
HAL Id: hal-01258418
https://hal.science/hal-01258418

Submitted on 19 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed User-Centered Approach For Control in
Ambient Robotic

Nicolas Verstaevel, Christine Régis, Marie-Pierre Gleizes, Fabrice Robert

To cite this version:
Nicolas Verstaevel, Christine Régis, Marie-Pierre Gleizes, Fabrice Robert. A Distributed User-
Centered Approach For Control in Ambient Robotic. 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016), Jan 2016, Toulouse, France. �hal-01258418�

https://hal.science/hal-01258418
https://hal.archives-ouvertes.fr

A Distributed User-Centered Approach
For Control in Ambient Robotic

N. Verstaevela, b C. Régisb M.P. Gleizesb F. Roberta

verstaev@irit.fr regis@irit.fr gleizes@irit.fr fabrice.robert@sogeti.com

aSogeti High Tech,
3 Chemin de Laporte, Toulouse, France

bIRIT, Équipe SMAC,
Université Paul Sabatier, Toulouse, France

Abstract: Designing a controller to supervise an ambient application is a complex task. Any change in the
system composition or end-users needs involves re-performing the whole design process. Giving to each
device the ability to self-adapt to both end-users and system dynamic is then an interesting challenge. This
article contributes to this challenge by proposing an approach named Extreme Sensitive Robotic where the
design is not guided by finality but by the functionalities provided. One functionality is then seen as an
autonomous system, which can self-adapt to what it perceives from its environment (including human activity).
We present ALEX, the first system built upon the Extreme Sensitive paradigm, a multi-agent system that learns
to control one functionality in interaction with its environment from demonstrations performed by an end-user.
We study through an evolutive experimentation how the combination of Extreme Sensitive Robotic paradigm
and ALEX eases the maintenance and evolution of ambient systems. New sensors and effectors can be
dynamically integrated in the system without requiring any action on the pre-existing components.

Keywords: Distributed Architecture, Innovative Architecture, Human System Interactions, Control System,
Internet of Things, Smart Devices, Adaptive Multi-Agent System

1 INTRODUCTION

We are living at a time where technologies evolve
every day. Intelligence, once restrained in personal
computers, is now distributed in our environments
under many forms. Those systems are ambient
(Guivarch, 2012). Internet of things, wearable
sensors, robotics, home automation, are
illustrations of the ubiquitous computing revolution
(Weiser, 1991). As software and hardware become
ever more elaborated, intelligence is now
embedded in objects. We have at our disposal
libraries of various components realizing functions
rather than objectives. For example, smart
cameras can produce data from image recognition
algorithms or every day object can play a role in the
human-system interaction. Each of those
components is autonomous and designed
independently.

A robot for a particular application consists in the
aggregation of the necessary components to
satisfy its objectives. Those components could be
part of the robot body or distributed in its

environment. The collective of components has to
interact and collaborate to perform an adequate
global activity. The design of an intelligent system
is then a matter of integration and a recurrent
challenge is how to enable all those intelligent
things to collaborate whereas they have an
autonomous activity.

Those ambient systems are truly complex: a
potentially huge number of heterogeneous devices
evolves autonomously (including appearance or
disappearance of devices) to provide services to its
users (Perera, 2014). Designing an ad hoc
controller supervising the whole activity involves
having a lot of knowledge on the system dynamic.
Any change in the system composition implies re-
performing the whole design process meaning that
sustainability of such system is a challenging task.
Complexity is increased by the specific, multiple
and often changing needs of end-users. Designers
cannot make a priori a complete specification.
Actually, the maintenance and evolution of an
ambient system involves high costs, as it usually
requires high knowledge and skills.

One of the challenges is then to give to each device
the ability to self-adapt to both system dynamic and
end-user needs.

This paper contributes to this challenge by studying
the benefits of using self-adaptive components in
the design of robotic applications. The paper is
organized as follows: First, we formulate the
problem of integration of robotic. Secondly, we
present the Extreme Sensitive Robotic paradigm,
an innovative architecture to design ambient
robotic applications. A scientific background is then
provided to position the paper in regard with other
scientific domains. Our main contribution, ALEX, is
then presented in section 5. Section 6 proposes a
use-case study of using ALEX in combination with
the Extreme Sensitive Robotic paradigm from the
viewpoint of a designer of a robotic application.
Finally, we conclude with some perspectives.

2 DESIGNING A ROBOTIC
SYSTEM: THE
INTEGRATOR PROBLEM

The evolution of technologies, both in terms of
hardware and software, makes available libraries
of various components realizing functions rather
than objectives. Internet of things (Perrera, 2014)
is the perfect illustration of such a possibility.
Designers of those systems have to aggregate
different functions to build a system providing
services to its users. Those functions are provided
by electronic devices (basically by effectors). Each
device exercises a control over a particular
functionality. For example, a particular device can
control the activation of an electric shutter and
another one can control lights. Robots are part of
those systems and propose a set of functionality,
which can include mobility. A mobile robotic
platform equipped with a robotic arm then provides
two functionalities: the ability to move and the
ability to grab objects. The integration of those
different robotic components in order to provide
service to humans is a complex task.

Let’s consider the case of a designer who wants to
integrate a robotic arm from one constructor and a
mobile platform from another constructor, while
using image processing algorithms from a third
provider to perform a collecting task. The design of
an ad hoc controller for such application is complex
and requires a lot of expertise on each component,
but also on its environment (which includes human
activity). If for any reason, a component is replaced
with another one (even if this new component
provides the same functionality), the whole design
process has to be performed again. This is time
greedy and involves high cost of maintenance and
evolution. However, the same system composition
(one robotic arm, one camera based vision and a
robotic platform) could be used in different kind of
application. For example, one could want to use it
for turning valves in a factory or the other for
cleaning a room in a nuclear power plant. Each
new application involves designing a new controller
(figure 1).

A designer of such system would profits from a
system capable of self-adapting to both the
environment and users’ needs without requiring
reprogramming any system’s component. This is
the postulate made by Extreme Sensitive Robotic.

3 EXTREME SENSITIVE
ROBOTIC: EXPECTATIONS

The Extreme Sensitive Robotic (XS Robotic) is an
integrative approach of functions of perception,
decision, action and interaction. It proposes a
bottom-up approach focusing on functionality
rather than a top-down approach focusing on
objectives. Each function is an atomic part
composing the micro-level of the system. A robot is
then seen as the aggregation of the necessary
functions to satisfy user’s needs. Further, a group
of robots or a whole ambient system has to be
considered in the same way: a set of macro-
functions (each robot) working in coordination.

The XS Robotic considers each robotic device in
interaction with humans, other devices and the
environment through sensors. Each device is
autonomous which induces that the complexity of
a robot (or a collective or robots) is not described
explicitly or implicitly in it. Each device determines
its own activity in interaction with its environment.
The problem of integration then becomes a
problem of adaptation. Each device has to adapt its
behavior to its environment.

By applying the XS Robotic paradigm to the

Figure 1: Example of integration problem: designing a unique
controller for 3 robotic components is dependent of system
composition.

previously enounced problem, there is no
difference between the two systems (Figure 2).
Indeed, as each device is able to self-adapt to its
environment, it will autonomously integrate any
new device to its own activity.

To be truly effective, the XS Robotic needs generic
algorithms allowing devices to self-adapt both to
system’s dynamic and humans. Those devices,
which interact with their environment and their
users, must have the capacity to automatically
learn from this interaction and exploit this
knowledge. But to be as natural as possible, the
human-system interaction must rest on a process
that does not need any expert knowledge. On
contrary, it must provide a natural way for any kind
of user to express their needs.

4 SCIENTIFIC BACKGROUND

On the previous section, authors present the
Extreme Sensitive Robotic as an integrative
approach resting on self-adaptation skills. XS
Robotic deals with the ability to learn from
interaction with the environment and users.
However, the idea of making autonomous systems
able to self-adapt and learn from their environment
is not completely new. In fact it relies in the heart of
informatics. Yet in the early 50's, Alan Turing
(Turing 1950) states that "instead of trying to
produce a program to simulate the adult mind, why
not rather try to produce one which simulates the
child's? If this were then subjected to an
appropriate course of education one would obtain
the adult brain". On this section we present
concepts coming from robotic, cognitive science
and artificial intelligence that attempt to build
autonomous artificial systems with the ability to
learn from interaction. For each domain, we point
out main properties required for enabling XS
Robotic.

More than sixty years after the dream of Alan
Turing, robotic controllers are still handcrafted.
Artificial intelligence failed to bring Turing's dream
to life. Brooks explains that this failure may come

from engineer's conceptualization of the world that
may not be appropriate for artificial systems with a
different sensory motor apparatus (Brooks, 1990).
Due to the limits of introspection, the abstraction
that a human would supposed to be appropriate to
build a system may be completely different to what
he is actually using. A metaphor that sums up
Brook's idea would be that making abstraction of
the world is like observing the world through a
keyhole instead of opening the door, depriving the
system of all the wealth that this world has to offer.
To avoid this problem, Brooks proposes the
physically grounding hypothesis that stipulates that
interaction with the environment has to be the
primary source of constraint for the design of
intelligent system.

Pfeifer (Pfeifer, 2006) goes further by arguing that
there is a strong relationship between the body and
the mind. Pfeifer states that the traditional view of
intelligence is that it is located inside the brain, or
more generally inside the control system. However,
he shows that studying the brain (or the control)
alone does not allow to completely infer the
behavior of the system. The brain needs a body to
act, and the way the brain is embodied in the
physical world may strongly influence the way it
acts. This relation is called embodiment.
Embodiment plays an important role in learning as
what we can learn is strongly related to what we
can do.

Zlatev and Balkenius (Zlatev, 2001) state that
cognitive science community realizes that “true
intelligence in natural and (possibly) artificial
systems presupposes three crucial properties:

- The embodiment of the system

- Its situatedness in a physical and social
environment

- A prolonged epigenetic developmental
process through which increasingly more
complex cognitive structures emerge in the
system as a result of interactions with the
physical and social environment

Cognitive sciences have a particular echo inside
the artificial intelligence community and has
inspired learning techniques. (Guerin, 2011)
proposed an overview of artificial intelligence
approaches trying to build programs that could
develop their own knowledge and abilities through
interaction with the world. The approaches
inventoried by Guerin share the same conception
of the learning process. They see learning as an
iterative process by which a system builds
increasingly more complex structures, and uses
these structures to behave in interaction with the
environment. However, most of them fall under
Brook's critics. Moreover, most of the methods only

Figure 2: The same problem through the scope of XS
Robotic. The two systems are an equivalent problem.

took interest on knowledge creation, avoiding the
problem of knowledge exploitation.

We agree with Brooks and Pfeifer vision of
intelligence. That means that to be truly adaptive,
the design of an XS Function should not fall into
Brook's critic of abstraction. An XS Function must
then exploit all source of information as a signal
without making any abstraction on it. Semantic is
then prohibited. On contrary, each signal has to be
considered the same way, as a raw observation of
the world.

Furthermore, as we cannot make a separation
between the body and the mind, the learning
process allowing self-adaptation has to be self-
aware of its own activity and its consequences on
what it senses from its environment. Learning from
the consequences of my own embodiment relation
(which means consequence of my own activity) will
allow the system to sense any changes on this
relation, either this changes come from a
modification of system's body or environment. The
learning process should be made through
interaction with the physical and social
environment by which a complex behavior
emerges.

To be usable by any kind of user, the adaptation
process must not require any expertise. Learning
from Demonstration (Argall, 2009) appears then to
be a promising approach. Learning from
Demonstration is a paradigm to dynamically learn
new behaviors from demonstrations performed by
a human. The process of demonstration does not
require expertise from the user on the controlled
system while allowing the system to capture the
user’s needs.

On the next section, we present our contribution to
enable the XS Robotic vision. This contribution is a
combination of the Adaptive Multi-Agent System
approach and Learning from Demonstration.

5 ADAPTIVE LEARNER BY
EXPERIMENTS

Through the scope of XS Robotic, the problem of
integration of robotic components is a problem of
self-adaptation. We then need to propose an
algorithm that enable each device to self-adapt. On
this section, we present our contribution, ALEX, an
adaptive multi-agent system designed to learn from
demonstration performed by a tutor. Its design is
based on the Adaptive Multi-Agent System (AMAS)
approach.

5.1 AMAS approach

The Adaptive Multi-Agent System approach
(Gleizes, 2012) addresses the problematic of
complex systems with a bottom-up approach
where the concept of cooperation is the core of
self-organization. The theorem of functional
adequacy (Camps, 1998) states that:

“For all functionally adequate systems,
there is at least one system with a
cooperative internal state that realizes the
same function in the same environment”

A general definition of cooperation could be the
golden mean between altruism and selfishness
(Picard, 2005). The role of an AMAS designer is to
identify non cooperative situations and to propose
mechanisms to anticipate or resolve such
situations. The agent detecting a non-cooperative
situation automatically triggers those mechanisms.
Three mechanisms allow repairing or anticipating a
non-cooperative situation (Capera, 2003):

- Tuning: the agent adjusts its internal
state to modify its behavior,

- Reorganization: the agent modifies the
way it interacts with its neighborhood,

- Evolution: the agent can create other
agents or self-suppress when there is no
other agent to produce a functionality or
when a functionality is useless.

The system will then self-organize to stay in a
cooperative state. From cooperative interactions
between the system's entities emerges a global
function that is more than the sum of the parts
(Figure 3).

Figure 3: A schematic view of an AMAS system. The

functionality 𝑓𝑠 provided by the system is more than the sum of
each agent functionality 𝑓𝑝𝑖

. It is the result of interactions

between agents and the environment.

The approach proposes a methodology called
ADELFE that guides the designer of an AMAS
system (Bonjean, 2014).

5.2 Learning from Demonstrations

Learning from Demonstration, also named
Imitation Learning or Programming by
Demonstration, is a paradigm mainly studied in the
robotic field that allows systems to self-discover
new behaviors (Argall, 2009). It takes inspiration
from the natural tendency of some animal species
and humans to learn from the imitation of their
congeners. The main idea is that an appropriate
controller for a robotic device can be learnt from the
observation of the performance of another entity
(virtual or human) named as the tutor. The tutor
can interact with the system to explicit the desired
behavior through the natural process of
demonstration. A demonstration is then a set of
successive actions performed by the tutor in a
particular context. The learning system has to
produce a mapping function correlating
observations of the environment and tutor's actions
to its own actions. The main advantage of such
technique is that it needs no explicit programming
or knowledge on the system. It only observes
tutor's actions and current system context to learn
a control policy and can be used by end-users
without technical skills.

The paradigm has been used on a wide range of
applications such as autonomous car following
(Lefèvre, 2015), robot trajectory learning (Vukovic,
2015) or robot navigation in complex unstructured
terrain (Silver, 2010). Recent surveys (Billard,
2008) (Argall, 2009) propose an overview of the
LfD field illustrating a wide variety of applications.
Our interest is not to focus on one particular
application. On the contrary, we want to deal with
any kind of ambient robotic system.

5.3 ALEX architecture and general
behavior

In accordance with the ADELFE (Bonjean, 2014)

methodology, we designed ALEX (Adaptive
Learner by Experiment), an Adaptive Multi-Agent
System, to learn to control a system from
demonstrations.

On the rest of this section, we present ALEX
architecture and focuses on Context agents, which
are the core of the learning process.

5.3.1 ALEX architecture

An ALEX instance is designed to control a robotic
device (an effector) by sending actions to it. Those
actions are changes of the current state of the
robotic device. An ALEX instance is in constant
interaction with its environment from which it
receives actions from its tutor and a set of sensors
values. ALEX observes the current state of all
accessible sensors, the action performed by the
tutor and in response sends the action to be
applied by the controlled robotic device. ALEX is
composed of two components, an Exploitation
mechanism and a set of Context agents. The figure
4 illustrates ALEX architecture.
The Exploitation mechanism is responsible for
sending actions to the robotic device. In order to do
so, it receives both the action performed by the
tutor and a proposition of action from the set of
Context agents. By comparing the action realized
by the tutor to the proposition made by Context
agents, the Exploitation mechanism can generate
a feedback that is sent to the set of Context agents.
Context agents are the core of the learning. They
are responsible of making action proposition based
on what they have observed of previous tutor
actions. More details about this architecture can be
found on previous work (Boes, 2015).
On the rest of this section, we present the behavior
of Context agents.

5.3.2 Context-agents behavior

The term context in this paper refers to all
information external to the activity of an entity that
affects its activity. This set of information describes
the environment as the entity sees it (Guivarch,
2014). ALEX interacts with a tutor (virtual or
human) which performs a set of demonstration. A
demonstration consists in the performance of an
action under a particular context. Each time an
action is performed, ALEX correlates the effect of
the performance of this action on the current
situation to effects of this action on the
environment. ALEX receives a set of signals 𝑂 from
the environment that describes the current
situation. Each signal 𝑜𝑛 ∈ 𝑂 is a continuous value
associated to a unique identifier. The identifier is
used to discriminate signals and has no semantic
value.

Figure 4: ALEX architecture

ALEX is composed of a set of Context Agents. A
Context agent is a tripartite structure composed of
a context description, an action, and an
expectation of the utility of the action under this
particular context:

< 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 >
At start, the set of Context agents is empty as
ALEX possesses no a priori knowledge. Context
agents are autonomously and dynamically created.
Context agents receive signals from the
environment (from sensors) which they use to
characterize the current context. To build its
context description, a Context agent associates to
each signal 𝑂 from the observation space a set of

two bounds < 𝑜𝑚𝑖𝑛 , 𝑜𝑚𝑎𝑥 >. Every time the
observation space 𝑂 is included to its context
description, a Context agent makes an action
proposal. This proposal could be interpreted as "if
you do this particular action under this particular
context, you can expect this particular utility". At its
creation, a context agent is associated to a unique
action. The role of a context agent is then to both
learn the context description and the utility
associated to its action thanks to feedbacks it
perceives from its tutor and signals it perceives
from the environment. When the tutor is not acting
on the system, Context agents are responsible of
system autonomy. Then they must cooperate to
perform an effective control on the device that
satisfies the tutor.

Context agents dynamically manage their context
description by either reducing or expanding their
bounds (figure 5) in interaction with the tutor. Each
time the tutor performs an action, Context agents
observe the tutor activity and compare it to their
own action.

Four adaptation processes can occur:

- Expansion: When the tutor performs an
action that is close to a Context agent's
context, and this Context agent proposes
the same action, the Context agent can
manage its bound to integrate the current
situation.

- Reduction: When the tutor performs an
action that is different to the action
proposed by a Context agent, but this
Context agent context description include
this situation, the Context agent updates
its bound to exclude the current situation.

- Suppression: By adjusting its bounds, a
Context agent can find himself in a
situation where 𝑜𝑚𝑎𝑥 < 𝑜𝑚𝑖𝑛. Such
situation produces the destruction of the
Context agent.

- Creation: When no Context agent
proposes the user action (and no Context

agent can expand to represent the
situation), the system autonomously
create a new Context agent to represent
the tutor's action.

Bounds are managed by Adaptive Value Trackers,
a software component that is able to find the value
of a dynamic variable in a given space through
successive feedbacks. More information on
Adaptive Value Trackers can be found on previous
work (Guivarch, 2015). The main advantage of this
context description is that no semantic on signals
is used: it only observes variation of signal values.
In parallel to the adaptation of bounds, Context
agents maintain a utility value. This utility value
helps Context agents to disambiguate situations
where many Context agents with different actions
propose to perform an action. Utility is then used to
determine which the best action to perform is.
Utility value is based on Context agent history. The
more a Context agent can makes action proposal
that is different to the user activity, the more its
utility value is low. On contrary, the more the
Context agent proposition has been confirmed by
user activity, the more the agent is confident in its
utility. This value is managed by the function:

 𝐶𝑡+1 = 𝐶𝑡 ∗ (1 − 0.8) + 𝐹𝑡 ∗ 0.8
where 𝐶𝑡 is the utility value at time 𝑡, and 𝐹 is the

similarity with the tutor where 1 means that the
context is proposing the same action than the tutor
and 0 means that two actions are different.

Figure 5: Context agent bounds management example. The
cross represents the current situation and its color the action
performed by the user.

Whenever the tutor performs an action on the
device, Context agents use this action to self-adapt
by adjusting their bounds and their utility value.
However, when the tutor is not acting, Context
agents use the acquired knowledge to cooperate
and control the device.

5.4 ALEX previous work

ALEX has been previously evaluated on a
collection task (Verstaevel, 2015). The experiment
illustrates the advantages of our approach for end-
user, allowing a natural way to express their needs.
A tutor controlling a two-wheeled robot
demonstrates a collecting task. By comparing the
number of artefact collected by the tutor in 5
minutes to the score performed by the rover in
autonomy, the results show that ALEX managed to
learn to perform the activity more efficiently than
the tutor does. The Context learning architecture
has been abstracted and applied to various
domains (Boes, 2014). On this article, we change
of viewpoint and want to illustrate advantages of
our approach for designers. The next section
proposes a use-case study to show those
advantages.

6 A USE-CASE STUDY

We propose to study the benefits of our approach
for the design of the following application:

A two wheeled rover has to go from an
area 𝐴 to an area 𝐵. The passage between
the two areas is only possible through a
door. The area 𝐴 may be populated with
obstacles. The rover then has to navigate
through the area to reach the gate, and
then go through it. The experiment is
complete when the rover is in the area 𝐵
and the door is closed.

The experiment is implemented on Webots®, a
robotic simulator. The arena is composed of two
areas, separated with a white door. The walls on
the left part of the arena are blue, the walls on the
right part of the arena are red (see figure 6). The
ALEX implementation we used is developed in
Java and is the same for all experiments. At each
time step, an ALEX instance receives data values,
the action performed by the tutor and in response,
provides the action to be performed.
Each experiment is decomposed in two phases.
First, the designer performs a complete
demonstration of the activity during which he takes
control of the rover. This first phase allows each
ALEX instance to acquire Context agents.
Secondly, the rover performs the task
autonomously by using the previously learnt
Context agents. The designer then observes the
activity to determine if or not the rover behavior is
satisfying.
In case of a failure in the reproduction of the task,
the designer can extract and analyze Context
agents’ structure.

Figure 7: Architecture of the first experiment. Each ALEX
receives the distance value and has to associate to this value
the adequate speed.

Figure 9: Modified architecture of the first experiment. Each
ALEX now receives the distance and the current speed of both
wheel.

Figure 8: A comparison of two Context agents 4 and 6 extracted
from the first experiment. The two Context agents propose a
different action under the same context leading to ambiguity.

Figure 6: A view of the simulation. The rover evolves in an arena
and has to reach the white door.

6.1 First experiment: avoiding
obstacles

In accordance with the XS Robotic vision, the
designer first identifies the functionalities involved
in the application.

The rover is composed of two wheels, each
wheel controlling its own speed value from

−100 to 100. Each wheel is then an XS
function of action.

Then the designer needs to provide to the rover
some perception about its surrounding
environment.

As the task involves avoiding obstacles, a
distance sensor is identified as required to
navigate through the area. The distance
sensor is then an XS function of
perception.

Once both functions of action and perception have
been identified, the designer can realize its first
experiment and try to teach to the rover the task.
The figure 7 illustrates the architecture of this first
experiment.
After this first demonstration, we observe that the
rover fails in its navigation task. By observing the
Context agents inside each ALEX instances, we
found that using only distance value leads to
ambiguities in the demonstration. The
phenomenon is observable in figure 8. The figure
shows the structure of two Context agents after the
demonstration. The yellow area corresponds to the
values of the distance sensor where the Context
agent is valid. The green area to the values where
the Context agent is extensible. Those two Context
agents are extracted from the right wheel ALEX.
They propose a different action. The first one
propose to go at a speed of 100 whereas the

second one proposes to go at a speed of 0. If we
observe the two validity range of the Context
agents, we observe an overlap. This overlap
means that the two Context agents will propose
their action in similar situation, leading to
ambiguity. The reason is that using only an
ultrasound sensor is not well enough to
discriminate each situation. When the rover is at a

particular distance, it can express either that the
rover is approaching an obstacle or moving away.

To disambiguate those situations, the designer
propose to use the current speed value of both
wheels as an input to the ALEX instance.

A new demonstration is performed with this new
architecture (figure 9) and the rover now succeed
to navigate through the area. However, as it cannot
differentiate a wall from the door, the rover fails to
learn to reach the door.

6.2 Second experiment: reaching the
door

As the rover needs to differentiate walls and
the door, the designer proposes to add a
Camera on the rover to recognize
characteristics of the objects to be detected.
Using a detection algorithm, the camera can
provide visual information about the
environment of the rover. As walls and the door
have different colors, the camera identifies the

coordinate (𝒙, 𝒚) of the center of each of the
three color blue, white and green.

A Camera is added to the simulation to provide new
data to the rover. Each ALEX instance now
receives, in complement of the previous data, the
coordinate (𝒙, 𝒚) of the center of each color (see
figure 10). If no artefact of one color is detected,

Figure 10: The second experiment architecture. A camera is
added providing three new couple of value (x,y) for each
detected color.

Figure 12: The architecture of the last experiment. The door is
now controlled by and ALEX instance and receives the same
information than the other ALEX.

Figure 11: A particular Context involved in the last experiment.
This Context agent is a lot more sensitive to the White (x,y)
value than the other.

the coordinates provided are (-1,-1). The addition
of the camera does not involve any modification on
the ALEX instances. The tutor then performs
another demonstration of the task.

Now the rover manages to navigate inside the
arena and reach the door. By observing the
structure of the Context agents involved in this
experiment, we found that the agents involved in
the part of the activity reaching the door have learnt
to be less sensible to the blue and red coordinates.
One example of those agents is visible in figure 11.
The validity range associated the signals 𝑾𝒉𝒊𝒕𝒆𝑿

and 𝑾𝒉𝒊𝒕𝒆𝒀 are smaller than the one associated

to 𝑩𝒍𝒖𝒆𝑿 and 𝑩𝒍𝒖𝒆𝒀, and 𝑮𝒓𝒆𝒆𝒏𝑿 and 𝑮𝒓𝒆𝒆𝒏𝒀.
As the activity only involves identifying the white
door, the other data are unrelated. Our designer
can exploit this information to remove unused data
from the system. However, the rover failed to
complete the task. While it managed to reach the
door, the rover failed to open it as its engines were
not powerful enough.

6.3 Last experiment: opening the door

For the third experiment, the door is equipped with
a motor. An ALEX instance is associated to the
door and must learn when it has to be open and
when it has to be closed. For thus, the door
receives the same data than the two ALEX
instances controlling the wheels (Figure 12).
Adding this new effector does not involve any
action on the pre-existing devices and previously
learnt Context agents can be kept.

The tutor performs a final demonstration of the
task, demonstrating to each component the
desired behavior. At last, the rover managed to
learn to reach the area B. The door correlated the
action of opening to a low value of the distance
sensor signal and the coordinate 𝑊ℎ𝑖𝑡𝑒𝑋 and
𝑊ℎ𝑖𝑡𝑒𝑌 near the center of the screen. The rover
and the door managed to collaborate without direct
communication. As they share perception, they
have enough information to coordinate their
activity.

6.4 Synthesis

The whole experiment illustrates both the Extreme
Sensitive Robotic paradigm and ALEX capacity to
learn in interaction with human. The design of a
robotic application with ALEX allows the designer
to focus on the desired functionality and to let to
ALEX the duty to find correlations between the
performing of an action and the state of sensors.
An application can be designed incrementally by
gradually adding new sensor and effectors. The
usage of a learning technic based on self-
observation allows the designer to point out

situations of ambiguity or situations where some
data are useless. Adding a new sensor or a new
effector is not a complex task anymore as each
component can self-adapt.

7 CONCLUSION

The design of a controller for a robotic application
is a complex task. In this article, we propose to give
to each device the ability to self-adapt in interaction
with its environment. We propose an approach
named “Extreme Sensitive Robotic” which focuses
on the bottom-up design of robotic application. To
enable each device to self-adapt, we proposes the
use of ALEX, an adaptive multi-agent system
based on Context-Learning.

In previous work, we have shown the advantages
of our approach for end-user, enabling the robotic
device to automatically learn a behavior from
demonstrations. In this article, we have taken the
viewpoint of the designer of such a system.
Through a use case, we have shown that the
combination of Extreme Sensitive Robotic and
ALEX could help designers to incrementally build
their system. By studying the Context agents
dynamically created by ALEX, the designer can
point out ambiguity in signals and decide to
increase the perception capacity of the system.
The same analysis can lead the designer to add
new effectors on the system. As each effector is
designed to be self-adaptive, the appearance or
disappearance of an effector or of a new sensor
does not imply to re-act on the previously deployed
effector.

However, the study of Context agent is in this paper
still hand-performed by the designer. Then, work is
being made to allow Context agents to
automatically discover situations of ambiguity
where data are missing and to automatically solve
those situations. Such automatic process involves
to distribute intelligence inside each sensor which
will become a cooperative agent by locally
analyzing how they interact with Context agents.

REFERENCES

B. D. Argall, S. Chernova, M. Veloso, B. Browning,
A survey of robot learning from demonstration,
Robotics and autonomous systems 57 (5)
(2009) 469–483

A. Billard, S. Calinon, R. Dillmann, S. Schaal,
Robot programming by demonstration, in:
Springer handbook of robotics, Springer, 2008,
pp. 1371–1394.

J. Boes, J. Nigon, N. Verstaevel, M.P Gleizes & F.
Migeon. The Self-Adaptive Context Learning

Pattern: Overview and Proposal. In:
Proceedings of the Ninth International and
Interdisciplinary Conference on Modeling and
Using Context (CONTEXT2015), 2015

N. Bonjean, W. Mefteh, M.-P. Gleizes, C. Maurel,
F. Migeon, Adelfe 2.0, in: Handbook on Agent-
Oriented Design Processes, Springer, 2014,
pp. 19–63.

R.A Brooks. Elephants don't play chess. Robotics
and autonomous systems, 6(1):3-15, 1990.

D. Capera, J.-P. Georgé, M.-P. Gleizes, P. Glize,
The amas theory for complex problem solving
based on self-organizing cooperative agents,
in: Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE
2003, IEEE, 2003, pp. 383–388.

Frank Guerin. Learning like a baby: a survey of
artificial intelligence approaches. The
Knowledge Engineering Review, 26(02):209-
236, 2011.

M.-P. Gleizes, Self-adaptive complex systems, in:
Multi-Agent Systems, Springer, 2012, pp. 114–
128.

Guivarch, V., Camps, V., & Péninou, A. Context
awareness in ambient systems by an adaptive
multi-agent approach. In Ambient intelligence,
Springer Berlin Heidelberg, 129-144, 2015

S. Lefèvre, A. Carvalho, F. Borrelli, Autonomous
car following: A learning-based approach, in:
Intelligent Vehicles Symposium (IV), 2015
IEEE, IEEE, 2015, pp. 920–926.

Perera, C., Zaslavsky, A., Christen, P., &
Georgakopoulos, D. Context aware computing
for the internet of things: A survey.

Communications Surveys & Tutorials, IEEE,
16(1), 414-454, 2014.

Picard G and Glize P, Model and Experiments of
Local Decision Based on Cooperative Self-
Organization. In: Second International Indian
Conference on Artificial Intelligence (IICAI’05),
2005.

Rolf Pfeifer and Josh Bongard. How the body
shapes the way we think: a new view of
intelligence. MIT press, 2006.

D. Silver, J. A. Bagnell, A. Stentz, Learning from
demonstration for autonomous navigation in
complex unstructured terrain, The International
Journal of Robotics Research, 2010.

Alan M Turing. Computing machinery and
intelligence. Mind, pages 433-460, 1950.

N. Verstaevel, C. Régis, M.P Gleizes, F.
Robert. Principles and Experimentations of
Self-organizing Embedded Agents Allowing
Learning from Demonstration in Ambient
Robotic. Procedia Computer Science, vol. 52, p.
194-201, 2015.

N. Vukovi´c, M. Miti´c, Z. Miljkovi´c. Trajectory
learning and reproduction for differential drive
mobile robots based on gmm/hmm and
dynamic time warping using learning from
demonstration framework, Engineering
Applications of Artificial Intelligence 45, 388–
404, 2015.

Weiser, M., The computer for the 21st century.
Scientific american, 265(3):94–104, 19

J. Zlatev and C. Balkenius. Introduction: Why
epigenetic robotics? Epigenetic Robotics, 2001.

