce−rτ1{τ<T} + c̃e−rτ̃1{τ̃<T}

)∣∣∣∣∣ ,
where c̃ =

∑m
i=1 cn+ig(λn+i), see Assumption 2. The latter is equivalent to

min
θ∈[−1 1]

∣∣∣∣∣Cov
(

n∑
i=1

cie
−rτ i1{τ i<T},

n+m∑
i=n+1

cie
−rτ i1{τ i<T}

)
− Cov

(
ce−rτ1{τ<T}, c̃e

−rτ̃1{τ̃<T}
)∣∣∣∣∣ .

In other words, the optimal correlation coefficient θ is that which allows for best replication of

the initial correlation between the two portfolios. It is worth mentioning that by doing so we

also ensure that the optimal parameter θ will capture the sign of the dependency between the

two portfolios, especially negative correlations. This latter property is of paramount importance

in view of the initial problem of natural hedging between biometric risks.

Henceforth, remarking that E
(
e−rτ1{τ<T}e

−rτ̃1{τ̃<T}
)

is a linear function of θ, we find

that Cov
(
ce−rτ1{τ<T}, c̃e

−rτ̃1{τ̃<T}
)

= cc̃A1θ where

A1 = λλ̃

[
(1− e−(λ+r)T )(1− e−(λ̃+r)T )

(r + λ)(λ̃+ r)
+ 4

(1− e−(2λ+r)T )(1− e−(2λ̃+r)T )

(r + 2λ)(2λ̃+ r)

−2
(1− e−(2λ+r)T )(1− e−(λ̃+r)T )

(r + 2λ)(λ̃+ r)
− 2

(1− e−(λ+r)T )(1− e−(2λ̃+r)T )

(r + λ)(2λ̃+ r)

]
.

Finally, our problem minθ∈[−1 1]

∣∣Cov (∑n
i=1 cie

−rτ i1{τ i<T},
∑n+m

i=n+1 cie
−rτ i1{τ i<T}

)
− cc̃A1θ

∣∣
has an unique solution.

Remark 2. If the death times τ i, i = 1, . . . , n+m are correlated by the FGM copula given by

Equation (1.1), i.e.

C(u1, . . . , un+m) =
n+m∏
i=1

ui

1 +
n+m∑
k=2

∑
1≤j1≤...jk≤d

θj1...jk(1− uj1) . . . (1− ujk)

 ,
then the covariance between the initial portfolios is

Cov

(
n∑
i=1

cie
−rτ i1{τ i<T},

n+m∑
i=n+1

cie
−rτ i1{τ i<T}

)

=
n∑
i=1

n+m∑
j=n+1

θijcicj

(
λi(1− e−(r+λi)T )

λi + r
− 2

λi(1− e−(r+2λi)T )

2λi + r

)

×

(
λj(1− e−(r+λj)T )

λj + r
− 2

λj(1− e−(r+2λj)T )

2λj + r

)
.

Remark 3. So far, the model points construction considered is applied to portfolios of death

benefit policies. Note that the same procedure can also be used to represent portfolios with

heterogeneous life insurance contracts. An appealing example is the pure endowment contracts

10



that pays out a lump sum at time T if the individual is alive at this time.

2.2 Optimization problem with two policies. Since each portfolio may be viewed as a

contract, we present here the indifference pricing of two contracts. The general case is detailed

in Appendix A.1. Recall that in order to find the indifference price, we shall compute the

following quantities

V := sup
π∈AG1 [0,T ]

E
[
U
(
Xπ
T∧τ1 − FT∧τ1

)]
, (2.3)

and

Ṽ := sup
π∈AG2 [0,T ]

E
[
U
(
Xπ
T∧(τ1∨τ2) − F

1
T∧τ1 − F

2
T∧τ2

)]
. (2.4)

The Equation (2.3) corresponds to the value of the maximum expected utility of the wealth at

time T when the insurance company has sold one policy. In the absence of a second contract,

the τ1-intensity is given by γ(t)∫∞
t γ(s)ds

where γ is the density of τ1. The following propositions

give the V and Ṽ solutions of the optimization problem in terms of the initial value of a BSDE.

Proposition 2. The value function V := supπ∈AG1 [0,T ] E
[
U
(
Xπ
T

)]
is given by

V = − exp(αy0) ,

where (y, z, u) is the solution of the BSDE

yt∧τ1 = F 1
t∧τ1 +

∫ T∧τ1

t∧τ1
h(s, zs, us)ds−

∫ T∧τ1

t∧τ1
zsdWs −

∫ T∧τ1

t∧τ1
usdH

1
s , 0 ≤ t ≤ T,

where h(s, z, u) = eαu−1
α

γ(t)∫∞
t γ(s)ds

− z (µt−r)
σt
− 1

2α
(µt−r)2
σ2
t

.

Moreover, the optimal strategy π∗t associated to this problem is defined for each t ∈ [0, T ] by

π∗t =
1

σt

(
zt +

µt − r
ασt

)
,

and yt = y0
t 1{t<τ1} + F 1

τ11{τ1≤t} with y0
t = F 1

T +
∫ T
t h(s, z0

s , F
1
s − y0

s)ds−
∫ T
t z0

sdWs.

Proof. This follows directly from Hu et al. (2005).

We will now turn to the case where the insurance company sells a second contract. We recall

that the corresponding value function associated to the maximum expected utility is given by

(2.4).

Proposition 3. Under the assumptions of Section 1, the function Ṽ is given by Ṽ (x) =

− exp(αY0) where Y0 is the initial value of the unique solution (Y, Z, U) of the BSDE

Yt = B +

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
f(s, Zs, U

1
s , U

2
s )ds−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
ZsdWs −

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
(U1

s dH
1
s + U2

s dH
2
s ),

11



for t ∈ [0, t], with f(t, z, u1, u2) =
∑

i=1,2(1−H i
t)
eαu

i−1
α λit−z

(µt−r)
σt
− 1

2α
(µt−r)2
σ2
t

and λ1, λ2 given

by (1.3).

Moreover, there exists an optimal strategy π̂∗ given by

π̂∗t =
1

σt

(
Zt +

µt − r
ασt

)
.

Proof. See Appendix A.2.

Subsequently, the optimal price solution of the Equation (2.1), making the insurer indifferent

to sell or not the additional contract, is given in terms of the solutions of the two BSDEs in

the above propositions.

Corollary 1. The indifference price is

p∗ =
1

α
ln

(
Ṽ

V

)
= y0 − Y0.

To numerically determine p∗, we should simulate the BSDEs in Proposition 2 and Proposition 3.

The former is straightforward and can be simulated using classical schemes. However, the

second one related to (Y,Z, U) needs some further arrangement as it is a BSDE with random

jumps. Therefore, let us give more details for the BSDE in Proposition 3. For t ∈ [0, T ], we

consider the following BSDE :

Yt = B +

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
f(s, Zs, U

1
s , U

2
s )ds−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
ZsdWs −

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
(U1

s dH
1
s + U2

s dH
2
s ).

Considering the order of the deaths τ1 and τ2 and decomposing the related death indicators

H1
t and H2

t , we notice that the generator f of the above BSDE can be written as follows:

f(t, z, u1, u2) = 1{t<τ1∧τ2}

[ ∑
i=1,2

eαui − 1

α
λit − z

(µt − r)
σt

− 1

2α

(µt − r)2

σ2
t

]
(2.5)

+ 1{τ1≤t<τ2}

[eαu2 − 1

α
λ2
t − z

(µt − r)
σt

− 1

2α

(µt − r)2

σ2
t

]
+ 1{τ2≤t<τ1}

[eαu1 − 1

α
λ1
t − z

(µt − r)
σt

− 1

2α

(µt − r)2

σ2
t

]
+ 1{τ2∨τ1≤t}

[
− z (µt − r)

σt
− 1

2α

(µt − r)2

σ2
t

]
.

The terminal value B of Y should be decomposed similarly depending on the ranking of the

death times.

Assumption 3.

1. The terminal value of the BSDE in Proposition 3 B ∈ GT , can be written as follows

B = B01{T<τ1∧τ2}+B1(τ1)1{τ1≤T<τ2}+B2(τ2)1{τ2≤T<τ1}+B3(τ1, τ2)1{τ1∨τ2≤T}, with

B0 = F 1
T + F 2

T , B1(τ1) = F 1
τ1 + F 2

T , B2(τ2) = F 1
T + F 2

τ2 and B3(τ1, τ2) = F 1
τ1 + F 2

τ2.

12



2. Given the decomposition in Equation (2.5), the generator f can be written as

f(t, y, z, u1, u2)1{t≤τ1∨τ2} = f0(t, y, z, u1, u2)1{t<τ1∧τ2} + f1(t, y, z, u1, u2, τ1)1{τ1≤t<τ2}

+f2(t, y, z, u1, u2, τ2)1{τ2≤t<τ1} + f3(t, y, z, u1, u2, τ1, τ2)1{τ1∨τ2≤t}.

3. We assume that the following BSDEs admit a solution
Y 1
t (θ1) = B1(θ1) +

∫ T
t f1(s, Y 1

s (θ1), Z1
s (θ1), 0, B3(θ1, s)− Y 1

s (θ1), θ1)ds

−
∫ T
t Z1

s (θ1)dWs,

Y 0,1
t = B0 +

∫ T
t f0(s, Y 0,1

s , Z0,1
s , Y 1

s (s)− Y 0,1
s , 0)ds−

∫ T
t Z0,1

s dWs,

(2.6)


Y 2
t (θ2) = B2(θ2) +

∫ T
t f2(s, Y 2

s (θ2), Z2
s (θ2), B3(s, θ2)− Y 2

s (θ2), 0, θ2)ds

−
∫ T
t Z2

s (θ2)dWs,

Y 0,2
t = B0 +

∫ T
t f0(s, Y 0,2

s , Z0,2
s , 0, Y 2

s (s)− Y 0,2
s )ds−

∫ T
t Z0,2

s dWs.

(2.7)

Under the above assumption, the solution of the BSDE in Proposition 3 with two random

jumps τ1 and τ2 can be decomposed into two auxiliary Brownian BSDEs depending on the

order these jumps as follows:

Yt = 1{τ2<τ1}

(
Y 0,2
t 1{t<τ2} + Y 2

t (τ2)1{τ2≤t<τ1} +B3(τ1, τ2)1{τ2<τ1≤t}

)
+ 1{τ1<τ2}

(
Y 0,1
t 1{t<τ1} + Y 1

t (τ1)1{τ1≤t<τ2} +B3(τ1, τ2)1{τ1<τ2≤t}

)
,

Zt = 1{τ2<τ1}

(
Z0,2
t 1{t<τ2} + Z2

t (τ2)1{τ2≤t<τ1}

)
+ 1{τ1<τ2}

(
Z0,1
t 1{t<τ1} + Z1

t (τ1)1{τ1≤t<τ2}

)
,

U1
t = 1{τ2≤t<τ1}

(
B3(t, τ2)− Y 2

t (τ2)
)

+ 1{t<τ1<τ2}

(
Y 1
t (t)− Y 0,1

t

)
,

U2
t = 1{t<τ2<τ1}

(
Y 2
t (t)− Y 0,2

t

)
+ 1{τ1≤t<τ2}

(
B3(τ1, t)− Y 1

t (τ1)
)
.

For more details on this formulation we refer to Appendix A.2. The latter exposes the main

reasoning behind the proof, which is similar to the one considered in Kharroubi and Lim (2014).

The above decomposition will play a key role in the numerical derivation of the indifference

price p∗ as we will see in the next section.

3 Numerical analysis

3.1 Data source. We consider two real-world portfolios related to death guarantees. These

are portfolios of males holding pure death benefit guarantees distributed over ages as in Figure 1.

In the abscissa, we reported the percentage of individuals in the portfolio for each age between

0 and 120. The coordinates represent these ages. Here, the size of the portfolios is omitted

may be specified later. Later on, we assess the effect of the size both on the representation of

the portfolio as well as on the indifference price.

Notice that the composition of the two portfolios is different in the sense that the first

portfolio is composed of individuals relatively young, with an average age of 44.7. The second
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is mainly concentrated on older ages with an average policyholder age of 64.1. For these

portfolios, almost all individuals are aged over 20. We also consider an age dependent intensity

0%1%2%3%
0

20

40
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80

100

120
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e

0% 1% 2% 3%
Lives

Portfolio 2Portfolio 1

Figure 1: Distribution of individuals over ages in the portfolios.

displayed in Figure 2. This mortality curve corresponds to the French mortality table TPRV90.

Initially, this table gives the one-year death probability at the age level. Here, we formulated

the TPRV90 in terms of the intensity. The latter, in Figure 2, is constant for each age and

gives the likelihood of the death occurrence of each individual. It is to be incorporated in the

exponential model presented above.

20 30 40 50 60 70 80 90

0.05

0.1

0.15

0.2

Age
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te
ns
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Figure 2: Mortality intensity per age.

3.2 Simulating death times. As in Section 1, we model the dependence structure of death

times by an FGM copula. For the sake of applicability, we consider a special form of the general

FGM copula in (1.1) to model this dependency. More precisely, we let the function

Cθ(u1, · · · , un) =

n∏
i=1

ui

1 + θ

n∏
j=1

(1− uj)

 , (3.1)

be the copula linking the marginals of the lifetimes such that θ ∈ [−1, 1], see Genest et al.
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(2011). Using similar calculation in Subsection 1.2, we can easily see that

∂

∂uk
Cθ(u1, . . . , un) =

n∏
i=1,i 6=k

ui

1 + θ(1− 2uk)
n∏

i=1,i 6=k
(1− ui)

 ,

= Cθ(1−2uk)(u1, . . . , uk−1, uk+1, . . . , un),

where Cθ(1−2uk) is an FGM copula with parameter θ(1 − 2uk) ∈ [−1, 1]. As a consequence,

sampling from Cθ is reduced to sampling from Cθ(1−2uk). To this end, the conditional dis-

tribution method can be used. More precisely, following Remillard (2013, Section 8.7.12),

we can draw a vector (v1, . . . , vn) ∼ Unif([0, 1])n and set u1 = v1, . . . , un−1 = vn−1, and

un = 2vn/(1 + w +
√

(1 + w)2 − 4wvn), with w = θ
∏n−1
i=1 (1− 2vi), then (u1, . . . , un) ∼ Cθ.
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Figure 3: Correlation and histograms of the discounted pay-offs of the two portfolios with
similar sizes of 100 individuals and homogeneous guarantees, i.e. ci = c̃i = 1.

Figure 3 shows a 5000 samples of the aggregate exposure to two portfolios of n = m = 100

individuals distributed over ages as displayed in Figure 1. Each individual is holding a term

contract paying out 1 if she dies before the maturity term T = 10. The scatter plots represent

the distribution (right and bottom histograms) of the aggregate exposure for each portfolio.

We used the copula function in (3.1) with a parameter θ = −0.7 (left) and θ = 0.7 (right) re-

spectively to draw the death times of the individuals. More precisely, we used the copula with

the fixed parameter θ to simultaneously draw the remaining lifetimes of the 200 individuals,

then split the lifetimes to form the two portfolios. In Figure 3, the values θ = 0.7 and θ = −0.7

generate correlated (aggregated) exposures of the same corresponding signs. Indeed, for the

case θ = −0.7 the two portfolios are negatively correlated with a linear correlation being equal

to −25%. In general, the linear correlation induced by an FGM copula with parameter θ is

θ/3. In other words, using the copula in (3.1), we can expect a linear correlation between the

two portfolios at most ranging from −33% to +33%. This is in tune with empirical findings
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and common practical assumptions.

3.3 Representative portfolio. We consider two model points to represent two portfolios

with a given correlation. We follow the procedure presented in Subsection 2.1. Table 1 gives the

characteristics of the initial portfolios. Formally, each portfolio, denoted respectively P1 and

P2, is characterized by its variance, expected discounted cash-flows as well as the correlation

with the second portfolio. These specific characteristics are given for simulated portfolios and

reported (between brackets) for different sizes of the underlying population. We consider,

respectively, a small portfolio of 500 lives and a (relatively) big portfolio of 5000 lives, and

thus for maturities T = 10 and T = 15 of the contracts. The first panel corresponds to two

portfolios with 500 lives each distributed over ages respectively as in Figure 1. The two other

panels correspond respectively to portfolios with 5000 lives for the second, and n = 5000 and

m = 500 of the third. Simulations of these portfolios are drawn in the same manner as above

with copula structure in Equation (3.1). Here, we consider respectively a negative, positive and

zero correlation. For each case, in Table 1, we report the initial characteristics of the portfolios

as well as those of the representative agents. First, we should note that a sample of death

times is drawn once for each case. For example, for n = m = 500 and positive correlation, we

the n + m simulated deaths are used for both maturities T = 10 and 15. Therefore, we can

remark that the correlation between P1 and P2 increases with maturity. The same conclusion

arises for nil and negative correlation. This is related to the aging phenomena in the sense.

Although the two portfolios are centered around different age tranches, the increase of maturity

will increase the number of the deceased individuals in the first portfolio P1 as well as in P2.

This shall increase the number of joint realization of deaths in P1 and P2. Consequently, a

linear correlation initially calculated on a small maturity increases when going from T = 10 to

T = 15.

As soon as the performance of the representation is concerned, we notice that the portfolios’

characteristics are well described by the model points. In particular, the negative correlation

between the initial portfolios is well replicated. The representative agents also replicate the

independence case. This particular feature is ensured given the criterion used to characterize

the agents. Generally, the representative agents succeed to represent 90% to 95% of the initial

portfolios risk profiles (variance and expected cash-flows) as well as the correlation between

these portfolios, see Table 1. Notice that the size of the portfolios or the maturity of the

contracts do not impact this performance.

3.4 Indifference price. The indifference price derivation is given in terms of the unique

solutions of the BSDEs in Proposition 2 and Proposition 3. Therefore, we need to simulate the

BSDEs to get the values y0 and Y0 characterizing the price p∗ in Corollary 1. To do so, we

introduce a discrete-time approximation of the solutions (Y,Z, U) and (y, z, u) following similar

ideas used in Kharroubi and Lim (2011, 2012).

We consider a discretization grid 0 = t0 < t1 < · · · < tk = T of [0, T ] and for u ∈ R
we let ρ(u) = max{ti, i = 0, · · · , k | ti ≤ u} be the largest element of the grid smaller than

u. Moreover, we use the notation ∆Wti to denote the increment of W between ti−1 and

ti for i = 0, · · · , k and (Y, Z, U) will present the discretized solution of the initial BSDE.

For convenience, we suppose that the discretization grid has constant mesh denoted ∆k and
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Table 1: Analysis of the representative model for different sizes of the portfolios and times
horizons of the contract

n = m = 500 n = m = 5000 n = 5000; m = 500

P1 P2 P1+P2 P1 P2 P1+P2 P1 P2 P1+P2

P
o
si

ti
v
e

C
o
rr

.

T=10 T=10 T=10

Var.
282.36 99.59 436.72 1063.28 1069.35 2305.81 17941.91 83.23 18333.33

(308.01) (105.83) (477.86) (1069.35) (1006.15) (2244.11) (18737.95) (70.55) (19074.52)

Mean
186.71 235.33 422.04 1918.12 2395.57 4313.69 1888.65 235.66 2124.31

(193.55) (241.02) (434.57) (1946.95) (2426.75) (4373.70) (1948.00) (240.96) (2188.96)

Corr.
16.32% 13.24% 12.60%

(17.72%) (12.11%) (11.56%)

T=15 T=15 T=15

Var.
99.35 271.92 474.58 1005.65 928.46 2153.38 1490.81 229.40 2318.76

(110.21) (261.38) (465.98) (1030.33) (910.04) (2159.77) (1509.70) (352.73) (2301.83)

Mean
242.19 250.19 492.38 2479.15 2992.61 5471.76 2471.40 288.63 1720.21

(289.11) (300.74) (589.85) (2510.21) (3022.50) (5532.71) (2510.40) (300.31) (1862.43)

Corr.
31.42% 19.38% 54.21%

(27.81%) (18.22%) (40.18%)

N
eg

a
ti

v
e

C
o
rr

.

T=10 T=10 T=10

Var.
304.11 136.12 352.98 1067.69 1063.90 1959.27 17941.91 83.23 17841.0447

(300.97) (190.47) (432.73) (827.40) (947.15) (1668.65) (17935.08) (70.02) (17828.74)

Mean
186.83 234.37 421.20 1918.05 2395.70 4313.75 1889.04 235.946 2124.986

(193.89) (241.01) (434.90) (1947.88) (2428.12) (4376.00) (1948.00) (240.96) (2188.96)

Corr.
-21.43% -19.17% -12.61%

(-12.26%) (-16.82)% (-12.17%)

T=15 T=15 T=15

Var.
115.79 322.46 410.25 1036.12 907.93 1885.75 1462.72 228.77 1653.91

(103.22) (324.06) (393.71) (1019.29) (913.59) (1869.54) (1442.12) (245.45) (1641.08)

Mean
242.11 288.76 530.87 2478.87 2992.31 5471.18 2472.85 289.32 2762.17

(249.99) (300.22) (249.99) (2510.79) (3023.98) (5534.77) (2511.41) (300.31) (2811.72)

Corr.
-7.24% -9.31% -1.31%

(-9.18%) (-11.02%) (-1.09%)

In
d

ep
en

d
en

ce

T=10 T=10 T=10

Var.
104.96 106.63 213.13 1067.69 1063.90 2165.82 1063.54 104.81 1179.37
(95.94) (104.83) (199.55) (833.65) (933.31) (1811.46) (104.82) (103.01) (989.33)

Mean
188.79 235.34 424.13 1918.10 2396.03 4314.13 1917.81 235.492 2153.302

(193.80) (241.05) (434.85) (1947.88) (2428.12) (4376.00) (1947.80) (240.99) (2188.79)

Corr.
0.73% 0.21% 1.65%

(1.09%) (0.17%) (2.92%)

T=15 T=15 T=15

Var.
100.62 90.82 190.90 1036.12 907.93 1935.09 986.42 90.5 1082.8

(103.04) (94.35) (197.64) (1018.05) (916.06) (1925.24) (1051.09) (98.09) (1164.90)

Mean
242.13 292.14 534.27 2478.42 2992.71 5471.13 2479.34 292.15 2771.49

(250.06) (300.37) (550.43) (2510.79) (3023.98) (5534.77) (2510.78) (300.54) (2811.32)

Corr.
0.28% 0.31% 0.98%

(0.12%) 0.22% (2.45%)
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consider a classical backward implicit schemes on ρ associated with the system of BSDEs.

Before proceeding to the numerical implementation note that we only need to simulate (2.6)

or (2.7) as the price p∗ is given in terms of Y0 which coincides with Y 0,1
0 and Y 0,2

0 . Here, we

develop the simulation scheme for the BSDE in (2.6) as follows:
Y 0,1
T = B0,

Z0,1
ti−1

=
1

∆k
E
[
Y 0,1
ti

∆Wti |Fti−1

]
,

Y 0,1
ti−1

= f0
(
ti−1, Y

0,1
ti−1

, Z0,1
ti−1

, Y 1
ti−1

(ti−1)− Y 0,1
ti−1

, 0
)

∆k + E
[
Y 0,1
ti
|Fti−1

]
,

where Y 1 is given by the following Euler scheme:

Y 1
T

(
ρ(θ1)

)
= B1

(
ρ(θ1)

)
,

Z1
ti−1

=
1

∆k
E
[
Y 1
ti

(
ρ(θ1)

)
∆Wti |Fti−1

]
,

Y 1
ti−1

(
ρ(θ1)

)
= f1

(
ti−1, Y

1
ti−1

(
ρ(θ1)

)
, Z1

ti−1

(
ρ(θ1)

)
, B3

(
ρ(θ1), ti−1

)
− Y 1

ti−1

(
ρ(θi)

)
, ρ(θ1)

)
∆k

+ E
[
Y 1
ti

(
ρ(θ1)

)
|Fti−1

]
,

with θ1 ≥ 0. Similarly, the solution y0 needed to determine the value function V can be

derived using a Euler scheme, see Chevalier et al. (2014) for more details. In order to simulate

the discretized BSDE above, we compute the conditional expectations involved using a the

regression method in Gobet et al. (2005) based on L2-projections on finite bases. This consists

on a regression over a predefined polynomial basis of degree R. The simulation developed in

the sequel uses the following set of parameters k = 120, R = 30 and Laguerre polynomials to

approximate the conditional expectation.

For the numerical illustrations, we consider two representative agents with intensity λ and

λ̃ and guaranteed amount c and c̃ and correlation structure of FGM form parametrized by the

coefficient θ. The first individual represents the initial exposure and the second is the acquired

portfolio. Recall that we mainly focus on the death benefit policies. As noted before c and

c̃ are the expected payment in case the individual dies before maturity T . In the sequel we

consider the impact of various parameters on the indifference price. To do so, we consider a

flat interest rate curve r and homogeneous and deterministic equity return µ and volatility σ.

We shall give the following numerical values to these parameters:

r = 0.02, µ = 0.15, σ = 0.3.

Regarding the parameter α that measures the absolute risk aversion of the insurer, Young

(2003) noted that a typical of value for a well-capitalized insurer is very small. Thus, we let

α = 0.3. Henceforth, the numerical study is divided in three parts. First, we consider a pure

endowment guarantee and describe the dependence of the price with respect to the portfolios

parameters and risk profile: the contracts maturity, the intensity of the representative agents,

the guaranteed amount. Next, we investigate the impact of the dependence parameter θ.

Finally, we consider the price sensitivity with respect to the financial market parameters. For

the correlation impact, we are considering the values θ = 0 (for independence), θ = −0.3 (for

negative correlation) and θ = 0.3. The indifference price p∗ will be compared to the classical
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actuarial price given as p = cE[e−rτ∧T1{τ<T}] = cg(λ), where g is given in Assumption 2 for

death benefit contracts. In view of the parameters value above and the intensity depicted in

Figure 2. Table 2 reports the actuarial price for different contract maturities and individual

mortality intensity (with c = 1).

Table 2: Actuarial price for death benefits contracts

T = 5 T = 10 T = 15

λ = λ̃ = 0.01 0.0464 0.0864 0.1208

λ = λ̃ = 0.03 0.1327 0.2361 0.3166

λ = λ̃ = 0.05 0.2109 0.3596 0.4643

First, we implement the procedure to assess the impact of the initial size of the portfolio

as well as the mortality intensity. In Table 3 we reported the results for c = 100, 5000 and

λ = 0.01, 0.05 for fixed c̃ = 1. We remark that the price for an additional contract charged

by the insurer is increasing with λ as the guaranteed amount is likely to be paid during the

maturity of the contract. Moreover, we remark that the price does not depend on the initial size

c. In fact, the indifference pricing does account for the pooling effect which a already known

property. In general, the prices reported in Table 3 are greater that the classical actuarial

prices reported in Table 2. There is, however, an exception for the case when the dependence

coefficient θ is negative. The price is such a case in less that the actuarial price. This may be

due to the preference of the insurer incorporated in p∗ which makes the latter prefer the risk

that reduces its initial exposure and charge less fees compared to the positive dependency case

as well. The table also shows that the price p∗ is increasing with maturity.

Table 3: Indifference price for different contract maturities, mortality intensities and correla-
tion coefficient.

T = 5 T = 10 T = 15

θ = +0.3

λ = λ̃ = 0.01 0.0678 0.1393 0.2070

λ = λ̃ = 0.03 0.1739 0.2823 0.3917

λ = λ̃ = 0.05 0.3393 0.4691 0.5635

θ = 0

λ = λ̃ = 0.01 0.0600 0.1222 0.1848

λ = λ̃ = 0.03 0.1499 0.2392 0.3292

λ = λ̃ = 0.05 0.2993 0.4191 0.5235

θ = −0.3

λ = λ̃ = 0.01 0.0513 0.1025 0.1593

λ = λ̃ = 0.03 0.1281 0.2007 0.2838

λ = λ̃ = 0.05 0.1910 0.2936 0.3897

In Table 4, we reported the quantity p∗/c̃ for c̃ = 1, 100, 1000 and fixed c = 1000, which
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can be interpreted as the indifference price per unit. We should mention that this corresponds

the representative guaranteed quantity which should be smaller that the aggregate sums at

risk in the initial portfolio. However, we note that p∗/c̃ is increasing in c̃. In other words, the

indifference price for additional exposures to mortality risk (even if it is negatively correlated

to its initial exposure), is higher when it increases. This is a typical result related to the

indifference pricing with exponential utilities. The so-called result for the indifference price of

kX where X is a single-event contingent claim was proven by Becherer (2003, Corollary 3.3)

in a general semi-martingale incomplete market. Similar effect of the size on the prices of pure

endowment contracts is showed by Ludkovski and Young (2008).

Table 4: Marginal indifference price as a function of the guaranteed amount c̃ of the second
represenatative agent with c = 1000.

c̃ = 1 c̃ = 100 c̃ = 1000

θ = +0.3 0.2823 0.2918 0.3070
θ = 0 0.2392 0.2473 0.2601
θ = −0.3 0.2007 0.2074 0.2182

4 Conclusion

In this paper, we investigated the problem of pricing term life insurance contracts using the

indifference pricing approach. We considered an insurer with an initial exposure that wants to

sell new contracts or buy a whole run-off portfolio. We focused on the case where the lifetimes

of the individuals are correlated and suppose that the latter is captured by an FGM copula.

The indifference pricing methodology relies on the solutions of BSDEs with jumps. The

latter, is generally hard to simulate numerically when the as it involves high dimensional BS-

DEs. To overcome this issue, we propose to substitute the initial portfolios with two correlated

representative agents that best capture their risk profile as well as some of their statistical fea-

tures. Based on this new policyholders, we are then able to implement the pricing methodology

and simulate the related BSDEs.

The representative methodology as well as the price of death benefit portfolios are nu-

merically analyzed. Among others, we investigate the impact of the contracts design, the

dependence structure as well as the financial market parameters.
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C. Genest, J. Nešlehová, and N. Ben Ghorbal. Estimators based on kendall’s tau in multivariate copula

models. Australian & New Zealand Journal of Statistics, 53(2):157–177, 2011.

E. Gobet, J.-P. Lemor, and X. Warin. A regression-based monte carlo method to solve backward

stochastic differential equations. The Annals of Applied Probability, 15(3):2172–2202, 2005.

P.-Q. Goffard and X. Guerrault. Is it optimal to group policyholders by age, gender, and seniority for

bel computations based on model points? European Actuarial Journal, pages 1–16, 2015.

S.D. Hodges and A. Neuberger. Optimal replication of contingent claims under transaction costs. Review

of futures markets, 8(2):222–239, 1989.

Y. Hu, P. Imkeller, and M. Muller. Utility maximization in incomplete markets. Annals of Probability,

15(3):1691–1712, 2005.

P. Jaworski, E. Durante, W.K. Hardle, and T. Rychlik. Copula theory and its applications. Springer,

2010.

I. Kharroubi and T. Lim. A decomposition approach for the discrete-time approximation of fbsdes with

a jump i: the lipschitz case. arXiv preprint arXiv:1103.3029, 2011.

I. Kharroubi and T. Lim. A decomposition approach for the discrete-time approximation of bsdes with

a jump ii: the quadratic case. arXiv preprint arXiv:1211.6231, 2012.

I. Kharroubi and T. Lim. Progressive enlargement of filtrations and backward stochastic differential

equations with jumps. Journal of Theoretical Probability, 27(3):683–724, 2014.

I. Kharroubi, T. Lim, and A. Ngoupeyou. Mean-variance hedging on uncertain time horizon in a market

with a jump. Applied Mathematics & Optimization, 68(3):413–444, 2013.

M. Ludkovski and V.R. Young. Indifference pricing of pure endowments and life annuities under stochas-

tic hazard and interest rates. Insurance: Mathematics and Economics, 42(1):14–30, 2008.

E. Marceau and P. Gaillardetz. On life insurance reserves in a stochastic mortality and interest rates

environment. Insurance: Mathematics and Economics, 25(3):261–280, 1999.

M.A. Milevsky and S.D. Promislow. Mortality derivatives and the option to annuitise. Insurance:

Mathematics and Economics, 29(3):299–318, 2001.

B. Remillard. Statistical Methods for Financial Engineering. CRC Press, 2013.

Virginia R Young. Equity-indexed life insurance: pricing and reserving using the principle of equivalent

utility. North American Actuarial Journal, 7(1):68–86, 2003.

21



A Appendix

A.1 Optimization problem with n ≥ 1 policies. Suppose that the insurance company

seeks to determine the optimal indifference price she applies for selling an extra contract. In

the remainder of this section we will need the following notation. Let σ = (σ(1), · · · , σ(n)) be

a permutation of {1, · · · , n}, and denote Sn all such permutations. For all i, j ∈ {1, · · · , n},
such that i ≤ j, and σ ∈ Sn, we consider the death events {τ i, · · · , τ j} and we use the notation

τσ(i, j) = {τσ(i), · · · , τσ(j)}, τ
ij
σ = τσ(i) ∨ · · · ∨ τσ(j) and τ ijσ = τσ(i) ∧ · · · ∧ τσ(j). Note that for

i = j, τσ(i) = τ iiσ = τ iiσ = τσ(i, i) and for all σ ∈ Sn we have τ1n
σ = τ1n = τ1 ∨ · · · ∨ τn and

τ1n
σ = τ1n = τ1 ∧ τ2 · · · ∧ τn.

When the insurance company has sold n contracts, the corresponding optimization of the

expected value of the utility of its terminal wealth at time is given by:

V := sup
π∈AGn [0,T∧τ1n]

E
[
U
(
Xπ
T∧τ1n −

n∑
i=1

F iT∧τ i

)]
.

In the case of an exponential utility, we note B =
∑n

i=1 F
i
T∧τ i and the problem becomes:

V = sup
π∈AGn [0,T∧τ1n]

E
[
− exp

(
−α(Xπ

T∧τ1n −B)
)]
,

where B has the form

B = B01{T<τ1n} +
∑
σ∈Sn

n−1∑
i=1

1{τ1iσ ≤T<τ
i+1,n
σ }B

i
σ(τ(1, i)) + 1{τ1n≤T}B

n(τ(1, n)),

with B0 =
∑n

j=1 F
j
T , Bi

σ =
∑i

j=1 F
σ(j)
τσ(j) +

∑n
j=i+1 F

σ(j)
T and Bn =

∑n
j=1 F

j
τ j , where by conven-

tion
∑0

j=1 = 0.

Proposition 4. Under the assumptions of Section 1:

1. The value function Ṽ is given by Ṽ (x) = − exp(αY0) where Y0 is the initial value of the

unique solution (Y,Z, U) of the following BSDE

Yt = B +

∫ T∧τ1n

t∧τ1n
f(s, Ys, Zs, Us)ds−

∫ T∧τ1n

t∧τ1n
ZsdWs −

∫ T∧τ1n

t∧τ1n

n∑
i=1

U isdH
i
s, 0 ≤ t ≤ T,

(A1)

with f(t, z, u) =
∑n

i=1(1−H i
t)
eαU

i
t−1
α λit −

z(µt−r)
σt

− 1
2α

(µt−r)2
σ2
t

.

There exists an optimal strategy π̂ which satisfies

π̂t =
1

σt

(
Zt +

µt − r
ασt

)
.

2. Moreover we suppose that

(a) B ∈ GT , so B = B01{T<τ1n}+
∑

σ∈Sn
∑n−1

i=1 1{τ1iσ ≤T<τ
i+1,n
σ }B

i
σ(τ(1, i))+1{τ1nσ ≤T}B

n(τ(1, n))
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(b) f(t, y, z, u) = f0(t, y, z, u)1{T<τ1n}+
∑

σ∈Sn
∑n−1

i=1 1{τ1iσ ≤T<τ
i+1,n
σ }f

i
σ(t, y, z, u, τ(1, i))+

1{τ1n≤T}f
n(t, y, z, u, τ(1, n)).

(c) Let σ ∈ Sn. For 1 ≤ i ≤ n− 1 the following BSDEs admit a solution

Y i
t,σ(θ1, · · · , θi) = Bi

σ(θ1, · · · , θi) +

∫ T

t
f iσ(s, Y i

s,σ(θ1, · · · , θi), Zis,σ(θ1, · · · , θi), Y i+1
s,σ (θ1, · · · , θi, s)

− Y i
s,σ (θ1, · · · , θi) , θ1, · · · , θi)ds−

∫ T

t
Zis,σ(θ1, · · · , θi)dWs,

Y 0
t,σ = B0 +

∫ T

t
f0(s, Y 0

s,σ, Z
0
s,σ, Y

1
s,σ(s)− Y 0

s,σ)ds−
∫ T

t
Z0
s,σdWs,

Y n
t,σ(θ1, · · · , θi) = Bn(τ(1, n)).

Under these assumptions, the solution of (A1) is

Yt =
∑
σ∈Sn

1{τσ(1)≤τσ(2)···≤τσ(n)}

[
Y 0
t,σ1{t<τσ(1)} +

n−1∑
i=1

1{τσ(i)≤t<τσ(i+1)}Y
i
t,σ(τ(1, i))

+ 1{τσ(n)≤t}B
n(τ(1, n))

]
,

Zt =
∑
σ∈Sn

1{τσ(1)≤τσ(2)···≤τσ(n)}

[
Z0
t,σ1{t≤τσ(1)} +

n−1∑
i=1

1{τσ(i)<t≤τσ(i+1)}Z
i
t,σ(τ(1, i))

]
,

U it =
∑
σ∈Sn

1{τσ(1)≤τσ(2)···≤τσ(n)}

n∑
j=1

1{σ(j)=i}1{τσ(j−1)<t≤τσ(j)}

(
Y j
t,σ(τ(1, j))− Y j−1

t,σ (τ(1, j − 1))
)
,

where by convention τσ(0) = 0 and Y 0
t,σ(τ(1, 0)) = Y 0

t,σ.

In the above proposition, the function f may be written a :

f(t, z, u) = 1{t<τ1n}

[ n∑
i=1

(1−H i
t)
eαU

i
t − 1

α
λit −

z(µt − r)
σt

− 1

2α

(µt − r)2

σ2
t

]
+
∑
σ∈Σn

n−1∑
i=1

1{τ1iσ ≤t<τ
i+1,n
σ }

[ n∑
j=i+1

(1−Hσ(j)
t )

eαU
σ(j)
t − 1

α
λ
σ(j)
t − z(µt − r)

σt
− 1

2α

(µt − r)2

σ2
t

]
,

+ 1{τ1n≤t}

[
− z(µt − r)

σt
− 1

2α

(µt − r)2

σ2
t

]
.

A.2 Proof of Proposition 3. The proof follows similar arguments as in Kharroubi and

Lim (2014) and Kharroubi et al. (2013). The major difference is that we distinguish two cases

corresponding to the sets {τ1 < τ2} and {τ2 < τ1}.
Let us first suppose that τ1 < τ2. The main idea of the proof is to make an induction on

the number k of jumps in (t, T ]. The proof falls then naturally into two parts as follows.

• Suppose that k = 0. Then, we distinguish three cases.
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• Case 1: on {0 ≤ τ1 < τ2 ≤ t < T}. Then Yt = B3(τ1, τ2) therefore

Yt = B3+

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
f(s, Zs, U

1
s , U

2
s )ds−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
ZsdWs−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
(U1

s dH
1
s+U2

s dH
2
s ).

• Case 2: on {τ1 ≤ t < T < τ2}, hence Yt = Y 1
t and since there is no jumps between t and T ,

Ys = Y 1
s , Zs = Z1

s , U
1
s = 0, U2

s = B3(., s)−Y 1
s for all s ∈ (t, T ] and

∫ T
t (U1

s dH
1
s +U2

s dH
2
s ) =

0. Then we conclude that on {τ1 ≤ t < T < τ2}

Yt = B+

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
f(s, Zs, U

1
s , U

2
s )ds−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
ZsdWs−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
(U1

s dH
1
s+U2

s dH
2
s ).

.

• Case 3: on {t < T ≤ τ1 < τ2}, hence Yt = Y 0,1
t and since there is no jumps between t

and T , Ys = Y 0,1
s , Zs = Z0,1

s , U1
s = Y 1

s (s)−Y 0,1
s , U2

s = 0 for all s ∈ (t, T ] and
∫ T
t (U1

s dH
1
s +

U2
s dH

2
s ) = 0. Then we conclude that on {t < T ≤ τ1 < τ2}

Yt = B+

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
f(s, Zs, U

1
s , U

2
s )ds−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
ZsdWs−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
(U1

s dH
1
s+U2

s dH
2
s ).

• Suppose that there is k = 1 jump.

• Case 1: On {t ≤ τ1 < T < τ2}, hence Yt = Y 0,1
t . Then Ys = Y 0,1

s , Zs = Z0,1
s , U1

s =

Y 1
s (s)− Y 0,1

s , U2
s = 0 for all s ∈ (t, τ1]

Yt = Y 0,1
t = Y 0,1

τ1 +

∫ τ1

t
f(s, Zs, U

1
s , U

2
s )ds−

∫ τ1

t
Z0,1
s dWs,

= Y 1
τ1 +

∫ τ1

t
f(s, Zs, U

1
s , U

2
s )ds−

∫ T

t
Z0,1
s 1s≤τ1dWs −

∫ τ1

t
(U1

s dH
1
s + U2

s dH
2
s ).

Then using similar arguments as Kharroubi and Lim (2014), we have

Yt = Y 1
τ1 +

∫ τ1

t
f(s, Zs, U

1
s , U

2
s )ds−

∫ T

t
Zs1s≤τ1dWs −

∫ τ1

t
(U1

s dH
1
s + U2

s dH
2
s ).

• Case 2: On {t ≤ τ1 < T < τ2}. As there is no jump on (τ1, T ], the previous result

implies that on {t ≤ τ1 < T < τ2},

Yr = B +

∫ T

r
f(s, Zs, U

1
s , U

2
s )ds−

∫ T

r
ZsdWs −

∫ T

r
(U1

s dH
1
s + U2

s dH
2
s ).

So we obtain that

Yτ1 = Y 1
τ1 = B +

∫ T

r
f(s, Zs, U

1
s , U

2
s )ds−

∫ T

r
ZsdWs −

∫ T

r
(U1

s dH
1
s + U2

s dH
2
s ).

24



• Case 3: Finally on {t ≤ τ1 < T < τ2}, we have

Yt = B+

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
f(s, Zs, U

1
s , U

2
s )ds−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
ZsdWs−

∫ T∧(τ1∨τ2)

t∧(τ1∨τ2)
(U1

s dH
1
s+U2

s dH
2
s ).

The other cases follow from the same arguments.
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