
HAL Id: hal-01258513
https://hal.science/hal-01258513v1

Submitted on 7 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Infinite dimensional functional convergences in random
balls model

Jean-Christophe Breton, Renan Gobard

To cite this version:
Jean-Christophe Breton, Renan Gobard. Infinite dimensional functional convergences in random
balls model. ESAIM: Probability and Statistics, 2015, 19, pp.782-793. �10.1051/ps/2015016�. �hal-
01258513�

https://hal.science/hal-01258513v1
https://hal.archives-ouvertes.fr


ESAIM: PS 19 (2015) 782–793 ESAIM: Probability and Statistics
DOI: 10.1051/ps/2015016 www.esaim-ps.org

INFINITE DIMENSIONAL FUNCTIONAL CONVERGENCES IN RANDOM
BALLS MODEL ∗

Jean-Christophe Breton1 and Renan Gobard1

Abstract. We consider a weighted random ball model generated by a Poisson measure. The macro-
scopic behaviour of the weight amassed on this model by a configuration has recently received attention.
In this paper, we complement the previous finite dimensional distribution fluctuation results and pro-
pose functional convergences of such functionals on the set of configurations.
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1. Introduction

We consider a generalized random balls model in R
d generated by a Poisson point process Nλ on R

d×R+×R

with intensity
nλ(dx, dr, dm) = λdxF (dr)G(dm), (1.1)

where λ ∈ R+ and F , G are probability measures respectively on R+ and R. The most natural way to deal
with the triplets (x, r,m) is to see them as weighted random balls with center x, radius r and weight m. The
parameter λ stands for the intensity of the number of ball since the mean number of balls in, say, a measurable
bounded set A ⊂ R

d with Lebesgue measure 1 is E[Nλ(A × R
+ × R)] = λ. Random balls models of this type

are typically used to represent spatial communication networks where the centers x are antennas transmitting
a signal with a range of emission r. The weight m then represents the intensity of the signal (see [6, 13]). From
a modeling standpoint, it is natural to consider that the signal fades out when it goes away from its emitting
station x. Representing such a fading effect by a shape function h, the signal of intensity m emitted in x is
received in some y with intensity mh

(
r−1(x − y)

)
, in this picture the quantity r plays now the role of the rate

of the fading. If we assume that no interference occurs between the different stations, the quantity of signal
received in some y ∈ R

d is then given by:

Mλ(y) =
∫

Rd×R+×R

mh
(
r−1(y − x)

)
Nλ(dx, dr, dm). (1.2)
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Extending the quantity defined in (1.2) to a configuration represented by a measure μ, we consider now

Mλ(μ) =
∫

Rd

Mλ(y)μ(dy) =
∫

Rd×R+×R

mμ[τx,rh] Nλ(dx, dr, dm) (1.3)

where we set τx,rh(y) = h
(
r−1(x − y)

)
and μ[f ] =

∫
Rd f(y) μ(dy), see [3]. Since there is no restriction to

consider only positive measures, we consider configurations μ in the set Z(Rd) of signed measures on R
d with

finite total variation. Recall that the total variation ‖μ‖TV = supA∈B(Rd) |μ(A)| defines a norm on Z(Rd) and
that equipped with this norm, Z(Rd) is a Banach space. This model is the one studied in [3]. When h = 1B(0,1),
we recover the setting of [1, 2, 9].

We specify now the hypotheses on G, F and h. The measure G drives the behaviour of the weights, it
is assumed to be in the domain of attraction of an α-stable law with α ∈ (1, 2], see [10]. According to ([5],
Sect. XVII.5), this is equivalent to the following estimate on the characteristic function ϕG of G:

ϕG(θ) = 1 + iθτ − σα|θ|α (1 + ibε(θ) tan(πα/2)) + o(|θ|α), as θ → 0, (1.4)

where ε(θ) = 1 if θ > 0, ε(θ) = −1 if θ < 0 and ε(0) = 0. In the case α ∈ (1, 2), a typical choice for G is a
heavy-tailed distribution while for α = 2, G may be any distribution with finite variance. Observe that since we
consider α > 1, the measure G has a finite moment of order 1. The probability measure F drives the behaviour
of the radius r (actually the fading rate in the model described above); we assume F has a regularly varying
tail with index β ∈ (d, αd), that is:

F (r) =
∫ +∞

r

F (du) ∼r→+∞ Cβ r
−β . (1.5)

The condition (1.5) ensures that the mean volume of the random balls is finite and so is the expectation of
Mλ(μ) for every μ with a finite total variation, see [3]. On the contrary, β < 2d implies that the variance of the
law of the volume is infinite.

Since in our interpretation, the shape function h represents a fading effect, it is natural to consider that
h is radial and (radially) decreasing. The function h thus generalizes the range of the emission. As discussed
above, the choice h = 1B(0,1) recovers the classical setting of random ball B(x, r) with weight m as investigated
in [1,2,9]. However, from a mathematical standpoint, it is not required to assume that h is decreasing or radial
and more complex interfering phenomena can thus be investigated.

In what follows, we are interested in the macroscopic analysis of such model. It consists in investigating the
behaviour of Mλ(μ) when a zooming-out is performed, i.e. apply the change r �→ ρr in the model and consider
the resulting changed field

Mλ,ρ(μ) =
∫

Rd×R+×R

mμ[τx,rh] Nλ,ρ(dx, dr, dm), (1.6)

where Nλ,ρ is the Poisson random measure with intensity nλ,ρ = λdxFρ(dr)G(dm) and Fρ is the image measure
of F by r �→ ρr. When the intensity λ(ρ) is adapted accordingly to the rate ρ of zooming-out, [3] describes
two limiting behaviours obtained when a centering and a suitable normalization n(ρ) are applied to Mλ(ρ),ρ(μ).
Actually, due to the linear structure of Mλ(ρ),ρ(μ) in μ, the limits are obtained in the finite dimensional distri-
butions (fdd) sense (see Sect. 2 for precise conditions). For the two scaling regimes, functional convergences are
also obtained in [3] but only for a finite dimensional subfamily of configurations μ. The goal of the present note
is to complete the results of [3] for configurations in an infinite dimensional family A ⊂ Z(Rd) and to provide
functional convergences in the space C(A) of continuous functions in A. Since fdd convergences are already
proved in [3] for smooth configurations, the present note really focuses on tightness and to that purpose we will
assume that

A is a compact subset in L1(Rd) ∩ Lα(Rd) for the ‖ · ‖TV topology, (C0)
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where we shall (abusively) note L1(Rd) ∩ Lα(Rd) the space of smooth measures μ(dy) = φμ(y) dy such that
φμ ∈ L1(Rd)∩Lα(Rd). Remark that for configurations in L1(Rd), the L1 norm corresponds to the total variation
norm. The note is organized as follows: Section 2 contains our main conditions and results. The proof is given
in Section 3 and discussions on our hypotheses are provided in Section 4 with examples. Technical results are
postponed in Appendix A.

2. Main results

First, we recall the fdd results obtained in [3]. The shape function h is assumed to be continuous almost
everywhere and such that

h∗(x) := sup
{|h(rx)| r ≥ 1

} ∈ L1(Rd) ∩ Lα(Rd). (H)

Note that this implies h ∈ L1(Rd)∩Lα(Rd) and note that if h is radially non-increasing, then h∗ = h. Through-

out, we note
fdd
=⇒ the convergence in finite-dimensional law in L1(Rd) ∩Lα(Rd). Proposition 2.1 in [3] gives the

limiting behaviour, when ρ→ 0, of

M̃ρ(μ) = n(ρ)−1
(
Mλ(ρ),ρ(μ) − E

[
Mλ(ρ),ρ(μ)

])
.

(1) (Large regime) If λ(ρ)ρβ → +∞, then, setting n(ρ) =
(
λ(ρ)ρβ

)1/α, we have:

M̃ρ(·) fdd
=⇒ Zα(·), (2.1)

when ρ→ 0 and where Zα is the stable field

Zα(μ) =
∫

Rd×R+

μ[τx,rh] Mα(dx, dr)

with respect to the α-stable measure Mα with control measure σαCβr
−1−β dxdr and constant skewness

function b, where σ and b are related to G by (1.4).
(2) (Intermediate regime) If λ(ρ)ρβ → a for some a ∈ (0,+∞), then, setting n(ρ) = 1, we have:

M̃ρ(·) fdd
=⇒ Ja(·), (2.2)

when ρ→ 0 and where Ja is the compensated Poisson integral

Ja(μ) =
∫

Rd×R×R+

mμ[τx,rh] Ñβ,a(dx, dr, dm)

with respect to the compensated Poisson random measure Ñβ,a with intensity aCβr
−β−1 dxdrG(dm).

In order to reinforce (2.1) and (2.2) into functional convergences in C(A), we shall assume the following uniform
control of the measures μ ∈ A by some measure μ∗(x) dx:

sup
μ∈A

(∫
Rd

∣∣h (r−1(y − x)
)∣∣p |μ|(dy)

)
≤
∫

Rd

∣∣h (r−1(y − x)
)∣∣p φ∗(y)(dy) (Cp)

for all x ∈ R
d and all r > 0, with φ∗ ∈ L1(Rd) ∩ Lα(Rd) and p ≥ 1. A discussion on (Cp) is given in Section 4.

More precisely, we assume below that (Cp) holds true for p = 1 and for p equal to some (arbitrary) γ ∈ (1, α).
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Our main result states as follows:

Proposition 2.1. Assume that the family A of measures satisfies (C0) and (Cp) for p ∈ {1, γ} for some
1 < γ < α and that the shape function h satisfies (H).

(1) (Large regime) If λ(ρ)ρβ → +∞, then:

M̃ρ(·) C(A)
=⇒ Zα(·), ρ→ 0. (2.3)

(2) (Intermediate regime) If λ(ρ)ρβ → a for some a ∈ (0,+∞), then:

M̃ρ(·) C(A)
=⇒ Ja(·), ρ→ 0. (2.4)

Another interesting finite-dimensional result is Proposition 2.13 in [2] which states that when a→ +∞, we have

a−1/αJa(·) fdd
=⇒ Zα(·). (2.5)

We can again reinforce (2.5) into functional convergence:

Proposition 2.2. Under the same hypotheses as in Proposition 2.1, we have:

a−1/αJa(·) C(A)
=⇒ Zα(·), a→ +∞. (2.6)

Remark 2.3. When the shape function h is bounded (which is typically the case when h is radially non-
increasing), we can assume condition (Cp) only for p = 1 in Propositions 2.1 and 2.2 (no (Cγ) for some
γ ∈ (1, α) is required). To see this, observe that in the proof below (Sect. 3), (Cγ) is used only in the proof of
(1) in Lemma A.1 which can be replaced by (2) in Lemma A.1 when h is bounded.

As a consequence of our results, for all continuous functional f on C(A), we have

f
(
M̃ρ(·)

)
=⇒ f (Zα(·)) , ρ→ 0 (2.7)

or
f
(
M̃ρ(·)

)
=⇒ f (Ja(·)) , ρ→ 0 (2.8)

depending on the regime considered. For instance, with f(x) = supμ∈A |x(μ)| we can use (2.7) and (2.8) to
detect excessive fluctuations in the model.

3. Proofs

Proof of Proposition 2.1. It is well known that the functional convergence is equivalent to the combination of
the fdd convergences and tightness. Since the fdd convergences is known (cf. (2.1) and (2.2)), it remains to
prove the tightness of (Mρ(μ))μ∈A. Thanks to Prohorov’s theorem, this is equivalent to relative compactness
and this will be obtained, using Arzelà–Ascoli’s theorem for C(A), by showing the following control of the
uniform modulus of continuity (see [8], Thm. A2.1):

∀ε > 0, lim
δ→0

sup
ρ>0

P

⎛⎜⎝ sup
‖μ1−μ2‖TV ≤δ

μ1,μ2∈A

∣∣∣M̃ρ(μ1) − M̃ρ(μ2)
∣∣∣ > ε

⎞⎟⎠ = 0. (3.1)

We derive (3.1) with Markov’s inequality by proving that for 1 < γ < α given in Proposition 2.1:

lim
δ→0

sup
ρ>0

E

⎡⎢⎣ sup
‖μ1−μ2‖T V ≤δ

μ1,μ2∈A

∣∣∣M̃ρ (μ1) − M̃ρ (μ2)
∣∣∣γ
⎤⎥⎦ = 0. (3.2)
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Our argument to prove (3.2) exploits moment bounds obtained in [3] for such random field (Mλ,ρ(μ))μ∈A. We
use in particular the following expression of a fractional moment from [12]: if X is a random variable with
characteristic function ϕX(t) = E

[
exp(itX)

]
, then for 1 < γ < 2:

E
[|X |γ] = A(γ)

∫ +∞

0

(
1 − |ϕX(θ)|2) θ−1−γ dθ (3.3)

where

A(γ) =
(∫ +∞

0

(1 − cos(x))x−1−γdx
)−1

< +∞.

In order to be in position to exploit (3.3) for the fractional moment in (3.2) we need to specify the corresponding
characteristic function. To that purpose, we first bound sup‖μ1−μ2‖T V ≤δ

μ1,μ2∈A

∣∣∣M̃ρ(μ1) − M̃ρ(μ2)
∣∣∣ as follows:

sup
‖μ1−μ2‖TV ≤δ

μ1,μ2∈A

∣∣∣M̃ρ(μ1) − M̃ρ(μ2)
∣∣∣ ≤ sup

‖μ1−μ2‖T V ≤δ
μ1,μ2∈A

∣∣∣Mλ,ρ

(
n(ρ)−1(μ1 − μ2)

)∣∣∣
+ E

⎡⎢⎣ sup
‖μ1−μ2‖TV ≤δ

μ1,μ2∈A

∣∣∣Mλ,ρ

(
n(ρ)−1(μ1 − μ2)

)∣∣∣
⎤⎥⎦ . (3.4)

Since for γ > 1

E
[
(|X |+ E[|X |])γ ] ≤ 2γ

E
[|X |γ], (3.5)

we shall establish (3.2) by applying (3.3) to

X = sup
‖μ1−μ2‖T V ≤δ

μ1,μ2∈A

∣∣∣Mλ,ρ

(
n(ρ)−1(μ1 − μ2

)∣∣∣. (3.6)

We have

sup
‖μ1−μ2‖T V ≤δ

μ1,μ2∈A

∣∣∣Mλ,ρ

(
n(ρ)−1(μ1 − μ2)

) ∣∣∣ ≤ M̂ρ

(
n(ρ)−1mδ

)
:=

∫
|m| n(ρ)−1mδ

[
τx,r|h|

]
Nλ(ρ),ρ(dx, dr, dm)

where

mδ

[
τx,r|h|

]
= sup

‖μ1−μ2‖T V ≤δ
μ1,μ2∈A

|μ1 − μ2|
[
τx,r|h|

]
(3.7)

(observe that mδ is not a measure a priori). Since M̂ρ

(
n(ρ)−1mδ

)
is a (non centered) Poisson integral, its

characteristic function is given by:

ϕ
M̂ρ(n(ρ)−1mδ)

(θ) = exp

(∫
Rd×R+

ψG

(
n(ρ)−1θmδ[τx,r|h|]

)
λ(ρ)dxFρ(dr)

)
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with ψG(u) =
∫

R
(eiu|m|−1)G(dm). Note also ΨG(u) =

∫
R
(eiu|m|−1− iu|m|)G(dm) and observe that Re(ΨG) =

Re(ψG) (to be used below in (3.8)). Hence,

1 − ∣∣ϕ
M̂ρ(n(ρ)−1mδ)(θ)

∣∣2 = 1 − exp

(∫
Rd×R+

2Re
(
ΨG

(
n(ρ)−1θmδ

[
τx,r|h|

]))
λ(ρ)dxFρ(dr)

)
(3.8)

≤ 1 − exp

(
−2

∫
Rd×R+

∣∣ΨG

(
n(ρ)−1θmδ

[
τx,r|h|

]) ∣∣ λ(ρ)dxFρ(dr)

)

≤ 1 − exp

(
−2C(G)n(ρ)−αλ(ρ)|θ|α

∫
Rd×R+

∣∣∣mδ

[
τx,r|h|

]∣∣∣α dxFρ(dr)

)
(3.9)

using the local behaviour (1.4) of ΨG in 0. Using Lemma A.3 in the Appendix with γ := α > β/d therein, we
have ∫

Rd×R+

|μ[τx,r|h|]|α dxFρ(dr) ≤ C(φ∗)ρβδ
αd−β

d (3.10)

where

C(φ∗) = 2
αd−β
(α−1)d

(α− 1)d
(β − d)(αd − β)

(‖φ∗‖α‖h‖1)
α(β−d)
(α−1)d

(
‖φ∗‖1/α

1 ‖h‖α

) (αd−β)α
(α−1)d

.

Plugging the bounds (3.9) and (3.10) into (3.3) with X as in (3.6) and combining with (3.4) and (3.5), we obtain

E

⎡⎢⎣
∣∣∣∣∣∣∣ sup
‖μ1−μ2‖T V ≤δ

μ1,μ2∈A

∣∣∣M̃ρ(μ1−M̃ρ(μ2)
∣∣∣
∣∣∣∣∣∣∣
γ⎤⎥⎦ ≤ A(γ)

∫ +∞

0

(
1−exp

(
−2C(G)n(ρ)−αλ(ρ)ρβ |θ|αC(φ∗)δ

αd−β
d

))
θ−1−γdθ

= A(γ)A(α, γ)
(
n(ρ)−αλ(ρ)ρβ

)γ/α
(2C(G)C(φ∗))γ/αδ

(αd−β)γ
αd (3.11)

with a straightforward change of variables to derive (3.11) and where

A(α, γ) =
∫ +∞

0

(1 − exp(−θα)) θ−1−γ dθ

which is finite for γ < α.
In the large regime n(ρ) =

(
λ(ρ)ρβ

)1/α and the bound (3.11) entails (3.2) while in the intermediate regime
n(ρ)−αλ(ρ)ρβ = λ(ρ)ρβ is bounded so that (3.11) still entails (3.2). In both cases, this concludes the Proof of
Proposition 2.1. �

Proof of Proposition 2.2. In order to prove Proposition 2.2, we follow the same lines of reasoning as in the
previous proof. Set

Ia(μ) =
∫

Rd×R×R+

a−1/αmμ
[
τx,rh

]
Nβ,a(dx, dr, dm),

where Nβ,a is the Poisson random measure with intensity aCβr
−β−1dxdrG(dm), and

Ĩa(μ) =
∫

Rd×R×R+

a−1/αmμ
[
τx,rh

]
Ñβ,a(dx, dr, dm).

We obtain:
sup

‖μ1−μ2‖T V ≤δ
μ1,μ2∈A

∣∣∣Ia (μ1 − μ2)
∣∣∣ ≤ Îa(mδ) :=

∫
|m|a−1/αmδ

[
τx,r|h|

]
Nβ,a(dx, dr, dm)
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and

1 − |ϕÎa(mδ)(θ)|2 ≤ 1 − exp

(
−2C(G)Cβ |θ|α

∫
Rd×R+

∣∣∣mδ

[
τx,r|h|

]∣∣∣αdxr−β−1dr

)
. (3.12)

Using Lemma A.3 with γ := α and plugging it with (3.12) into (3.3) with

X = sup
‖μ1−μ2‖T V ≤δ

μ1,μ2∈A

∣∣∣Ia (μ1 − μ2)
∣∣∣,

we obtain

E

⎡⎢⎣
∣∣∣∣∣∣∣ sup
‖μ1−μ2‖T V ≤δ

μ1,μ2∈A

∣∣∣Ĩa(μ1) − Ĩa(μ2)
∣∣∣
∣∣∣∣∣∣∣
γ⎤⎥⎦ ≤ A(γ)A(α, γ)(2C(G)CβC(φ∗))γ/αδ

(αd−β)γ
αd . (3.13)

This allow to conclude the Proof of Proposition 2.2 like previously for Proposition 2.1. �

4. Discussion and examples

4.1. Fading function

In this section, we shortly discuss the choice of the fading function h satisfying (H). Note that from a
modeling point of view, it is natural to consider that the fading funtion h is radial and non-increasing. In this
case, h is bounded and condition (Cγ) for some γ ∈ (1, α) can be removed from our main result as explained
in Remark 2.3. This is typically the case for the fading function h = 1B(0,1) which recovers the classical setting
investigated in [1, 2, 7]. A general discussion of such fading effect is given in [6].

4.2. Discrete configurations

Our main results Propositions 2.1 and 2.2 are stated only for smooth configurations. Actually, when the
configurations considered are discrete, typically μ = δy, there is no hope to obtain functional convergence.
Heuristically, the dependence between Mρ(δy1) and Mρ(δy2), y1 �= y2, is given by the sum of the weights of the
balls containing both points y1 and y2 using the so-called covariation (see [10], Sect. 2.7). But at the limit when
ρ → 0 (in the so-called zoom-out case), the rescaled balls turn to be very small and typically no ball contains
simultaneously y1 and y2. This provides independence at the limit and we have:

n0(ρ)−1
(
Mρ(δy) − E[Mρ(δy)]

)
fdd
=⇒Wα(δy), y ∈ R

d,

where Wα(δy), y ∈ R
d, are iid Sα(σV 1/α, b, 0)-distributed. Since the field (Wα(δy))y∈Rd consists of independent

marginals, there is no hope for functional regularity. A similar remark can be fomulated when the configurations
live in the space of measures μ with finite support. From a more technical point of view, Remark A.2 below
indicates that our strategy, indeed, can not encompass discrete configurations.

4.3. Compactness of the configurations

In this section, we discuss the condition (C0). Since Propositions 2.1 and 2.2 are valid only for smooth
configurations μ(dy) = φμ(y) dy with φμ ∈ L1(Rd)∩Lα(Rd) the compactness of the set A of such configurations
is characterized by the following result (see [4]):

Theorem 4.1 (Fréchet–Kolmogorov). Let p ∈ [1,+∞[ and S be a subset of Lp(Rd). The set S is relatively
compact if and only if:

(1) S is bounded;
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(2) limr→+∞
∫
‖x‖>r |f(x)|p dx = 0 uniformly on S;

(3) and lima→0 ‖τaf − f‖p = 0 uniformly on S, where τaf(x) = f(x − a).

A typical example is a family of uniform configurations on balls included in some fixed bounded ball B ∈ R
d:

AB =
{
μ(dx) = 1B(y,r)(x)dx : B(y, r) ⊂ B

}
. (4.1)

The compactness in L1(Rd) ∩ Lα(Rd) comes from the Fréchet–Kolmogorov theorem since 1B(y,r) ≤ 1B and
1B ∈ L1(Rd) ∩ Lα(Rd) ensures (1) and (2) therein and (3) comes from that for all B(y, r) ⊂ B, and p = 1, α,

∥∥τa1B(y,r) − 1B(y,r)

∥∥p

p
=
∫

Rd

∣∣1B(y+a,r)(x) − 1B(y,r)(x)
∣∣pdx

=
∣∣B(y + a, r)ΔB(y, r)

∣∣ = 2
∣∣(B + a) \B∣∣ −→ 0, a → 0.

Another example with unbounded support configurations is

AΛ =
{
μ(dx) = e−λ‖x‖dx : λ ∈

[
λ, λ

]}
(4.2)

with 0 < λ < λ < +∞. The compactness in L1(Rd)∩Lα(Rd) comes from the Fréchet–Kolmogorov Theorem 4.1.
Indeed, e−λ‖x‖ ≤ e−λ‖x‖ ∈ L1(Rd) ∩ Lα(Rd) ensures (1) and (2) in Theorem 4.1 and (3) therein comes for
p = 1, α, from∥∥∥τae−λ‖·‖ − e−λ‖·‖

∥∥∥p

p
=
∫

Rd

∣∣∣e−λ‖x−a| − e−λ‖x‖
∣∣∣p dx

=
∫
‖x‖≤‖x−a‖

(
e−λ‖x‖ − e−λ‖x−a‖

)p

dx +
∫
‖x−a‖≤‖x‖

(
e−λ‖x−a‖ − e−λ‖x‖

)p

dx

≤
∫
‖x‖≤‖x−a‖

(
e−λ‖x‖ − e−λ‖x‖−λ‖a‖

)p

dx +
∫
‖x−a‖≤‖x‖

(
e−λ‖x‖+λ‖a‖ − e−λ‖x‖

)p

dx

≤
(
eλ‖a‖ − 1

)p
∫

Rd

e−λp‖x‖ dx =
(d− 1)!
(λp)d

|Bd(0, 1)|
(
eλ‖a‖ − 1

)p

−→ 0, a → 0,

for all λ ∈ [
λ, λ

]
since

(
1 − e−λ‖a‖) ≤ (

eλ‖a‖ − 1
) ≤ (

eλ‖a‖ − 1
)
.

4.4. Uniform control of the configurations

In this section, we discuss the uniform control encapsulated into (Cp), p = 1, γ for some γ ∈ (1, α). Several
sets of sufficients condition allow to satisfy (Cp) easily.

In the standard case, we have h = 1B(0,1) (see [2,7]), and (Cp) rewrites |μ|(B(x, r)) ≤ μ∗(B(x, r)) for all ball
B(x, r) and μ ∈ A. First, here are some examples of measures μ for which the conditions (C1) and (Cγ) are
met:

More generally, (Cp) derives from |μ|(A) ≤ μ∗(A) for all Borelian set A ⊂ R
d by approximating∣∣h (r−1(y − x)

)∣∣p by positive simple functions
∑

i ai1Ai(y) with ai > 0.
If the densities φμ of the measures μ satisfy supμ∈A |φμ| ∈ L1(Rd)∩Lα(Rd) then (Cp) hold true. For instance,

the conditions are satisfied if the measures μ are uniform measures with all their supports in a fixed bounded
set. This covers Example 2.1 in [3].

The condition (Cp) can also derive from a domination for a particular order associated to h: for instance if h
is positive and convex, (Cp) is obtained if all μ ∈ A are dominated by μ∗ for the convex-positive order (see [11]).
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4.5. Typical examples

Typical examples where all the conditions are met are the following:

• h = 1B(0,1) recovers the setting of [1, 2, 7].
• h is bounded and the set A of configurations is made of uniform measures on balls all included in a fixed

bounded set, cf . (4.1).
• h is bounded and the set A of configurations is given by (4.2).

Appendix A.

In this section, we prove technical bounds for mδ

[
τx,r|h|

]
in terms of δ under different sets of condition. These

bounds are the key point to derive the tightness of our processes. All along, we assume (C0) and (C1) and we
assume also (Cγ) for some 1 < γ < α unless h is bounded in which case (Cγ) is relaxed. Recall that mδ

[
τx,r|h|

]
is defined in (3.7).

Lemma A.1. Let γ ≥ 1.

(1) Assume the family A satisfies (Cγ) and h ∈ Lγ(Rd). Then∫
Rd

mδ[τx,r|h|]γdx ≤ 2δγ−1rd‖h‖γ
γ μ

∗(Rd). (A.1)

(2) Assume the family A satisfies (C1) and h ∈ L∞(Rd) ∩ L1(Rd). Then∫
Rd

mδ[τx,r|h|]γdx ≤ 2δγ−1rd‖h‖γ−1
∞ ‖h‖1 μ

∗(Rd). (A.2)

(3) Assume the family A satisfies (C1) and h ∈ L1(Rd), φ∗ ∈ Lγ(Rd). Then∫
Rd

mδ[τx,r|h|]γdx ≤ rγd‖φ∗‖γ
γ‖h‖γ

1 . (A.3)

Proof. First, for (1): using below the Hölder’s inequality, Condition (C1) and the Fubini’s theorem in (A.5), we
have:∫

Rd

mδ[τx,r|h|]γ dx ≤
∫

Rd

sup
‖μ1−μ2‖TV ≤δ

μ1,μ2∈A

((∫
Rd

∣∣h (r−1(y − x)
)∣∣γ (|μ1 − μ2|)(dy)

)
(|μ1 − μ2|)(Rd)γ−1

)
dx

≤ 2δγ−1

∫
Rd

sup
μ∈A

(∫
Rd

∣∣h (r−1(y − x)
)∣∣γ |μ|(dy)

)
dx (A.4)

= 2δγ−1

∫
Rd

∫
Rd

∣∣h (r−1(y − x)
)∣∣γ dx μ∗(dy) = 2δγ−1rd‖h‖γ

γ μ
∗(Rd) (A.5)

which is (1) in the lemma. The proof of (2) follows the same lines using∣∣h (r−1(y − x)
)∣∣γ ≤ ‖h‖γ−1

∞
∣∣h (r−1(y − x)

)∣∣
to replace, using (C1), (A.4) by∫

Rd

mδ[τx,r|h|]γdx ≤ 2δγ−1‖h‖γ−1
∞

∫
Rd

∫
Rd

∣∣h (r−1(y − x)
)∣∣ dx μ∗(dy).
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For (3), still using below Hölder’s inequality but with φ ∈ Lγ(Rd) and h ∈ L1(Rd), and using (C1) and a change
of variable in (A.6), we have:∫

Rd

mδ[τx,r|h|]γdx =
∫

Rd

sup
‖μ1−μ2‖TV ≤δ

μ1,μ2∈A

(∫
Rd

∣∣h (r−1(y − x)
)∣∣ (|μ1 − μ2|)(dy)

)γ

dx

≤ rγd

∫
Rd

∣∣∣∣∫
Rd

h(y)φ∗(ry + x) dy
∣∣∣∣γ dx (A.6)

≤ rγd

∫
Rd

{(∫
Rd

|h(y)|dy
)γ−1 ∫

Rd

|φ∗(ry + x)|γ |h(y)|dy
}

dx

= rγd‖φ∗‖γ
γ‖h‖γ

1 (A.7)

with the Fubini theorem to derive the last equality. �
Remark A.2. The measure μ∗ is assumed to be smooth. A carefull reading of the previous proof indicates
that this is used only to derive the bound O(rγd) in (A.3). However, this bound fails if μ∗ is no longer smooth:
indeed, in the proof above, the bound O(rγd) in (A.7) derives from (A.6) only if μ∗ does not have atom: since
if μ∗(y0) > 0, then (A.6) is bounded below by∫

Rd

∣∣h (r−1(y0 − x)
)∣∣γ μ∗(y0)γdx = rdμ∗(y0)γ

∫
Rd

|h(x)|γ dx

and there is no hope to obtain a bound in rγd for small r.

Lemma A.3. Let γ > β/d and assume μ∗(dy) = φ∗(y)dy with φ∗ ∈ L1(Rd)∩Lγ(Rd). Assume moreover either
(C1), (Cγ) and h ∈ L1(Rd) ∩ Lγ(Rd) or only (C1) when h ∈ L1(Rd) ∩ L∞(Rd). Then, for any ρ > 0,∫

Rd×R+

mδ[τx,r|h|]γdxFρ(dr) ≤ ρβδ
γd−β

d
(γ − 1)d

(β − d)(γd− β)
2

γd−β
(γ−1)d (‖φ∗‖γ‖h‖1)

γ(β−d)
(γ−1)d (C′(φ∗))

(γd−β)γ
(γ−1)d , (A.8)

where the constant C′(φ∗) depends on the hypothesis in force, i.e.

C′(φ∗) =

⎧⎨⎩‖φ∗‖1/γ
1 ‖h‖γ when (C1) and (Cγ) are satisfied,

‖φ∗‖1/γ
1 ‖h‖1−1/γ

1 ‖h‖1/γ
∞ when (C1) is satisfied and h ∈ L∞(Rd).

(A.9)

Proof. Assume (C1) and (Cγ) are satisfied. Then, using (A.1) and (A.3) in Lemma A.1, we have using a change
of variable:∫

R+

∫
Rd

mδ[τx,r|h|]γdxFρ(dr) ≤
∫

R+

(
2δγ−1ρdrd‖h‖γ

γ ‖φ∗‖1

)
∧
(
ργdrγd‖φ∗‖γ

γ‖h‖γ
1

)
F (dr)

= ργd‖φ∗‖γ
γ‖h‖γ

1

∫ δ1/dc/ρ

0

rγd F (dr) + 2δγ−1ρd‖h‖γ
γ ‖φ∗‖1

∫ +∞

δ1/dc/ρ

rd F (dr)

with

c =
(

2‖h‖γ
γ‖φ∗‖1

‖φ∗‖γ
γ‖h‖γ

1

)1/((γ−1)d)

. (A.10)

Using now the bound on the truncated moments of F given below in Lemma A.5 with δ := γd > β in (A.13)
and δ := d in (A.14), we obtain∫

Rd

mδ[τx,r|h|]γdxFρ(dr) ≤ ρβ

[
‖φ∗‖γ

γ‖h‖γ
1

β

γd− β
Cβc

γd−β + 2δγ−1‖h‖γ
γ ‖φ∗‖1

β

β − d
Cβc

d−β

]
from which (A.8) comes after cancellation when c is reported from (A.10).
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When only (C1) is satisfied and h ∈ L1(Rd) ∩ L∞(Rd), the proof is similar using (A.2) from Lemma A.1 in
place of (A.1). �

Lemma A.4. Let γ < β < γd and assume μ∗(dy) = φ∗(y)dy with φ∗ ∈ L1(Rd) ∩ Lγ(Rd). Assume moreover
either (C1), (Cγ) and h ∈ L1(Rd) ∩ Lγ(Rd) or only (C1) when h ∈ L1(Rd) ∩ L∞(Rd). Then,∫

Rd×R+

∣∣mδ

[
τx,r|h|

]∣∣γ dxr−β−1dr ≤ δ
γd−β

d
(γ − 1)d

(β − d)(γd− β)
2

γd−β
(γ−1)d (‖φ∗‖γ‖h‖1)

γ(β−d)
(γ−1)d (C′(φ∗))

(γd−β)γ
(γ−1)d , (A.11)

where the constant C′(φ∗) is given like in Lemma A.3 in (A.9).

Proof. Assume (C1) and (Cγ) are in force. Then, using (A.1) and (A.3) in Lemma A.1, we have∫
Rd×R+

∣∣mδ

[
τx,r|h|

]∣∣γ dxr−β−1dr ≤
∫

Rd

(
2δγ−1‖h‖γ

γ‖φ∗‖1r
d−β−1

)
∧
(
‖φ∗‖γ

γ‖h‖γ
1r

γd−β−1
)

dr

= ‖φ∗‖γ
γ‖h‖γ

1

∫ δ1/dc

0

rγd−β−1dr + 2δγ−1‖h‖γ
γ‖φ∗‖1

∫ +∞

δ1/dc

rd−β−1dr, (A.12)

where c is given in (A.10). Computing the integral, we obtain (A.11) after cancellation. When (C1) is in force
with h bounded, similar computations yields (A.11) with now (A.2) and (A.3) in Lemma A.1. �

The following bounds are easily computed (see [3] for details):

Lemma A.5. For δ > 0, when u→ +∞, we have:

∫ u

0

rδF (dr) ∼

⎧⎪⎪⎨⎪⎪⎩
Cst if δ < β

βCβ lnu if δ = β

β
δ−βCβu

δ−β if δ > β

(A.13)

and for 0 < δ < β, when u→ +∞, we have:∫ +∞

u

rδF (dr) ∼ β

β − δ
Cβu

δ−β . (A.14)

Moreover when δ > β, we have the global bound∫ u

0

rδF (dr) ≤ Cuδ−β . (A.15)
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[1] H. Biermé, A. Estrade and I. Kaj, Self-similar random fields and rescaled random balls models. J. Theoret. Probab. 23 (2010)
1110–1141.

[2] J.-C. Breton and C. Dombry, Rescaled weighted random balls models and stable self-similar random fields. Stochastic Process.
Appl. 119 (2009) 3633–3652.

[3] J.-C. Breton and C. Dombry, Functional macroscopic behavior of weighted random ball model. Alea, Lat. Am. J. Probab.
Math. Stat. 8 (2011) 177–196.

[4] H. Brézis, Analyse fonctionnelle. Masson (1983).

[5] W. Feller, An Introduction to Probability Theory and its Applications. Wiley (1966), Vol. 2.



INFINITE DIMENSIONAL FUNCTIONAL CONVERGENCES IN RANDOM BALLS MODEL 793

[6] I. Kaj, Aspects of wireless network modeling based on Poisson point processes Fields. Institute Workshop on Applied Proba-
bility, Carleton University. Available at: http://www.math.uu.se/˜ikaj/preprints/wirelessnotes2.pdf (2006).
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