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EXTREME VALUE LAWS FOR NON STATIONARY PROCESSES
GENERATED BY SEQUENTIAL AND RANDOM DYNAMICAL

SYSTEMS

ANA CRISTINA MOREIRA FREITAS, JORGE MILHAZES FREITAS, AND SANDRO VAIENTI

Abstract. We develop and generalize the theory of extreme value for non-stationary
stochastic processes, mostly by weakening the uniform mixing condition that was previ-
ously used in this setting. We apply our results to non-autonomous dynamical systems, in
particular to sequential dynamical systems, both given by uniformly expanding maps and
by maps with a neutral fixed point, and to a few classes of random dynamical systems.
Some examples are presented and worked out in detail.
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1. Introduction

1.1. The motivation and the dynamical setting. One of the most successful direc-
tions of ergodic theory in the last decades was the application of probabilistic tools to
characterise the asymptotic evolution of a given dynamical system. There is now a well
established domain known as statistical properties of dynamical systems, which attempts
to prove limit theorems under different degrees of mixing. Mixing is the way to restore
asymptotic independence and, in this way, mimic independent and identically distributed
(i.i.d.) sequences of random variables. A common distribution for the time series arising
from the dynamical systems is acquired from the existence of an invariant measure for such
systems. In some sense, the existence of such a measure is what defines a dynamical system.
Relaxing this assumption gives rise to non-autonomous dynamical systems for which the
study of limit theorems is just at the beginning. In this paper, we will focus on one of those
statistical properties, namely on asymptotic extreme value distribution laws. Our first goal
will be to improve and generalise the previous results by Hüsler (see below), which held for
non-identically distributed random variables but under a uniform mixing condition, to the
mixing situations typical in dynamical systems. Then we will apply our theoretical results
to two important examples of non-stationary processes arising in dynamical systems.

The first example is given by sequential dynamical systems; they were introduced by Berend
and Bergelson [BB84], as a non-stationary system in which a concatenation of maps is ap-
plied to a given point in the underlying space, and the probability is taken as a conformal
measure, which allows the use the transfer operator (Perron-Fröbenius) as a useful tool to
quantify the loss of memory of any prescribed initial observable. The theory of sequential
systems was later developed in the fundamental paper by Conze and Raugi [CR07], where
a few limit theorems, in particular the Central Limit Theorem, were proved for concate-
nations of one-dimensional dynamical systems, each possessing a transfer operator with a
quasi-compact structure on a suitable Banach space. For the same systems and others,
even in higher dimensions, the Almost Sure Invariance Principle was subsequently shown
[HNTV]; we will refer to the large class of systems investigated in [HNTV], as concrete ex-
amples to which the non-stationary extreme value theory presented in this article applies.
Both papers [CR07, HNTV] dealt however with uniformly expanding maps, for which the
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transfer operators admits a spectral gap and the correlations decays exponentially. In a
different direction, a class of sequential systems given by composition of non-uniformly
expanding maps of Pomeau-Manneville type was studied in [AHN+15], by perturbing the
slope at the indifferent fixed point 0. Polynomial decay of correlations was proved for par-
ticular classes of centered observables, which could also be interpreted as the decay of the
iterates of the transfer operator on functions of zero (Lebesgue) average, and this fact
is better known as loss of memory. In the successor paper [NTV15], a (non-stationary)
central limit theorem was shown for sums of centered observables and with respect to the
Lebesgue measure. We continue here the statistical analysis of these indifferent transforma-
tions by proving the existence of extreme value distributions under suitable normalization
for the threshold of the exceedances.

The second example pertains to random transformations, which are constructed on a skew-
system whose base is an invertible and hyperbolic system which codes a map on the second
factor (this second factor could be seen as fibers, which are all copy of the same set). On
these fibers live a family of sample measures, each of them corresponding to different ways
to code the orbit of a given point. These sample measures will be taken as the probability
measures that describe the statistical properties along the factor and they do not give
rise to stationary processes (although they satisfy an interesting property when they move
from one fiber to the other). Averaging along a sample measure means to fix the particular
initial fiber which supports it; the dynamics will transport this measure from one fiber to the
other, and this non-stationary process could be assimilated to a quenched process, where
the map changes step by step according to a given realization. We defer to the books by L.
Arnold [Arn98] and Y. Kifer [Kif86, Kif88] for a detailed account of these transformations,
in particular for their ergodic properties. Limit theorems, in particular the CLT, were
investigated in [Kif98]. There are a few attempts to investigate recurrence in the framework
of random transformations: see for instance [AFV15, RSV14, Rou14, RT15, KR14].

1.2. Extreme Value Laws for general non-stationary processes. As mentioned in
[FHR11], the class of non-stationary stochastic processes is rather large and an Extreme
Value Theory for such a general class does not exist. In [Hüs83, Hüs86], Hüsler developed
the first approach to the subject. Under convenient conditions, one can recover the usual
extremal behaviour seen for i.i.d or stationary sequences under Leadbetter’s conditions.
Of course the degree of freedom involved is so large that it is not difficult to give examples
with pathological behaviour (see [Hüs86, Section 3] or [FHR11, Example 9.4.4]). However,
for appropriate subclasses, such as for stochastic processes of the form Xi = ai + biYi, with
trend values ai, scaling values bi and a stationary (or i.i.d) stochastic process Y0, Y1, . . .,
one can study them and obtain the expected behaviour (see [Niu97]).

The existing theory of extreme values for non-stationary sequences (which is still mostly
based on Hüsler’s results, see [FHR11]) is not applicable in a dynamical setting because it is
built over a uniform mixing condition obtained by adjusting to the non-stationary setting,
Leadbetter’sD(un) condition for stationary processes. As was seen in the stationary setting
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in [Col01, FF08], this type of condition is not appropriate for stochastic processes arising
from dynamical systems since it does not follow from usual properties regarding the loss of
memory of chaotic systems, which are usually formulated in terms of decay of correlations.
See discussion in Section 2 of [FFT15] and Remarks 2.1 and 3.5 of the same paper.

Hence, the first goal of this paper is to develop a more general theory of extreme values for
non-stationary stochastic processes, which allows studying the extremal behaviour of the
non-stationary systems discussed in the preceding Section. The major highlights of this
generalisation are: the use of a much weaker mixing condition, motivated by an idea of
Collet (in [Col01]) and further developed in [FF08, FFT12, FFT15], that we will adapt to
the non-stationary setting and denote by a cyrilic D, i.e., Д, as in [FFT15]; and a much
more sophisticated way of dealing with clustering and the appearance of an Extremal
Index less than 1, which is based on an idea introduced in [FFT12] and further developed
in [FFT15], which basically says that when dealing with clustering due to the presence of
a periodic phenomenon we can replace the role of the occurrence of exceedances (which in
the dynamical setting correspond to hits to target ball sets) by that of the occurrence of
escapes (which in the dynamical setting can be associated with hits to annuli target sets).

While in [Hüs83, Hüs86], Hüsler built on the existing theory of extreme values for stationary
sequences developed by Leadbetter and others, here we will follow Hüsler’s approach but
adapt to the non-stationary setting the more refined [FFT15].

2. A general result for extreme value laws for non-stationary processes

In this section will try to keep as much as possible the notations used in [Hüs83, Hüs86,
FFT15].

Let X0, X1, . . . be a stochastic process, where each r.v. Xi : Y → R is defined on the
measure space (Y ,B,P).

We assume that Y is a sequence space with a natural product structure so that each
possible realisation of the stochastic process corresponds to a unique element of Y and
there exists a measurable map T̃ : Y → Y , the time evolution map, which can be seen as
the passage of one unit of time, so that

Xi−1 ◦ T̃ = Xi, for all i ∈ N.
The σ-algebra B can also be seen as a product σ-algebra adapted to the Xi’s. For the
purpose of this paper, X0, X1, . . . is possibly non-stationary. Stationarity would mean that
P is T̃ -invariant. Note that Xi = X0 ◦ T̃ i, for all i ∈ N0, where T̃ i denotes the i-fold
composition of T̃ , with the convention that T̃ 0 denotes the identity map on Y . In the
applications below to sequential dynamical systems, we will have that T̃ i = Ti ◦ . . . ◦ T1

will be the concatenation of i possibly different transformations T1, . . . , Ti.

Each random variable Xi has a marginal distribution function (d.f.) denoted by Fi, i.e.,
Fi(x) = P(Xi ≤ x). Note that the Fi, with i ∈ N0, may all be distinct from each other.
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For a d.f. F we let F̄ = 1 − F . We define uFi = sup{x : Fi(x) < 1} and let Fi(uFi−) :=
limh→0,h>0 Fi(uFi − h) = 1 for all i.

Our main goal is to determine the limiting law of

Pn = P(X0 ≤ un,0, X1 ≤ un,1, . . . , Xn−1 ≤ un,n−1)

as n→∞, where {un,i, i ≤ n− 1, n ≥ 1} is considered a real-valued boundary. We assume
throughout the paper that

F̄max := max{F̄i(un,i), i ≤ n− 1} → 0 as n→∞, (2.1)

which is equivalent to

un,i → uFi as n→∞, uniformly in i.

Let us denote F ∗n :=
∑n−1

i=0 F̄i(un,i), and assume that there is τ > 0 such that

F ∗n :=
n−1∑
i=0

F̄i(un,i)→ τ, as n→∞. (2.2)

To simplify the notation let ui := un,i.

In what follows, for every A ∈ B, we denote the complement of A as Ac := Y \ A.

Let A := (A0, A1, . . .) be a sequence of events such that Ai ∈ T̃−iB. For some s, ` ∈ N0,
we define

Ws,`(A) =
s+`−1⋂
i=s

Aci . (2.3)

We will write W c
s,`(A) := (Ws,`(A))c.

For some j ∈ N0, we consider

A(j)
n := (A

(j)
n,0, A

(j)
n,1, . . .),

where the event A(j)
n,i is defined for j ∈ N as

A
(j)
n,i := {Xi > un,i, Xi+1 ≤ un,i+1, . . . , Xi+j ≤ un,i+j}

and, for j = 0, we simply define A(0)
n,i(un,i) := {Xi > un,i}.

For each i ∈ N0 and n ∈ N, let R(j)
n,i = min{r ∈ N : A

(j)
n,i ∩ A

(j)
n,i+r 6= ∅}. We assume that

there exists q ∈ N0 such that:

q = min

{
j ∈ N0 : lim

n→∞
min
i∈N0

{
R

(j)
n,i

}
=∞

}
. (2.4)

When q = 0 then A
(0)
n,i(un,i) corresponds to an exceedance of the threshold un,i and we

expect no clustering of exceedances.
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When q > 0, heuristically one can think that there exists an underlying periodic phenom-
enon creating short recurrence, i.e., clustering of exceedances, when exceedances occur
separated by no more than q − 1 units of time then they belong to the same cluster.
Hence, the sets A(q)

n,i(un,i) correspond to the occurrence of exceedances that escape the pe-
riodic phenomenon and are not followed by another exceedance in the same cluster. We
will refer to the occurrence of A(q)

n,i(un,i) as the occurrence of an escape at time i, whenever
q > 0.

The following result adapts to the non-stationary setting an idea introduced in [FFT12]
and further developed in [FFT15, Proposition 2.7], which essentially says the asymptotic
distribution of Pn coincides with that of W0,n(A(q)

n ), which motivates the special role played
by A(q)

n and the conditions we propose next.

Proposition 2.1. Given events B0, B1, . . . ∈ B, let r, q, n ∈ N be such that q < n and
define B = (B0, B1, . . .), Ar = Br \

⋃q
j=1 Br+j and A = (A0, A1, . . .). Then

|P(W0,n(B))− P(W0,n(A))| ≤
q∑
j=1

P (W0,n(A) ∩ (Bn−j \ An−j)) .

Now, we introduce a mixing condition which is specially designed for the application to
the dynamical setting, on the contrary to the existing ones in the literature.

Condition (Дq(un,i)). We say that Дq(un) holds for the sequence X0, X1, . . . if for every
`, t, n ∈ N, ∣∣∣P(A(q)

n,i ∩Wi+t,`

(
A(q)
n

))
− P

(
A

(q)
n,i

)
P
(
Wi+t,`

(
A(q)
n

))∣∣∣ ≤ γi(q, n, t), (2.5)

where γi(q, n, t) is decreasing in t for each n and each i and there exists a sequence (t∗n)n∈N
such that t∗nF̄max → 0 and

∑n−1
i=0 γi(q, n, t

∗
n)→ 0 when n→∞.

Remark 2.2. Condition Дq(un,i) is a sort of mixing condition resembling to Hüsler’s adjust-
ment of Leadbetter’s condition D(un) but with the great advantage that it can be checked
for non-stationary dynamical systems, as we will see in Sections 4.1.2, 5.1 and 6.1, contrary
to Hüsler’s D(un,i). This advantage resides on the fact that the event A(q)

n,i(un,i) depends
only on a finite number of random variables, making Дq(un,i) a much weaker requirement
in terms of uniformity when compared to Hüsler’s D(un,i). Recall that Hüsler’s D(un,i)
required an uniform bound for all possible i and all possible number of random variables
of the process on which the first event depended.

In order to prove the existence of a distributional limit for Pn we use as usual a blocking
argument that splits the data into kn blocks separated by time gaps of size larger than
t∗n, which are created by simply disregarding the observations in the time frame occupied
by the gaps. The precise construction of the blocks is given in Section 2.2 but we briefly
describe below some of the properties of this construction.
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In the stationary context, one takes blocks of equal size, which in particular means that the
expected number of exceedances within each block is nP(X0 > un)/kn ∼ τ/kn. Here the
blocks may have different sizes, which we will denote by `n,1, . . . , `n,kn but, as in [Hüs83,
Hüs86], these are chosen so that the expected number of exceedances is again ∼ τ/kn.
Also, for i = 1, . . . , kn, let Ln,i =

∑i
j=1 `n,j and Ln,0 = 0.

The time gaps are created by disregarding the last observations in each block so that the
true blocks become the remaining part. To do that, we have to balance the facts that we
want the gaps to be big enough so that they are larger than t∗n but on the other hand we
also want that the gaps should be sufficiently small so that the information disregarded
does not compromise the computations. This is achieved by choosing the number of blocks,
which correspond to the sequence (kn)n∈N diverging but slowly enough so that the weight
of the gaps is negligible when compared to that of the true blocks.

As usual in extreme value theory, in order to guarantee the existence of a distributional
limit one needs to impose some restrictions on the speed of recurrence.

For q ∈ N0 given by (2.4), consider the sequence (t∗n)n∈N, given by condition Дq(un) and
let (kn)n∈N be another sequence of integers such that

kn →∞ and knt
∗
nF̄max → 0 (2.6)

as n→∞.

Condition (Д′q(un,i)). We say that Д′q(un,i) holds for the sequence X0, X1, X2, . . . if there
exists a sequence (kn)n∈N satisfying (2.6) and such that

lim
n→∞

kn∑
i=1

`i−1∑
j=0

`i−1∑
r>j

P(A
(q)
Li−1+j ∩ A

(q)
Li−1+r) = 0. (2.7)

Condition Д′q(un,i) precludes the occurrence of clustering of escapes (or exceedances, when
q = 0).

Remark 2.3. Note that condition Д′p(un,i) is an adjustment of a similar condition Д′p(un)
in [FFT15] in the stationary setting, which is similar to (although slightly weaker than)
condition D(p+1)(un) in the formulation of [CHM91, Equation (1.2)]

When q = 0, observe that Д′q(un,i) is very similar to D′(un,i) from Hüsler, which prevents
clustering of exceedances, just as D′(un) introduced by Leadbetter did in the stationary
setting.

When q > 0, we have clustering of exceedances, i.e., the exceedances have a tendency to
appear aggregated in groups (called clusters). One of the main ideas in [FFT12] that we
use here is that the events A(q)

n,i play a key role in determining the limiting EVL and in
identifying the clusters. In fact, when Д′q(un,i) holds we have that every cluster ends with
an entrance in A(q)

n,i, meaning that the inter cluster exceedances must appear separated at
most by q units of time.



8 A. C. M. FREITAS, J. M. FREITAS, AND S. VAIENTI

In this approach, it is rather important to observe the prominent role played by condition
Д′q(un,i). In particular, note that if condition Д′q(un,i) holds for some particular q = q0 ∈ N0,
then condition Д′q(un,i) holds for all q ≥ q0. Then, q as defined in (2.4) is indeed the natural
candidate to try to show the validity of Д′q(un).

We give now a way of defining the Extremal Index (EI) using the sets A(q)
n,i. For q ∈ N0

given by (2.4), we also assume that there exists 0 ≤ θ ≤ 1, which will be referred to as the
EI, such that

lim
n→∞

max
i=1,...,kn


∣∣∣∣∣∣θkn

Ln,i−1∑
j=Ln,i−1

F̄ (un,j)− kn
Ln,i−1∑
j=Ln,i−1

P
(
A

(q)
n,j

)∣∣∣∣∣∣
 = 0. (2.8)

The following is the main theorem of this section.

Theorem 2.4. Let X0, X1, . . . be a stationary stochastic process and suppose (2.1) and
(2.2) hold for some τ > 0. Let q ∈ N0 be as in (2.4) and assume that (2.8) holds. Assume
also that conditions Д(un,i) e Д′q(un,i) are satisfied. Then

lim
n→∞

Pn = e−θτ .

The rest of this section is devoted to the proof of Theorem 2.4.

To simplify notation, we will drop the index n ∈ N and write: ui := un,i, A
(q)
i := A

(q)
n,i,

A(q) := A(q)
n , `i := `n,i, Li := Ln,i.

2.1. Preliminaries to the argument. We begin by proving the crucial observation
stated in Proposition 2.1.

Proof of Proposition 2.1. Since Ar ⊂ Br, then clearly W0,n(B) ⊂ W0,n(A). Hence, we have
to estimate the probability of W0,n(A) \W0,n(B).

Let x ∈ W0,n(A) \W0,n(B). We will see that there exists j ∈ {1, . . . , q} such that x ∈ Bn−j.
In fact, suppose that no such j exists. Then let ` = max{i ∈ {1, . . . , n − 1} : x ∈ Bi}.
Then, clearly, ` < n−q. Hence, if x /∈ Bj, for all i = `+1, . . . , n−1, then we must have that
x ∈ A` by definition of A. But this contradicts the fact that x ∈ W0,n(A). Consequently,
we have that there exists j ∈ {1, . . . , q} such that x ∈ Bn−j and since x ∈ W0,n(A) then we
can actually write x ∈ Bn−j \ An−j.
This means that W0,n(A) \W0,n(B) ⊂

⋃q
j=1(Bn−j \ An−j) ∩W0,n(A) and then∣∣P(W0,n(B))− P(W0,n(A))

∣∣ = P(W0,n(A) \W0,n(B))

≤ P

(
q⋃
j=1

(Bn−j \ An−j) ∩W0,n(A)

)
≤

q∑
j=1

P (W0,n(A) ∩ (Bn−j \ An−j)) ,

as required. �
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We prove next some lemmata that pave the way for Proposition 2.7, which is the corner-
stone of the argument leading to the proof of Theorem 2.4

Lemma 2.5. For any fixed A = (A0, A1, . . .), Ai ∈ B for i = 0, 1, . . ., and integers a, s, t,m,
with a < s, we have:

|P(Wa,s+t+m(A))− P(Wa,s(A) ∩Wa+s+t,m(A))| ≤
s+t−1∑
j=s

P(Aa+j).

Proof.

P(Wa,s(A) ∩Wa+s+t,m(A))− P(Wa,s+t+m(A)) = P(Wa,s(A) ∩W c
a+s,t(A) ∩Wa+s+t,m(A))

≤ P(W c
a+s,t(A)) = P(∪s+t−1

j=s (Aa+j))

≤
s+t−1∑
j=s

P(Aa+j).

�

Lemma 2.6. For any fixed A = (A0, A1, . . .), Ai ∈ B for i = 0, 1, . . ., and integers a, s, t,m,
with a < s, we have:∣∣∣∣∣P(Wa,s(A) ∩Wa+s+t,m(A))− P(Wa+s+t,m(A))

(
1−

s−1∑
j=0

P(Aa+j)

)∣∣∣∣∣ ≤
≤

∣∣∣∣∣
s−1∑
j=0

P(Aa+j)P(Wa+s+t,m(A))−
s−1∑
j=0

P(Aa+j ∩Wa+s+t,m(A))

∣∣∣∣∣+
s−1∑
j=0

s−1∑
i>j

P(Aa+i ∩ Aa+j).

Proof. Observe that∣∣∣∣∣P(Wa,s(A) ∩Wa+s+t,m(A))− P(Wa+s+t,m(A))(1−
s−1∑
j=0

P(Aa+j))

∣∣∣∣∣
≤

∣∣∣∣∣
s−1∑
j=0

P(Aa+j)P(Wa+s+t,m(A))−
s−1∑
j=0

P(Aa+j ∩Wa+s+t,m(A))

∣∣∣∣∣
+

∣∣∣∣∣P(Wa,s(A) ∩Wa+s+t,m(A))− P(Wa+s+t,m(A)) +
s−1∑
j=0

P(Aa+j ∩Wa+s+t,m(A))

∣∣∣∣∣ .
Regarding the second term on the right, we have

P(Wa,s(A) ∩Wa+s+t,m(A)) = P(Wa+s+t,m(A))− P(W c
a,s(A) ∩Wa+s+t,m(A)).
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Now, since W c
a,s(A) ∩Wa+s+t,m(A) = ∪s−1

i=0 (Aa+i ∩Wa+s+t,m(A)), we have

P(W c
a,s(A) ∩Wa+s+t,m(A)) ≤

s−1∑
i=0

(Aa+i ∩ P(Wa+s+t,m(A)))

and so,

0 ≤
s−1∑
j=0

P(Aa+j∩Ws+t,m(A))−P(W c
a,s(A)∩Wa+s+t,m(A)) ≤

s−1∑
j=0

s−1∑
i>j

P(Aa+i∩Aa+j∩Wa+s+t,m(A))

Hence, using these last computations we get:∣∣∣P(Wa,s(A) ∩Wa+s+t,m(A))− P(Wa+s+t,m(A)) +
s−1∑
j=0

P(Aa+j ∩Wa+s+t,m(A))
∣∣∣

=
∣∣∣− P(W c

a,s(A) ∩Wa+s+t,m(A)) +
s−1∑
j=0

P(Aa+j ∩Wa+s+t,m(A))
∣∣∣

≤
s−1∑
j=0

s−1∑
i>j

P(Aa+i ∩ Aa+j ∩Wa+s+t,m(A))

≤
s−1∑
j=0

s−1∑
i>j

P(Aa+i ∩ Aa+j).

�

2.2. The construction of the blocks. The construction of the blocks here, contrary to
the stationary case, in which the blocks have equal size, is designed so that the expected
number of exceedances in each block is the same. We follow closely the construction in
[Hüs83, Hüs86].

For each n ∈ N we split the random variables X0, . . . , Xn−1 into kn initial blocks, where kn
is given by (2.6), of sizes `1, . . . , `kn defined in the following way. Let as before Li =

∑i
j=1 `i

and L0 = `0 = 0. Assume that `1, . . . , `i−1 are already defined. Take `i to be the largest
integer such that:

Li−1+`i−1∑
j=Li−1

F̄ (un,i) ≤
F ∗n
kn
.

The final working blocks are obtained by disregarding the last observations of each initial
block, which will create a time gap between each final block. The size of the time gaps
must be balanced in order to have at least a size t∗n but such that its weight on the average
number of exceedances is negligible when compared to that of the final blocks. For that
purpose we define

ε(n) := (t∗n + 1)F̄max
kn
F ∗n
.
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Note that by (2.2) and (2.6), it follows immediately that limn→∞ ε(n) = 0. Now, for each
i = 1, . . . , kn let ti be the largest integer such that

Li−1∑
j=Li−ti

F̄ (un,i) ≤ ε(n)
F ∗n
kn
.

Hence, the final working blocks correspond to the observations within the time frame
Li−1 + 1, . . . ,Li− ti, while the time gaps correspond to the observations in the time frame
Li − ti + 1, . . . ,Li, for all i = 1, . . . , kn.

Note that t∗n ≤ ti < `i, for each i = 1, . . . , kn. The second inequality is trivial. For the first
inequality note that by definition of ti we have

ε(n)
F ∗n
kn
≤

Li−1∑
j=Li−ti

F̄ (un,i) + F̄ (un,Li−ti−1) ≤ (ti + 1)F̄max.

The first inequality follows easily now by definition of ε(n).

Proposition 2.7. For every, n ∈ N, let A := A(q)
n for q defined by (2.4). Consider the

construction of the kn blocks above, the respective sizes `1, . . . , `kn and time gaps t1, . . . , tkn.
Recall that Li =

∑i
j=1 `i. Assume that n ∈ N is large enough so that F ∗n/kn < 2. We have:

∣∣∣∣∣P(W0,n(A)
)
−

kn∏
i=1

1−
Li−ti−1∑
j=Li−1

P(Aj)

∣∣∣∣∣ ≤
kn∑
i=1

Li−1∑
j=Li−1−ti

P(A
(q)
j ) +

n−1∑
j=Lkn

P(A
(q)
j )

+
kn∑
i=1

∣∣∣∣∣
`i−ti−1∑
j=0

(
P(ALi−1+j)P(WLi,Lkn−Li(A))− P(ALi−1+j ∩WLi,Lkn−Li(A))

)∣∣∣∣∣
+

kn∑
i=1

`i−1∑
j=0

`i−1∑
r>j

P(ALi−1+j ∩ ALi−1+r).

Proof. Using Lemma 2.5, we have:

∣∣∣P(W0,n(A))− P(W0,Lkn (A))
∣∣∣ ≤ n−1∑

j=Lkn

P(A
(q)
j ). (2.9)
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To simplify the notation let L̄i = Lkn − Li−1 =
∑kn

j=i `j. It follows by using (2.6) that∣∣∣∣∣P (WLi−1,L̄i(A)
)
−
(

1−
Li−ti−1∑
j=Li−1

P(Aj)

)
P
(
WLi,L̄i+1

(A)
) ∣∣∣∣∣

≤
∣∣P(WLi−1,L̄i(A))− P(WLi−1,`i−ti(A) ∩WLi,L̄i+1

(A))
∣∣

+

∣∣∣∣∣∣P(WLi−1,`i−ti(A) ∩WLi,L̄i+1
(A))−

(
1−

Li−ti−1∑
j=Li−1

P(Aj)
)
P(WLi,L̄i+1

(A))

∣∣∣∣∣∣
≤

Li−1∑
j=Li−1−ti

P(Aj) +

∣∣∣∣∣∣
Li−ti−1∑
j=Li−1

(P(Aj)P(WLi−1,L̄i(A))− P(Aj ∩WLi−1,L̄i(A))

∣∣∣∣∣∣
+

`i−1∑
j=0

`i−1∑
r>j

P(ALi−1+j ∩ ALi−1+r). (2.10)

Let

Υi :=

Li−1∑
j=Li−1−ti

P(Aj) +

∣∣∣∣∣∣
Li−ti−1∑
j=Li−1

(P(Aj)P(WLi−1,L̄i(A))− P(Aj ∩WLi−1,L̄i(A))

∣∣∣∣∣∣
+

`i−1∑
j=0

`i−1∑
r>j

P(ALi−1+j ∩ ALi−1+r).

Note that, for i = kn in (2.10),
∣∣∣∣WLkn−1,L̄kn (A))−

(
1−

∑Lkn−tkn−1
j=Lkn−1

P(Aj)

)∣∣∣∣ ≤ Υkn .

Since F ∗n
kn
< 2 and, by construction, for all i = 1, . . . , kn, it is clear that

∑Li−ti−1
j=Li−1

P(Aj) ≤ F ∗n
kn
,

then
∣∣∣1−∑Li−ti−1

j=Li−1
P(Aj)

∣∣∣ < 1, for all i = 1, . . . , kn.

Now, we use (2.10) recursively and obtain∣∣∣∣∣∣P(W0,Lkn (A))−
kn∏
i=1

(
1−

Li−ti−1∑
j=Li−1

P(Aj)

)∣∣∣∣∣∣ ≤
kn∑
i=1

Υi. (2.11)

The result follows now at once from (2.9) and (2.11). �

2.3. Final argument. We are now in a position to prove Theorem 2.4.

Proof of Theorem 2.4. The theorem follows if we show that all the error terms in Proposi-
tion 2.7 converge to 0, as n→∞.
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For the first term, by choice of the ti’s, we have
kn∑
i=1

Li−1∑
j=Li−1−ti

P(A
(q)
j ) ≤

kn∑
i=1

Li−1∑
j=Li−1−ti

F̄ (un,j) ≤ knε(n)
F ∗n
kn

= ε(n)F ∗n ,

which tends to 0 as n→∞, by (2.2) and definition of ε(n).

Regarding the second term observe first that
n−1∑
j=Lkn

P(A
(q)
j ) ≤

n−1∑
j=Lkn

F̄ (un,j).

Since, by choice of `i, we have F ∗n
kn
≤
∑Li−1

j=Li−1
F̄ (un,j) + F̄ (un,Li) ≤

∑Li−1
j=Li−1

F̄ (un,j) + F̄max,
then it follows that

F ∗n
kn
− F̄max ≤

Li−1∑
j=Li−1

F̄ (un,j) ≤
F ∗n
kn
. (2.12)

From the first inequality we get F ∗n − knF̄max ≤
∑kn

i=1

∑Li−1
j=Li−1

F̄ (un,j), which implies that

n−1∑
j=Lkn

F̄ (un,j) = F ∗n −
kn∑
i=1

Li−1∑
j=Li−1

F̄ (un,j) ≤ knF̄max,

which goes to 0 as n→∞ by (2.6).

For the third term, recalling that, for each n and i, γi(q, n, t) from condition Дq(un,i) is
decreasing in t, we have:
kn∑
i=1

∣∣∣∣∣
`i−ti−1∑
j=0

(
P(A

(q)
Li−1+j)P(WLi,Lkn−Li(A))− P(A

(q)
Li−1+j ∩WLi,Lkn−Li(A))

)∣∣∣∣∣ ≤
n−1∑
i=0

γi(q, n, tn),

which tends to 0 as n→∞ by condition Дq(un,i).

By condition Д′(un), we have that the fourth term goes to 0 as n→∞.

Now, we will see that ∣∣∣∣∣∣
kn∏
i=1

1−
Li−ti−1∑
j=Li−1

P(A
(q)
j )

− e−θτ
∣∣∣∣∣∣ −−−→n→∞

0.

By (2.8) we have that kn
∑Li−1

j=Li−1
P(A

(q)
j ) = knθ

∑Li−1
j=Li−1

F̄ (un,j) + o(1). Then

Li−1∑
j=Li−1

P(A
(q)
j ) = θ

Li−1∑
j=Li−1

F̄ (un,j) + o(k−1
n ).
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Since by (2.6), we have F̄max = o(k−1
n ), then, by (2.12), it follows that

Li−1∑
j=Li−1

F̄ (un,j) + o(k−1
n ) =

F ∗n
kn

+ o(k−1
n ).

Also note that
Li−1∑

j=Li−ti

P(A
(q)
j ) ≤

Li−1∑
j=Li−ti

F̄ (un,j) ≤ ε(n)
F ∗n
kn

= o(k−1
n ).

Hence, for all i = 1, . . . , kn we have
Li−ti−1∑
j=Li−ti

P(A
(q)
j ) = θ

F ∗n
kn

+ o(k−1
n ).

Finally, by (2.2), we have
kn∏
i=1

(
1−

Li−ti−1∑
j=Li−ti

P(A
(q)
j )

)
∼
(

1− θF
∗
n

kn
+ o(k−1

n )

)kn
−−−→
n→∞

e−θτ .

Finally, by Proposition 2.1 we have∣∣Pn − P
(
W0,n

(
A(q)

))∣∣ ≤ q∑
j=1

P
(
W0,n

(
A(q)

)
∩
(
{Xn−j > un,n−j} \ {A(q)

n−j}
))

≤
q∑
j=1

P
(
{Xn−j > un,n−j} \ {A(q)

n−j}
)

≤
q∑
j=1

(1− Fn−j(un,n−j)), (2.13)

which converges to 0 as n→∞.

Note that when q = 0 both sides of inequality (2.13) equal 0. �

3. Sequential Dynamical Systems

3.1. General presentation. In this section we will give a first example of a non-stationary
process, by considering families F of non-invertible maps defined on compact subsets X
of Rd or on the torus Td (still denoted with X in the following), and non-singular with
respect to the Lebesgue or the Haar measure, i.e. m(A) 6= 0 =⇒ m(T (A)) 6= 0. Such
measures will be defined on the Borel sigma algebra B. We will be mostly concerned with
the case d = 1. A countable sequence of maps {Tk}k≥1 ∈ F defines a sequential dynamical
system. A sequential orbit of x ∈ X will be defined by the concatenation

Tn(x) := Tn ◦ · · · ◦ T1(x), n ≥ 1. (3.1)
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We denote by Pj the Perron-Fröbenius (transfer) operator associated to Tj defined by the
duality relation∫

X

Pjf g dm =

∫
X

f g ◦ Tj dm, for all f ∈ L1
m, g ∈ L∞m .

Note that here the transfer operator Pj is defined with respect to the reference Lebesgue
measure m.

Similarly to (3.1), we define the composition of operators as

Πn := Pn ◦ · · · ◦ P1, n ≥ 1. (3.2)

It is easy to check that duality persists under concatenation, namely∫
X

g(Tn) f dm =

∫
X

g(Tn ◦ · · · ◦ T1) f dm =

∫
X

g( Pn ◦ · · · ◦P1f) dm =

∫
X

g (Πnf) dm.

(3.3)

In [CR07] the authors begin a systematic study of the statistical properties of sequential
dynamical systems by proving in particular the law of large numbers and the central limit
theorem. In [HNTV], it was shown that the Almost Sure Invariance Principle still holds.
In order to establish such results a few assumptions are needed and some of them are also
relevant for the extreme value theory. We will recall them in this section and then we
will provide a list of examples which will go beyond the β transformations, which was the
prototype case investigated by Conze and Raugi.

We first need to choose a suitable couple of adapted spaces in order to get and exploit the
quasi-compactness of the transfer operator. We will consider in particular a Banach space
V ⊂ L1

m (1 ∈ V) of functions over X with norm || · ||α, such that ‖φ‖∞ ≤ C‖φ‖α.
For example, we could let V be the Banach space of bounded variation functions over X
with norm || · ||BV given by the sum of the L1

m norm and the total variation | · |BV , or we
could take V to be the space of quasi-Hölder functions with a suitable norm which we will
define later on.
One of the basic assumption is the following:

Uniform Doeblin-Fortet-Lasota-Yorke inequality (DFLY): There exist constants
A,B < ∞, ρ ∈ (0, 1), such that for any n and any sequence of operators Pn, · · · , P1

associated to transformations in F and any f ∈ V we have

‖Pn ◦ · · · ◦ P1f‖α ≤ Aρn‖f‖α +B‖f‖1. (3.4)

At this point one would like to dispose of a sort of quasi-compactness argument which would
allow to get exponential decay for the composition of operators. In all the examples we
will present, the class F will be constructed around (this will be made clear in a moment)
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a given map T0 for which the corresponding operator P0 will satisfy quasi-compactness.
Namely we require:

Exactness property: The operator P0 has a spectral gap, which implies that there are
two constants C1 <∞ and γ0 ∈ (0, 1) so that

||P n
0 f ||α ≤ C1γ

n
0 ||f ||α (3.5)

for all f ∈ V of zero (Lebesgue) mean and n ≥ 1.

The next step is to consider the following distance between two operators P and Q asso-
ciated to maps in F and acting on V :

d(P,Q) = sup
f∈V, ‖f‖α≤1

||Pf −Qf ||1.

A very useful criterion is given in Proposition 2.10 in [CR07], and in our setting it reads:
if P0 verifies the exactness property, then there exists δ0 > 0, such that the set {P ∈
F ; d(P, P0) < δ0} satisfies the (DEC) condition, where

Property (DEC): Given the family F there exist constants Ĉ > 0, γ̂ ∈ (0, 1), such that
for any n and any sequence of transfer operators Pn, · · · , P1 corresponding to maps chosen
from F and any f ∈ V of zero (Lebesgue) mean1, we have

‖Pn ◦ · · · ◦ P1f‖α ≤ Ĉγ̂n‖f‖α. (3.6)

By induction on the Doeblin-Fortet-Lasota-Yorke inequality for compositions we immedi-
ately have

d(Pr ◦ · · · ◦ P1, P
r
0 ) ≤M

r∑
j=1

d(Pj, P0), (3.7)

with M = 1 + Aρ−1 +B.

According to [CR07, Lemma 2.13], (3.5) and (3.7) imply that there exists a constant C2

such that

‖Pn ◦ · · · ◦ P1φ− P n
0 φ‖1 ≤ C2‖φ‖BV

(
p∑

k=1

d(Pn−k+1, P0) + (1− γ0)−1γp0

)
for all integers p ≤ n and all functions φ ∈ V . We will use this bound to get a quantitative
rate of the exponential decay for composition of operators in the L1

m norm when we relate
it to the following two assumptions:

Lipschitz continuity property: Assume that the maps (and their transfer operators)
are parametrized by a sequence of numbers εk, k ∈ N, such that limk→∞ εk = ε0 (Pε0 = P0).

1Actually, the definition of the (DEC) property in [CR07] is slightly more general since it requires the
above property for functions in a suitable subspace, not necessarily that of functions with zero expectation.
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We assume that there exists a constant C3 so that

d(Pεk , Pεj) ≤ C3|εk − εj|, for all k, j ≥ 0.

We will restrict in the following to the subclass Fexa of maps, and therefore of operators,
for which

Fexa := {Pεk ∈ F ; |εk − ε0| < C−1
3 δ0}.

The maps in Fexa will therefore verify the (DEC) condition, but we will sometimes need
something stronger, namely:

Convergence property: We require algebraic convergence of the parameters, that is,
there exist a constant C4 and κ > 0 so that

|εn − ε0| ≤
C4

nκ
∀n ≥ 1.

With these last assumptions, we get a polynomial decay for (3.7) of the type O(n−κ) and
in particular we obtain the same algebraic convergence in L1

m of Pn ◦ · · · ◦P1φ to h
∫
φ dm,

where h is the density of the absolutely continuous mixing measure of the map T0.

3.2. Stochastic processes for sequential systems. Similarly to [FFT10] (in the con-
text of stationary deterministic systems), we consider that the time series X0, X1, . . . arises
from these sequential systems simply by evaluating a given observable ϕ : X → R∪{±∞}
along the sequential orbits.

Xn = ϕ ◦ Tn, for each n ∈ N. (3.8)

Note that, on the contrary to the setup in [FFT10], the stochastic process X0, X1, . . .
defined in this way is not necessarily stationary.

We assume that the r.v. ϕ : X → R ∪ {±∞} achieves a global maximum at ζ ∈ X (we
allow ϕ(ζ) = +∞) being of following form:

ϕ(x) = g
(
dist(x, ζ)

)
, (3.9)

where ζ is a chosen point in the phase space X and the function g : [0,+∞)→ R ∪ {+∞}
is such that 0 is a global maximum (g(0) may be +∞); g is a strictly decreasing bijection
g : V → W in a neighbourhood V of 0; and has one of the following three types of
behaviour:

Type g1: there exists some strictly positive function h : W → R such that for all y ∈ R

lim
s→g1(0)

g−1
1 (s+ yh(s))

g−1
1 (s)

= e−y; (3.10)

Type g2: g2(0) = +∞ and there exists β > 0 such that for all y > 0

lim
s→+∞

g−1
2 (sy)

g−1
2 (s)

= y−β; (3.11)
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Type g3: g3(0) = D < +∞ and there exists γ > 0 such that for all y > 0

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ. (3.12)

It may be shown that no non-degenerate limit applies if
∫ g1(0)

0
g−1

1 (s)ds is not finite. Hence,
an appropriate choice of h in the Type 1 case is given by h(s) =

∫ g1(0)

s
g−1

1 (t)dt/g−1
1 (s) for

s < g1(0).

Examples of each one of the three types are as follows: g1(x) = − log x (in this case (3.10)
is easily verified with h ≡ 1), g2(x) = x−1/α for some α > 0 (condition (3.11) is verified
with β = α) and g3(x) = D − x1/α for some D ∈ R and α > 0 (condition (3.12) is verified
with γ = α).

3.3. Examples. We now give a few examples of sequential systems satisfying the preced-
ing assumptions. The family of maps F will be parametrized by a small positive number ε
(or a vector with small positive components) and we will tacitly suppose that we restrict to
Fexa having previously proved that the transfer operator P0 for a reference map T0 is exact.
This will impose restrictions on the choice of ε (less than a constant times δ0, see above),
and in this case we will use the terminology for ε small enough. The verification of the
DFLY condition, which in turn will imply the analogous condition for the unperturbed op-
erator P0 will usually follow from standard arguments and the exactness of P0 will be proved
by assuming the existence of a unique mixing absolutely continuous invariant measure (for
instance by adding further properties to the map T0), or alternatively by restricting to one
of the finitely many mixing components prescribed by the quasi-compactness of P0.

The following examples have already been introduced and treated in [HNTV], but in the
latter paper a much stronger condition was required, namely that there exists δ > 0 such
that for any sequence Pn, · · · , P1 in F we have the uniform lower bound

inf
x∈M

Pn ◦ · · · ◦ P11(x) ≥ δ, ∀n ≥ 1. (3.13)

We do not need that property in the context of EVT.

3.3.1. β transformation. Let β > 1 and denote by Tβ(x) = βx mod 1 the β-transformation
on the unit circle. Similarly, for βk ≥ 1 + c > 1, k = 1, 2, . . . , we have the transformations
Tβk of the same kind, x 7→ βkx mod 1. Then F = {Tβk : k} is the family of transformations
we want to consider here. The property (DEC) was proved in [CR07, Theorem 3.4 (c)]and
continuity (Lip) is precisely the content of Sect. 5 still in [CR07].

3.3.2. Random additive noise. In this second example we consider piecewise uniformly
expanding maps T on the unit interval M = [0, 1] which preserve a unique absolutely
continuous invariant measure µ which is also mixing. We denote by Ak, k = 1, . . . ,m the
m open intervals of monotonicity of the map T which give a partition mod-0 of the unit
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interval. The map T is C2 over the Ak and with a C2 extension on the boundaries. We
put minx∈M |DT (x)| ≥ λ > 1; maxx∈M |DT (x)| ≤ Λ; supx∈M

∣∣∣D2Tε(x)
DTε(x)

∣∣∣ ≤ C1 < ∞. We
will perturb with additive noise, namely we will consider a family of maps F given by
Tε(x) = T (x) + ε, where ε ∈ U and such that ∀ε ∈ U we have the images TεAk, k =
1, . . . ,m strictly included in [0, 1]. We will also suppose that ∃Aw such that ∀Tε ∈ F and
k = 1, . . . ,m : TεAk ⊃ Aw; moreover there exists 1 ≥ L′ > 0 such that ∀k = 1, . . . ,m and
∀Tε ∈ F , |Tε(Aw) ∩ Ak| > L′. These conditions reveal useful in the distortion bounds. We
note that our assumptions are satisfied if we consider C2 uniformly expanding maps on
the circle and again perturbed with additive noise, without, this time, any restriction of
the values of ε. In particular, the intervals of local injectivity Ak, k = 1, · · · ,m, of Tε are
now independent of ε. The functional space V will coincide with the functions of bounded
variation with norm || · ||BV .
The (DFLY) inequality follows easily with standard arguments.The next step is to show
that two operators are close when the relative perturbation parameters are close: we report
here by completeness the short proof already given in [HNTV]. We thus consider the
difference ||P̂ε1f − P̂ε2f ||1, with f in BV. We have

P̂ε1f(x)− P̂ε2f(x) =
m∑
l=1

f · 1Ucn(T−1
ε1,l
x)

[
1

DTε1(T
−1
ε1,l
x)
− 1

DTε2(T
−1
ε2,l
x)

]
+

m∑
l=1

1

DTε2(T
−1
ε2,l
x)

[f · 1Ucn(T−1
ε1,l
x)− f · 1Ucn(T−1

ε2,l
x)] = E2(x) + E3(x).

In the formula above we considered, without restriction, the derivative positive and more-
over we discarded those points x which have only one pre-image in each interval of mono-
tonicity. After integration this will give an error (E1) as E1 ≤ 4m|ε1 − ε2|||P̂εf ||∞. But
||P̂εf ||∞ ≤ ||f ||∞

∑m
l=1

DTε2 (T−1
ε2,l

x′)

DTε2 (T−1
ε2,l

x)
1

DTε2 (T−1
ε2,l

x′)
, where x′ is the point whereDTε2(T

−1
ε2,l
x′)|Al| ≥

η, being η the minimum lenght of T (Ak), k = 1, . . . ,m. But the first ratio in the previous
sum is simply bounded by the distortion constant Dc = Λλ−1; therefore we get

E1 ≤ 4m|ε1 − ε2|||f ||∞
Dc

η

m∑
l=1

|Al| ≤ 4m|ε1 − ε2|||f ||∞
Dc

η
.

We now bound E2. The term in the square bracket and for given l (we drop this index in the
derivatives in the next formulas), will be equal to D2T (ξ)

[DT (ξ)]2
|T−1
ε1

(x)−T−1
ε2

(x)|, being ξ a point
in the interior of Al. The first factor is uniformly bounded by C1. Since x = Tε1(T

−1
ε1

(x)) =
T ((T−1

ε1
(x)) + ε1 = T ((T−1

ε2
(x)) + ε2 = Tε2(T

−1
ε2

(x)), we have that |T−1
ε1

(x) − T−1
ε2

(x)| =

|ε1 − ε2||DT (ξ′)|−1, where ξ′ is in Al. Replacing ξ′ by T−1
ε1,l
x, because of distortion, we get∫

|E2(x)|dx ≤ |ε1 − ε2|C1Dc

∫ [ m∑
l=1

|f(T−1
ε1,l

)| 1

DTε1(T
−1
ε1,l
x)

]
dx =
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|ε1 − ε2|C1Dc

∫
Pε1(|f |)(x)dx = |ε1 − ε2|C1Dc||f ||1.

To bound the last term we use the formula (3.11), in [CR07],∫
sup
|y−x|≤t

|f(y)− f(x)|dx ≤ 2tVar(f),

by observing again that |T−1
ε1

(x) − T−1
ε2

(x)| = |ε1 − ε2||DT (ξ′)|−1, where ξ′ is in Al. By
integrating E3(x) we get∫

|E3(x)|dx ≤ 2mλ−2 |ε1 − ε2|Var(f1Ucn) ≤

10mλ−2 |ε1 − ε2|Var(f).

Putting together the three errors we finally get that there exists a constant C̃ such that

||P̂ε1f − P̂ε2f ||1 ≤ C̃|ε1 − ε2|||f ||BV ,

and we can complete the argument as in the first example of β transformations.

3.3.3. Multidimensional maps. We give here a multidimensional version of the maps con-
sidered in the preceding section; these maps were extensively investigated in [Sau00, HV09,
AFV15, AFLV11, HNVZ13] and we defer to those papers for more details. Let M be a
compact subset of RN which is the closure of its non-empty interior. We take a map
T : M → M and let A = {Ai}mi=1 be a finite family of disjoint open sets such that the
Lebesgue measure of M \

⋃
iAi is zero, and there exist open sets Ãi ⊃ Ai and C1+α maps

Ti : Ãi → RN , for some real number 0 < α ≤ 1 and some sufficiently small real number
ε1 > 0, such that

(1) Ti(Ãi) ⊃ Bε1(T (Ai)) for each i, where Bε(V ) denotes a neighborhood of size ε of
the set V. The maps Ti are the local extensions of T to the Ãi.

(2) there exists a constant C1 so that for each i and x, y ∈ T (Ai) with dist(x, y) ≤ ε1,

| detDT−1
i (x)− detDT−1

i (y)| ≤ C1| detDT−1
i (x)|dist(x, y)α;

(3) there exists s = s(T ) < 1 such that ∀x, y ∈ T (Ãi) with dist(x, y) ≤ ε1, we have

dist(T−1
i x, T−1

i y) ≤ s dist(x, y);

(4) each ∂Ai is a codimension-one embedded compact piecewise C1 submanifold and

sα +
4s

1− s
Z(T )

γN−1

γN
< 1, (3.14)

where Z(T ) = sup
x

∑
i

#{smooth pieces intersecting ∂Ai containing x} and γN is

the volume of the unit ball in RN .
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Given such a map T , we define locally on each Ai the map Tε ∈ F by Tε(x) := T (x) + ε,
where now ε is an n-dimensional vector with all the components of absolute value less than
one. As in the previous example the translation by ε is allowed if the image TεAi remains
inM : in this regard, we could play with the sign of the components of ε or do not move the
map at all. As in the one dimensional case, we shall also make the following assumption
on F . We assume that there exists a set Aw ∈ A satisfying:

(i) Aw ⊂ TεAk for all ∀ Tε ∈ F and for all k = 1, . . . ,m.
(ii) TAw is the whole M , which in turn implies that there exists 1 ≥ L′ > 0 such that
∀k = 1, . . . , q and ∀Tε ∈ F , diameter(Tε(Aw) ∩ Ak) > L′.

As V ⊂ L 1(m) we use the space of quasi-Hölder functions, for which we refer again to
[Sau00, HV09]. On this space, the transfer operator satisfies a Doeblin-Fortet-Lasota-Yorke
inequality. Finally, Lipschitz continuity has been proved for additive noise in Proposi-
tion 4.3 in [AFV15].

3.3.4. Covering maps: a general class. We now present a more general class of examples
which were introduced in [BV13] to study metastability for randomly perturbed maps. As
before, the family F will be constructed around a given map T which is again defined on
the unit interval M . We therefore begin to introduce such a map T .
(A1) There exists a partition A = {Ai : i = 1, . . . ,m} of M , which consists of pair-
wise disjoint intervals Ai. Let Āi := [ci,0, ci+1,0]. We assume there exists δ > 0 such
that Ti,0 := T |(ci,0,ci+1,0) is C2 and extends to a C2 function T̄i,0 on a neighbourhood
[ci,0 − δ, ci+1,0 + δ] of Āi ;
(A2) There exists β0 <

1
2
so that infx∈I\C0 |T ′(x)| ≥ β−1

0 , where C0 = {ci,0}mi=1.
We note that Assumption (A2), more precisely the fact that β−1

0 is strictly bigger than 2
instead of 1, is sufficient to get the uniform Doeblin-Fortet-Lasota-Yorke inequality (3.17)
below, as explained in Section 4.2 of [GTHW11]. We now construct the family F by choos-
ing maps Tε ∈ F close to Tε=0 := T in the following way:
Each map Tε ∈ F has m branches and there exists a partition ofM into intervals {Ai,ε}mi=1,
Ai,ε ∩ Aj,ε = ∅ for i 6= j, Āi,ε := [ci,ε, ci+1,ε] such that

(i) for each i one has that [ci,0+δ, ci+1,0−δ] ⊂ [ci,ε, ci+1,ε] ⊂ [ci,0−δ, ci+1,0+δ]; whenever
c1,0 = 0 or cq+1, 0 = 1, we do not move them with δ. In this way, we have established
a one-to-one correspondence between the unperturbed and the perturbed extreme
points of Ai and Ai,ε. (The quantity δ is from Assumption (A1) above.)

(ii) the map Tε is locally injective over the closed intervals Ai,ε, of class C2 in their
interiors, and expanding with infx |T ′εx| > 2. Moreover there exists σ > 0 such that
∀Tε ∈ F ,∀i = 1, · · · ,m and ∀x ∈ [ci,0 − δ, ci+1,0 + δ] ∩ Ai,ε where ci,0 and ci,ε are
two (left or right) corresponding points, we have:

|ci,0 − ci,ε| ≤ σ (3.15)
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and
|T̄i,0(x)− Ti,ε(x)| ≤ σ. (3.16)

Under these assumptions and by taking, with obvious notations, a concatenation of n
transfer operators, we have the uniform Doeblin-Fortet-Lasota-Yorke inequality, namely
there exist η ∈ (0, 1) and B < ∞ such that, for all f ∈ BV , all n and all concatenations
of n maps of F , we have

||Pεn ◦ · · · ◦ Pε1f ||BV ≤ ηn||f ||BV +B||f ||1. (3.17)

About the continuity (Lip): looking carefully at the proof of the continuity for the expand-
ing map of the intervals, one sees that it extends to the actual case if one gets the following
bounds:

|T−1
ε1

(x)− T−1
ε2

(x)|
|DTε1(x)−DTε2(x)|

}
= O((|ε1 − ε2|), (3.18)

where the point x is in the same domain of injectivity of the maps Tε1 and Tε2 , the com-
parison of the same functions and derivative in two different points being controlled by the
condition (3.15). The bounds (3.18) follow easily by adding to (3.15), (3.16) the further
assumptions that σ = O(ε) and requiring a continuity condition for derivatives like (3.16)
and with σ again being of order ε.

4. EVT for the sequential systems: an example of uniformly expanding
map

In this section and in the next one, we will give a detailed analysis of the application of the
general result obtained in Section 2 for two particular sequential systems. The first is that
constructed with β transformations; similar approach and technique can be used to treat
the other examples of sequential systems introduced above with suitable adaptations and
modifications. We point out that in this example we will take un,i = un, where (un)n∈N
satisfies nµ(Un) = nµ(X0 > un) → τ , as n → ∞ for some τ > 0, where µ is the invariant
measure of the original map Tβ.
In the second example, treated in the next section, the level sets un,i will depend on the
time i and this will allow us to deal with the important example of concatenation of non-
uniformly expanding maps of the interval, the Pomeau-Manneville transformations. In
this case we cannot anymore use the spectral theory of Section 3, based on the quasi-
compactness of the transfer operator, but we will proceed in a different manner.

4.1. EVT for the β-transformation. As we said above, we let µ denote the invariant
measure of the original map Tβ and let h = dµ

dm
be its density.

We assume throughout this subsection that there exists ξ > 1 such that

|βn − β| ≤
1

nξ
. (4.1)
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Also let 0 < γ < 1 be such that γξ > 1. Note that by [CR07, Lemma 3.10], we have∥∥∥∥Πi(g)−
∫
gdm h

∥∥∥∥
1

≤ C1
log i

iξ
‖g‖BV . (4.2)

Consider a measurable set A ⊂ [0, 1]. Then

m(T̃−j(A)) =

∫
1A ◦ Tj ◦ . . . ◦ T1dm =

∫
1AΠj(1)dm

=

∫
1Ahdm+

∫
1A(Πj(1)− h)dm.

By (4.2), if j ≥ nγ (recall that γξ > 1) then we have
∫
|Πj(1) − h|dm ≤ C1

log i
iξ

= o(n−1),
which allows us to write:

m(T̃−j(A)) = µ(A) + o(n−1). (4.3)

4.1.1. Verification of condition (2.2), i.e., limn→∞
∑n−1

i=0 m(Xi > un) = τ . We start with
the following lemma.

Lemma 4.1. We have that

lim
n→∞

n−1∑
i=0

∫
Un

P i(1) dm = τ.

Proof. By hypothesis, for all j ∈ N and g ∈ BV we have P j(g) = h
∫
g · h dm + Qj(g),

where ‖Qj(g)‖∞ ≤ αj‖g‖BV , for some α < 1. Then we can write:

n−1∑
i=0

∫
Un

P i(1)dm =
n−1∑
i=0

∫
h

(∫
1 · hdm

)
1Undm+

n−1∑
i=0

∫
Qi(1)1Undm

=
n−1∑
i=0

∫
Un

hdm+
n−1∑
i=0

∫
Qi(1)1Undm

= nµ(Un) +
n−1∑
i=0

∫
Qi(1)1Undm.

The result follows if we show that the second term on the r.h.s. goes to 0, as n→∞. This
follows easily since

n−1∑
i=0

∫
Qi(1)1Undm ≤

n−1∑
i=0

αi
∫

1Undm =
1− αn

1− α
m(Un) −−−→

n→∞
0.

�
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Since
n−1∑
i=0

m(Xi > un) =
n−1∑
i=0

∫
Un

Πi(1)dm =
n−1∑
i=0

∫
Un

P i(1)dm+
n−1∑
i=0

∫
Un

Πi(1)− P i(1)dm,

then condition (2.2) holds if we prove that the second term on the r.h.s. goes to 0 as
n→∞.

Let ε > 0 be arbitrary. Now, since ξ > 1 then
∑

i≥0
log i
iξ

<∞, so there exists N ∈ N such
that C0

∑
i≥N

log i
iξ

< ε/2.

On the other hand, using the Lasota-Yorke inequalities for both Π and P , we have that
there exists some C > 0 such that |Πi(1)− P i(1)| ≤ C, for all i ∈ N. Let n be sufficiently
large so that CNm(Un) < ε/2. Then

n−1∑
i=0

∫
Un

Πi(1)− P i(1)dm =
N−1∑
i=0

∫
Un

Πi(1)− P i(1)dm+
∞∑
i=N

∫
Un

Πi(1)− P i(1)dm

≤ CNm(Un) + C0

∑
i≥N

log i

iξ
< ε/2 + ε/2 = ε.

4.1.2. Verification of Дq(un). We start by proving the following statement about decay of
correlations, which is just a slightly more general statement then the one proved in [CR07,
Section 3].

Proposition 4.2. Let φ ∈ BV and ψ ∈ L1(m). Then for the β transformations Tn = Tβn
we have that∣∣∣∣∫ φ ◦ T̃ iψ ◦ T̃ i+tdm−

∫
φ ◦ T̃ idm

∫
ψ ◦ T̃ i+tdm

∣∣∣∣ ≤ Bλt‖φ‖BV ‖ψ‖1,

for some λ < 1 and B > 0 independent of φ and ψ.

Remark 4.3. Note that as it can be seen in [CR07, Section 3], Proposition 4.2 holds for
any sequence Tβ1 , Tβ2 , . . . of β transformations and not necessarily only for the ones that
satisfy condition (4.1).

Proof. Using the adjoint property, write

DC(φ, ψ, i, t) :=

∫
φ ◦ T̃ iψ ◦ T̃ i+tdm−

∫
φ ◦ T̃ idm

∫
ψ ◦ T̃ i+tdm

=

∫
ψPi+t . . . Pi+1(φΠi(1))dm−

∫
φΠi(1)dm

∫
ψΠi+t(1)dm.

Using the fact that the Perron-Frobenius operators preserve integrals we have∫
φΠi(1)dm

∫
ψΠi+t(1)dm =

∫∫
ψΠi+t(1)dmPi+t . . . Pi+1(φΠi(1))dm.
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By linearity we also have∫
φΠi(1)dm

∫
ψΠi+t(1)dm =

∫
ψPi+t . . . Pi+1

(∫
φΠi(1)dmΠi(1)

)
dm.

Again linearity and preservation of the integrals allow us to write:∫
φΠi(1)dm

∫
ψΠi+t(1)dm =

∫∫
ψΠi+t(1)dmPi+t . . . Pi+1

(∫
φΠi(1)dmΠi(1)

)
dm.

Consequently we have

DC(φ, ψ, i, t) =

∫
ψPi+t . . . Pi+1(φΠi(1))dm−

∫∫
ψΠi+t(1)dmPi+t . . . Pi+1(φΠi(1))dm

−
∫
ψPi+t . . . Pi+1

(∫
φΠi(1)dmΠi(1)

)
dm

+

∫∫
ψΠi+t(1)dmPi+t . . . Pi+1

(∫
φΠi(1)dmΠi(1)

)
dm

=

∫ (
ψ −

∫
ψΠi+t(1)dm

)
Pi+t . . . Pi+1

(
Πi(1)

(
φ−

∫
φΠi(1)dm

))
.

Let φ̃ = φ −
∫
φΠi(1)dm. Observe that

∫
Πi(1)φ̃dm = 0. This means that the observable

function Πi(1)φ̃ ∈ V0, where V0 is the set of functions with 0 integral that was defined in
[CR07, Lemma 2.12]. Moreover, by (DFLY), there exists a constant C0 independent of φ
and ψ such that ‖Πi(1)φ̃‖BV ≤ 3C0‖φ‖BV .
As it has been shown in [CR07, Section 3], condition (Dec) of the same paper is satisfied
for any sequence of β transformations as considered here. It follows that for all g ∈ V0

and i ∈ N we have that ‖Pi+t . . . Pi+1(g)‖BV ≤ Kλt‖g‖BV , for some K > 0 and λ < 1

independent of g, which applied to Πi(1)φ̃ gives:

‖Pi+t . . . Pi+1(Πi(1)φ̃)‖BV ≤ 3KC0λ
t‖φ‖BV . (4.4)

Let ψ̃ = ψ −
∫
ψΠi+t(1)dm. Again, by [CR07, (2.4)], we have ‖ψ̃‖1 ≤ 2C0‖ψ‖1. Hence,

using (4.4) we obtain

|DC(φ, ψ, i, t)| =
∣∣∣∣∫ ψ̃ Pi+t . . . Pi+1

(
Πi(1)φ̃

)
dm

∣∣∣∣
≤ ‖Pi+t . . . Pi+1(Πi(1)φ̃)‖BV

∫
|ψ̃|dm

≤ 6KC2
0λ

t‖φ‖BV ‖ψ‖1.

�

Condition Дq(un,i) follows from Proposition 4.2 by taking for each i ∈ N,

φi = 1
D

(q)
n,i

and ψi = 1
D

(q)
n,i+t

.1
D

(q)
n,i+t+1

◦ Ti+t+1. · · · .1D(q)
n,i+t+`

◦ Ti+t+` ◦ . . . ◦ Ti+t+1,
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where for every j ∈ N we define

D
(q)
n,j = Un ∩ T−1

j+1(U c
n) ∩ . . . ∩ T−1

j+q(U
c
n). (4.5)

Since we assume that (4.1) holds, there exists a constant C > 0 depending on q but not
on i such that ‖φi‖BV < C. Moreover, it is clear that ‖ψi‖ ≤ 1. Hence,∣∣∣P(A(q)

n,i ∩Wi+t,`

(
A(q)
n

))
− P

(
A

(q)
n,i

)
P
(
Wi+t,`

(
A(q)
n

))∣∣∣ =∣∣∣∣∫ φi ◦ T̃ iψi ◦ T̃ i+tdm−
∫
φi ◦ T̃ idm

∫
ψi ◦ T̃ i+tdm

∣∣∣∣ ≤ const λt.

Thus, if we take γi(q, n, t) = constλt and tn = (log n)2 condition Дq(un,i) is trivially
satisfied.

4.1.3. Verification of condition Д′q(un). We start by noting that we may neglect the first
nγ random variables of the process X0, X1, . . ., where γ is such that γξ > 1, for ξ given as
in (4.1).

In fact, by Lemma 2.5 and (DFLY) we have

m(max{Xnγ , . . . , Xn−1} ≤ un)−m(Mn ≤ un) ≤
nγ−1∑
i=0

m(Xi > un) =
nγ−1∑
i=0

∫
1UnΠi(1)dm

≤ C0n
γm(Un) −−−→

n→∞
0.

This way, we simply disregard the nγ random variables of X0, X1, . . . and start the blocking
procedure, described in Section 2.2, in Xnγ by taking L0 = nγ. We split the remaining
n − nγ random variables into kn blocks as described in Section 2.2. Our goal is to show
that

S ′n :=
kn∑
i=1

`i−1∑
j=0

`i−1∑
r>j

m(A
(q)
Li−1+j ∩ A

(q)
Li−1+r)

goes to 0.

We define for some i, n, q ∈ N0,

R
(q)
n,i := min

{
j > i : 1

A
(q)
i
· 1

A
(q)
j

(x) > 0 for some x ∈ [0, 1]
}
,

R̃(q)
n := R̃(q)

n (nγ) = min{R(q)
n,i, i = nγ, . . . , n},

Ln = max{`n,i, i = 1, . . . , kn}.

We have

S ′n ≤
n∑

i=nγ

Ln∑
j>i+R

(q)
n,i

m
(
A

(q)
i ∩ A

(q)
j

)
=

n∑
i=nγ

Ln∑
j>i+R

(q)
n,i

∫
1
D

(q)
n,i
◦ T̃i · 1D(q)

n,j
◦ T̃j dm,
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where D(q)
n,i and D

(q)
n,j are given as in (4.5). Using Proposition 4.2, with φ = 1

D
(q)
n,i

and
ψ = 1

D
(q)
n,j

and the adjoint property of the operators, it follows that∫
1
D

(q)
n,i
◦ T̃i · 1D(q)

n,j
◦ T̃j dm ≤

∫
1
D

(q)
n,i

Πi(1)dm

∫
1
D

(q)
n,j

Πj(1)dm+Bλj−i‖1
D

(q)
n,i
‖BV ‖1D(q)

n,j
‖1.

Using (DFLY) and since there exists some C2 > 0 (independent of n) such that ‖1
D

(q)
n,i
‖BV ≤

C2, we have ∫
1
D

(q)
n,i
◦ T̃i · 1D(q)

n,j
◦ T̃j dm ≤ C2

0m(Un)2 +BC2λ
j−1m(Un).

Hence,

S ′n ≤
n∑

i=nγ

Ln∑
j≥i+R(q)

n,i

(
C2

0m(Un)2 +BC2λ
j−1m(Un)

)
≤ C2

0nLnm(Un)2 +BC2m(Un)n
Ln∑

k≥R̃(q)
n

λk

≤ C2
0nLnm(Un)2 +BC2m(Un)nλR̃

(q)
n

1

1− λ
.

Now we show that
Ln =

n

kn
(1 + o(1)). (4.6)

To see this, observe that each `ni is defined, in this case, by the largest integer `n such that∑s+`n−1
j=s m(Xj > Un) ≤ 1

kn

∑n−1
j=nγ m(Xj > un). Using (4.3), it follows that `nµ(Un)(1 +

o(1)) ≤ n−nγ
kn

µ(Un)(1 + o(1)). On the other hand, by definition of `n we must have∑s+`n−1
j=s m(Xj > Un) > 1

kn

∑n−1
j=nγ m(Xj > un) − m(Xs+`n > un). Using (4.3) again,

we have `nµ(Un)(1 + o(1)) > n−nγ
kn

µ(Un)(1 + o(1)) − µ(Un)(1 + o(1)). Together with the
previous inequality, (4.6) follows at once.

Using estimate (4.6), the fact that limn→∞ nµ(Un) = τ and h ∈ BV , we have that there
exists some positive constant C such that

S ′n ≤ C

(
1

kn
+ λR̃

(q)
n

)
.

In order to prove that Д′(un) holds, we need to show that R̃(q)
n → ∞, as n → ∞, for all

q ∈ N0. To do that we have to split the proof in several cases. First, we have to consider
the cases when the orbit of ζ hits 1 or not. Then for each of the previous two cases, we
have to consider if ζ is periodic or not.

We will consider that the maps Ti, for all i ∈ N0, are defined in S1 by using the usual
identification 0 ∼ 1. Observe that the only point of discontinuity of such maps is 0 ∼ 1.
Moreover, limx→0+ Ti(x) = 0 and limx→1− Ti(x) = βi − bβic.
4.1.3.1. The orbit of ζ by the unperturbed Tβ map does not hit 1. We mean that for all
j ∈ N0 we have T j(ζ) 6= 1.
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4.1.3.1.1. The orbit of ζ is not periodic. In this case, for all j ∈ N, we have that T j(ζ) 6= ζ,
we take q = 0 and in particular D(q)

n,i = Un, for all i ∈ N0. Let J ∈ N.

We will check that for n sufficiently large R̃(q)
n > J . Since ζ is not periodic, there exists

some ε > 0 such that minj=1,...J dist(T j(ζ), ζ) > ε. Let N1 ∈ N be sufficiently large so that
for all i ≥ N1, we have

min
j=1,...J

dist(Ti+j ◦ . . . ◦ Ti(ζ), T j(ζ)) < ε/4.

Let N2 ∈ N be sufficiently large so that for all i ≥ N2 we have

diam(Ti+J ◦ . . . ◦ Ti(Un)) < ε/4.

This way for all i ≥ max{N1, N2}, for all x ∈ Un and for all j ≤ J we have

dist(Ti+j ◦ . . . ◦ Ti(x), ζ) > ε/2.

Hence, as long as nγ > max{N1, N2} we have R̃(q)
n > J .

Note that for this argument to work we only need that βn → β and the stronger restriction
imposed by (4.1) is not necessary.

4.1.3.1.2. The orbit of ζ is periodic. In this case, there exists p ∈ N, such that T j(ζ) 6= ζ
for all j < p and T p(ζ) = ζ. We take q = p.

Let
εn := |βnγ − β|. (4.7)

By (4.1) and choice of γ, we have that εn = o(n−1). Also let δ > 0, be such that Bδ(ζ) is
contained on a domain of injectivity of all Ti, with i ≥ nγ.

Let J ∈ N be chosen. Using a continuity argument, we can show that there exists C :=
C(J, p) > 0 such that

dist(Ti+j ◦ . . . ◦ Ti+1(ζ), T j(ζ)) < Cεn, for all i = 1, . . . , J

and moreover Un ∩ Ti+j ◦ . . . ◦ Ti+1(Un) = ∅, for all j ≤ J such that j/p− bj/pc > 0.

We want to check that if x ∈ A(q)
i for some i ≥ nγ, i.e., T̃ i(x) ∈ D(q)

n,i , then x /∈ A(q)
i+j, for

all j = 1, . . . , J , i.e., T̃ i+j(x) /∈ D(q)
n,i+j ⊂ Un, for all such j. By the assumptions above, we

only need to check the latter for all j = 1, . . . , J such that j/p − bj/pc = 0, i.e., for all
j = sp, where s = 1, . . . , bJ/pc.

By definition of A(q)
i the statement is clearly true when s = 1. Let us consider now that

s > 1 and let x ∈ A(q)
i . We may write

dist(T̃ i+sp(x), Ti+sp ◦ . . . ◦ Ti+p+1(ζ)) > (β − εn)(s−1)pdist(T̃ i+p(x), ζ).

On the other hand,
dist(Ti+sp ◦ . . . ◦ Ti+p+1(ζ), ζ) ≤ Cεn.
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Hence,

dist(T̃ i+sp(x), ζ) ≥ dist(T̃ i+sp(x), Ti+sp ◦ . . . ◦ Ti+p+1(ζ))− dist(Ti+sp ◦ . . . ◦ Ti+p+1(ζ), ζ)

≥ (β − εn)(s−1)pdist(T̃ i+p(x), ζ)− Cεn

≥ (β − εn)(s−1)pm(Un)

2
− Cεn, since x ∈ A(q)

i ⇒ T̃ i+p(x) /∈ Un

>
m(Un)

2
, for n sufficiently large, since εn = o(n−1).

This shows that T̃ sp+i(x) /∈ Un, which means that T̃ sp+i(x) /∈ D(q)
n,i and hence x /∈ A(q)

i+sp.

4.1.3.2. ζ = 0 ∼ 1. In this case we proceed in the same way as in [AFV15, Section 3.3],
which basically corresponds considering two versions of the same point: ζ+ = 0 and ζ− = 1.
Note that ζ+ is a fixed point for all maps considered and ζ− may or not be periodic. So
we split again into two cases.

4.1.3.2.1. 1 is not periodic. This means that T i(1) 6= ζ for all i ∈ N. Note that Un can
be divided into U+

n which corresponds to the bit having 0 at its left border and U−n which
corresponds to the interval with 1 as its endpoint. In this case, q = 1 and D

(1)
n,i has two

connected components one of them being U−n . Let J ∈ N be fixed as before. A continuity
argument as the one used in Paragraph 4.1.3.1.1, allows us to show that the points of U−n
do not return before J iterates. An argument similar to the one used in Paragraph 4.1.3.1.2
would allow us to show also that the points of the other connected component of D(1)

n,i do
not return to Un before time J , also.

4.1.3.2.2. 1 is periodic. This means that there exists p ∈ N such that T i(1) 6= ζ for all
i < p and T p(1) = ζ. In this case, we need to take q = p and observe that D(q)

n,i has
again two connected components, one to the right of 0 and the other to the left of 1,
where none of the two points belongs to the set. The argument follows similarly as in
the previous paragraph, except that this time both sides require mimicking the argument
used in Paragraph 4.1.3.1.2. Note that, the maps are orientation preserving so there is no
switching as described in [AFV15, Section 3.3].

4.1.3.3. ζ 6= 0 ∼ 1 but there exists j ∈ N such that T j(ζ) = 0 ∼ 1. We proceed again as
in [AFV15, Section 3.3], which basically corresponds to consider two versions of the same
point: ζ+, where we suppose that T j(ζ+) = 0 and ζ−, where we suppose that T j(ζ−) = 1.
Since ζ+ is a pre-fixed point, it will never return to a vicinity of itself so a continuity
argument will let us obtain the result for this case. For ζ−, depending on whether the orbit
of 1 hits ζ or not we use an argument as in Paragraph 4.1.3.1.2 or Paragraph 4.1.3.1.1,
respectively, to get the same result.

4.1.4. Verification of condition (2.8). We only need to verify (2.8), when ζ has some sort
of periodic behaviour. Let εn be defined as in (4.7). Let δn be such that Un = Bδn(ζ). For
simplicity, we assume that we are using the usual Riemannian metric so that we have a
symmetry of the balls, which means that |Un| = m(Un) = 2δn.
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Let us assume first that ζ is a periodic point of prime period p with respect to the unper-
turbed map T = Tβ and the orbit of ζ does not hit 0 ∼ 1. In this case, we take q = p,
θ = 1− β−p and check (2.8).

Using a continuity argument we can show that there exists C := C(J, p) > 0 such that

dist(Ti+p ◦ . . . ◦ Ti+1(ζ), ζ) < Cεn.

We define two points ξu and ξl of Bδn(ζ) on the same side with respect to ζ such that
dist(ξu, ζ) = (β − εn)−pδn + Cεn and dist(ξl, ζ) = (β + εn)−pδn − (β + εn)−pCεn. Recall
that for all i ≥ nγ, we have that (β − εn) ≤ βi · . . . · βi+p ≤ (β + εn).

Since we are composing β transformations, then for all i ≥ nγ, we have dist(Ti+p ◦ . . . ◦
Ti(ξu), Ti+p ◦ . . . ◦ Ti(ζ)) ≥ δn + (β − εn)pCεn. Using the triangle inequality it follows that

dist(Ti+p ◦ . . . ◦ Ti(ξu), ζ) ≥ δn.

Similarly, dist(Ti+p ◦ . . . ◦ Ti(ξl), Ti+p ◦ . . . ◦ Ti(ζ)) ≤ δn − Cεn and

dist(Ti+p ◦ . . . ◦ Ti(ξl), ζ) ≤ δn.

If we assume that both ξu and ξl are on the right hand side with respect to ζ and ξ∗u and
ξ∗l are the corresponding points on the left hand side of ζ, then

(ζ − δn, ξ∗u] ∪ [ξu, ζ + δn) ⊂ D
(p)
n,i ⊂ (ζ − δn, ξ∗l ] ∪ [ξl, ζ + δn).

Hence,

δn − (β − εn)−pδn − Cεn ≤
1

2
m(D

(p)
n,i) ≤ δn − (β + εn)−pδn + (β + εn)−pCεn.

Since εn = o(n−1) = o(δn) then we easily get that

lim
n→∞

m(D
(p)
n,i)

m(Un)
= 1− β−p.

Now, observe that by (4.3), m(A
(p)
n,i) = m(T̃−i(D

(p)
n,i)) = µ(D

(p)
n,i)+o(n−1) andm(Xi > un) =

µ(Un) + o(n−1). Hence, we have that

lim
n→∞

m(A
(p)
n,i)

m(Xi > un)
= lim

n→∞

µ(D
(p)
n,i)

µ(Un)
.

The density dµ
dm

, which can be found in [Par60, Theorem 2], is sufficiently regular so that,
as in [FFT14, Section 7.3], one can see that

lim
n→∞

µ(D
(p)
n,i)

µ(Un)
= lim

n→∞

m(D
(p)
n,i)

m(Un)
.

It follows that

lim
n→∞

m(A
(p)
n,i)

m(Xi > un)
= 1− β−p.
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Since, as we have seen in (4.6), we can write that `n,i = n
kn

(1 + o(1)), then the previous
equation can easily be used to prove that condition (2.8) holds, with θ = 1− β−p.
In the case ζ = 0 ∼ 1, the argument follows similarly but this time we have to take into
account the fact that the density is discontinuous at 0 ∼ 1. By [Par60] we have that

dµ

dm
(x) =

1

M(β)

∑
x<Tn(1)

1

βn
,

where M(β) :=
∫ 1

0

∑
x<Tn(1)

1
βn
dm. In this case, we have θ = dµ

dm
(0)(1− β−1) + dµ

dm
(1) if 1

is not periodic and θ = dµ
dm

(0)(1− β−1) + dµ
dm

(1)(1− β−p) if 1 is periodic of period p.

4.1.5. An example with an EI equal to 1 at periodic points. In the previous subsections, we
used (4.1), which imposes a fast accumulation rate of βn to β, to show that the EI equals
the EI observed for the unperturbed dynamics. If this condition fails then the EI for the
sequential dynamics does not need to be the same as the one of the original system.

Let β = 5/2 and T = Tβ = 5/2x mod 1. Let ζ = 2/3. Note that T (2/3) = 2/3. Consider
a sequence βj = 5/2 + εj, with εj = j−α, where α < 1. Note that 1/n = o(εn).

Observe that Tj(2/3) = 2/3 + O(εj). Also note that, since we are choosing, deliberately,
εj > 0 for all j, then the orbit of ζ is being pulled to the right everytime we iterate.
Moreover, by letting j be sufficiently large we can keep it inside a small neighbourhood of
2/3 at least up to a certain fixed number of iterates J ∈ N.
For δ > 0, we have that Tj(2/3 − δ) = 2/3 + O(δ) + O(εj). So if we take δ = δn such
that Bδn(ζ) = Un then δn = O(1/n) and we see that if j and n are sufficiently large then
Tj(2/3− δn) > 2/3 + δn. Hence, by continuity, for some fixed J ∈ N, we can show that for
j and n sufficiently large then for all i = 1, . . . , J we have Tj+i ◦ . . .◦Tj(Un)∩Un = ∅. This
means that we would be able to show that Д′0(un) would hold with A

(q)
n,i = Un (meaning

that q = 0).

The conclusion then is that at ζ = 2/3, although for the unperturbed system T shows an
EI equal to 1− 2/5 = 3/5, for the sequential systems chosen as above the EI is equal to 1.

Remark 4.4. Note that condition (4.1) was used to prove (2.2) so, in this case, we may
need to use different un,i for each i but, since the invariant measure of each Ti is equivalent
to Lebesgue measure, the corresponding δn,i still satisfies δn,i = O(1/n) for all i ∈ N.

5. EVT for the sequential systems: intermittent maps

We now consider maps with indifferent fixed points in the formulation proposed in [LSV99].
Namely, for α ∈ (0, 1),

Tα(x) =

{
x(1 + 2αxα) for x ∈ [0, 1/2)

2x− 1 for x ∈ [1/2, 1]
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and we concatenate them. Let for each i ∈ N, Ti = Tαi , with αi ∈ (0, 1). As before,
Tn = Tn ◦ . . . ◦ T1.

We will assume that for all i ∈ N, we have αi ∈ [0, α∗]. At some point we will impose an
upper bound for α∗ but for the moment retain that we need at least a summable rate for
the decay of correlations, which implies that α∗ < 1/2.

The stochastic process X0, X1, . . . is defined as in (3.8). In this case, our reference measure
is the Lebesgue measure m, restricted to [0, 1] and we now choose time-dependent levels
un,i given by m(Xi > un,i) = τ/n, where τ ≥ 0. Let δn,i = g−1(un,i) so that

m(Xi > un,i) =

∫
1(ζ−δn,i,ζ+δn,i)Πi(1)dm =

τ

n
.

Observe that δn,0 = τ
2n

and, by Lemma 5.4, for n sufficiently large, we have
τ

2C ′n
≤ δn,i ≤

τ

2cn
. (5.1)

Note that this choice for the levels un,i guarantees that condition (2.2) is trivially satisfied.

5.1. Verification of Д0(un,i). The intermittent map introduced above exhibits polynomial
decay of correlations, which can be obtained by considering decay of the L1 norm of the
concatenation of the Perron-Frobenius operators. As before, we will be interested in the
kind of correlations given in Proposition 4.2, which reads

DC(φ, ψ, i, t) :=

∫
φ ◦ T̃ iψ ◦ T̃ i+tdm−

∫
φ ◦ T̃ idm

∫
ψ ◦ T̃ i+tdm

=

∫ (
ψ −

∫
ψΠi+t(1)dm

)
Pi+t . . . Pi+1

(
Πi(1)

(
φ−

∫
φΠi(1)dm

))
.

Let φ̃ = φ −
∫
φΠi(1)dm. Observe that

∫
Πi(1)φ̃dm = 0. This means that the observable

function Πi(1)φ̃ ∈ V0, where V0 is the set of functions with 0 integral that was defined in
[CR07, Lemma 2.12].
Now, contrary to what we did in the case of uniformly expanding maps, we will consider
decay of the L1 norm of the concatenation of the PF operators, namely we will consider,
having set ψ̃ = ψ −

∫
ψΠi(1)dm :

|DC(φ, ψ, i, t)| =
∣∣∣∣∫ ψ̃ Pi+t . . . Pi+1

(
Πi(1)φ̃

)
dm

∣∣∣∣ (5.2)

≤ ‖Pi+t . . . Pi+1(Πi(1)φ̃)‖1 ||ψ||∞ (5.3)

To deal with such correlations we apply the following result proved in [AHN+15]:

Theorem 5.1 ([AHN+15]). Suppose ψ, φ are in the cone Ca (see below), for some a and
with equal expectation

∫
φdm =

∫
ψdm. Then for any 0 < α∗ < 1 and for any sequence
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T1, · · · , Tn, n ≥ 1, of maps of Pomeau-Manneville type with 0 < αk ≤ α∗ < 1, k ∈ [1, n],
we have ∫

|Πn(φ)− Πn(ψ)|dm ≤ Cα∗(‖φ‖1 + ‖ψ‖1)n−
1
α

+1(log n)
1
α , (5.4)

where the constant Cα∗ depends only on the map Tα∗.

The cone Ca contains functions given by (here X(x) = x denotes the identity function):

Ca = {f ∈ C0((0, 1])∩L1(m) | f ≥ 0, f decreasing, Xα+1f increasing, f(x) ≤ ax−α
∫
fdm}

Having fixed 0 < α < 1, it was proven in [AHN+15] that, provided a is large enough, the
cone Ca is preserved by all operators Pk.

We are now ready to verify Д(un,i); since q = 0 and we are taking un,i = un we have that
A

(0)
n,i = {Xi > un,i} =: Un,i, which is an interval.

We will apply the bound (5.2). We begin to observe than in our case φ is not in the cone Ca;
we therefore approximate it with a function χ which is C1 and with compact support, equal
to 1 on Un,i and rapidly decreasing to zero on a set Λ of diameter ∆ in the complement of
Un,i

2 We have that ||χ||∞ = 1, ||χ′||∞ = O(∆−1) and finally ||φ− χ||1 = O(∆).
In this way we have:

Πi(1)φ̃ = Πi(1)χ− Πi(1)

∫
χΠi(1)dm+ Πi(1)[φ− χ]− Πi(1)

∫
[φ− χ]Πi(1)dm.

To this quantity we have to apply the power Πt := Pi+t . . . Pi+1 and then take the L1 norm:
for the last two terms in the preceding identity this contribution will be of order 2∆.
Now, generalizing an argument in [LSV99], it can be shown as in [NTV15], that there are
constants λ < 0, ν > 0, δ > 0 such that, having set χ′ := χ−

∫
χΠi(1)dm, the functions

F := χ′Πi(1) + λXΠi(1) + νΠi(1) + δ; G := λXΠi(1) + νΠi(1) + δ

2This can be achieved for instance in this way. Let Un = (an, bn) and U∆
n = (an −∆, bn + ∆). Define

χ(x) =



1 for x ∈ (an, bn)

e
− 1

1−( x−bn
∆ )

2

for x ∈ [bn, bn + ∆)

e
− 1

1−( x−an
∆ )

2

for x ∈ (an −∆, an]

0 for x ∈ R \ U∆
n

.

Note that ∆Un := {x : χ(x) − 1Un(x) > 0} = U∆
n \ [an, bn] and m(∆Un) = 2∆. We have χ ∈ C∞,

χ′′(bn + ∆
31/4 ) = 0 = χ′′(an − ∆

31/4 ) and

max{χ′(x)} = χ′(bn +
∆

31/4
) = χ′(an −

∆

31/4
) =

2e
− 1

1−1/
√

3

31/4(1− 1/
√

3)2

1

∆
= O(1/∆).

.
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are pushed into the cone Ca, in such a way that

Πt(Πi(1)χ′) = Πt(F )− Πt(G),

and, by the above theorem on loss of memory,

||Πt(Πi(1)χ′||1 = ||Πt(F )− Πt(G)||1 ≤ Cα∗(‖F‖1 + ‖G‖1)t−
1
α∗+1(log t)

1
α∗ .

It’s important to notice that the constants λ, ν, δ

• are independent on i;
• are affine functions of the C1 norm of χ, with multiplicative constants depending
only on α∗.

In conclusion, this means that we can write

||Πt(Πi(1)χ′||1 ≤ Cα∗ [Aα∗ ||χ||∞ +Bα∗||χ′||∞ +Dα∗ ]t
− 1
α∗+1(log t)

1
α∗ ,

where the factors Aα∗ , Bα∗ , Dα∗ depend only on α∗. Therefore, and taking into account the
bounds on χ, there will be new constants C1, C2, C3 depending only on α∗ such that

||Πt(Πi(1)φ̃||1 ≤ 2∆ + C1t
− 1
α∗+1(log t)

1
α∗ + C2∆−1t−

1
α∗+1(log t)

1
α∗ + C3t

− 1
α∗+1(log t)

1
α∗ .

Returning to (5.2), it follows that there exists C∗ (depending only on α∗) such that

DC(φ, ψ, i, t) ≤
(

2∆ + C∗∆−1t−
1
α∗+1(log t)

1
α∗
)
‖ψ‖∞. (5.5)

In order to verify condition Дq(un, i), we let ∆ = n1+η, for some η > 0, tn = nκ, for some
0 < κ < 1 and for each n, i, ` set φi = 1(ζ−δn,i,ζ+δn,i) and ψi = 1(ζ−δn,i+tn ,ζ+δn,i+tn ) · . . . ·
1(ζ−δn,i+tn+`,ζ+δn,i+tn+`) ◦ (Ti+tn+` ◦ . . . ◦ Ti+tn+1). Then we can write:

DC(φi, ψi, i, tn) ≤ 2n−(1+η) + C∗n1+ηn(− 1
α∗+1)κ(κ log n)

1
α∗ =: γi(0, n, tn).

Then, for some C∗∗ > 0, we have
n−1∑
i=0

γi(0, n, tn) ≤ 2n−η + C∗∗n2+2ηn(− 1
α∗+1)κ → 0, as n→∞,

as long as α is sufficiently small so that (− 1
α∗

+ 1)κ+ 2 + 2η < 0, which ultimately settles
condition Д0(un,i).

Note that in order to optimise the choice of the α∗ (which we want as large as possible),
we need to choose η close to 0 and κ close to 1, which means that α∗ < 1

3
. However, in

order to prove Д′0(un,i) we still need further restrictions on α.

5.2. Verification of Д′0(un,i). In order to prove Д′0(un,i), since q = 0 we have that A(0)
n,i =

{Xi > un,i} =: Un,i.

We will begin with a lemma that adjusts to the sequential setting the argument used in
[HNT12, Lemma 3.10]. Essentially, it says that the Lebesgue measure of the points that
after n iterations by the sequential intermittent maps return to an ε neighbourhood of
themselves scales like a power of ε that depends on the αi, with i = 1, . . . , n.
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Let En(ε) := {x ∈ [0, 1] : |Tn(x)− x| ≤ ε}.

Lemma 5.2. There exists some C > 0 such that for all n ∈ N, we have

m(En(ε)) ≤ Cε1/(1+α∗).

Proof. Let J1, J2, . . . , Jk be the domains of injectivity of Tn, ordered from the left to the
right, i.e., Ji = [ai, bi) and 0 = a1 < b1 = a2 < . . . < bk−1 = ak < bk = 1. Note that Tn is
full branched map, in particular, each branch Tn|Ji is a convex map where for each i 6= 1
we have DTn(x) > γ > 1 but when i = 1, we have DTn(0) = 1.

We consider now an ε-neighbourhood of the diagonal and the intersection of its boundary
with the full branches of Tn, i.e., we define for each i = 1, . . . , k, the points x±i ∈ Ji such
that Tn(x±i ) = x±i ±ε, whenever this intersection is well defined. Note that, whenever both
points x±i exist then En(ε) ∩ Ji ⊂ [x−i , x

+
i ].

Let x ≥ x−i in Ji. By convexity of Tn|Ji , we have

DTn(x) ≥ DTn(x−i ) ≥ x−i − ε− Tn(ai)

x−i − ai
,

hence

DTn(x)− 1 ≥ x−i − ε− Tn(ai)

x−i − ai
− 1 =

ai − ε− Tn(ai)

x−i − ai
≥ ai − ε− Tn(ai)

m(Ji)
.

It follows that

2ε =

∫ x+i

x−i

DTn(x)− 1dx ≥ m([x−i , x
+
i ])

ai − ε− Tn(ai)

m(Ji)
,

which implies

En(ε) ∩ Ji ≤
2ε

ai − ε− Tn(ai)
m(Ji).

This estimate is useful whenever ai − ε− Tn(ai) is not small. Hence, we define

V η = ∪{ai : |ai − Tn(ai)| < ε+ η} and Zη = ∪ai∈V ηJi.
Then

m(En(ε)) = m(En(ε) ∩ Zη) +m(En(ε) ∩ (Zη)c) ≤ m(Zη) +
2ε

η
m((Zη)c).

Now we estimate these sets in two different ways depending on whether n is small or large.
Assume that ε < η and n is sufficiently large so that maxi |Ji| ≤ ε, where |Ji| = bi − ai.
Recall that Tn(ai) = 0 for all i. Since ai ∈ V η means that ai < η + ε then

m(En(ε)) ≤ 2η +
2ε

η
.

Optimising over η ∈ (0, 1) we have that η = O(
√
ε) is the best choice and gives

m(En(ε)) ≤ C
√
ε ≤ Cε1/(1+α∗),
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since as mentioned above we have α∗ < 1/2, which implies that 1/(1 + α∗) > 2/3 > 1/2.

When n is small then the worst case scenario happens on J1. In this case x−1 is not defined
and En(ε) ∩ J1 = [0, x+

1 ]. In this case, we have:

ε = Tn(x+
1 )− x+

1 ≥ Tα∗(x
+
1 )− x+

1 = 2α
∗
(x+

1 )1+α∗ ,

which implies that x+
1 =

(
ε

2α∗

) 1
1+α∗ and ultimately, for α ∈ (0, 1), taking η =

√
ε, we have

m(En(ε)) ≤ ε
1

1+α∗ . �

We now follow the argument originally used by Collet in [Col01] and further developed in
[HNT12]. Let 0 < β < 1, 0 < κ < β and 0 < ξ < 1 such that κ(1 + ξ) < β. We define the
set of points that recur too fast:

Ej =

{
x ∈ [0, 1] : |Ti(x)− x| ≤ 2

j
for some i ≤ jκ(1+ξ)

}
.

By Lemma 5.2, we have that

m(Ej) ≤
jκ(1+ξ)∑
i=1

m(Ei(
2

j
)) ≤ C

jς
,

where ς = 1
1+α∗

− κ(1 + ξ) and for some C > 0.

The core of Collet’s argument is based on the use of Hardy-Littlewood maximal functions
to obtain, from an estimate on the measure of the sets Ej, an estimate for the conditional
measure on balls of radius 1/j, centred on m-a.e point ζ, of the intersection of these sets
Ej with the corresponding balls.

Lemma 5.3. Assume that (En)n∈N is a sequence of measurable sets such that

m(Ej) ≤
C

jς
,

for some C, ς > 0. Then for 0 < β < ς and γ > 1/(ς − β), we have that for m-a.e.
ζ ∈ [0, 1], there exists N(ζ) such that for all j ≥ N(ζ)

m({|x− ζ| ≤ j−γ} ∩ Ejγ ) ≤
2

jγ+γβ
.

Proof. Define the Hardy-Littlewood maximal function:

Ln(x) = sup
`>0

1

2`

∫ x+`

x−`
1En(z)dz.

By the Theorem of Hardy-Littlewood we have

m(Ln > λ) ≤ C

λ
‖1En‖L1 =

C

λ
m(En).
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Taking λ = n−β with 0 < β < ς, we have

m(Ln > n−β) ≤ c

n−β
m(En) ≤ C

nς−β
.

Hence, taking n = jγ, we have m(Ljγ > j−βγ) ≤ C
jγ(ς−β)

and assuming that γ(ς − β) > 1 it
follows that ∑

j

m(Ljγ > j−βγ) ≤
∑
j

C

jγ(ς−β)
<∞.

Hence, by the Borel-Cantelli lemma we have that for m-a.e. ζ there exists N(ζ) such that
for all j ≥ N(ζ) we have ζ ∈ {Ljγ ≤ j−βγ}.
Choosing ` = j−γ, by definition of the function L, we have for m-a.e. ζ∫ x+`

x−`
1En(z)dz = m((ζ − j−γ, ζ + j−γ) ∩ Ejγ ) ≤ 2j−γ(1+β).

�

Lemma 5.4. There exist constants c, C, C ′, C ′′ > 0 such that for all i ∈ N and x ∈ [0, 1]
we have

c ≤ Πi(1)(x) ≤ Cx−α.

In particular, for x ∈ Un and n sufficiently large, we can write

c ≤ Πi(1)(x) ≤ C ′,

where C ′ = C ′′ζ−α.

Proof. It is enough to prove the first inequalities. The upper bound follows because the
constant function 1 is in the cone Ca and therefore for any Pi : (Pi1)(x) ≤ axα

∫
Pi1dm ≤

axα; in this case C = a. The lower bound is the content of Lemma 2.4 in [LSV99] with

c = min

{
a,
[
α(1+α)
aα

] 1
1−α
}
. �

Lemma 5.5. There exists a constant C > 0 such that for m-a.e. ζ ∈ [0, 1], for all ` ∈ N
and all n sufficiently large, we have

n
nκ∑
i=1

m ({x : |T`(x)− ζ| ≤ δn,` and |Ti+`(x)− ζ| ≤ δn,i+`}) ≤ C
nκ

nβ
n→∞−−−→ 0,

where δn = τ
2nh(ζ)

and h(ζ) = dµ
dm

(ζ).
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Proof. Let j =
(
cn
τ

)1/γ so that j−γ = τ/(cn). Also observe that nκ = (τjγ/c)κ ≤ jγκ(1+ξ),
if n is large enough. Hence, for such sufficiently large n, we have:

Vn :={x : |x− ζ| ≤ τ

cn
and |Ti(x)− ζ| ≤ τ

cn
for some i ≤ nκ}

⊂{x : |x− ζ| ≤ j−γ and |Ti(x)− ζ| ≤ j−γ for some i ≤ nκ}
⊂{x : |x− ζ| ≤ j−γ and |Ti(x)− x| ≤ 2j−γ for some i ≤ nκ}
⊂{x : |x− ζ| ≤ j−γ and |Ti(x)− x| ≤ 2j−γ for some i ≤ jγκ(1+ξ)}
={x : |x− ζ| ≤ j−γ} ∩ Ejγ .

Hence, by Lemma 5.3 we have m(Vn) ≤ 2τ 1+β/n1+β. It follows that taking C = 2τ 1+β,

n
nκ∑
i=1

m
({
x : |x− ζ| ≤ τ

cn
and |Ti(x)− ζ| ≤ τ

cn

})
≤ n

nκ∑
i=1

m(Vn) ≤ n1+κ2τ 1+β

n1+β
≤ C

nκ

nβ
.

(5.6)

Finally, we observe that the quantity we want to estimate can be written as

n
nκ∑
i=1

∫
1Bδn,` (ζ)◦T` 1Bδn,i+` (ζ)◦Ti+`dm = n

nκ∑
i=1

∫
1Bδn,` (ζ) 1Bδn,i+` (ζ)◦Ti+`◦. . .◦T`+1 Π`(1)dm.

Recalling that by (5.1) we have δn,i ≤ τ
cn
, for all i ∈ N0, then, by Lemma 5.4 and (5.6), it

follows that there exists C ′, C ′′ > 0 such that

n
nκ∑
i=1

∫
1Bδn,` (ζ) ◦ T` 1Bδn,i+` (ζ) ◦ Ti+`dm ≤ C ′n

nκ∑
i=1

m(Vn) ≤ C ′′
nκ

nβ
.

�

Recall that we are taking: kn = n1−β and tn = nκ.

From Lemma 5.4, we have that cµ(Un) ≤ m(Xj > un) ≤ Cµ(Un). Hence, if we let
Ln = max{`i : i = 1, . . . , kn}, we obtain that there exists a constant C̃ > 0 such that
Ln ≤ C̃nβ.

In order to prove Д′0, we need to control the sum on the left

kn∑
i=1

`i−1∑
j=0

`i−1∑
r>j

P(A
(0)
n,Li−1+j ∩ A

(0)
n,Li−1+r) ≤

kn∑
i=1

Ln−1∑
j=0

Ln−1∑
r>j

P(A
(0)
n,Li−1+j ∩ A

(0)
n,Li−1+r)

≤ C̃n max
`=1,...,n

C̃nβ∑
i=1

∫
1Un ◦ T` 1Un ◦ Ti+`dm.
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From Lemma 5.5 we have that

lim
n→∞

n max
`=1,...,n

nκ∑
i=1

∫
1Bδn,` (ζ) ◦ T` 1Bδn,i+` (ζ) ◦ Ti+`dm = 0.

Hence we are left to handle nmax`=1,...,n

∑C̃nβ

i=nκ

∫
1Bδn,` (ζ) ◦ T` 1Bδn,i+` (ζ) ◦ Ti+` dm for which

we use decay of correlations. Using (5.5), we have:

n max
`=1,...,n

C̃nβ∑
i=nκ

∫
1Bδn,` (ζ) ◦ T` 1Bδn,i+` (ζ) ◦ Ti+` dm

≤ C(n1+βn1+ηnκ(1−1/α∗) log(n)1/α∗ + n−(1+η)+β+1 + n−2).

If we take η = 2β then if α∗ is sufficiently small it is easy to check that the terms on right
vanish as n→∞.

Now, we focus on a possible upper bound for α∗. From the first term on the rhs of the
previous equation we have that

2 + 4β + κ− κ/α∗ < 0 ⇐⇒ α∗ <
κ

2 + 4β + κ
. (5.7)

Moreover, in order to be able to apply Lemma 5.3 we need that ς > β which means that
1

1 + α∗
− κ(1 + ξ) > β ⇐⇒ α∗ < β + κ(1 + ξ)− 1. (5.8)

Recall that κ(1 + ξ) < β but we are free to choose any β ∈ (0, 1). Analysing both the
expressions one obtains that the maximum range for α∗ occurs for β and κ as close as
possible to 1, which means that α∗ < 1/7.

We emphasise that this restriction on α∗ is rather technical and is due to the use of the
blocking argument and of decay of correlations, which is proved only on sufficiently regular
Banach spaces of functions. We remark that the same techniques gave rise to similar
restrictions on α even in the stationary setting, where the orbits are obtained by iterations
of the same Liverani-Saussol-Vaienti map (see [HNT12, Section 3.4]).

6. Random fibered dynamical systems

We now provide a second example of non-stationary dynamical systems, this time arising
from suitable random perturbations.
We consider a probability space (Ω,G, P ) with an invertible P -preserving transformation
ϑ : Ω→ Ω; then we let (Ξ,F) another measurable space and Ξ a measurable (with respect
to the product G × F) subset of Ξ × Ω with the fibers Ξω = {ξ ∈ Ξ : (ξ, ω) ∈ Ξ} ∈ F .
We define the (skew) map s : Ξ → Ξ by s(ξ, ω) = (fωξ, ϑω), with fω : Ξω → Ξϑω being
measurable fiber maps with the composition rule

fnω : Ξω → Ξϑnω, fnω = fϑn−1ω ◦ · · · ◦ fω.
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We also put
f j
ϑlω

: Ξϑlω → Ξϑl+jω; f j
ϑlω

= fϑl+j−1ω ◦ · · · ◦ fϑlω.
Moreover we set

f−1
ϑjω

: Ξϑj+1ω → Ξϑjω and (fkω)−1 := f−1
ω ◦ · · · ◦ f−1

ϑk−1ω
.

This will allow us to introduce the σ-algebras T ωk := (fkω)−1T ϑkω0 where T ϑkω0 is the restric-
tion of the σ-algebra F to Ξω ⊂ Ξ.

It is well known that a measure µ disintegrated with respect to the measure P will be
s-invariant if the conditional measures µω will verify the quasi-invariant relation

(fω)∗µ
ω = µϑω. (6.1)

An interesting case is whenever all the fibers Ξω coincide with the metric space X. In this
case we can also define a marginal measure µ on X in the following way: given A ⊂ X,
define

µ(A) = µ̃(Ω× A) =

∫
Ω

µω(A) dP (ω).

Also in this case, the stochastic process is defined by

Xi = ϕ ◦ f iω, (6.2)

where ϕ : X → R∪{+∞} is as in (3.9). This stochastic processX0, X1, . . . is not necessarily
stationary and, by (6.1), the distribution function of Xi is given by

Fi(u) = µϑ
iω({x ∈ X : ϕ(x) ≤ u}).

In this setting, we will consider that the boundary levels un,0, un,1, . . . are such that un =
un,0 = un,1 = . . ., where un is determined by the marginal measure µ so that

un = inf
{
u ∈ R : µ({x ∈ X : ϕ(x) ≤ u}) ≥ 1− τ

n

}
.

Then as a result of the theory developed in Section 1.2, we can write a quenched distribu-
tional limit for the partial maxima of the process X0, X1, . . .. Namely, as a consequence of
Theorem 2.4 we have

Corollary 6.1. Let X0, X1, . . . be a stationary stochastic process defined as above, based
on the action of the fiber maps fnω . Assume that for P -a.e. ω ∈ Ω conditions (2.1) and
(2.2) hold for some τ > 0. Assume that there exists q ∈ N0, defined as in (2.4), and (2.8)
holds for P -a.e. ω ∈ Ω. Assume moreover that conditions Дq(un,i) e Д′q(un,i) are satisfied
for P -a.e. ω ∈ Ω. Then

lim
n→∞

µω(max{X0, . . . , Xn−1} ≤ un) = e−θτ , for P -a.e. ω ∈ Ω.

To illustrate an application of the theory developed here and in particular of Corollary 6.1,
we look into random subshifts.
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6.1. Random subshifts. We consider the random subshifts studied in [RSV14] and [RT15],
in the setting of Hitting Times. Here we will keep using an Extreme Values approach and
the statements can be seen as a translation of the corresponding results in [RSV14, RT15],
in light of the connection between HTS and EVL proved in [FFT10, FFT11].

Since the target sets, in this example, are dynamically defined cylinders, we need to produce
some adjustments to the definition of the observable and to the time scale, as in [FFT11,
Section 5] (where the notion of cylinder EVL was introduced), in order to properly use an
EVL approach. We return to this issue below. Meanwhile, we introduce the notions using
mostly the notation of [RT15].

Let (Ω, ϑ, P ) be an invertible ergodic measure preserving system, set X = NN0 and let
σ : X → X denote the shift. Let A = {A(ω) = (aij(ω)) : ω ∈ Ω} be a random transition
matrix, i.e., for any ω ∈ Ω, A(ω) is in an N×N-matrix with entries in {0, 1}, with at least
one non-zero entry in each row and each column and such that ω → aij(ω) is measurable
for any i ∈ N and j ∈ N. For any ω ∈ Ω define

Xω = {x = (x0, x1, . . .) : xi ∈ N and axixi+1
(ϑiω) = 1 for all i ∈ N}

and
E = {(ω, x) : ω ∈ Ω, x ∈ Xω} ⊂ Ω×X.

We consider the random dynamical system coded by the skew-product S : E → E given by
S(ω, x) = (ϑω, σx). While we allow infinite alphabets here, we nevertheless call S a random
subshift of finite type (SFT). Assume that ν is an S-invariant probability measure with
marginal P on Ω. Then we let (µω)ω denote its decomposition on Xω, that is, dν(ω, x) =
dµω(x)dP (ω). The measures µω are called the sample measures. Note µω(A) = 0 if
A ∩Xω = ∅. As before, we denote by µ =

∫
µωdP the marginal of ν on X.

For any y ∈ X we denote by Cn(y) = {z ∈ X : yi = zi for all 0 ≤ i ≤ n− 1} the n-cylinder
that contains y. Let Fn0 be the σ-algebra in X, generated by all the n-cylinders.

We assume the following: there are constants h0 > 0, c0 > 0 and a summable function ψ
such that for all m, n, κ ∈ N, A ∈ Fn0 and B ∈ Fm0 :

(1) the marginal measure µ satisfies∣∣µ(A ∩ σ−κ−nB)− µ(A)µ(B)
∣∣ ≤ ψ(κ);

(2) for P -almost every ω ∈ Ω, if y ∈ Xω and n ≥ 1 then c−1
0 e−h0n ≤ µ(cn(y));

(3) for P -almost every ω ∈ Ω,∣∣∣µω(A ∩ σ−κ−nB)− µω(A)µϑ
n+κω(B)

∣∣∣ ≤ ψ(κ)µω(A)µϑ
n+κω(B);

(4) the sample measure satisfies

essup
ω∈Ω

sup
x∈X

µω(C1(x)) < 1.
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The following lemma has been proved in [RT15].

Lemma 6.2. For a random SFT such that assumptions (3) and (4) hold, there exist c1,
c2 > 0 and h1 > 0 such that for any y ∈ X, n ≥ 1 and m ≥ 1, for almost P -almost every
ω ∈ Ω,

µω(Cn(y)) ≤ c1e−h1n

and
n∑

k=m

µω(Cn(y) ∩ σ−kCn(y)) ≤ c2e−h1mµω(Cn(y)).

Since the target sets are cylinders, in order to state the result using an EVL approach, as
mentioned earlier, we need to make some adjustments to the definition of the observable
function and to the time scale. Hence, proceeding as in [FFT11, Section 5], the stochastic
process is defined by Xi = ϕ ◦ σi, where ϕ : X → R ∪ {+∞} instead of being given by
(3.9) is given by

ϕ(x) = g(µ(Cn(x)(ζ)),

where n(x) := max{j ∈ N : x ∈ Cj(ζ)} and g is as in Section 3.2. As in [FFT11, (5.5)]
we let the sequence (un)n∈N be such that {x ∈ X : ϕ(x) > un} = Cn(ζ). Moreover, for the
time scale we use the sequence (wn)n∈N given by [FFT11, (5.6)]:

wn = [τµ({x ∈ X : ϕ(x) > un})],
for some τ ≥ 0.

Now, we can apply Corollary 6.1 to obtain the following result, which is a translation to
the EVL setting of [RT15, Theorem 2.2].

Theorem 6.3. Assume (1)-(4) hold and there exists a constant q > 2h0
h1

such that ψ
satisfies ψ(κ)κq → as κ→ +∞. Let ζ ∈ X. Then for P -almost every ω, either

(a) ζ is a periodic point of period p and if the limit θ := limn→∞
µ(Cn(ζ)\Cn+p(ζ))

µ(Cn(ζ))
exists, then

for all τ ≥ 0 we have
lim
n→∞

µω (Mwn ≤ un) = e−θτ ;

or

(b) for all τ ≥ 0 we have
lim
n→∞

µω (Mwn ≤ un) = e−τ .

In order to use Corollary 6.1 to prove Theorem 6.3, one needs to check that conditions
(2.2), Дq(un,i), Д′q(un,i) and (2.8) hold for P -a.e. ω ∈ Ω.

Note that because of the adjustments required to the cylinder setting, for condition (2.2),
one needs to check that for P -a.e. ω ∈ Ω we have

lim
n→∞

wn∑
i=0

µϑ
i(ω)(Cn(ζ)) = τ,
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which follows immediately from [RT15, Lemma 4.5]. In the same way, conditions Дq(un,i),
Д′q(un,i) follow from [RT15, Lemma 4.8] and [RT15, Lemma 4.9] respectively and condition
(2.8) from the discussion in [RT15, Section 5].
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