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Thermal diffusivity identification based on an iterative
regularization method*

L. Attar, L. Perez, R. Nouailletas, E. Moulay, dndAutrique

Abstract— This article deals with the identification of a pace a(x) , as for functionally graded materials [7]. For cfie

and time dependent material thermal diffusivity. Such applications it mav depends on space and time.oas f
parameter is involved in heat transfers described ¥ partial PP y P P '

differential equations. An iterative regularization method based instance phase change mallterials (8] or nL{CIearoriusi
on a conjugate gradient algorithm is implemented. gch Plasmas [9,10]. In the following, the general sitwa of a
approach is attractive in order to efficiently deal with space and time dependent thermal diffusivit)(x,t) is

ms;?;treeg‘:g(t)OT;Irs]estoaSnedveT;dSeill‘ni:';?irOSI‘I]SNumerlcal res are . estigated using the Conjugate gradient metho@ME
9 ' To the best of our knowledge, this strategy haené&een
I. INTRODUCTION applied to this special case.

Partial differential equations (PDE) systems are The article is organized as follows. In Section the
commonly used to model thermal phenomena and megult studied model is presented and the inverse prolkem
mathematical models are validated since pioneerksvorformulated as a minimization problem. In Sectioh the
presented in [1]. If one or several model paransetee not iterative regularization method is detailed and lengented.
known with the required accuracy, it is obvious tthaln the last Secti_o_n IV, numerical results are pcd_erj and
predicted results have to be considered suspigiossuch ~ effects of a specific model error and measuremeises are
a context, in the specific situation of a contiohgegy which Investigated.
has to be synthetized considering predicted systate, a
preliminary stage of model identification is crdcitn the Il INVERSE ILL-POSED PROBLEM
proposed study, the identification of a spaceand timet

dependent thermal diffusivitg (x,t) is investigated. A. Statement

In thermal context, several kinds of inverse protde
Since inverse heat conduction problems are ill-gd28 related to heat conduction can be encountered [2]:

an iterative regularization method has to be nura8yl |eyospective problem (for initial state reconstiart for

implemented. The proposed method is different fro . .
Kalman approach which strongly depends on a priorﬁxample [11]). boundary inverse problem (heatingx f

information such as the noise distribution or thidentification for example [12]), geometric inverpeoblem
parameterization of the unknown input [3], and fraV (an illustration to cavity detection is given in3]l and
(Linear Parameter-Varying) approach [4]. The methogoefficient inverse problem. We are mainly integesin this
proposed in our communication is based on a Cotgugdast situation and in the determination of a theshysical
Gradient algorithm which is an iterative regulafi@a property which is space-time dependent.

method which is relevant for minimizing the effeof _ . . .

random perturbations in measurement as well agdating Let us consider the following notations in order to
with model errors [5]. introduce the direct problem. Space variable isotith by

Usually, material thermal diﬁusivitw(é’) depends only XD[O’ L] and time variable '$D[0'tf ] System state is the

on temperatured [6]. However it may depends on spacd€mperature denoted by(x.t). Evolution of the system
(from initial temperaturef],) depends on thermal diffusivity
usually defined as the ratio of the thermal conigifgt
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Direct problem.
Considering  that P:{L,tf,a(x,t),g(x,t) ,90} is

known, find #(x,t) solution of the partial differential
equations (PDE) system

_ae((;,t) —%[a(x,t)—agéz' t)] =g(x Y

O(x,t)O[o,L]x[ 04, ]

(2)

TABLE 1. INPUT PRAMETERS FOR DIRECT PROBLEM
2 (t-6)° 2 (t-4)°
Lo1m oot F] fimourt)
a(xt)=10"e  21°°  +210'%e 41
t,=10s
| x- 0.03-0.04% ’
6,=293K 7( { . }]

e 410"

g(xt)=1oo£1—e’ij

Considering all the previous input parameters, afire
problem is numerically solved. Temperature evolutio

6(x,0) =8, OxO[ , 0 8(x,t) is presented in Fig. 2.

06(x.t)

g(0.t) =6, : o

Oto[ ot |

x=L 1600

Except for academic situations, direct problemssally
solved according to numerical methods such as efinit
element method [14-17]. In the following, such naeths
implemented considering Comsol® solver [18]. Let us = 1000
consider the realistic input parameter listed inbl€al. &

Thermal diffusivity a(x,t) and heating sourag(x,t) are
shown in Fig. 1.
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Figure 2. Temperature evolution.
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B. Inverse problem formulation
X If one or several input paramet@l P is unknown then

Figure 1. Thermal diffusivity and heating source. an

inverse problem can be solved considering state
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observationsd(xt). It is usual to investigate such inversionParameter is — called the regularization parameter.
Construction of regularizers is not trivial and time next

as a minimization problem where a quadratic costtion . o .
P q oSt section, convergence of a regularization algorithisn

has to be minimized:

discussed.
Inverse problem.
Find [l. ITERATIVE REGULARIZATION METHOD
D = i . .
p”=argminJ(8,p) In order to obtain a stable solution, well-posedtems

0P . . e e
P have to be solved at each iteration of the minitrona

algorithm. For usual descent methods, at eachib@ra new

— H . ) 2
=argmin .U (6()( t ,p) - 9( X’t)) dxdt value of the unknown parameter is obtained

PIP 1 oot ]
such that §(x,t; p) is solution of the direct problem akﬂ:a'k‘*ﬂ(a'k)

obtained with parametep . . ) L
P P where the correctmm(a") at each iteration is chosen such

Let us consider that the thermal diffusivity(x,t) has to that J(ak+l)< J(a,k)_

be identified. In such an aim several temperature

measurements are availableN, sensors are located in In [2], O.M Alifanov states thatsuch a method of
damping the instability when specifying an appraatien
solution for an ill-posed problem is based on visco
i =1,--,N. Sensors location are denoted Ry. Moreover properties of numerical algorithms of optimization

parametrization of the unknown thermal diffusivitgs to be lterative minimization of quadratic cost functiod

considered. In the absence of a priori informatigifix,t) is  pased on CGM is known as a stable algorithm foeiise
assumed without any loss of generalities to beeagpiise heat conduction problem. In [21], stabilizing effeturing

[0,L] and measured temperatures are denoteoﬁAPi fy for

linear function in two dimension: the iterative minimization is highlighted. In anaaemic
_— situation in a 1D geometry, analytical solution difect

g(x,t):zz%$()<) §(t) (2) problem is formulated. Then, it is shown that thaimm

[ENE structure of the boundary heat flux is estimatedh first

Where Nt and Nx are the number of discretization stedterat'ons' The CGM acts like a sequential filtgrin

lated h d time d q q mechanism capable of rejecting random perturbations
related to the space and time depen erts;(ax) an Sj(t) measurements during the identification processatiten

are basis functions (hat functions). Unknown thérmamumber acts as a regularization parameter. CGMrithgo

diffusivity tensor is thus defined considering matr can be presented as follows [22]:
a’:[au]wm. Then, N = Nx Nt unknown coefficients have Step 1 initialization (k = 0) of @r*.
to be identified considering the inverse problem :

» Step 2: estimation of the cost functidr(a'k),
Inverse problem.

Find if J (ak)s Jsop then Q* is a correct estimation of the
a“=argmind (6 Q) unknown thermal diffusivity and the algorithm is
aR" ™ stopped ;
N - else goto step 3
=argmin J.Z(@(x t ﬂ)—é{(t))2 dt g P

k
R o= « Step 3: evaluation of the cost function gradi{F?{J—kJ
such thaté(x,t;@) is solution of the direct problem. oa;

. ) ) o for i =1,--,N, and j =1,---,N,. Then, estimation of the

Previous inverse heat conduction problem is illgubs descent directiord*
due to the solution instability in the sense of atadrd [19] ’
since small variations on measurements can indueatg * Step 4: evaluation of the descent depthIR related to
variations on& . In practice, it is not possible to deal with  the descent directiod *
exaclt Qata dude to .numgrical errors inducetlj byefiehlement . Step 5. estimaton of the new parameter
resolution and noises in measurements. In suchngexp K+l _ pp ko, 1k K _
pioneer works have been performed by Tikhonov édvisg @™ =a’+y’D " then (k - k+1) goto step 2.

ill-posed problems. Proposed methods for the coaten of Most important stages are the gradient calculatiod
stable solutions are named regularization meth@dsl9, the descent depth estimation. Both numerical réisolsi are

to consider a new problem involving a small parameb ggngse.

that the new inverse problem is stable. The pasitiv . . o
The first system leads to gradient estimation:
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Adjoint problem. e

Find W*(x,t) solution of the PDE system da* (xt) = J_:l;(‘)—aili()sf (¥ 5(t)
Nt Nx

oWk 9 ow ) _ = d“)s(x)s (t

- +&[akgj_Ek 0(x ) 0[o,x[ 0 ] 1121:( /s (x)s (1)

Descent depth is then defined as follows:

wk(x,tf):o Ox0[0,L] b,

V= J;;(ek(&,t)‘é’(t))(%’k(x,t)) dt

N,

s

=0 otof ot ] (a8% (x.1)) at

o t—

i=1

) Nq . . Previous approach is detailed in [23]. The stopeddn
where E (X’t):Z(Q(X’t;a)_ei(t))JDxi (¥ and &, is  J__is the regularizing parameter [2] which acts oe th

i=1
the Dirac distribution related to sendar iteration number. If a Gaussian noisé(o,a) is added on

each measurement, then

stop

According to the previous notation, gradient is imkd

. | 83k ) 1
considering the matrixdJ “=| —— with : Joop = 2
N, xN

==No?r
k
IJ X t

where N is the number of collected measurements arig
03" | _ 06" (x.t) 0¥ (x.t) (x)s (1)t the sampling time for measurements. In [24], sdverstart
aa”_k - 0X 0X 3 ! procedures for the CGM are proposed. It is usual fo
example to consider 8 =0 when k = N. This technique

[o.L]x 04 ]

Descent direction is defined as: allows refreshment in the calculus of the conjugtitection
D =g —_0J s gD ¢ descent. At each iteration three well posed problaave to
‘[ i :|NK><N‘ - B be solved: the direct problem (for cost-functioraleation),

the adjoint problem (for the gradient evaluatiomyd ahe

) |||]J “"2 o ) sensitivity problem (for the descent depth estiomtiIn the
where f* =- ——" (except for 5° =0). Norm [ is the * following section, several results are presented ain
"D‘] " numerical situation.
Nt Nx
Frobenius matrix norrﬂM " = ZZMHZ . IV. NUMERICAL RESULTS

j=1li=1
Let us consider the previous direct problem. Nuoari
The second PDE system leads to the descent depfhulations obtained according to the thermal diffity

estimation: a(xt) defined in Table 1 are considered as measurements.

Sensitivity problem. Then temperature measurements can be obtained for
Find 96" (xt) solution of the partial differential

equations (PDE) system:

L(i-1
N, =11 sensors located af =% (see Fig. 2) with a

) ) sampling timer =1s. Discretization of unknown parameter
0(59 ) O] 0(59 ) =i{(5ak)3_9kJ a(xt) is considered according 2). This discretization
0X ox 0X depends neither on the sensor numbers nor the isgmpl
time. Withouta priori information related to the distribution
a(xt), let us considemN, =11 and N, =9. It is obvious

ot ox
O(x t)0[ ojx[ot, |

that this discretization is less accurate tharvtiee a (x, t)

defined in Table 1. This model error induces errors
simulated temperatures. In the studied situatiomerey
“measurements” are simulated it is possible toregt the
=0 DID[OIf] effect of this model error with a comparison betwebe

xeL solutions of two direct problemfl) : the first one with the

36 (x,0)=0 Ox0[0,1]

o(5 ()

56" (0t)=0
(’) ax

where continuousa (x,t) defined in Table 1, the second one with



Attar L., Perez L., Nouailletas R., Moulay E., Agtre L., Thermal diffusivity identification based on an #tve
regularization methodEEE Conference on Decision and Control 2015 k@gapan, December 2015.

This can be easily explained since the real shdpe o

9 11
a(x.1) :ZZ"U s(x) §(t)' The  residual  temperatures a(x, t) is defined considering less than 99 parameters.

j=1i=1
between these two numerical resolution show thé ot ] o
possible to obtain a criteriod,,, <164. This threshold is The proposed d|scret|zat|oa':[a”} leads to over

N,xN,
considered for identification without measuremerises. determination. However the regularizing effect fé CGM
is able to overcome this difficulty.

A. ldentification without measurement noises

Let us consider an initial value for the CGMB'
aoz[aq with @ =0 for all i,j. Cost function A Gaussian noise X' (0,5) is considered for
I N, ij L

=1513. In this configuration, cost

Identification with measurement noises

evolution versus iteration is shown Fig. 3. Averagsidual measurements, thed,,

temperature is about 0.19K and standard variagoabout function evolution versus iteration is shown in.Fag
1.51K. Identified thermal diffusivity is presentdeg. 4.
which can be compared to Fig. 1. Temperature ratsdare
small enough to consider that the methodologyfisieit. It
is important to notice that the algorithm has caged in 53
iterations smaller than the number of unknown patans
(99).

Average residual temperature is about 0.62K and
standard variation is about 4.98K. Identified thafm
diffusivity is presented in Fig. 6. With measuremanises,
regularizing effect is highlighted: the main sturet of the
thermal diffusivity is estimated in the first itéi@ns.

10°

cost-function
cost-function

iteration iteration

Figure 3. Cost-function evolution without measurement noises Figure 5. Cost-function evolution with measurement noises

Figure 4. Identified thermal diffusivity at iteration 53. Figure 6. Identified thermal diffusivity at iteration 7.



Attar L., Perez L., Nouailletas R., Moulay E., Agtre L., Thermal diffusivity identification based on an #tve
regularization methodEEE Conference on Decision and Control 2015 k@gapan, December 2015.

V. CONCLUDING REMARKS AND OUTLOOKS

Thermal diffusivity identification is a crucial ragiement
which bring a better understanding of many thergyatem
behaviors. When the dynamic system state is destiily a
parabolic partial differential equation system, graetric
identification of space and time dependent parammétenot
trivial. An approach dedicated to the resolutionligposed
inverse problem has been proposed. It has beesirdted
that both model errors and measurement errorsakes tinto
account in order to sequentially filter perturbatoduring
the identification process. The conjugate gradagbrithm
acts as an iterative regularization method wheeeation
number can be considered as a regularization paeame

Several outlooks are actually investigated in ostifutes.
In experimental situations, tracking of moving legt
sources (in two-dimensional geometry) using mobéasors
will be based on sequential conjugate gradient atktfon
sliding time interval). This method seems to previdn
attractive alternative to Kalman approach for quadine
estimation.
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