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Abstract: Designing a controller to supervise an ambient application is a complex task. Any change in the 
system composition or end-users needs involves re-performing the whole design process. Giving to each 
device the ability to self-adapt to both end-users and system dynamic is then an interesting challenge. This 
article contributes to this challenge by proposing an approach named Extreme Sensitive Robotic where the 
design is not guided by finality but by the functionalities provided. One functionality is then seen as an 
autonomous system, which can self-adapt to what it perceives from its environment (including human activity). 
We present ALEX, the first system built upon the Extreme Sensitive paradigm, a multi-agent system that learns 
to control one functionality in interaction with its environment from demonstrations performed by an end-user. 
We study through an evolutive experimentation how the combination of Extreme Sensitive Robotic paradigm 
and ALEX eases the maintenance and evolution of ambient systems. New sensors and effectors can be 
dynamically integrated in the system without requiring any action on the pre-existing components.  

Keywords: Distributed Architecture, Innovative Architecture, Human System Interactions, Control System, 
Internet of Things, Smart Devices, Adaptive Multi-Agent System 

1 INTRODUCTION 

We are living at a time where technologies evolve 
every day. Intelligence, once restrained in personal 
computers, is now distributed in our environments 
under many forms. Those systems are ambient 
(Guivarch, 2012). Internet of things, wearable 
sensors, robotics, home automation, are 
illustrations of the ubiquitous computing revolution 
(Weiser, 1991). As software and hardware become 
ever more elaborated, intelligence is now 
embedded in objects. We have at our disposal 
libraries of various components realizing functions 
rather than objectives. For example, smart 
cameras can produce data from image recognition 
algorithms or every day object can play a role in the 
human-system interaction. Each of those 
components is autonomous and designed 
independently.  
 
A robot for a particular application consists in the 
aggregation of the necessary components to 
satisfy its objectives. Those components could be 
part of the robot body or distributed in its 

environment. The collective of components has to 
interact and collaborate to perform an adequate 
global activity. The design of an intelligent system 
is then a matter of integration and a recurrent 
challenge is how to enable all those intelligent 
things to collaborate whereas they have an 
autonomous activity.  
 
Those ambient systems are truly complex: a 
potentially huge number of heterogeneous devices 
evolves autonomously (including appearance or 
disappearance of devices) to provide services to its 
users (Perera, 2014). Designing an ad hoc 
controller supervising the whole activity involves 
having a lot of knowledge on the system dynamic. 
Any change in the system composition implies re-
performing the whole design process meaning that 
sustainability of such system is a challenging task. 
Complexity is increased by the specific, multiple 
and often changing needs of end-users. Designers 
cannot make a priori a complete specification. 
Actually, the maintenance and evolution of an 
ambient system involves high costs, as it usually 
requires high knowledge and skills.  



One of the challenges is then to give to each device 
the ability to self-adapt to both system dynamic and 
end-user needs. 
 
This paper contributes to this challenge by studying 
the benefits of using self-adaptive components in 
the design of robotic applications. The paper is 
organized as follows: First, we formulate the 
problem of integration of robotic. Secondly, we 
present the Extreme Sensitive Robotic paradigm, 
an innovative architecture to design ambient 
robotic applications. A scientific background is then 
provided to position the paper in regard with other 
scientific domains. Our main contribution, ALEX, is 
then presented in section 5. Section 6 proposes a 
use-case study of using ALEX in combination with 
the Extreme Sensitive Robotic paradigm from the 
viewpoint of a designer of a robotic application. 
Finally, we conclude with some perspectives. 

2 DESIGNING A ROBOTIC 
SYSTEM: THE 
INTEGRATOR PROBLEM 

The evolution of technologies, both in terms of 
hardware and software, makes available libraries 
of various components realizing functions rather 
than objectives. Internet of things (Perrera, 2014) 
is the perfect illustration of such a possibility. 
Designers of those systems have to aggregate 
different functions to build a system providing 
services to its users. Those functions are provided 
by electronic devices (basically by effectors). Each 
device exercises a control over a particular 
functionality. For example, a particular device can 
control the activation of an electric shutter and 
another one can control lights. Robots are part of 
those systems and propose a set of functionality, 
which can include mobility. A mobile robotic 
platform equipped with a robotic arm then provides 
two functionalities: the ability to move and the 
ability to grab objects. The integration of those 
different robotic components in order to provide 
service to humans is a complex task.  

Let’s consider the case of a designer who wants to 
integrate a robotic arm from one constructor and a 
mobile platform from another constructor, while 
using image processing algorithms from a third 
provider to perform a collecting task. The design of 
an ad hoc controller for such application is complex 
and requires a lot of expertise on each component, 
but also on its environment (which includes human 
activity). If for any reason, a component is replaced 
with another one (even if this new component 
provides the same functionality), the whole design 
process has to be performed again. This is time 
greedy and involves high cost of maintenance and 
evolution.  However, the same system composition 
(one robotic arm, one camera based vision and a 
robotic platform) could be used in different kind of 
application. For example, one could want to use it 
for turning valves in a factory or the other for 
cleaning a room in a nuclear power plant. Each 
new application involves designing a new controller 
(figure 1). 

 
A designer of such system would profits from a 
system capable of self-adapting to both the 
environment and users’ needs without requiring 
reprogramming any system’s component. This is 
the postulate made by Extreme Sensitive Robotic. 

3 EXTREME SENSITIVE 
ROBOTIC: EXPECTATIONS 

The Extreme Sensitive Robotic (XS Robotic) is an 
integrative approach of functions of perception, 
decision, action and interaction. It proposes a 
bottom-up approach focusing on functionality 
rather than a top-down approach focusing on 
objectives. Each function is an atomic part 
composing the micro-level of the system. A robot is 
then seen as the aggregation of the necessary 
functions to satisfy user’s needs. Further, a group 
of robots or a whole ambient system has to be 
considered in the same way: a set of macro-
functions (each robot) working in coordination.  

The XS Robotic considers each robotic device in 
interaction with humans, other devices and the 
environment through sensors. Each device is 
autonomous which induces that the complexity of 
a robot (or a collective or robots) is not described 
explicitly or implicitly in it. Each device determines 
its own activity in interaction with its environment. 
The problem of integration then becomes a 
problem of adaptation. Each device has to adapt its 
behavior to its environment. 

By applying the XS Robotic paradigm to the 

Figure 1: Example of integration problem: designing a unique 
controller for 3 robotic components is dependent of system 
composition. 



previously enounced problem, there is no 
difference between the two systems (Figure 2). 
Indeed, as each device is able to self-adapt to its 
environment, it will autonomously integrate any 
new device to its own activity.  

To be truly effective, the XS Robotic needs generic 
algorithms allowing devices to self-adapt both to 
system’s dynamic and humans. Those devices, 
which interact with their environment and their 
users, must have the capacity to automatically 
learn from this interaction and exploit this 
knowledge. But to be as natural as possible, the 
human-system interaction must rest on a process 
that does not need any expert knowledge. On 
contrary, it must provide a natural way for any kind 
of user to express their needs. 

4 SCIENTIFIC BACKGROUND 

On the previous section, authors present the 
Extreme Sensitive Robotic as an integrative 
approach resting on self-adaptation skills. XS 
Robotic deals with the ability to learn from 
interaction with the environment and users. 
However, the idea of making autonomous systems 
able to self-adapt and learn from their environment 
is not completely new. In fact it relies in the heart of 
informatics. Yet in the early 50's, Alan Turing 
(Turing 1950) states that "instead of trying to 
produce a program to simulate the adult mind, why 
not rather try to produce one which simulates the 
child's? If this were then subjected to an 
appropriate course of education one would obtain 
the adult brain". On this section we present 
concepts coming from robotic, cognitive science 
and artificial intelligence that attempt to build 
autonomous artificial systems with the ability to 
learn from interaction. For each domain, we point 
out main properties required for enabling XS 
Robotic.  

More than sixty years after the dream of Alan 
Turing, robotic controllers are still handcrafted. 
Artificial intelligence failed to bring Turing's dream 
to life. Brooks explains that this failure may come 

from engineer's conceptualization of the world that 
may not be appropriate for artificial systems with a 
different sensory motor apparatus (Brooks, 1990). 
Due to the limits of introspection, the abstraction 
that a human would supposed to be appropriate to 
build a system may be completely different to what 
he is actually using. A metaphor that sums up 
Brook's idea would be that making abstraction of 
the world is like observing the world through a 
keyhole instead of opening the door, depriving the 
system of all the wealth that this world has to offer. 
To avoid this problem, Brooks proposes the 
physically grounding hypothesis that stipulates that 
interaction with the environment has to be the 
primary source of constraint for the design of 
intelligent system. 

Pfeifer (Pfeifer, 2006) goes further by arguing that 
there is a strong relationship between the body and 
the mind. Pfeifer states that the traditional view of 
intelligence is that it is located inside the brain, or 
more generally inside the control system. However, 
he shows that studying the brain (or the control) 
alone does not allow to completely infer the 
behavior of the system. The brain needs a body to 
act, and the way the brain is embodied in the 
physical world may strongly influence the way it 
acts. This relation is called embodiment. 
Embodiment plays an important role in learning as 
what we can learn is strongly related to what we 
can do. 

Zlatev and Balkenius (Zlatev, 2001) state that 
cognitive science community realizes that “true 
intelligence in natural and (possibly) artificial 
systems presupposes three crucial properties: 

- The embodiment of the system 

- Its situatedness in a physical and social 
environment 

-  A prolonged epigenetic developmental 
process through which increasingly more 
complex cognitive structures emerge in the 
system as a result of interactions with the 
physical and social environment 

Cognitive sciences have a particular echo inside 
the artificial intelligence community and has 
inspired learning techniques. (Guerin, 2011) 
proposed an overview of artificial intelligence 
approaches trying to build programs that could 
develop their own knowledge and abilities through 
interaction with the world. The approaches 
inventoried by Guerin share the same conception 
of the learning process. They see learning as an 
iterative process by which a system builds 
increasingly more complex structures, and uses 
these structures to behave in interaction with the 
environment. However, most of them fall under 
Brook's critics. Moreover, most of the methods only 

Figure 2: The same problem through the scope of XS 
Robotic. The two systems are an equivalent problem. 



took interest on knowledge creation, avoiding the 
problem of knowledge exploitation. 

We agree with Brooks and Pfeifer vision of 
intelligence. That means that to be truly adaptive, 
the design of an XS Function should not fall into 
Brook's critic of abstraction. An XS Function must 
then exploit all source of information as a signal 
without making any abstraction on it. Semantic is 
then prohibited. On contrary, each signal has to be 
considered the same way, as a raw observation of 
the world. 

Furthermore, as we cannot make a separation 
between the body and the mind, the learning 
process allowing self-adaptation has to be self-
aware of its own activity and its consequences on 
what it senses from its environment. Learning from 
the consequences of my own embodiment relation 
(which means consequence of my own activity) will 
allow the system to sense any changes on this 
relation, either this changes come from a 
modification of system's body or environment. The 
learning process should be made through 
interaction with the physical and social 
environment by which a complex behavior 
emerges. 

To be usable by any kind of user, the adaptation 
process must not require any expertise. Learning 
from Demonstration (Argall, 2009) appears then to 
be a promising approach. Learning from 
Demonstration is a paradigm to dynamically learn 
new behaviors from demonstrations performed by 
a human. The process of demonstration does not 
require expertise from the user on the controlled 
system while allowing the system to capture the 
user’s needs. 

 
On the next section, we present our contribution to 
enable the XS Robotic vision. This contribution is a 
combination of the Adaptive Multi-Agent System 
approach and Learning from Demonstration. 

5 ADAPTIVE LEARNER BY 
EXPERIMENTS 

Through the scope of XS Robotic, the problem of 
integration of robotic components is a problem of 
self-adaptation. We then need to propose an 
algorithm that enable each device to self-adapt. On 
this section, we present our contribution, ALEX, an 
adaptive multi-agent system designed to learn from 
demonstration performed by a tutor. Its design is 
based on the Adaptive Multi-Agent System (AMAS) 
approach.  

5.1 AMAS approach 

The Adaptive Multi-Agent System approach 
(Gleizes, 2012) addresses the problematic of 
complex systems with a bottom-up approach 
where the concept of cooperation is the core of 
self-organization. The theorem of functional 
adequacy (Camps, 1998) states that:  

“For all functionally adequate systems, 
there is at least one system with a 
cooperative internal state that realizes the 
same function in the same environment”  

A general definition of cooperation could be the 
golden mean between altruism and selfishness 
(Picard, 2005). The role of an AMAS designer is to 
identify non cooperative situations and to propose 
mechanisms to anticipate or resolve such 
situations. The agent detecting a non-cooperative 
situation automatically triggers those mechanisms. 
Three mechanisms allow repairing or anticipating a 
non-cooperative situation (Capera, 2003): 

- Tuning: the agent adjusts its internal 
state to modify its behavior, 

- Reorganization: the agent modifies the 
way it interacts with its neighborhood, 

- Evolution: the agent can create other 
agents or self-suppress when there is no 
other agent to produce a functionality or 
when a functionality is useless.  

The system will then self-organize to stay in a 
cooperative state. From cooperative interactions 
between the system's entities emerges a global 
function that is more than the sum of the parts 
(Figure 3).  

Figure 3: A schematic view of an AMAS system. The 

functionality 𝑓𝑠 provided by the system is more than the sum of 
each agent functionality 𝑓𝑝𝑖

. It is the result of interactions 

between agents and the environment. 



The approach proposes a methodology called 
ADELFE that guides the designer of an AMAS 
system (Bonjean, 2014).  

5.2 Learning from Demonstrations 

Learning from Demonstration, also named 
Imitation Learning or Programming by 
Demonstration, is a paradigm mainly studied in the 
robotic field that allows systems to self-discover 
new behaviors (Argall, 2009). It takes inspiration 
from the natural tendency of some animal species 
and humans to learn from the imitation of their 
congeners. The main idea is that an appropriate 
controller for a robotic device can be learnt from the 
observation of the performance of another entity 
(virtual or human) named as the tutor. The tutor 
can interact with the system to explicit the desired 
behavior through the natural process of 
demonstration. A demonstration is then a set of 
successive actions performed by the tutor in a 
particular context. The learning system has to 
produce a mapping function correlating 
observations of the environment and tutor's actions 
to its own actions. The main advantage of such 
technique is that it needs no explicit programming 
or knowledge on the system.  It only observes 
tutor's actions and current system context to learn 
a control policy and can be used by end-users 
without technical skills.  
 
The paradigm has been used on a wide range of 
applications such as autonomous car following 
(Lefèvre, 2015), robot trajectory learning (Vukovic, 
2015) or robot navigation in complex unstructured 
terrain (Silver, 2010). Recent surveys (Billard, 
2008) (Argall, 2009) propose an overview of the 
LfD field illustrating a wide variety of applications. 
Our interest is not to focus on one particular 
application. On the contrary, we want to deal with 
any kind of ambient robotic system. 

5.3 ALEX architecture and general 
behavior 

In accordance with the ADELFE (Bonjean, 2014) 

methodology, we designed ALEX (Adaptive 
Learner by Experiment), an Adaptive Multi-Agent 
System, to learn to control a system from 
demonstrations.  

On the rest of this section, we present ALEX 
architecture and focuses on Context agents, which 
are the core of the learning process. 

5.3.1 ALEX architecture  

An ALEX instance is designed to control a robotic 
device (an effector) by sending actions to it. Those 
actions are changes of the current state of the 
robotic device. An ALEX instance is in constant 
interaction with its environment from which it 
receives actions from its tutor and a set of sensors 
values. ALEX observes the current state of all 
accessible sensors, the action performed by the 
tutor and in response sends the action to be 
applied by the controlled robotic device. ALEX is 
composed of two components, an Exploitation 
mechanism and a set of Context agents. The figure 
4 illustrates ALEX architecture.  
The Exploitation mechanism is responsible for 
sending actions to the robotic device. In order to do 
so, it receives both the action performed by the 
tutor and a proposition of action from the set of 
Context agents. By comparing the action realized 
by the tutor to the proposition made by Context 
agents, the Exploitation mechanism can generate 
a feedback that is sent to the set of Context agents. 
Context agents are the core of the learning. They 
are responsible of making action proposition based 
on what they have observed of previous tutor 
actions. More details about this architecture can be 
found on previous work (Boes, 2015). 
On the rest of this section, we present the behavior 
of Context agents. 
 

5.3.2 Context-agents behavior 

The term context in this paper refers to all 
information external to the activity of an entity that 
affects its activity. This set of information describes 
the environment as the entity sees it (Guivarch, 
2014). ALEX interacts with a tutor (virtual or 
human) which performs a set of demonstration. A 
demonstration consists in the performance of an 
action under a particular context. Each time an 
action is performed, ALEX correlates the effect of 
the performance of this action on the current 
situation to effects of this action on the 
environment. ALEX receives a set of signals 𝑂 from 
the environment that describes the current 
situation. Each signal 𝑜𝑛 ∈ 𝑂 is a continuous value 
associated to a unique identifier. The identifier is 
used to discriminate signals and has no semantic 
value.  
 

Figure 4: ALEX architecture 



ALEX is composed of a set of Context Agents. A 
Context agent is a tripartite structure composed of 
a context description, an action, and an 
expectation of the utility of the action under this 
particular context: 

< 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 > 
At start, the set of Context agents is empty as 
ALEX possesses no a priori knowledge. Context 
agents are autonomously and dynamically created. 
Context agents receive signals from the 
environment (from sensors) which they use to 
characterize the current context. To build its 
context description, a Context agent associates to 
each signal 𝑂 from the observation space a set of 

two bounds < 𝑜𝑚𝑖𝑛 , 𝑜𝑚𝑎𝑥 >. Every time the 
observation space 𝑂 is included to its context 
description, a Context agent makes an action 
proposal. This proposal could be interpreted as "if 
you do this particular action under this particular 
context, you can expect this particular utility". At its 
creation, a context agent is associated to a unique 
action. The role of a context agent is then to both 
learn the context description and the utility 
associated to its action thanks to feedbacks it 
perceives from its tutor and signals it perceives 
from the environment. When the tutor is not acting 
on the system, Context agents are responsible of 
system autonomy. Then they must cooperate to 
perform an effective control on the device that 
satisfies the tutor. 
 
Context agents dynamically manage their context 
description by either reducing or expanding their 
bounds (figure 5) in interaction with the tutor. Each 
time the tutor performs an action, Context agents 
observe the tutor activity and compare it to their 
own action.  
 
Four adaptation processes can occur: 
 

- Expansion: When the tutor performs an 
action that is close to a Context agent's 
context, and this Context agent proposes 
the same action, the Context agent can 
manage its bound to integrate the current 
situation. 

- Reduction: When the tutor performs an 
action that is different to the action 
proposed by a Context agent, but this 
Context agent context description include 
this situation, the Context agent updates 
its bound to exclude the current situation. 

- Suppression: By adjusting its bounds, a 
Context agent can find himself in a 
situation where 𝑜𝑚𝑎𝑥  <  𝑜𝑚𝑖𝑛. Such 
situation produces the destruction of the 
Context agent. 

- Creation: When no Context agent 
proposes the user action (and no Context 

agent can expand to represent the 
situation), the system autonomously 
create a new Context agent to represent 
the tutor's action. 

 
Bounds are managed by Adaptive Value Trackers, 
a software component that is able to find the value 
of a dynamic variable in a given space through 
successive feedbacks. More information on 
Adaptive Value Trackers can be found on previous 
work (Guivarch, 2015). The main advantage of this 
context description is that no semantic on signals 
is used: it only observes variation of signal values. 
In parallel to the adaptation of bounds, Context 
agents maintain a utility value. This utility value 
helps Context agents to disambiguate situations 
where many Context agents with different actions 
propose to perform an action. Utility is then used to 
determine which the best action to perform is. 
Utility value is based on Context agent history. The 
more a Context agent can makes action proposal 
that is different to the user activity, the more its 
utility value is low. On contrary, the more the 
Context agent proposition has been confirmed by 
user activity, the more the agent is confident in its 
utility. This value is managed by the function: 

 𝐶𝑡+1  =  𝐶𝑡 ∗  ( 1 −  0.8 )  + 𝐹𝑡  ∗  0.8  
where 𝐶𝑡 is the utility value at time 𝑡, and 𝐹 is the 

similarity with the tutor where 1 means that the 
context is proposing the same action than the tutor 
and 0 means that two actions are different. 

Figure 5: Context agent bounds management example. The 
cross represents the current situation and its color the action 
performed by the user. 



Whenever the tutor performs an action on the 
device, Context agents use this action to self-adapt 
by adjusting their bounds and their utility value. 
However, when the tutor is not acting, Context 
agents use the acquired knowledge to cooperate 
and control the device. 

5.4 ALEX previous work 

ALEX has been previously evaluated on a 
collection task (Verstaevel, 2015). The experiment 
illustrates the advantages of our approach for end-
user, allowing a natural way to express their needs. 
A tutor controlling a two-wheeled robot 
demonstrates a collecting task. By comparing the 
number of artefact collected by the tutor in 5 
minutes to the score performed by the rover in 
autonomy, the results show that ALEX managed to 
learn to perform the activity more efficiently than 
the tutor does. The Context learning architecture 
has been abstracted and applied to various 
domains (Boes, 2014). On this article, we change 
of viewpoint and want to illustrate advantages of 
our approach for designers. The next section 
proposes a use-case study to show those 
advantages. 

6 A USE-CASE STUDY 

We propose to study the benefits of our approach 
for the design of the following application: 

A two wheeled rover has to go from an 
area 𝐴 to an area 𝐵. The passage between 
the two areas is only possible through a 
door. The area 𝐴 may be populated with 
obstacles. The rover then has to navigate 
through the area to reach the gate, and 
then go through it. The experiment is 
complete when the rover is in the area 𝐵 
and the door is closed.  

The experiment is implemented on Webots®, a 
robotic simulator. The arena is composed of two 
areas, separated with a white door. The walls on 
the left part of the arena are blue, the walls on the 
right part of the arena are red (see figure 6). The 
ALEX implementation we used is developed in 
Java and is the same for all experiments. At each 
time step, an ALEX instance receives data values, 
the action performed by the tutor and in response, 
provides the action to be performed.  
Each experiment is decomposed in two phases. 
First, the designer performs a complete 
demonstration of the activity during which he takes 
control of the rover. This first phase allows each 
ALEX instance to acquire Context agents. 
Secondly, the rover performs the task 
autonomously by using the previously learnt 
Context agents. The designer then observes the 
activity to determine if or not the rover behavior is 
satisfying. 
In case of a failure in the reproduction of the task, 
the designer can extract and analyze Context 
agents’ structure.  

Figure 7: Architecture of the first experiment. Each ALEX 
receives the distance value and has to associate to this value 
the adequate speed. 

Figure 9: Modified architecture of the first experiment. Each 
ALEX now receives the distance and the current speed of both 
wheel. 

Figure 8: A comparison of two Context agents 4 and 6 extracted 
from the first experiment. The two Context agents propose a 
different action under the same context leading to ambiguity. 

Figure 6: A view of the simulation. The rover evolves in an arena 
and has to reach the white door. 



6.1 First experiment: avoiding 
obstacles 

In accordance with the XS Robotic vision, the 
designer first identifies the functionalities involved 
in the application.  

The rover is composed of two wheels, each 
wheel controlling its own speed value from 

−100 to 100. Each wheel is then an XS 
function of action.  

Then the designer needs to provide to the rover 
some perception about its surrounding 
environment.  

As the task involves avoiding obstacles, a 
distance sensor is identified as required to 
navigate through the area. The distance 
sensor is then an XS function of 
perception. 

Once both functions of action and perception have 
been identified, the designer can realize its first 
experiment and try to teach to the rover the task. 
The figure 7 illustrates the architecture of this first 
experiment. 
After this first demonstration, we observe that the 
rover fails in its navigation task. By observing the 
Context agents inside each ALEX instances, we 
found that using only distance value leads to 
ambiguities in the demonstration. The 
phenomenon is observable in figure 8. The figure 
shows the structure of two Context agents after the 
demonstration. The yellow area corresponds to the 
values of the distance sensor where the Context 
agent is valid. The green area to the values where 
the Context agent is extensible. Those two Context 
agents are extracted from the right wheel ALEX.  
They propose a different action. The first one 
propose to go at a speed of 100 whereas the 

second one proposes to go at a speed of 0. If we 
observe the two validity range of the Context 
agents, we observe an overlap.  This overlap 
means that the two Context agents will propose 
their action in similar situation, leading to 
ambiguity. The reason is that using only an 
ultrasound sensor is not well enough to 
discriminate each situation. When the rover is at a 

particular distance, it can express either that the 
rover is approaching an obstacle or moving away.  

To disambiguate those situations, the designer 
propose to use the current speed value of both 
wheels as an input to the ALEX instance.  

A new demonstration is performed with this new 
architecture (figure 9) and the rover now succeed 
to navigate through the area. However, as it cannot 
differentiate a wall from the door, the rover fails to 
learn to reach the door. 

6.2 Second experiment: reaching the 
door 

As the rover needs to differentiate walls and 
the door, the designer proposes to add a 
Camera on the rover to recognize 
characteristics of the objects to be detected. 
Using a detection algorithm, the camera can 
provide visual information about the 
environment of the rover. As walls and the door 
have different colors, the camera identifies the 

coordinate (𝒙, 𝒚) of the center of each of the 
three color blue, white and green. 

A Camera is added to the simulation to provide new 
data to the rover. Each ALEX instance now 
receives, in complement of the previous data, the 
coordinate (𝒙, 𝒚) of the center of each color (see 
figure 10). If no artefact of one color is detected, 

Figure 10: The second experiment architecture. A camera is 
added providing three new couple of value (x,y) for each 
detected color. 

Figure 12: The architecture of the last experiment. The door is 
now controlled by and ALEX instance and receives the same 
information than the other ALEX. 

Figure 11: A particular Context involved in the last experiment. 
This Context agent is a lot more sensitive to the White (x,y) 
value than the other. 



the coordinates provided are (-1,-1). The addition 
of the camera does not involve any modification on 
the ALEX instances. The tutor then performs 
another demonstration of the task.  

Now the rover manages to navigate inside the 
arena and reach the door. By observing the 
structure of the Context agents involved in this 
experiment, we found that the agents involved in 
the part of the activity reaching the door have learnt 
to be less sensible to the blue and red coordinates. 
One example of those agents is visible in figure 11. 
The validity range associated the signals 𝑾𝒉𝒊𝒕𝒆𝑿 

and 𝑾𝒉𝒊𝒕𝒆𝒀 are smaller than the one associated 

to 𝑩𝒍𝒖𝒆𝑿 and 𝑩𝒍𝒖𝒆𝒀, and 𝑮𝒓𝒆𝒆𝒏𝑿 and 𝑮𝒓𝒆𝒆𝒏𝒀. 
As the activity only involves identifying the white 
door, the other data are unrelated. Our designer 
can exploit this information to remove unused data 
from the system. However, the rover failed to 
complete the task. While it managed to reach the 
door, the rover failed to open it as its engines were 
not powerful enough.  

6.3 Last experiment: opening the door 

For the third experiment, the door is equipped with 
a motor. An ALEX instance is associated to the 
door and must learn when it has to be open and 
when it has to be closed. For thus, the door 
receives the same data than the two ALEX 
instances controlling the wheels (Figure 12). 
Adding this new effector does not involve any 
action on the pre-existing devices and previously 
learnt Context agents can be kept.  

The tutor performs a final demonstration of the 
task, demonstrating to each component the 
desired behavior. At last, the rover managed to 
learn to reach the area B. The door correlated the 
action of opening to a low value of the distance 
sensor signal and the coordinate 𝑊ℎ𝑖𝑡𝑒𝑋 and 
𝑊ℎ𝑖𝑡𝑒𝑌 near the center of the screen. The rover 
and the door managed to collaborate without direct 
communication. As they share perception, they 
have enough information to coordinate their 
activity.  

6.4 Synthesis 

The whole experiment illustrates both the Extreme 
Sensitive Robotic paradigm and ALEX capacity to 
learn in interaction with human. The design of a 
robotic application with ALEX allows the designer 
to focus on the desired functionality and to let to 
ALEX the duty to find correlations between the 
performing of an action and the state of sensors. 
An application can be designed incrementally by 
gradually adding new sensor and effectors. The 
usage of a learning technic based on self-
observation allows the designer to point out 

situations of ambiguity or situations where some 
data are useless. Adding a new sensor or a new 
effector is not a complex task anymore as each 
component can self-adapt.  

7 CONCLUSION 

The design of a controller for a robotic application 
is a complex task. In this article, we propose to give 
to each device the ability to self-adapt in interaction 
with its environment. We propose an approach 
named “Extreme Sensitive Robotic” which focuses 
on the bottom-up design of robotic application. To 
enable each device to self-adapt, we proposes the 
use of ALEX, an adaptive multi-agent system 
based on Context-Learning.  

In previous work, we have shown the advantages 
of our approach for end-user, enabling the robotic 
device to automatically learn a behavior from 
demonstrations. In this article, we have taken the 
viewpoint of the designer of such a system. 
Through a use case, we have shown that the 
combination of Extreme Sensitive Robotic and 
ALEX could help designers to incrementally build 
their system. By studying the Context agents 
dynamically created by ALEX, the designer can 
point out ambiguity in signals and decide to 
increase the perception capacity of the system. 
The same analysis can lead the designer to add 
new effectors on the system. As each effector is 
designed to be self-adaptive, the appearance or 
disappearance of an effector or of a new sensor 
does not imply to re-act on the previously deployed 
effector.  

However, the study of Context agent is in this paper 
still hand-performed by the designer. Then, work is 
being made to allow Context agents to 
automatically discover situations of ambiguity 
where data are missing and to automatically solve 
those situations. Such automatic process involves 
to distribute intelligence inside each sensor which 
will become a cooperative agent by locally 
analyzing how they interact with Context agents. 
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