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We develop and generalize the theory of extreme value for non-stationary stochastic processes, mostly by weakening the uniform mixing condition that was previously used in this setting. We apply our results to non-autonomous dynamical systems, in particular to sequential dynamical systems, both given by uniformly expanding maps and by maps with a neutral fixed point, and to a few classes of random dynamical systems. Some examples are presented and worked out in detail.

The motivation and the dynamical setting. One of the most successful directions of ergodic theory in the last decades was the application of probabilistic tools to characterise the asymptotic evolution of a given dynamical system. There is now a well established domain known as statistical properties of dynamical systems, which attempts to prove limit theorems under different degrees of mixing. Mixing is the way to restore asymptotic independence and, in this way, mimic independent and identically distributed (i.i.d.) sequences of random variables. A common distribution for the time series arising from the dynamical systems is acquired from the existence of an invariant measure for such systems. In some sense, the existence of such a measure is what defines a dynamical system. Relaxing this assumption gives rise to non-autonomous dynamical systems for which the study of limit theorems is just at the beginning. In this paper, we will focus on one of those statistical properties, namely on asymptotic extreme value distribution laws. Our first goal will be to improve and generalise the previous results by Hüsler (see below), which held for non-identically distributed random variables but under a uniform mixing condition, to the mixing situations typical in dynamical systems. Then we will apply our theoretical results to two important examples of non-stationary processes arising in dynamical systems.

The first example is given by sequential dynamical systems; they were introduced by Berend and Bergelson [START_REF] Berend | Ergodic and mixing sequences of transformations[END_REF], as a non-stationary system in which a concatenation of maps is applied to a given point in the underlying space, and the probability is taken as a conformal measure, which allows the use the transfer operator (Perron-Fröbenius) as a useful tool to quantify the loss of memory of any prescribed initial observable. The theory of sequential systems was later developed in the fundamental paper by Conze and Raugi [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF], where a few limit theorems, in particular the Central Limit Theorem, were proved for concatenations of one-dimensional dynamical systems, each possessing a transfer operator with a quasi-compact structure on a suitable Banach space. For the same systems and others, even in higher dimensions, the Almost Sure Invariance Principle was subsequently shown [HNTV]; we will refer to the large class of systems investigated in [HNTV], as concrete examples to which the non-stationary extreme value theory presented in this article applies.

Both papers [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF][START_REF] Haydn | Almost sure invariance principle for sequential and non-stationary dynamical systems[END_REF] dealt however with uniformly expanding maps, for which the transfer operators admits a spectral gap and the correlations decays exponentially. In a different direction, a class of sequential systems given by composition of non-uniformly expanding maps of Pomeau-Manneville type was studied in [AHN + 15], by perturbing the slope at the indifferent fixed point 0. Polynomial decay of correlations was proved for particular classes of centered observables, which could also be interpreted as the decay of the iterates of the transfer operator on functions of zero (Lebesgue) average, and this fact is better known as loss of memory. In the successor paper [START_REF] Nicol | Central limit theorems for sequential and random intermittent dynamical systems[END_REF], a (non-stationary) central limit theorem was shown for sums of centered observables and with respect to the Lebesgue measure. We continue here the statistical analysis of these indifferent transformations by proving the existence of extreme value distributions under suitable normalization for the threshold of the exceedances.

The second example pertains to random transformations, which are constructed on a skewsystem whose base is an invertible and hyperbolic system which codes a map on the second factor (this second factor could be seen as fibers, which are all copy of the same set). On these fibers live a family of sample measures, each of them corresponding to different ways to code the orbit of a given point. These sample measures will be taken as the probability measures that describe the statistical properties along the factor and they do not give rise to stationary processes (although they satisfy an interesting property when they move from one fiber to the other). Averaging along a sample measure means to fix the particular initial fiber which supports it; the dynamics will transport this measure from one fiber to the other, and this non-stationary process could be assimilated to a quenched process, where the map changes step by step according to a given realization. We defer to the books by L. Arnold [START_REF] Arnold | Random dynamical systems[END_REF] and Y. Kifer [START_REF] Kifer | Ergodic theory of random transformations[END_REF]Kif88] for a detailed account of these transformations, in particular for their ergodic properties. Limit theorems, in particular the CLT, were investigated in [Kif98]. There are a few attempts to investigate recurrence in the framework of random transformations: see for instance [AFV15, RSV14, Rou14, RT15, KR14].

1.2. Extreme Value Laws for general non-stationary processes. As mentioned in [START_REF] Falk | Laws of small numbers: extremes and rare events[END_REF], the class of non-stationary stochastic processes is rather large and an Extreme Value Theory for such a general class does not exist. In [START_REF] Hüsler | Asymptotic approximation of crossing probabilities of random sequences[END_REF][START_REF]Extreme values of nonstationary random sequences[END_REF], Hüsler developed the first approach to the subject. Under convenient conditions, one can recover the usual extremal behaviour seen for i.i.d or stationary sequences under Leadbetter's conditions. Of course the degree of freedom involved is so large that it is not difficult to give examples with pathological behaviour (see [START_REF]Extreme values of nonstationary random sequences[END_REF] Section 3] or [FHR11, Example 9.4.4]). However, for appropriate subclasses, such as for stochastic processes of the form X i = a i + b i Y i , with trend values a i , scaling values b i and a stationary (or i.i.d) stochastic process Y 0 , Y 1 , . . ., one can study them and obtain the expected behaviour (see [START_REF] Niu | Extreme value theory for a class of nonstationary time series with applications[END_REF]).

The existing theory of extreme values for non-stationary sequences (which is still mostly based on Hüsler's results, see [START_REF] Falk | Laws of small numbers: extremes and rare events[END_REF]) is not applicable in a dynamical setting because it is built over a uniform mixing condition obtained by adjusting to the non-stationary setting, Leadbetter's D(u n ) condition for stationary processes. As was seen in the stationary setting in [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems, Ergodic Theory Dynam[END_REF][START_REF] Cristina | On the link between dependence and independence in extreme value theory for dynamical systems[END_REF], this type of condition is not appropriate for stochastic processes arising from dynamical systems since it does not follow from usual properties regarding the loss of memory of chaotic systems, which are usually formulated in terms of decay of correlations. See discussion in Section 2 of [START_REF]Speed of convergence for laws of rare events and escape rates[END_REF] and Remarks 2.1 and 3.5 of the same paper.

Hence, the first goal of this paper is to develop a more general theory of extreme values for non-stationary stochastic processes, which allows studying the extremal behaviour of the non-stationary systems discussed in the preceding Section. The major highlights of this generalisation are: the use of a much weaker mixing condition, motivated by an idea of Collet (in [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems, Ergodic Theory Dynam[END_REF]) and further developed in [START_REF] Cristina | On the link between dependence and independence in extreme value theory for dynamical systems[END_REF]FFT12,[START_REF]Speed of convergence for laws of rare events and escape rates[END_REF], that we will adapt to the non-stationary setting and denote by a cyrilic D, i.e., Д, as in [START_REF]Speed of convergence for laws of rare events and escape rates[END_REF]; and a much more sophisticated way of dealing with clustering and the appearance of an Extremal Index less than 1, which is based on an idea introduced in [FFT12] and further developed in [START_REF]Speed of convergence for laws of rare events and escape rates[END_REF], which basically says that when dealing with clustering due to the presence of a periodic phenomenon we can replace the role of the occurrence of exceedances (which in the dynamical setting correspond to hits to target ball sets) by that of the occurrence of escapes (which in the dynamical setting can be associated with hits to annuli target sets).

While in [START_REF] Hüsler | Asymptotic approximation of crossing probabilities of random sequences[END_REF][START_REF]Extreme values of nonstationary random sequences[END_REF], Hüsler built on the existing theory of extreme values for stationary sequences developed by Leadbetter and others, here we will follow Hüsler's approach but adapt to the non-stationary setting the more refined [START_REF]Speed of convergence for laws of rare events and escape rates[END_REF].

A general result for extreme value laws for non-stationary processes

In this section will try to keep as much as possible the notations used in [START_REF] Hüsler | Asymptotic approximation of crossing probabilities of random sequences[END_REF][START_REF]Extreme values of nonstationary random sequences[END_REF][START_REF]Speed of convergence for laws of rare events and escape rates[END_REF].

Let X 0 , X 1 , . . . be a stochastic process, where each r.v. X i : Y → R is defined on the measure space (Y, B, P).

We assume that Y is a sequence space with a natural product structure so that each possible realisation of the stochastic process corresponds to a unique element of Y and there exists a measurable map T : Y → Y, the time evolution map, which can be seen as the passage of one unit of time, so that

X i-1 • T = X i , for all i ∈ N.
The σ-algebra B can also be seen as a product σ-algebra adapted to the X i 's. For the purpose of this paper, X 0 , X 1 , . . . is possibly non-stationary. Stationarity would mean that P is T -invariant. Note that X i = X 0 • T i , for all i ∈ N 0 , where T i denotes the i-fold composition of T , with the convention that T 0 denotes the identity map on Y. In the applications below to sequential dynamical systems, we will have that T i = T i • . . . • T 1 will be the concatenation of i possibly different transformations T 1 , . . . , T i .

Each random variable X i has a marginal distribution function (d.f.) denoted by F i , i.e., F i (x) = P(X i ≤ x). Note that the F i , with i ∈ N 0 , may all be distinct from each other.

For a d.f. F we let F = 1 -F . We define u F i = sup{x :

F i (x) < 1} and let F i (u F i -) := lim h→0,h>0 F i (u F i -h) = 1 for all i.
Our main goal is to determine the limiting law of

P n = P(X 0 ≤ u n,0 , X 1 ≤ u n,1 , . . . , X n-1 ≤ u n,n-1 )
as n → ∞, where {u n,i , i ≤ n -1, n ≥ 1} is considered a real-valued boundary. We assume throughout the paper that

Fmax := max{ Fi (u n,i ), i ≤ n -1} → 0 as n → ∞, (2.1)
which is equivalent to

u n,i → u F i as n → ∞, uniformly in i.
Let us denote F * n := n-1 i=0 Fi (u n,i ), and assume that there is τ > 0 such that

F * n := n-1 i=0 Fi (u n,i ) → τ, as n → ∞. (2.2)
To simplify the notation let

u i := u n,i .
In what follows, for every A ∈ B, we denote the complement of A as A c := Y \ A.

Let A := (A 0 , A 1 , . . .) be a sequence of events such that

A i ∈ T -i B.
For some s, ∈ N 0 , we define

W s, (A) = s+ -1 i=s A c i .
(2.3)

We will write W c s, (A) := (W s, (A)) c . For some j ∈ N 0 , we consider

A (j) n := (A (j) n,0 , A (j) 
n,1 , . . .),

where the event A (j) n,i is defined for j ∈ N as

A (j) n,i := {X i > u n,i , X i+1 ≤ u n,i+1 , . . . , X i+j ≤ u n,i+j }
and, for j = 0, we simply define

A (0) n,i (u n,i ) := {X i > u n,i }. For each i ∈ N 0 and n ∈ N, let R (j) n,i = min{r ∈ N : A (j) n,i ∩ A (j)
n,i+r = ∅}. We assume that there exists q ∈ N 0 such that:

q = min j ∈ N 0 : lim n→∞ min i∈N 0 R (j) n,i = ∞ .
(2.4)

When q = 0 then A (0)
n,i (u n,i ) corresponds to an exceedance of the threshold u n,i and we expect no clustering of exceedances.

When q > 0, heuristically one can think that there exists an underlying periodic phenomenon creating short recurrence, i.e., clustering of exceedances, when exceedances occur separated by no more than q -1 units of time then they belong to the same cluster. Hence, the sets A (q) n,i (u n,i ) correspond to the occurrence of exceedances that escape the periodic phenomenon and are not followed by another exceedance in the same cluster. We will refer to the occurrence of A (q) n,i (u n,i ) as the occurrence of an escape at time i, whenever q > 0.

The following result adapts to the non-stationary setting an idea introduced in [FFT12] and further developed in [FFT15, Proposition 2.7], which essentially says the asymptotic distribution of P n coincides with that of W 0,n (A (q) n ), which motivates the special role played by A (q) n and the conditions we propose next.

Proposition 2.1. Given events B 0 , B 1 , . . . ∈ B, let r, q, n ∈ N be such that q < n and define B = (B 0 , B 1 , . . .), A r = B r \ q j=1 B r+j and A = (A 0 , A 1 , . . .). Then

|P(W 0,n (B)) -P(W 0,n (A))| ≤ q j=1 P (W 0,n (A) ∩ (B n-j \ A n-j )) .
Now, we introduce a mixing condition which is specially designed for the application to the dynamical setting, on the contrary to the existing ones in the literature.

Condition (Д q (u n,i )). We say that Д q (u n ) holds for the sequence X 0 , X 1 , . . . if for every , t, n ∈ N,

P A (q) n,i ∩ W i+t, A (q) n -P A (q) n,i P W i+t, A (q) n ≤ γ i (q, n, t), (2.5) 
where γ i (q, n, t) is decreasing in t for each n and each i and there exists a sequence (t * n ) n∈N such that t * n Fmax → 0 and n-1 i=0 γ i (q, n, t * n ) → 0 when n → ∞. Remark 2.2. Condition Д q (u n,i ) is a sort of mixing condition resembling to Hüsler's adjustment of Leadbetter's condition D(u n ) but with the great advantage that it can be checked for non-stationary dynamical systems, as we will see in Sections 4.1.2, 5.1 and 6.1, contrary to Hüsler's D(u n,i ). This advantage resides on the fact that the event A (q) n,i (u n,i ) depends only on a finite number of random variables, making Д q (u n,i ) a much weaker requirement in terms of uniformity when compared to Hüsler's D(u n,i ). Recall that Hüsler's D(u n,i ) required an uniform bound for all possible i and all possible number of random variables of the process on which the first event depended.

In order to prove the existence of a distributional limit for P n we use as usual a blocking argument that splits the data into k n blocks separated by time gaps of size larger than t * n , which are created by simply disregarding the observations in the time frame occupied by the gaps. The precise construction of the blocks is given in Section 2.2 but we briefly describe below some of the properties of this construction.

In the stationary context, one takes blocks of equal size, which in particular means that the expected number of exceedances within each block is nP(X 0 > u n )/k n ∼ τ /k n . Here the blocks may have different sizes, which we will denote by n,1 , . . . , n,kn but, as in [START_REF] Hüsler | Asymptotic approximation of crossing probabilities of random sequences[END_REF][START_REF]Extreme values of nonstationary random sequences[END_REF], these are chosen so that the expected number of exceedances is again ∼ τ /k n . Also, for i = 1, . . . , k n , let L n,i = i j=1 n,j and L n,0 = 0. The time gaps are created by disregarding the last observations in each block so that the true blocks become the remaining part. To do that, we have to balance the facts that we want the gaps to be big enough so that they are larger than t * n but on the other hand we also want that the gaps should be sufficiently small so that the information disregarded does not compromise the computations. This is achieved by choosing the number of blocks, which correspond to the sequence (k n ) n∈N diverging but slowly enough so that the weight of the gaps is negligible when compared to that of the true blocks.

As usual in extreme value theory, in order to guarantee the existence of a distributional limit one needs to impose some restrictions on the speed of recurrence.

For q ∈ N 0 given by (2.4), consider the sequence (t * n ) n∈N , given by condition Д q (u n ) and let (k n ) n∈N be another sequence of integers such that

k n → ∞ and k n t * n Fmax → 0 (2.6)
as n → ∞.

Condition (Д q (u n,i )). We say that Д q (u n,i ) holds for the sequence X 0 , X 1 , X 2 , . . . if there exists a sequence (k n ) n∈N satisfying (2.6) and such that

lim n→∞ kn i=1 i -1 j=0 i -1 r>j P(A (q) L i-1 +j ∩ A (q) L i-1 +r ) = 0.
(2.7)

Condition Д q (u n,i ) precludes the occurrence of clustering of escapes (or exceedances, when q = 0).

Remark 2.3. Note that condition Д p (u n,i ) is an adjustment of a similar condition Д p (u n ) in [START_REF]Speed of convergence for laws of rare events and escape rates[END_REF] in the stationary setting, which is similar to (although slightly weaker than) condition

D (p+1) (u n ) in the formulation of [CHM91, Equation (1.2)]
When q = 0, observe that Д q (u n,i ) is very similar to D (u n,i ) from Hüsler, which prevents clustering of exceedances, just as D (u n ) introduced by Leadbetter did in the stationary setting.

When q > 0, we have clustering of exceedances, i.e., the exceedances have a tendency to appear aggregated in groups (called clusters). One of the main ideas in [FFT12] that we use here is that the events A (q)

n,i play a key role in determining the limiting EVL and in identifying the clusters. In fact, when Д q (u n,i ) holds we have that every cluster ends with an entrance in A (q) n,i , meaning that the inter cluster exceedances must appear separated at most by q units of time.

In this approach, it is rather important to observe the prominent role played by condition Д q (u n,i ). In particular, note that if condition Д q (u n,i ) holds for some particular q = q 0 ∈ N 0 , then condition Д q (u n,i ) holds for all q ≥ q 0 . Then, q as defined in (2.4) is indeed the natural candidate to try to show the validity of Д q (u n ).

We give now a way of defining the Extremal Index (EI) using the sets A (q) n,i . For q ∈ N 0 given by (2.4), we also assume that there exists 0 ≤ θ ≤ 1, which will be referred to as the EI, such that

lim n→∞ max i=1,...,kn    θk n L n,i -1 j=L n,i-1 F (u n,j ) -k n L n,i -1 j=L n,i-1 P A (q) n,j    = 0.
(2.8)

The following is the main theorem of this section.

Theorem 2.4. Let X 0 , X 1 , . . . be a stationary stochastic process and suppose (2.1) and (2.2) hold for some τ > 0. Let q ∈ N 0 be as in (2.4) and assume that (2.8) holds. Assume also that conditions Д(u n,i ) e Д q (u n,i ) are satisfied. Then

lim n→∞ P n = e -θτ .
The rest of this section is devoted to the proof of Theorem 2.4.

To simplify notation, we will drop the index n ∈ N and write:

u i := u n,i , A (q) 
i := A (q) n,i , A (q) := A (q) n , i := n,i , L i := L n,i .
2.1. Preliminaries to the argument. We begin by proving the crucial observation stated in Proposition 2.1.

Proof of Proposition 2.1. Since A r ⊂ B r , then clearly W 0,n (B) ⊂ W 0,n (A). Hence, we have to estimate the probability of W 0,n (A) \ W 0,n (B).

Let x ∈ W 0,n (A) \ W 0,n (B). We will see that there exists j ∈ {1, . . . , q} such that x ∈ B n-j . In fact, suppose that no such j exists. Then let = max{i ∈ {1, . . . , n -1} : x ∈ B i }. Then, clearly, < n-q. Hence, if x / ∈ B j , for all i = +1, . . . , n-1, then we must have that x ∈ A by definition of A. But this contradicts the fact that x ∈ W 0,n (A). Consequently, we have that there exists j ∈ {1, . . . , q} such that x ∈ B n-j and since x ∈ W 0,n (A) then we can actually write x ∈ B n-j \ A n-j . This means that W 0,n (A) \ W 0,n (B) ⊂ q j=1 (B n-j \ A n-j ) ∩ W 0,n (A) and then

P(W 0,n (B)) -P(W 0,n (A)) = P(W 0,n (A) \ W 0,n (B)) ≤ P q j=1 (B n-j \ A n-j ) ∩ W 0,n (A) ≤ q j=1 P (W 0,n (A) ∩ (B n-j \ A n-j )) ,
as required.

We prove next some lemmata that pave the way for Proposition 2.7, which is the cornerstone of the argument leading to the proof of Theorem 2.4

Lemma 2.5. For any fixed A = (A 0 , A 1 , . . .), A i ∈ B for i = 0, 1, . . ., and integers a, s, t, m, with a < s, we have:

|P(W a,s+t+m (A)) -P(W a,s (A) ∩ W a+s+t,m (A))| ≤ s+t-1 j=s P(A a+j ).
Proof.

P(W a,s (A) ∩ W a+s+t,m (A)) -P(W a,s+t+m (A)) = P(W a,s (A) ∩ W c a+s,t (A) ∩ W a+s+t,m (A)) ≤ P(W c a+s,t (A)) = P(∪ s+t-1 j=s (A a+j )) ≤ s+t-1 j=s P(A a+j ).
Lemma 2.6. For any fixed A = (A 0 , A 1 , . . .), A i ∈ B for i = 0, 1, . . ., and integers a, s, t, m, with a < s, we have:

P(W a,s (A) ∩ W a+s+t,m (A)) -P(W a+s+t,m (A)) 1 - s-1 j=0 P(A a+j ) ≤ ≤ s-1 j=0 P(A a+j )P(W a+s+t,m (A)) - s-1 j=0 P(A a+j ∩ W a+s+t,m (A)) + s-1 j=0 s-1 i>j P(A a+i ∩ A a+j ).
Proof. Observe that

P(W a,s (A) ∩ W a+s+t,m (A)) -P(W a+s+t,m (A))(1 - s-1 j=0 P(A a+j )) ≤ s-1 j=0 P(A a+j )P(W a+s+t,m (A)) - s-1 j=0 P(A a+j ∩ W a+s+t,m (A)) + P(W a,s (A) ∩ W a+s+t,m (A)) -P(W a+s+t,m (A)) + s-1 j=0 P(A a+j ∩ W a+s+t,m (A)) .
Regarding the second term on the right, we have

P(W a,s (A) ∩ W a+s+t,m (A)) = P(W a+s+t,m (A)) -P(W c a,s (A) ∩ W a+s+t,m (A)). Now, since W c a,s (A) ∩ W a+s+t,m (A) = ∪ s-1 i=0 (A a+i ∩ W a+s+t,m (A)), we have P(W c a,s (A) ∩ W a+s+t,m (A)) ≤ s-1 i=0 (A a+i ∩ P(W a+s+t,m (A)))
and so,

0 ≤ s-1 j=0 P(A a+j ∩W s+t,m (A))-P(W c a,s (A)∩W a+s+t,m (A)) ≤ s-1 j=0 s-1 i>j P(A a+i ∩A a+j ∩W a+s+t,m (A))
Hence, using these last computations we get:

P(W a,s (A) ∩ W a+s+t,m (A)) -P(W a+s+t,m (A)) + s-1 j=0 P(A a+j ∩ W a+s+t,m (A)) = -P(W c a,s (A) ∩ W a+s+t,m (A)) + s-1 j=0 P(A a+j ∩ W a+s+t,m (A)) ≤ s-1 j=0 s-1 i>j P(A a+i ∩ A a+j ∩ W a+s+t,m (A)) ≤ s-1 j=0 s-1 i>j P(A a+i ∩ A a+j ).
2.2. The construction of the blocks. The construction of the blocks here, contrary to the stationary case, in which the blocks have equal size, is designed so that the expected number of exceedances in each block is the same. We follow closely the construction in [START_REF] Hüsler | Asymptotic approximation of crossing probabilities of random sequences[END_REF][START_REF]Extreme values of nonstationary random sequences[END_REF].

For each n ∈ N we split the random variables X 0 , . . . , X n-1 into k n initial blocks, where k n is given by (2.6), of sizes 1 , . . . , kn defined in the following way. Let as before L i = i j=1 i

and L 0 = 0 = 0. Assume that 1 , . . . , i-1 are already defined. Take i to be the largest integer such that:

L i-1 + i -1 j=L i-1 F (u n,i ) ≤ F * n k n .
The final working blocks are obtained by disregarding the last observations of each initial block, which will create a time gap between each final block. The size of the time gaps must be balanced in order to have at least a size t * n but such that its weight on the average number of exceedances is negligible when compared to that of the final blocks. For that purpose we define

ε(n) := (t * n + 1) Fmax k n F * n .
Note that by (2.2) and (2.6), it follows immediately that lim n→∞ ε(n) = 0. Now, for each i = 1, . . . , k n let t i be the largest integer such that

L i -1 j=L i -t i F (u n,i ) ≤ ε(n) F * n k n .
Hence, the final working blocks correspond to the observations within the time frame L i-1 + 1, . . . , L i -t i , while the time gaps correspond to the observations in the time frame

L i -t i + 1, . . . , L i , for all i = 1, . . . , k n . Note that t * n ≤ t i < i , for each i = 1, . . . , k n .
The second inequality is trivial. For the first inequality note that by definition of t i we have

ε(n) F * n k n ≤ L i -1 j=L i -t i F (u n,i ) + F (u n,L i -t i -1 ) ≤ (t i + 1) Fmax .
The first inequality follows easily now by definition of ε(n).

Proposition 2.7. For every, n ∈ N, let A := A

n for q defined by (2.4). Consider the construction of the k n blocks above, the respective sizes 1 , . . . , kn and time gaps t 1 , . . . , t kn . Recall that L i = i j=1 i . Assume that n ∈ N is large enough so that F * n /k n < 2. We have:

P W 0,n (A) - kn i=1   1 - L i -t i -1 j=L i-1 P(A j )   ≤ kn i=1 L i -1 j=L i-1 -t i P(A (q) j ) + n-1 j=L kn P(A (q) j ) + kn i=1 i -t i -1 j=0 P(A L i-1 +j )P(W L i ,L kn -L i (A)) -P(A L i-1 +j ∩ W L i ,L kn -L i (A)) + kn i=1 i -1 j=0 i -1 r>j P(A L i-1 +j ∩ A L i-1 +r ).
Proof. Using Lemma 2.5, we have:

P(W 0,n (A)) -P(W 0,L kn (A)) ≤ n-1 j=L kn P(A (q) j ).
(2.9)

To simplify the notation let Li = L kn -L i-1 = kn j=i j . It follows by using (2.6) that

P W L i-1 , Li (A) -1 - L i -t i -1 j=L i-1 P(A j ) P W L i , Li+1 (A) ≤ P(W L i-1 , Li (A)) -P(W L i-1 , i -t i (A) ∩ W L i , Li+1 (A)) + P(W L i-1 , i -t i (A) ∩ W L i , Li+1 (A)) -1 - L i -t i -1 j=L i-1 P(A j ) P(W L i , Li+1 (A)) ≤ L i -1 j=L i-1 -t i P(A j ) + L i -t i -1 j=L i-1 (P(A j )P(W L i-1 , Li (A)) -P(A j ∩ W L i-1 , Li (A)) + i -1 j=0 i -1 r>j P(A L i-1 +j ∩ A L i-1 +r ).
(2.10)

Let Υ i := L i -1 j=L i-1 -t i P(A j ) + L i -t i -1 j=L i-1 (P(A j )P(W L i-1 , Li (A)) -P(A j ∩ W L i-1 , Li (A)) + i -1 j=0 i -1 r>j P(A L i-1 +j ∩ A L i-1 +r ). Note that, for i = k n in (2.10), W L kn-1 , Lkn (A)) -1 - L kn -t kn -1 j=L kn-1 P(A j ) ≤ Υ kn .
Since F * n kn < 2 and, by construction, for all i = 1, . . . , k n , it is clear that

L i -t i -1 j=L i-1 P(A j ) ≤ F * n kn , then 1 -L i -t i -1
j=L i-1 P(A j ) < 1, for all i = 1, . . . , k n . Now, we use (2.10) recursively and obtain

P(W 0,L kn (A)) - kn i=1 1 - L i -t i -1 j=L i-1 P(A j ) ≤ kn i=1 Υ i .
(2.11)

The result follows now at once from (2.9) and (2.11).

Final argument.

We are now in a position to prove Theorem 2.4.

Proof of Theorem 2.4. The theorem follows if we show that all the error terms in Proposition 2.7 converge to 0, as n → ∞.

For the first term, by choice of the t i 's, we have

kn i=1 L i -1 j=L i-1 -t i P(A (q) j ) ≤ kn i=1 L i -1 j=L i-1 -t i F (u n,j ) ≤ k n ε(n) F * n k n = ε(n)F * n ,
which tends to 0 as n → ∞, by (2.2) and definition of ε(n).

Regarding the second term observe first that n-1

j=L kn P(A (q) j ) ≤ n-1 j=L kn F (u n,j ).
Since, by choice of i , we have

F * n kn ≤ L i -1 j=L i-1 F (u n,j ) + F (u n,L i ) ≤ L i -1 j=L i-1 F (u n,j ) + Fmax , then it follows that F * n k n -Fmax ≤ L i -1 j=L i-1 F (u n,j ) ≤ F * n k n .
(2.12)

From the first inequality we get

F * n -k n Fmax ≤ kn i=1 L i -1 j=L i-1 F (u n,j ), which implies that n-1 j=L kn F (u n,j ) = F * n - kn i=1 L i -1 j=L i-1 F (u n,j ) ≤ k n Fmax ,
which goes to 0 as n → ∞ by (2.6).

For the third term, recalling that, for each n and i, γ i (q, n, t) from condition Д q (u n,i ) is decreasing in t, we have:

kn i=1 i -t i -1 j=0 P(A (q) L i-1 +j )P(W L i ,L kn -L i (A)) -P(A (q) L i-1 +j ∩ W L i ,L kn -L i (A)) ≤ n-1 i=0 γ i (q, n, t n ),
which tends to 0 as n → ∞ by condition Д q (u n,i ).

By condition Д (u n ), we have that the fourth term goes to 0 as n → ∞.

Now, we will see that

kn i=1   1 - L i -t i -1 j=L i-1 P(A (q) j )   -e -θτ ---→ n→∞ 0.
By (2.8) we have that k n

L i -1 j=L i-1 P(A (q) j ) = k n θ L i -1 j=L i-1 F (u n,j ) + o(1). Then L i -1 j=L i-1 P(A (q) j ) = θ L i -1 j=L i-1 F (u n,j ) + o(k -1 n ).
Since by (2.6), we have Fmax = o(k -1 n ), then, by (2.12), it follows that

L i -1 j=L i-1 F (u n,j ) + o(k -1 n ) = F * n k n + o(k -1 n ).
Also note that

L i -1 j=L i -t i P(A (q) j ) ≤ L i -1 j=L i -t i F (u n,j ) ≤ ε(n) F * n k n = o(k -1 n ).
Hence, for all i = 1, . . . , k n we have

L i -t i -1 j=L i -t i P(A (q) j ) = θ F * n k n + o(k -1 n ).
Finally, by (2.2), we have

kn i=1 1 - L i -t i -1 j=L i -t i P(A (q) j ) ∼ 1 -θ F * n k n + o(k -1 n ) kn ---→ n→∞ e -θτ .
Finally, by Proposition 2.1 we have

P n -P W 0,n A (q) ≤ q j=1 P W 0,n A (q) ∩ {X n-j > u n,n-j } \ {A (q) n-j } ≤ q j=1 P {X n-j > u n,n-j } \ {A (q) n-j } ≤ q j=1
(1 -F n-j (u n,n-j )), (2.13) which converges to 0 as n → ∞.

Note that when q = 0 both sides of inequality (2.13) equal 0.

Sequential Dynamical Systems

3.1. General presentation. In this section we will give a first example of a non-stationary process, by considering families F of non-invertible maps defined on compact subsets X of R d or on the torus T d (still denoted with X in the following), and non-singular with respect to the Lebesgue or the Haar measure, i.e. m(A) = 0 =⇒ m(T (A)) = 0. Such measures will be defined on the Borel sigma algebra B. We will be mostly concerned with the case d = 1. A countable sequence of maps {T k } k≥1 ∈ F defines a sequential dynamical system. A sequential orbit of x ∈ X will be defined by the concatenation

T n (x) := T n • • • • • T 1 (x), n ≥ 1. (3.1)
We denote by P j the Perron-Fröbenius (transfer) operator associated to T j defined by the duality relation

X P j f g dm = X f g • T j dm, for all f ∈ L 1 m , g ∈ L ∞ m .
Note that here the transfer operator P j is defined with respect to the reference Lebesgue measure m.

Similarly to (3.1), we define the composition of operators as

Π n := P n • • • • • P 1 , n ≥ 1. (3.2)
It is easy to check that duality persists under concatenation, namely

X g(T n ) f dm = X g(T n • • • • • T 1 ) f dm = X g( P n • • • • • P 1 f ) dm = X g (Π n f ) dm. (3.3)
In [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF] the authors begin a systematic study of the statistical properties of sequential dynamical systems by proving in particular the law of large numbers and the central limit theorem. In [HNTV], it was shown that the Almost Sure Invariance Principle still holds.

In order to establish such results a few assumptions are needed and some of them are also relevant for the extreme value theory. We will recall them in this section and then we will provide a list of examples which will go beyond the β transformations, which was the prototype case investigated by Conze and Raugi.

We first need to choose a suitable couple of adapted spaces in order to get and exploit the quasi-compactness of the transfer operator. We will consider in particular a Banach space

V ⊂ L 1 m (1 ∈ V) of functions over X with norm || • || α , such that φ ∞ ≤ C φ α .
For example, we could let V be the Banach space of bounded variation functions over X with norm || • || BV given by the sum of the L 1 m norm and the total variation | • | BV , or we could take V to be the space of quasi-Hölder functions with a suitable norm which we will define later on. One of the basic assumption is the following: Uniform Doeblin-Fortet-Lasota-Yorke inequality (DFLY): There exist constants A, B < ∞, ρ ∈ (0, 1), such that for any n and any sequence of operators P n , • • • , P 1 associated to transformations in F and any f ∈ V we have

P n • • • • • P 1 f α ≤ Aρ n f α + B f 1 . (3.4)
At this point one would like to dispose of a sort of quasi-compactness argument which would allow to get exponential decay for the composition of operators. In all the examples we will present, the class F will be constructed around (this will be made clear in a moment) a given map T 0 for which the corresponding operator P 0 will satisfy quasi-compactness. Namely we require:

Exactness property: The operator P 0 has a spectral gap, which implies that there are two constants C 1 < ∞ and γ 0 ∈ (0, 1) so that

||P n 0 f || α ≤ C 1 γ n 0 ||f || α (3.5)
for all f ∈ V of zero (Lebesgue) mean and n ≥ 1.

The next step is to consider the following distance between two operators P and Q associated to maps in F and acting on V:

d(P, Q) = sup f ∈V, f α≤1 ||P f -Qf || 1 .
A very useful criterion is given in Proposition 2.10 in [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF], and in our setting it reads: if P 0 verifies the exactness property, then there exists δ 0 > 0, such that the set {P ∈ F; d(P, P 0 ) < δ 0 } satisfies the (DEC) condition, where Property (DEC): Given the family F there exist constants Ĉ > 0, γ ∈ (0, 1), such that for any n and any sequence of transfer operators P n , • • • , P 1 corresponding to maps chosen from F and any f ∈ V of zero (Lebesgue) mean1 , we have

P n • • • • • P 1 f α ≤ Ĉ γn f α . (3.6)
By induction on the Doeblin-Fortet-Lasota-Yorke inequality for compositions we immediately have

d(P r • • • • • P 1 , P r 0 ) ≤ M r j=1 d(P j , P 0 ), (3.7) with M = 1 + Aρ -1 + B.
According to [CR07, Lemma 2.13], (3.5) and (3.7) imply that there exists a constant C 2 such that

P n • • • • • P 1 φ -P n 0 φ 1 ≤ C 2 φ BV p k=1 d(P n-k+1 , P 0 ) + (1 -γ 0 ) -1 γ p 0
for all integers p ≤ n and all functions φ ∈ V. We will use this bound to get a quantitative rate of the exponential decay for composition of operators in the L 1 m norm when we relate it to the following two assumptions:

Lipschitz continuity property: Assume that the maps (and their transfer operators) are parametrized by a sequence of numbers ε k , k ∈ N, such that lim k→∞ ε k = ε 0 (P ε 0 = P 0 ). We assume that there exists a constant C 3 so that

d(P ε k , P ε j ) ≤ C 3 |ε k -ε j |,
for all k, j ≥ 0.

We will restrict in the following to the subclass F exa of maps, and therefore of operators, for which

F exa := {P ε k ∈ F; |ε k -ε 0 | < C -1 3 δ 0 }.
The maps in F exa will therefore verify the (DEC) condition, but we will sometimes need something stronger, namely:

Convergence property: We require algebraic convergence of the parameters, that is, there exist a constant C 4 and κ > 0 so that

|ε n -ε 0 | ≤ C 4 n κ ∀n ≥ 1.
With these last assumptions, we get a polynomial decay for (3.7) of the type O(n -κ ) and in particular we obtain the same algebraic convergence in

L 1 m of P n • • • • • P 1 φ to h φ dm,
where h is the density of the absolutely continuous mixing measure of the map T 0 .

3.2. Stochastic processes for sequential systems. Similarly to [START_REF] Cristina | Hitting time statistics and extreme value theory[END_REF] (in the context of stationary deterministic systems), we consider that the time series X 0 , X 1 , . . . arises from these sequential systems simply by evaluating a given observable ϕ : X → R ∪ {±∞} along the sequential orbits.

X n = ϕ • T n , for each n ∈ N.
(3.8)

Note that, on the contrary to the setup in [START_REF] Cristina | Hitting time statistics and extreme value theory[END_REF], the stochastic process X 0 , X 1 , . . . defined in this way is not necessarily stationary.

We assume that the r.v. ϕ : X → R ∪ {±∞} achieves a global maximum at ζ ∈ X (we allow ϕ(ζ) = +∞) being of following form:

ϕ(x) = g dist(x, ζ) , (3.9) 
where ζ is a chosen point in the phase space X and the function g : [0, +∞) → R ∪ {+∞} is such that 0 is a global maximum (g(0) may be +∞); g is a strictly decreasing bijection g : V → W in a neighbourhood V of 0; and has one of the following three types of behaviour:

Type g 1 : there exists some strictly positive function h :

W → R such that for all y ∈ R lim s→g 1 (0) g -1 1 (s + yh(s)) g -1 1 (s) = e -y ;
(3.10) Type g 2 : g 2 (0) = +∞ and there exists β > 0 such that for all y > 0 lim

s→+∞ g -1 2 (sy) g -1 2 (s) = y -β ; (3.11)
Type g 3 : g 3 (0) = D < +∞ and there exists γ > 0 such that for all y > 0 lim s→0

g -1 3 (D -sy) g -1 3 (D -s) = y γ . (3.12)
It may be shown that no non-degenerate limit applies if g 1 (0) 0 g -1 1 (s)ds is not finite. Hence, an appropriate choice of h in the Type 1 case is given by h(s) =

g 1 (0) s g -1 1 (t)dt/g -1 1 (s) for s < g 1 (0).
Examples of each one of the three types are as follows: g 1 (x) = -log x (in this case (3.10) is easily verified with h ≡ 1), g 2 (x) = x -1/α for some α > 0 (condition (3.11) is verified with β = α) and g 3 (x) = D -x 1/α for some D ∈ R and α > 0 (condition (3.12) is verified with γ = α).

3.3.

Examples. We now give a few examples of sequential systems satisfying the preceding assumptions. The family of maps F will be parametrized by a small positive number ε (or a vector with small positive components) and we will tacitly suppose that we restrict to F exa having previously proved that the transfer operator P 0 for a reference map T 0 is exact. This will impose restrictions on the choice of ε (less than a constant times δ 0 , see above), and in this case we will use the terminology for ε small enough. The verification of the DFLY condition, which in turn will imply the analogous condition for the unperturbed operator P 0 will usually follow from standard arguments and the exactness of P 0 will be proved by assuming the existence of a unique mixing absolutely continuous invariant measure (for instance by adding further properties to the map T 0 ), or alternatively by restricting to one of the finitely many mixing components prescribed by the quasi-compactness of P 0 .

The following examples have already been introduced and treated in [HNTV], but in the latter paper a much stronger condition was required, namely that there exists δ > 0 such that for any sequence P n , • • • , P 1 in F we have the uniform lower bound

inf x∈M P n • • • • • P 1 1(x) ≥ δ, ∀n ≥ 1.
(3.13)

We do not need that property in the context of EVT. ≤ C 1 < ∞. We will perturb with additive noise, namely we will consider a family of maps F given by T ε (x) = T (x) + ε, where ε ∈ U and such that ∀ε ∈ U we have the images T ε A k , k = 1, . . . , m strictly included in [0, 1]. We will also suppose that ∃A w such that ∀T ε ∈ F and k = 1, . . . , m : T ε A k ⊃ A w ; moreover there exists 1 ≥ L > 0 such that ∀k = 1, . . . , m and

∀T ε ∈ F, |T ε (A w ) ∩ A k | > L .
These conditions reveal useful in the distortion bounds. We note that our assumptions are satisfied if we consider C 2 uniformly expanding maps on the circle and again perturbed with additive noise, without, this time, any restriction of the values of ε. In particular, the intervals of local injectivity A k , k = 1, • • • , m, of T ε are now independent of ε. The functional space V will coincide with the functions of bounded variation with norm || • || BV . The (DFLY) inequality follows easily with standard arguments.The next step is to show that two operators are close when the relative perturbation parameters are close: we report here by completeness the short proof already given in [HNTV]. We thus consider the difference || Pε 1 f -Pε 2 f || 1 , with f in BV. We have

Pε 1 f (x) -Pε 2 f (x) = m l=1 f • 1 U c n (T -1 ε 1 ,l x) 1 DT ε 1 (T -1 ε 1 ,l x) - 1 DT ε 2 (T -1 ε 2 ,l x) + m l=1 1 DT ε 2 (T -1 ε 2 ,l x) [f • 1 U c n (T -1 ε 1 ,l x) -f • 1 U c n (T -1 ε 2 ,l x)] = E 2 (x) + E 3 (x).
In the formula above we considered, without restriction, the derivative positive and moreover we discarded those points x which have only one pre-image in each interval of monotonicity. After integration this will give an error (E 1 ) as

E 1 ≤ 4m|ε 1 -ε 2 ||| Pε f || ∞ . But || Pε f || ∞ ≤ ||f || ∞ m l=1 DTε 2 (T -1 ε 2 ,l x ) DTε 2 (T -1 ε 2 ,l x) 1 DTε 2 (T -1 ε 2 ,l x )
, where x is the point where DT ε 2 (T -1 ε 2 ,l x )|A l | ≥ η, being η the minimum lenght of T (A k ), k = 1, . . . , m. But the first ratio in the previous sum is simply bounded by the distortion constant D c = Λλ -1 ; therefore we get

E 1 ≤ 4m|ε 1 -ε 2 |||f || ∞ D c η m l=1 |A l | ≤ 4m|ε 1 -ε 2 |||f || ∞ D c η .
We now bound E 2 . The term in the square bracket and for given l (we drop this index in the derivatives in the next formulas), will be equal to

D 2 T (ξ) [DT (ξ)] 2 |T -1 ε 1 (x) -T -1 ε 2 (x)|, being ξ a point in the interior of A l . The first factor is uniformly bounded by C 1 . Since x = T ε 1 (T -1 ε 1 (x)) = T ((T -1 ε 1 (x)) + ε 1 = T ((T -1 ε 2 (x)) + ε 2 = T ε 2 (T -1 ε 2 (x)), we have that |T -1 ε 1 (x) -T -1 ε 2 (x)| = |ε 1 -ε 2 ||DT (ξ )| -1 , where ξ is in A l . Replacing ξ by T -1 ε 1 ,l x, because of distortion, we get |E 2 (x)|dx ≤ |ε 1 -ε 2 |C 1 D c m l=1 |f (T -1 ε 1 ,l )| 1 DT ε 1 (T -1 ε 1 ,l x) dx = |ε 1 -ε 2 |C 1 D c P ε 1 (|f |)(x)dx = |ε 1 -ε 2 |C 1 D c ||f || 1 .
To bound the last term we use the formula (3.11), in [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF],

sup |y-x|≤t |f (y) -f (x)|dx ≤ 2tVar(f ), by observing again that |T -1 ε 1 (x) -T -1 ε 2 (x)| = |ε 1 -ε 2 ||DT (ξ )| -1
, where ξ is in A l . By integrating E 3 (x) we get

|E 3 (x)|dx ≤ 2mλ -2 |ε 1 -ε 2 |Var(f 1 U c n ) ≤ 10mλ -2 |ε 1 -ε 2 |Var(f ).
Putting together the three errors we finally get that there exists a constant C such that

|| Pε 1 f -Pε 2 f || 1 ≤ C|ε 1 -ε 2 |||f || BV ,
and we can complete the argument as in the first example of β transformations.

Multidimensional maps.

We give here a multidimensional version of the maps considered in the preceding section; these maps were extensively investigated in [Sau00, HV09, AFV15, AFLV11, HNVZ13] and we defer to those papers for more details. Let M be a compact subset of R N which is the closure of its non-empty interior. We take a map T : M → M and let A = {A i } m i=1 be a finite family of disjoint open sets such that the Lebesgue measure of M \ i A i is zero, and there exist open sets Ãi ⊃ A i and C 1+α maps T i : Ãi → R N , for some real number 0 < α ≤ 1 and some sufficiently small real number ε 1 > 0, such that (1) T i ( Ãi ) ⊃ B ε 1 (T (A i )) for each i, where B ε (V ) denotes a neighborhood of size ε of the set V. The maps T i are the local extensions of T to the Ãi . (2) there exists a constant C 1 so that for each i and x, y ∈ T (A i ) with dist(x, y) ≤ ε 1 ,

| det DT -1 i (x) -det DT -1 i (y)| ≤ C 1 | det DT -1 i (x)|dist(x, y) α ; (3) there exists s = s(T ) < 1 such that ∀x, y ∈ T ( Ãi ) with dist(x, y) ≤ ε 1 , we have dist(T -1 i x, T -1 i y) ≤ s dist(x, y); (4) each ∂A i is a codimension-one embedded compact piecewise C 1 submanifold and s α + 4s 1 -s Z(T ) γ N -1 γ N < 1, (3.14) 
where Z(T ) = sup Given such a map T , we define locally on each A i the map T ε ∈ F by T ε (x) := T (x) + ε, where now ε is an n-dimensional vector with all the components of absolute value less than one. As in the previous example the translation by ε is allowed if the image T ε A i remains in M : in this regard, we could play with the sign of the components of ε or do not move the map at all. As in the one dimensional case, we shall also make the following assumption on F. We assume that there exists a set A w ∈ A satisfying:

(i) A w ⊂ T ε A k for all ∀ T ε ∈ F and for all k = 1, . . . , m.

(ii) T A w is the whole M , which in turn implies that there exists 1 ≥ L > 0 such that ∀k = 1, . . . , q and

∀T ε ∈ F, diameter(T ε (A w ) ∩ A k ) > L .
As V ⊂ L 1 (m) we use the space of quasi-Hölder functions, for which we refer again to [START_REF] Saussol | Absolutely continuous invariant measures for multidimensional expanding maps[END_REF][START_REF] Hu | Absolutely continuous invariant measures for non-uniformly expanding maps[END_REF]. On this space, the transfer operator satisfies a Doeblin-Fortet-Lasota-Yorke inequality. Finally, Lipschitz continuity has been proved for additive noise in Proposition 4.3 in [AFV15].

3.3.4.

Covering maps: a general class. We now present a more general class of examples which were introduced in [START_REF] Bahsoun | Escape rates formulae and metastability for randomly perturbed maps[END_REF] to study metastability for randomly perturbed maps. As before, the family F will be constructed around a given map T which is again defined on the unit interval M . We therefore begin to introduce such a map T . (A1) There exists a partition A = {A i : i = 1, . . . , m} of M , which consists of pairwise disjoint intervals A i . Let Āi := [c i,0 , c i+1,0 ]. We assume there exists δ > 0 such that T i,0 := T | (c i,0 ,c i+1,0 ) is C 2 and extends to a C 2 function Ti,0 on a neighbourhood [c i,0 -δ, c i+1,0 + δ] of Āi ; (A2) There exists β 0 < 1 2 so that inf x∈I\C 0 |T (x)| ≥ β -1 0 , where C 0 = {c i,0 } m i=1 . We note that Assumption (A2), more precisely the fact that β -1 0 is strictly bigger than 2 instead of 1, is sufficient to get the uniform Doeblin-Fortet-Lasota-Yorke inequality (3.17) below, as explained in Section 4.2 of [START_REF] González-Tokman | Approximating invariant densities of metastable systems[END_REF]. We now construct the family F by choosing maps T ε ∈ F close to T ε=0 := T in the following way: Each map T ε ∈ F has m branches and there exists a partition of M into intervals

{A i,ε } m i=1 , A i,ε ∩ A j,ε = ∅ for i = j, Āi,ε := [c i,ε , c i+1,ε ] such that (i) for each i one has that [c i,0 +δ, c i+1,0 -δ] ⊂ [c i,ε , c i+1,ε ] ⊂ [c i,0 -δ, c i+1,0
+δ]; whenever c 1,0 = 0 or c q+1 , 0 = 1, we do not move them with δ. In this way, we have established a one-to-one correspondence between the unperturbed and the perturbed extreme points of A i and A i,ε . (The quantity δ is from Assumption (A1) above.) (ii) the map T ε is locally injective over the closed intervals A i,ε , of class C 2 in their interiors, and expanding with inf x |T ε x| > 2. Moreover there exists σ > 0 such that

∀T ε ∈ F, ∀i = 1, • • • , m and ∀x ∈ [c i,0 -δ, c i+1,0 + δ] ∩ A i,ε
where c i,0 and c i,ε are two (left or right) corresponding points, we have:

|c i,0 -c i,ε | ≤ σ (3.15) and | Ti,0 (x) -T i,ε (x)| ≤ σ. (3.16)
Under these assumptions and by taking, with obvious notations, a concatenation of n transfer operators, we have the uniform Doeblin-Fortet-Lasota-Yorke inequality, namely there exist η ∈ (0, 1) and B < ∞ such that, for all f ∈ BV , all n and all concatenations of n maps of F, we have

||P εn • • • • • P ε 1 f || BV ≤ η n ||f || BV + B||f || 1 .
(3.17)

About the continuity (Lip): looking carefully at the proof of the continuity for the expanding map of the intervals, one sees that it extends to the actual case if one gets the following bounds:

|T -1 ε 1 (x) -T -1 ε 2 (x)| |DT ε 1 (x) -DT ε 2 (x)| = O((|ε 1 -ε 2 |), (3.18) 
where the point x is in the same domain of injectivity of the maps T ε 1 and T ε 2 , the comparison of the same functions and derivative in two different points being controlled by the condition (3.15). The bounds (3.18) follow easily by adding to (3.15), (3.16) the further assumptions that σ = O(ε) and requiring a continuity condition for derivatives like (3.16) and with σ again being of order ε.

EVT for the sequential systems: an example of uniformly expanding map

In this section and in the next one, we will give a detailed analysis of the application of the general result obtained in Section 2 for two particular sequential systems. The first is that constructed with β transformations; similar approach and technique can be used to treat the other examples of sequential systems introduced above with suitable adaptations and modifications. We point out that in this example we will take u n,i = u n , where (u n ) n∈N satisfies nµ(U n ) = nµ(X 0 > u n ) → τ , as n → ∞ for some τ > 0, where µ is the invariant measure of the original map T β .

In the second example, treated in the next section, the level sets u n,i will depend on the time i and this will allow us to deal with the important example of concatenation of nonuniformly expanding maps of the interval, the Pomeau-Manneville transformations. In this case we cannot anymore use the spectral theory of Section 3, based on the quasicompactness of the transfer operator, but we will proceed in a different manner.

4.1. EVT for the β-transformation. As we said above, we let µ denote the invariant measure of the original map T β and let h = dµ dm be its density. We assume throughout this subsection that there exists ξ > 1 such that

|β n -β| ≤ 1 n ξ . (4.1)
Also let 0 < γ < 1 be such that γξ > 1. Note that by [CR07, Lemma 3.10], we have

Π i (g) -gdm h 1 ≤ C 1 log i i ξ g BV . (4.2) Consider a measurable set A ⊂ [0, 1]. Then m( T -j (A)) = 1 A • T j • . . . • T 1 dm = 1 A Π j (1)dm = 1 A hdm + 1 A (Π j (1) -h)dm.
By (4.2), if j ≥ n γ (recall that γξ > 1) then we have

|Π j (1) -h|dm ≤ C 1 log i i ξ = o(n -1
), which allows us to write:

m( T -j (A)) = µ(A) + o(n -1 ). (4.3) 4.1.1. Verification of condition (2.2), i.e., lim n→∞ n-1 i=0 m(X i > u n ) = τ .
We start with the following lemma.

Lemma 4.1. We have that

lim n→∞ n-1 i=0 Un P i (1) dm = τ.
Proof. By hypothesis, for all j ∈ N and g ∈ BV we have P j (g) = h g • h dm + Q j (g), where Q j (g) ∞ ≤ α j g BV , for some α < 1. Then we can write:

n-1 i=0 Un P i (1)dm = n-1 i=0 h 1 • hdm 1 Un dm + n-1 i=0 Q i (1)1 Un dm = n-1 i=0 Un hdm + n-1 i=0 Q i (1)1 Un dm = nµ(U n ) + n-1 i=0 Q i (1)1 Un dm.
The result follows if we show that the second term on the r.h.s. goes to 0, as n → ∞. This follows easily since

n-1 i=0 Q i (1)1 Un dm ≤ n-1 i=0 α i 1 Un dm = 1 -α n 1 -α m(U n ) ---→ n→∞ 0. Since n-1 i=0 m(X i > u n ) = n-1 i=0 Un Π i (1)dm = n-1 i=0 Un P i (1)dm + n-1 i=0 Un Π i (1) -P i (1)dm,
then condition (2.2) holds if we prove that the second term on the r.h.s. goes to 0 as n → ∞.

Let ε > 0 be arbitrary. Now, since ξ > 1 then i≥0

log i i ξ < ∞, so there exists N ∈ N such that C 0 i≥N log i i ξ < ε/2.
On the other hand, using the Lasota-Yorke inequalities for both Π and P , we have that there exists some C > 0 such that |Π i (1)

-P i (1)| ≤ C, for all i ∈ N. Let n be sufficiently large so that CN m(U n ) < ε/2. Then n-1 i=0 Un Π i (1) -P i (1)dm = N -1 i=0 Un Π i (1) -P i (1)dm + ∞ i=N Un Π i (1) -P i (1)dm ≤ CN m(U n ) + C 0 i≥N log i i ξ < ε/2 + ε/2 = ε.
4.1.2. Verification of Д q (u n ). We start by proving the following statement about decay of correlations, which is just a slightly more general statement then the one proved in [CR07, Section 3].

Proposition 4.2. Let φ ∈ BV and ψ ∈ L 1 (m). Then for the β transformations T n = T βn we have that

φ • T i ψ • T i+t dm -φ • T i dm ψ • T i+t dm ≤ Bλ t φ BV ψ 1 ,
for some λ < 1 and B > 0 independent of φ and ψ.

Remark 4.3. Note that as it can be seen in [CR07, Section 3], Proposition 4.2 holds for any sequence T β 1 , T β 2 , . . . of β transformations and not necessarily only for the ones that satisfy condition (4.1).

Proof. Using the adjoint property, write

DC(φ, ψ, i, t) := φ • T i ψ • T i+t dm -φ • T i dm ψ • T i+t dm = ψP i+t . . . P i+1 (φΠ i (1))dm -φΠ i (1)dm ψΠ i+t (1)dm.
Using the fact that the Perron-Frobenius operators preserve integrals we have φΠ i (1)dm ψΠ i+t (1)dm = ψΠ i+t (1)dm P i+t . . . P i+1 (φΠ i (1))dm.

By linearity we also have φΠ i (1)dm ψΠ i+t (1)dm = ψP i+t . . . P i+1 φΠ i (1)dm Π i (1) dm.

Again linearity and preservation of the integrals allow us to write: Let φ = φ -φΠ i (1)dm. Observe that Π i (1) φdm = 0. This means that the observable function Π i (1) φ ∈ V 0 , where V 0 is the set of functions with 0 integral that was defined in [CR07, Lemma 2.12]. Moreover, by (DFLY), there exists a constant C 0 independent of φ and ψ such that

φΠ i (
Π i (1) φ BV ≤ 3C 0 φ BV .
As it has been shown in [CR07, Section 3], condition (Dec) of the same paper is satisfied for any sequence of β transformations as considered here. It follows that for all g ∈ V 0 and i ∈ N we have that P i+t . . . P i+1 (g) BV ≤ Kλ t g BV , for some K > 0 and λ < 1 independent of g, which applied to Π i (1) φ gives:

P i+t . . . P i+1 (Π i (1) φ) BV ≤ 3KC 0 λ t φ BV . (4.4)
Let ψ = ψ -ψΠ i+t (1)dm. Again, by [CR07, (2.4)], we have ψ 1 ≤ 2C 0 ψ 1 . Hence, using (4.4) we obtain

|DC(φ, ψ, i, t)| = ψ P i+t . . . P i+1 Π i (1) φ dm ≤ P i+t . . . P i+1 (Π i (1) φ) BV | ψ|dm ≤ 6KC 2 0 λ t φ BV ψ 1 .
Condition Д q (u n,i ) follows from Proposition 4.2 by taking for each i ∈ N,

φ i = 1 D (q) n,i
and

ψ i = 1 D (q) n,i+t .1 D (q) n,i+t+1 • T i+t+1 . • • • .1 D (q) n,i+t+ • T i+t+ • . . . • T i+t+1 ,
where for every j ∈ N we define

D (q) n,j = U n ∩ T -1 j+1 (U c n ) ∩ . . . ∩ T -1 j+q (U c n ). (4.5)
Since we assume that (4.1) holds, there exists a constant C > 0 depending on q but not on i such that φ i BV < C. Moreover, it is clear that ψ i ≤ 1. Hence,

P A (q) n,i ∩ W i+t, A (q) n -P A (q) n,i P W i+t, A (q) n = φ i • T i ψ i • T i+t dm -φ i • T i dm ψ i • T i+t dm ≤ const λ t .
Thus, if we take γ i (q, n, t) = constλ t and t n = (log n) 2 condition Д q (u n,i ) is trivially satisfied.

4.1.3. Verification of condition Д q (u n ). We start by noting that we may neglect the first n γ random variables of the process X 0 , X 1 , . . ., where γ is such that γξ > 1, for ξ given as in (4.1).

In fact, by Lemma 2.5 and (DFLY) we have

m(max{X n γ , . . . , X n-1 } ≤ u n ) -m(M n ≤ u n ) ≤ n γ -1 i=0 m(X i > u n ) = n γ -1 i=0 1 Un Π i (1)dm ≤ C 0 n γ m(U n ) ---→ n→∞ 0.
This way, we simply disregard the n γ random variables of X 0 , X 1 , . . . and start the blocking procedure, described in Section 2.2, in X n γ by taking L 0 = n γ . We split the remaining n -n γ random variables into k n blocks as described in Section 2.2. Our goal is to show that

S n := kn i=1 i -1 j=0 i -1 r>j m(A (q) L i-1 +j ∩ A (q) L i-1 +r )
goes to 0.

We define for some i, n, q ∈ N 0 , R

n,i := min j > i :

1 A (q) i • 1 A (q) j (x) > 0 for some x ∈ [0, 1] , R(q) n := R(q) n (n γ ) = min{R (q) n,i , i = n γ , . . . , n}, L n = max{ n,i , i = 1, . . . , k n }.
We have

S n ≤ n i=n γ Ln j>i+R (q) n,i m A (q) i ∩ A (q) j = n i=n γ Ln j>i+R (q) n,i 1 D (q) n,i • Ti • 1 D (q) n,j • Tj dm, where D (q)
n,i and D (q) n,j are given as in (4.5). Using Proposition 4.2, with φ = 1 D (q) n,i and ψ = 1 D (q) n,j and the adjoint property of the operators, it follows that

1 D (q) n,i • Ti • 1 D (q) n,j • Tj dm ≤ 1 D (q) n,i Π i (1)dm 1 D (q) n,j Π j (1)dm + Bλ j-i 1 D (q) n,i BV 1 D (q) n,j 1 .
Using (DFLY) and since there exists some C 2 > 0 (independent of n) such that 1 D (q) n,i BV ≤ C 2 , we have

1 D (q) n,i • Ti • 1 D (q) n,j • Tj dm ≤ C 2 0 m(U n ) 2 + BC 2 λ j-1 m(U n ).
Hence,

S n ≤ n i=n γ Ln j≥i+R (q) n,i C 2 0 m(U n ) 2 + BC 2 λ j-1 m(U n ) ≤ C 2 0 nL n m(U n ) 2 + BC 2 m(U n )n Ln k≥ R(q) n λ k ≤ C 2 0 nL n m(U n ) 2 + BC 2 m(U n )nλ R(q) n 1 1 -λ . Now we show that L n = n k n (1 + o(1)). (4.6)
To see this, observe that each n i is defined, in this case, by the largest integer n such that

s+ n-1 j=s m(X j > U n ) ≤ 1 kn n-1 j=n γ m(X j > u n ). Using (4.3), it follows that n µ(U n )(1 + o(1)) ≤ n-n γ kn µ(U n )(1 + o(1)
). On the other hand, by definition of n we must have

s+ n-1 j=s m(X j > U n ) > 1 kn n-1 j=n γ m(X j > u n ) -m(X s+ n > u n ). Using (4.3) again, we have n µ(U n )(1 + o(1)) > n-n γ kn µ(U n )(1 + o(1)) -µ(U n )(1 + o(1)
). Together with the previous inequality, (4.6) follows at once. Using estimate (4.6), the fact that lim n→∞ nµ(U n ) = τ and h ∈ BV , we have that there exists some positive constant C such that

S n ≤ C 1 k n + λ R(q) n .
In order to prove that Д (u n ) holds, we need to show that R(q) n → ∞, as n → ∞, for all q ∈ N 0 . To do that we have to split the proof in several cases. First, we have to consider the cases when the orbit of ζ hits 1 or not. Then for each of the previous two cases, we have to consider if ζ is periodic or not.

We will consider that the maps T i , for all i ∈ N 0 , are defined in S 1 by using the usual identification 0 ∼ 1. Observe that the only point of discontinuity of such maps is 0 ∼ 1.

Moreover, lim x→0 + T i (x) = 0 and lim x→1 -T i (x) = β i -β i .
4.1.3.1. The orbit of ζ by the unperturbed T β map does not hit 1. We mean that for all j ∈ N 0 we have T j (ζ) = 1. 4.1.3.1.1. The orbit of ζ is not periodic. In this case, for all j ∈ N, we have that T j (ζ) = ζ, we take q = 0 and in particular D (q) n,i = U n , for all i ∈ N 0 . Let J ∈ N. We will check that for n sufficiently large R(q) n > J. Since ζ is not periodic, there exists some > 0 such that min j=1,...J dist(T j (ζ), ζ) > . Let N 1 ∈ N be sufficiently large so that for all i ≥ N 1 , we have

min j=1,...J dist(T i+j • . . . • T i (ζ), T j (ζ)) < /4.
Let N 2 ∈ N be sufficiently large so that for all i ≥ N 2 we have

diam(T i+J • . . . • T i (U n )) < /4.
This way for all i ≥ max{N 1 , N 2 }, for all x ∈ U n and for all j ≤ J we have

dist(T i+j • . . . • T i (x), ζ) > /2.
Hence, as long as n γ > max{N 1 , N 2 } we have R(q) n > J. Note that for this argument to work we only need that β n → β and the stronger restriction imposed by (4.1) is not necessary. 4.1.3.1.2. The orbit of ζ is periodic. In this case, there exists p ∈ N, such that T j (ζ) = ζ for all j < p and T p (ζ) = ζ. We take q = p.

Let

ε n := |β n γ -β|.

(4.7) By (4.1) and choice of γ, we have that ε n = o(n -1 ). Also let δ > 0, be such that B δ (ζ) is contained on a domain of injectivity of all T i , with i ≥ n γ .

Let J ∈ N be chosen. Using a continuity argument, we can show that there exists

C := C(J, p) > 0 such that dist(T i+j • . . . • T i+1 (ζ), T j (ζ)) < Cε n , for all i = 1, . . . , J and moreover U n ∩ T i+j • . . . • T i+1 (U n ) = ∅,
for all j ≤ J such that j/p -j/p > 0.

We want to check that if

x ∈ A (q) i for some i ≥ n γ , i.e., T i (x) ∈ D (q) n,i , then x / ∈ A (q)
i+j , for all j = 1, . . . , J, i.e., T i+j (x) / ∈ D

n,i+j ⊂ U n , for all such j. By the assumptions above, we only need to check the latter for all j = 1, . . . , J such that j/p -j/p = 0, i.e., for all j = sp, where s = 1, . . . , J/p . By definition of A (q) i the statement is clearly true when s = 1. Let us consider now that s > 1 and let x ∈ A (q) i . We may write dist(

T i+sp (x), T i+sp • . . . • T i+p+1 (ζ)) > (β -ε n ) (s-1)p dist( T i+p (x), ζ). On the other hand, dist(T i+sp • . . . • T i+p+1 (ζ), ζ) ≤ Cε n . Hence, dist( T i+sp (x), ζ) ≥ dist( T i+sp (x), T i+sp • . . . • T i+p+1 (ζ)) -dist(T i+sp • . . . • T i+p+1 (ζ), ζ) ≥ (β -ε n ) (s-1)p dist( T i+p (x), ζ) -Cε n ≥ (β -ε n ) (s-1)p m(U n ) 2 -Cε n , since x ∈ A (q) i ⇒ T i+p (x) / ∈ U n > m(U n ) 2 , for n sufficiently large, since ε n = o(n -1 ).
This shows that

T sp+i (x) / ∈ U n , which means that T sp+i (x) / ∈ D (q)
n,i and hence x / ∈ A (q) i+sp . 4.1.3.2. ζ = 0 ∼ 1. In this case we proceed in the same way as in [AFV15, Section 3.3], which basically corresponds considering two versions of the same point: ζ + = 0 and ζ -= 1. Note that ζ + is a fixed point for all maps considered and ζ -may or not be periodic. So we split again into two cases. 4.1.3.2.1. 1 is not periodic. This means that T i (1) = ζ for all i ∈ N. Note that U n can be divided into U + n which corresponds to the bit having 0 at its left border and U - n which corresponds to the interval with 1 as its endpoint. In this case, q = 1 and D n,i do not return to U n before time J, also. 4.1.3.2.2. 1 is periodic. This means that there exists p ∈ N such that T i (1) = ζ for all i < p and T p (1) = ζ. In this case, we need to take q = p and observe that D (q) n,i has again two connected components, one to the right of 0 and the other to the left of 1, where none of the two points belongs to the set. The argument follows similarly as in the previous paragraph, except that this time both sides require mimicking the argument used in Paragraph 4.1.3.1.2. Note that, the maps are orientation preserving so there is no switching as described in [AFV15, Section 3.3]. 4.1.3.3. ζ = 0 ∼ 1 but there exists j ∈ N such that T j (ζ) = 0 ∼ 1. We proceed again as in [AFV15, Section 3.3], which basically corresponds to consider two versions of the same point: ζ + , where we suppose that T j (ζ + ) = 0 and ζ -, where we suppose that T j (ζ -) = 1. Since ζ + is a pre-fixed point, it will never return to a vicinity of itself so a continuity argument will let us obtain the result for this case. For ζ -, depending on whether the orbit of 1 hits ζ or not we use an argument as in Paragraph 4.1.3.1.2 or Paragraph 4.1.3.1.1, respectively, to get the same result. 4.1.4. Verification of condition (2.8). We only need to verify (2.8), when ζ has some sort of periodic behaviour. Let ε n be defined as in (4.7). Let δ n be such that U n = B δn (ζ). For simplicity, we assume that we are using the usual Riemannian metric so that we have a symmetry of the balls, which means that

|U n | = m(U n ) = 2δ n .
Let us assume first that ζ is a periodic point of prime period p with respect to the unperturbed map T = T β and the orbit of ζ does not hit 0 ∼ 1. In this case, we take q = p, θ = 1 -β -p and check (2.8).

Using a continuity argument we can show that there exists

C := C(J, p) > 0 such that dist(T i+p • . . . • T i+1 (ζ), ζ) < Cε n .
We define two points ξ u and ξ l of B δn (ζ) on the same side with respect to

ζ such that dist(ξ u , ζ) = (β -ε n ) -p δ n + Cε n and dist(ξ l , ζ) = (β + ε n ) -p δ n -(β + ε n ) -p Cε n . Recall that for all i ≥ n γ , we have that (β -ε n ) ≤ β i • . . . • β i+p ≤ (β + ε n ).
Since we are composing β transformations, then for all i ≥ n γ , we have dist(T i+p • . . .

• T i (ξ u ), T i+p • . . . • T i (ζ)) ≥ δ n + (β -ε n ) p Cε n . Using the triangle inequality it follows that dist(T i+p • . . . • T i (ξ u ), ζ) ≥ δ n . Similarly, dist(T i+p • . . . • T i (ξ l ), T i+p • . . . • T i (ζ)) ≤ δ n -Cε n and dist(T i+p • . . . • T i (ξ l ), ζ) ≤ δ n .
If we assume that both ξ u and ξ l are on the right hand side with respect to ζ and ξ * u and ξ * l are the corresponding points on the left hand side of ζ, then

(ζ -δ n , ξ * u ] ∪ [ξ u , ζ + δ n ) ⊂ D (p) n,i ⊂ (ζ -δ n , ξ * l ] ∪ [ξ l , ζ + δ n ). Hence, δ n -(β -ε n ) -p δ n -Cε n ≤ 1 2 m(D (p) n,i ) ≤ δ n -(β + ε n ) -p δ n + (β + ε n ) -p Cε n . Since ε n = o(n -1 ) = o(δ n ) then we easily get that lim n→∞ m(D (p) n,i ) m(U n ) = 1 -β -p .
Now, observe that by (4.3), m(A

(p) n,i ) = m( T -i (D (p) n,i )) = µ(D (p) n,i )+o(n -1 ) and m(X i > u n ) = µ(U n ) + o(n -1 ). Hence, we have that lim n→∞ m(A (p) n,i ) m(X i > u n ) = lim n→∞ µ(D (p) n,i ) µ(U n ) .
The density dµ dm , which can be found in [Par60, Theorem 2], is sufficiently regular so that, as in [FFT14, Section 7.3], one can see that

lim n→∞ µ(D (p) n,i ) µ(U n ) = lim n→∞ m(D (p) n,i ) m(U n ) .
It follows that

lim n→∞ m(A (p) n,i ) m(X i > u n ) = 1 -β -p .
Since, as we have seen in (4.6), we can write that n,i = n kn (1 + o(1)), then the previous equation can easily be used to prove that condition (2.8) holds, with θ = 1 -β -p .

In the case ζ = 0 ∼ 1, the argument follows similarly but this time we have to take into account the fact that the density is discontinuous at 0 ∼ 1. By [START_REF] Parry | On the β-expansions of real numbers[END_REF] we have that

dµ dm (x) = 1 M (β) x<T n (1) 1 β n , where M (β) := 1 0 x<T n (1) 1 β n dm. In this case, we have θ = dµ dm (0)(1 -β -1 ) + dµ dm (1) if 1 is not periodic and θ = dµ dm (0)(1 -β -1 ) + dµ dm (1)(1 -β -p ) if 1 is periodic of period p.
4.1.5. An example with an EI equal to 1 at periodic points. In the previous subsections, we used (4.1), which imposes a fast accumulation rate of β n to β, to show that the EI equals the EI observed for the unperturbed dynamics. If this condition fails then the EI for the sequential dynamics does not need to be the same as the one of the original system.

Let β = 5/2 and T = T β = 5/2x mod 1. Let ζ = 2/3. Note that T (2/3) = 2/3. Consider a sequence β j = 5/2 + ε j , with ε j = j -α , where α < 1. Note that 1/n = o(ε n ).

Observe that T j (2/3) = 2/3 + O(ε j ). Also note that, since we are choosing, deliberately, ε j > 0 for all j, then the orbit of ζ is being pulled to the right everytime we iterate. Moreover, by letting j be sufficiently large we can keep it inside a small neighbourhood of 2/3 at least up to a certain fixed number of iterates J ∈ N.

For δ > 0, we have that

T j (2/3 -δ) = 2/3 + O(δ) + O(ε j ). So if we take δ = δ n such that B δn (ζ) = U n then δ n = O(1/n
) and we see that if j and n are sufficiently large then T j (2/3 -δ n ) > 2/3 + δ n . Hence, by continuity, for some fixed J ∈ N, we can show that for j and n sufficiently large then for all i = 1, . . . , J we have

T j+i • . . . • T j (U n ) ∩ U n = ∅.
This means that we would be able to show that Д 0 (u n ) would hold with A (q)

n,i = U n (meaning that q = 0).

The conclusion then is that at ζ = 2/3, although for the unperturbed system T shows an EI equal to 1 -2/5 = 3/5, for the sequential systems chosen as above the EI is equal to 1.

Remark 4.4. Note that condition (4.1) was used to prove (2.2) so, in this case, we may need to use different u n,i for each i but, since the invariant measure of each T i is equivalent to Lebesgue measure, the corresponding δ n,i still satisfies δ n,i = O(1/n) for all i ∈ N.

EVT for the sequential systems: intermittent maps

We now consider maps with indifferent fixed points in the formulation proposed in [START_REF] Liverani | A probabilistic approach to intermittency[END_REF]. Namely, for α ∈ (0, 1),

T α (x) = x(1 + 2 α x α ) for x ∈ [0, 1/2) 2x -1 for x ∈ [1/2, 1]
and we concatenate them. Let for each i ∈ N, T i = T α i , with α i ∈ (0, 1). As before,

T n = T n • . . . • T 1 .
We will assume that for all i ∈ N, we have α i ∈ [0, α * ]. At some point we will impose an upper bound for α * but for the moment retain that we need at least a summable rate for the decay of correlations, which implies that α * < 1/2.

The stochastic process X 0 , X 1 , . . . is defined as in (3.8). In this case, our reference measure is the Lebesgue measure m, restricted to [0, 1] and we now choose time-dependent levels u n,i given by m(X i > u n,i ) = τ /n, where τ ≥ 0. Let δ n,i = g -1 (u n,i ) so that

m(X i > u n,i ) = 1 (ζ-δ n,i ,ζ+δ n,i ) Π i (1)dm = τ n .
Observe that δ n,0 = τ 2n and, by Lemma 5.4, for n sufficiently large, we have

τ 2C n ≤ δ n,i ≤ τ 2cn .
(5.1)

Note that this choice for the levels u n,i guarantees that condition (2.2) is trivially satisfied.

5.1. Verification of Д 0 (u n,i ). The intermittent map introduced above exhibits polynomial decay of correlations, which can be obtained by considering decay of the L 1 norm of the concatenation of the Perron-Frobenius operators. As before, we will be interested in the kind of correlations given in Proposition 4.2, which reads

DC(φ, ψ, i, t) := φ • T i ψ • T i+t dm -φ • T i dm ψ • T i+t dm = ψ -ψΠ i+t ( 
1)dm P i+t . . . P i+1 Π i (1) φ -φΠ i (1)dm .

Let φ = φ -φΠ i (1)dm. Observe that Π i (1) φdm = 0. This means that the observable function Π i (1) φ ∈ V 0 , where V 0 is the set of functions with 0 integral that was defined in [CR07, Lemma 2.12]. Now, contrary to what we did in the case of uniformly expanding maps, we will consider decay of the L 1 norm of the concatenation of the PF operators, namely we will consider, having set ψ = ψ -ψΠ i (1)dm :

|DC(φ, ψ, i, t)| = ψ P i+t . . . P i+1 Π i (1) φ dm (5.2) ≤ P i+t . . . P i+1 (Π i (1) φ) 1 ||ψ|| ∞ (5.3)
To deal with such correlations we apply the following result proved in [AHN + 15]:

Theorem 5.1 ([AHN + 15]). Suppose ψ, φ are in the cone C a (see below), for some a and with equal expectation φdm = ψdm. Then for any 0 < α * < 1 and for any sequence

T 1 , • • • , T n , n ≥ 1, of maps of Pomeau-Manneville type with 0 < α k ≤ α * < 1, k ∈ [1, n],
we have

|Π n (φ) -Π n (ψ)|dm ≤ C α * ( φ 1 + ψ 1 )n -1 α +1 (log n) 1 α , (5.4)
where the constant C α * depends only on the map T α * .

The cone C a contains functions given by (here X(x) = x denotes the identity function):

C a = {f ∈ C 0 ((0, 1])∩L 1 (m) | f ≥ 0, f decreasing, X α+1 f increasing, f (x) ≤ ax -α f dm}
Having fixed 0 < α < 1, it was proven in [AHN + 15] that, provided a is large enough, the cone C a is preserved by all operators P k .

We are now ready to verify Д(u n,i ); since q = 0 and we are taking u n,i = u n we have that

A (0) n,i = {X i > u n,i } =: U n,i
, which is an interval. We will apply the bound (5.2). We begin to observe than in our case φ is not in the cone C a ; we therefore approximate it with a function χ which is C 1 and with compact support, equal to 1 on U n,i and rapidly decreasing to zero on a set Λ of diameter ∆ in the complement of

U n,i 2 We have that ||χ|| ∞ = 1, ||χ || ∞ = O(∆ -1
) and finally ||φ -χ|| 1 = O(∆). In this way we have:

Π i (1) φ = Π i (1)χ -Π i (1) χΠ i (1)dm + Π i (1)[φ -χ] -Π i (1) [φ -χ]Π i (1)dm.
To this quantity we have to apply the power Π t := P i+t . . . P i+1 and then take the L 1 norm: for the last two terms in the preceding identity this contribution will be of order 2∆. Now, generalizing an argument in [START_REF] Liverani | A probabilistic approach to intermittency[END_REF], it can be shown as in [START_REF] Nicol | Central limit theorems for sequential and random intermittent dynamical systems[END_REF], that there are constants λ < 0, ν > 0, δ > 0 such that, having set χ := χ -χΠ i (1)dm, the functions F := χ Π i (1) + λXΠ i (1) + νΠ i (1) + δ; G := λXΠ i (1) + νΠ i (1) + δ 2 This can be achieved for instance in this way. Let

U n = (a n , b n ) and U ∆ n = (a n -∆, b n + ∆). Define χ(x) =              1 for x ∈ (a n , b n ) e - 1 1-( x-bn ∆ ) 2 for x ∈ [b n , b n + ∆) e - 1 1-( x-an ∆ ) 2 for x ∈ (a n -∆, a n ] 0 for x ∈ R \ U ∆ n . Note that ∆U n := {x : χ(x) -1 Un (x) > 0} = U ∆ n \ [a n , b n ] and m(∆U n ) = 2∆. We have χ ∈ C ∞ , χ (b n + ∆ 3 1/4 ) = 0 = χ (a n -∆ 3 1/4 ) and max{χ (x)} = χ (b n + ∆ 3 1/4 ) = χ (a n - ∆ 3 1/4 ) = 2e - 1 1-1/ √ 3 3 1/4 (1 -1/ √ 3) 2 1 ∆ = O(1/∆).
. are pushed into the cone C a , in such a way that

Π t (Π i (1)χ ) = Π t (F ) -Π t (G),
and, by the above theorem on loss of memory,

||Π t (Π i (1)χ || 1 = ||Π t (F ) -Π t (G)|| 1 ≤ C α * ( F 1 + G 1 )t -1 α * +1 (log t) 1 α * .
It's important to notice that the constants λ, ν, δ

• are independent on i;

• are affine functions of the C 1 norm of χ, with multiplicative constants depending only on α * .

In conclusion, this means that we can write

||Π t (Π i (1)χ || 1 ≤ C α * [A α * ||χ|| ∞ + B α * ||χ || ∞ + D α * ]t -1 α * +1 (log t) 1 α *
, where the factors A α * , B α * , D α * depend only on α * . Therefore, and taking into account the bounds on χ, there will be new constants C 1 , C 2 , C 3 depending only on α * such that

||Π t (Π i (1) φ|| 1 ≤ 2∆ + C 1 t -1 α * +1 (log t) 1 α * + C 2 ∆ -1 t -1 α * +1 (log t) 1 α * + C 3 t -1 α * +1 (log t) 1 α * .
Returning to (5.2), it follows that there exists C * (depending only on α * ) such that

DC(φ, ψ, i, t) ≤ 2∆ + C * ∆ -1 t -1 α * +1 (log t) 1 α * ψ ∞ .
(5.5)

In order to verify condition Д q (u n , i), we let ∆ = n 1+η , for some η > 0, t n = n κ , for some 0 < κ < 1 and for each n, i, set

φ i = 1 (ζ-δ n,i ,ζ+δ n,i ) and ψ i = 1 (ζ-δ n,i+tn ,ζ+δ n,i+tn ) • . . . • 1 (ζ-δ n,i+tn+ ,ζ+δ n,i+tn+ ) • (T i+tn+ • . . . • T i+tn+1 ).
Then we can write:

DC(φ i , ψ i , i, t n ) ≤ 2n -(1+η) + C * n 1+η n (-1 α * +1)κ (κ log n) 1 α * =: γ i (0, n, t n ).
Then, for some C * * > 0, we have

n-1 i=0 γ i (0, n, t n ) ≤ 2n -η + C * * n 2+2η n (-1 α * +1)κ → 0, as n → ∞,
as long as α is sufficiently small so that (-1 α * + 1)κ + 2 + 2η < 0, which ultimately settles condition Д 0 (u n,i ).

Note that in order to optimise the choice of the α * (which we want as large as possible), we need to choose η close to 0 and κ close to 1, which means that α * < 1 3 . However, in order to prove Д 0 (u n,i ) we still need further restrictions on α. 5.2. Verification of Д 0 (u n,i ). In order to prove Д 0 (u n,i ), since q = 0 we have that A

(0) n,i = {X i > u n,i } =: U n,i .
We will begin with a lemma that adjusts to the sequential setting the argument used in [HNT12, Lemma 3.10]. Essentially, it says that the Lebesgue measure of the points that after n iterations by the sequential intermittent maps return to an ε neighbourhood of themselves scales like a power of ε that depends on the α i , with i = 1, . . . , n.

Let E n (ε) := {x ∈ [0, 1] : |T n (x) -x| ≤ ε}.
Lemma 5.2. There exists some C > 0 such that for all n ∈ N, we have m(E n (ε)) ≤ Cε 1/(1+α * ) .

Proof. Let J 1 , J 2 , . . . , J k be the domains of injectivity of T n , ordered from the left to the right, i.e.,

J i = [a i , b i ) and 0 = a 1 < b 1 = a 2 < . . . < b k-1 = a k < b k = 1.
Note that T n is full branched map, in particular, each branch T n | J i is a convex map where for each i = 1 we have DT n (x) > γ > 1 but when i = 1, we have DT n (0) = 1.

We consider now an ε-neighbourhood of the diagonal and the intersection of its boundary with the full branches of T n , i.e., we define for each i = 1, . . . , k, the points x ± i ∈ J i such that T n (x ± i ) = x ± i ± ε, whenever this intersection is well defined. Note that, whenever both points

x ± i exist then E n (ε) ∩ J i ⊂ [x - i , x + i ]. Let x ≥ x - i in J i . By convexity of T n | J i , we have DT n (x) ≥ DT n (x - i ) ≥ x - i -ε -T n (a i ) x - i -a i , hence DT n (x) -1 ≥ x - i -ε -T n (a i ) x - i -a i -1 = a i -ε -T n (a i ) x - i -a i ≥ a i -ε -T n (a i ) m(J i ) . It follows that 2ε = x + i x - i DT n (x) -1dx ≥ m([x - i , x + i ]) a i -ε -T n (a i ) m(J i ) ,
which implies

E n (ε) ∩ J i ≤ 2ε a i -ε -T n (a i ) m(J i ).
This estimate is useful whenever a i -ε -T n (a i ) is not small. Hence, we define

V η = ∪{a i : |a i -T n (a i )| < ε + η} and Z η = ∪ a i ∈V η J i . Then m(E n (ε)) = m(E n (ε) ∩ Z η ) + m(E n (ε) ∩ (Z η ) c ) ≤ m(Z η ) + 2ε η m((Z η ) c ).
Now we estimate these sets in two different ways depending on whether n is small or large. Assume that ε < η and n is sufficiently large so that max

i |J i | ≤ ε, where |J i | = b i -a i . Recall that T n (a i ) = 0 for all i. Since a i ∈ V η means that a i < η + ε then m(E n (ε)) ≤ 2η + 2ε η .
Optimising over η ∈ (0, 1) we have that η = O( √ ε) is the best choice and gives

m(E n (ε)) ≤ C √ ε ≤ Cε 1/(1+α * ) ,
since as mentioned above we have α * < 1/2, which implies that 1/(1 + α * ) > 2/3 > 1/2.

When n is small then the worst case scenario happens on J 1 . In this case x - 1 is not defined and E n (ε) ∩ J 1 = [0, x + 1 ]. In this case, we have:

ε = T n (x + 1 ) -x + 1 ≥ T α * (x + 1 ) -x + 1 = 2 α * (x + 1 ) 1+α * , which implies that x + 1 = ε 2α * 1 1+α * and ultimately, for α ∈ (0, 1), taking η = √ ε, we have m(E n (ε)) ≤ ε 1 1+α * .
We now follow the argument originally used by Collet in [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems, Ergodic Theory Dynam[END_REF] and further developed in [START_REF] Holland | Extreme value theory for non-uniformly expanding dynamical systems[END_REF]. Let 0 < β < 1, 0 < κ < β and 0 < ξ < 1 such that κ(1 + ξ) < β. We define the set of points that recur too fast:

E j = x ∈ [0, 1] : |T i (x) -x| ≤ 2 j for some i ≤ j κ(1+ξ) .
By Lemma 5.2, we have that

m(E j ) ≤ j κ(1+ξ) i=1 m(E i ( 2 j )) ≤ C j ς ,
where ς = 1 1+α * -κ(1 + ξ) and for some C > 0. The core of Collet's argument is based on the use of Hardy-Littlewood maximal functions to obtain, from an estimate on the measure of the sets E j , an estimate for the conditional measure on balls of radius 1/j, centred on m-a.e point ζ, of the intersection of these sets E j with the corresponding balls.

Lemma 5.3. Assume that (E n ) n∈N is a sequence of measurable sets such that

m(E j ) ≤ C j ς ,
for some C, ς > 0. Then for 0 < β < ς and γ > 1/(ς -β), we have that for m-a.e. ζ ∈ [0, 1], there exists N (ζ) such that for all j ≥ N (ζ)

m({|x -ζ| ≤ j -γ } ∩ E j γ ) ≤ 2 j γ+γβ .
Proof. Define the Hardy-Littlewood maximal function:

L n (x) = sup >0 1 2 x+ x- 1 En (z)dz.
By the Theorem of Hardy-Littlewood we have

m(L n > λ) ≤ C λ 1 En L 1 = C λ m(E n ).
Taking λ = n -β with 0 < β < ς, we have

m(L n > n -β ) ≤ c n -β m(E n ) ≤ C n ς-β .
Hence, taking n = j γ , we have m(L j γ > j -βγ ) ≤ C j γ(ς-β) and assuming that γ(ς - 

β) > 1 it follows that j m(L j γ > j -βγ ) ≤ j C j γ(ς-β) < ∞.
1 En (z)dz = m((ζ -j -γ , ζ + j -γ ) ∩ E j γ ) ≤ 2j -γ(1+β) .
Lemma 5.4. There exist constants c, C, C , C > 0 such that for all i ∈ N and x ∈ [0, 1] we have

c ≤ Π i (1)(x) ≤ Cx -α .
In particular, for x ∈ U n and n sufficiently large, we can write

c ≤ Π i (1)(x) ≤ C , where C = C ζ -α .
Proof. It is enough to prove the first inequalities. The upper bound follows because the constant function 1 is in the cone C a and therefore for any P i : (P i 1)(x) ≤ ax α P i 1dm ≤ ax α ; in this case C = a. The lower bound is the content of Lemma 2.4 in [START_REF] Liverani | A probabilistic approach to intermittency[END_REF] with c = min a, α(1+α) Proof. Let j = cn τ 1/γ so that j -γ = τ /(cn). Also observe that n κ = (τ j γ /c) κ ≤ j γκ(1+ξ) , if n is large enough. Hence, for such sufficiently large n, we have:

V n :={x : |x -ζ| ≤ τ cn and |T i (x) -ζ| ≤ τ cn for some i ≤ n κ } ⊂{x : |x -ζ| ≤ j -γ and |T i (x) -ζ| ≤ j -γ for some i ≤ n κ } ⊂{x : |x -ζ| ≤ j -γ and |T i (x) -x| ≤ 2j -γ for some i ≤ n κ } ⊂{x : |x -ζ| ≤ j -γ and |T i (x) -x| ≤ 2j -γ for some i ≤ j γκ(1+ξ) } ={x : |x -ζ| ≤ j -γ } ∩ E j γ .
Hence, by Lemma 5.3 we have m(

V n ) ≤ 2τ 1+β /n 1+β . It follows that taking C = 2τ 1+β , n n κ i=1 m x : |x -ζ| ≤ τ cn and |T i (x) -ζ| ≤ τ cn ≤ n n κ i=1 m(V n ) ≤ n 1+κ 2τ 1+β n 1+β ≤ C n κ n β .
(5.6)

Finally, we observe that the quantity we want to estimate can be written as

n n κ i=1 1 B δ n, (ζ) •T 1 B δ n,i+ (ζ) •T i+ dm = n n κ i=1 1 B δ n, (ζ) 1 B δ n,i+ (ζ) •T i+ •. . .•T +1 Π (1)dm.
Recalling that by (5.1) we have δ n,i ≤ τ cn , for all i ∈ N 0 , then, by Lemma 5.4 and (5.6), it follows that there exists C , C > 0 such that

n n κ i=1 1 B δ n, (ζ) • T 1 B δ n,i+ (ζ) • T i+ dm ≤ C n n κ i=1 m(V n ) ≤ C n κ n β .
Recall that we are taking: k n = n 1-β and t n = n κ .

From Lemma 5.4, we have that cµ

(U n ) ≤ m(X j > u n ) ≤ Cµ(U n ).
Hence, if we let L n = max{ i : i = 1, . . . , k n }, we obtain that there exists a constant C > 0 such that L n ≤ Cn β .

In order to prove Д 0 , we need to control the sum on the left If we take η = 2β then if α * is sufficiently small it is easy to check that the terms on right vanish as n → ∞. Now, we focus on a possible upper bound for α * . From the first term on the rhs of the previous equation we have that 2 + 4β + κ -κ/α * < 0 ⇐⇒ α * < κ 2 + 4β + κ .

(5.7)

Moreover, in order to be able to apply Lemma 5.3 we need that ς > β which means that 1 1 + α * -κ(1 + ξ) > β ⇐⇒ α * < β + κ(1 + ξ) -1.

(5.8)

Recall that κ(1 + ξ) < β but we are free to choose any β ∈ (0, 1). Analysing both the expressions one obtains that the maximum range for α * occurs for β and κ as close as possible to 1, which means that α * < 1/7.

We emphasise that this restriction on α * is rather technical and is due to the use of the blocking argument and of decay of correlations, which is proved only on sufficiently regular Banach spaces of functions. We remark that the same techniques gave rise to similar restrictions on α even in the stationary setting, where the orbits are obtained by iterations of the same Liverani-Saussol-Vaienti map (see [HNT12, Section 3.4]).

Random fibered dynamical systems

We now provide a second example of non-stationary dynamical systems, this time arising from suitable random perturbations. We consider a probability space (Ω, G, P ) with an invertible P -preserving transformation ϑ : Ω → Ω; then we let (Ξ, F) another measurable space and Ξ a measurable (with respect to the product G × F) subset of Ξ × Ω with the fibers Ξ ω = {ξ ∈ Ξ : (ξ, ω) ∈ Ξ} ∈ F. We define the (skew) map s : Ξ → Ξ by s(ξ, ω) = (f ω ξ, ϑω), with f ω : Ξ ω → Ξ ϑω being measurable fiber maps with the composition rule

f n ω : Ξ ω → Ξ ϑ n ω , f n ω = f ϑ n-1 ω • • • • • f ω .
We also put f j ϑ l ω : Ξ ϑ l ω → Ξ ϑ l+j ω ; f j ϑ l ω = f ϑ l+j-1 ω • • • • • f ϑ l ω . Moreover we set f -1 ϑ j ω : Ξ ϑ j+1 ω → Ξ ϑ j ω and (f k ω ) -1 := f -1 ω • • • • • f -1 ϑ k-1 ω . This will allow us to introduce the σ-algebras T ω k := (f k ω ) -1 T ϑ k ω 0 where T ϑ k ω 0 is the restriction of the σ-algebra F to Ξ ω ⊂ Ξ.

It is well known that a measure µ disintegrated with respect to the measure P will be s-invariant if the conditional measures µ ω will verify the quasi-invariant relation

(f ω ) * µ ω = µ ϑω .
(6.1)

An interesting case is whenever all the fibers Ξ ω coincide with the metric space X. In this case we can also define a marginal measure µ on X in the following way: given A ⊂ X, define

µ(A) = μ(Ω × A) = Ω µ ω (A) dP (ω).
Also in this case, the stochastic process is defined by

X i = ϕ • f i ω , (6.2) 
where ϕ : X → R∪{+∞} is as in (3.9). This stochastic process X 0 , X 1 , . . . is not necessarily stationary and, by (6.1), the distribution function of X i is given by F i (u) = µ ϑ i ω ({x ∈ X : ϕ(x) ≤ u}).

In this setting, we will consider that the boundary levels u n,0 , u n,1 , . . . are such that u n = u n,0 = u n,1 = . . ., where u n is determined by the marginal measure µ so that

u n = inf u ∈ R : µ({x ∈ X : ϕ(x) ≤ u}) ≥ 1 - τ n .
Then as a result of the theory developed in Section 1.2, we can write a quenched distributional limit for the partial maxima of the process X 0 , X 1 , . . .. Namely, as a consequence of Theorem 2.4 we have Corollary 6.1. Let X 0 , X 1 , . . . be a stationary stochastic process defined as above, based on the action of the fiber maps f n ω . Assume that for P -a.e. ω ∈ Ω conditions (2.1) and (2.2) hold for some τ > 0. Assume that there exists q ∈ N 0 , defined as in (2.4), and (2.8) holds for P -a.e. ω ∈ Ω. Assume moreover that conditions Д q (u n,i ) e Д q (u n,i ) are satisfied for P -a.e. ω ∈ Ω. Then lim n→∞ µ ω (max{X 0 , . . . , X n-1 } ≤ u n ) = e -θτ , for P -a.e. ω ∈ Ω.

To illustrate an application of the theory developed here and in particular of Corollary 6.1, we look into random subshifts. 6.1. Random subshifts. We consider the random subshifts studied in [START_REF] Rousseau | Exponential law for random subshifts of finite type[END_REF] and [START_REF] Rousseau | Hitting times and periodicity in random dynamics[END_REF], in the setting of Hitting Times. Here we will keep using an Extreme Values approach and the statements can be seen as a translation of the corresponding results in [START_REF] Rousseau | Exponential law for random subshifts of finite type[END_REF][START_REF] Rousseau | Hitting times and periodicity in random dynamics[END_REF], in light of the connection between HTS and EVL proved in [START_REF] Cristina | Hitting time statistics and extreme value theory[END_REF][START_REF]Extreme value laws in dynamical systems for non-smooth observations[END_REF].

Since the target sets, in this example, are dynamically defined cylinders, we need to produce some adjustments to the definition of the observable and to the time scale, as in [FFT11, Section 5] (where the notion of cylinder EVL was introduced), in order to properly use an EVL approach. We return to this issue below. Meanwhile, we introduce the notions using mostly the notation of [START_REF] Rousseau | Hitting times and periodicity in random dynamics[END_REF].

Let (Ω, ϑ, P ) be an invertible ergodic measure preserving system, set X = N N 0 and let σ : X → X denote the shift. Let A = {A(ω) = (a ij (ω)) : ω ∈ Ω} be a random transition matrix, i.e., for any ω ∈ Ω, A(ω) is in an N × N-matrix with entries in {0, 1}, with at least one non-zero entry in each row and each column and such that ω → a ij (ω) is measurable for any i ∈ N and j ∈ N. For any ω ∈ Ω define X ω = {x = (x 0 , x 1 , . . .) : x i ∈ N and a x i x i+1 (ϑ i ω) = 1 for all i ∈ N} and E = {(ω, x) : ω ∈ Ω, x ∈ X ω } ⊂ Ω × X. We consider the random dynamical system coded by the skew-product S : E → E given by S(ω, x) = (ϑω, σx). While we allow infinite alphabets here, we nevertheless call S a random subshift of finite type (SFT). Assume that ν is an S-invariant probability measure with marginal P on Ω. Then we let (µ ω ) ω denote its decomposition on X ω , that is, dν(ω, x) = dµ ω (x)dP (ω). The measures µ ω are called the sample measures. Note µ ω (A) = 0 if A ∩ X ω = ∅. As before, we denote by µ = µ ω dP the marginal of ν on X.

For any y ∈ X we denote by C n (y) = {z ∈ X : y i = z i for all 0 ≤ i ≤ n -1} the n-cylinder that contains y. Let F n 0 be the σ-algebra in X, generated by all the n-cylinders. We assume the following: there are constants h 0 > 0, c 0 > 0 and a summable function ψ such that for all m, n, κ ∈ N, A ∈ F n 0 and B ∈ F m 0 : (1) the marginal measure µ satisfies µ(A ∩ σ -κ-n B) -µ(A)µ(B) ≤ ψ(κ);

(2) for P -almost every ω ∈ Ω, if y ∈ X ω and n ≥ 1 then c -1 0 e -h 0 n ≤ µ(c n (y));

(3) for P -almost every ω ∈ Ω, µ ω (A ∩ σ -κ-n B) -µ ω (A)µ ϑ n+κ ω (B) ≤ ψ(κ)µ ω (A)µ ϑ n+κ ω (B); which follows immediately from [RT15, Lemma 4.5]. In the same way, conditions Д q (u n,i ), Д q (u n,i ) follow from [RT15, Lemma 4.8] and [RT15, Lemma 4.9] respectively and condition (2.8) from the discussion in [RT15, Section 5].
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  {smooth pieces intersecting ∂A i containing x} and γ N is the volume of the unit ball in R N .

  has two connected components one of them being U - n . Let J ∈ N be fixed as before. A continuity argument as the one used in Paragraph 4.1.3.1.1, allows us to show that the points of U - n do not return before J iterates. An argument similar to the one used in Paragraph 4.1.3.1.2 would allow us to show also that the points of the other connected component of D (1)

  Hence, by the Borel-Cantelli lemma we have that for m-a.e. ζ there exists N (ζ) such that for all j ≥ N (ζ) we have ζ ∈ {L j γ ≤ j -βγ }. Choosing = j -γ , by definition of the function L, we have for m-a.e. ζ x+ x-

.

  Lemma 5.5. There exists a constant C > 0 such that for m-a.e. ζ ∈ [0, 1], for all ∈ N and all n sufficiently large, we have n n κ i=1 m ({x : |T (x) -ζ| ≤ δ n, and |T i+ (x) -ζ| ≤ δ n,i+ }) ≤ C n κ n β n→∞ ---→ 0, where δ n = τ 2nh(ζ) and h(ζ) = dµ dm (ζ).

1From1

  Un • T 1 Un • T i+ dm. B δ n, (ζ) • T 1 B δ n,i+ (ζ) • T i+ dm = 0.Hence we are left to handle n max =1,...,nCn β i=n κ 1 B δ n, (ζ) • T 1 B δ n,i+ (ζ)• T i+ dm for which we use decay of correlations. Using (5.5), we have:n max =1,...,n Cn β i=n κ 1 B δ n, (ζ) • T 1 B δ n,i+ (ζ) • T i+ dm ≤ C(n 1+β n 1+η n κ(1-1/α * ) log(n) 1/α * + n -(1+η)+β+1 + n -2 ).

( 4 )

 4 the sample measure satisfies essup ω∈Ω sup x∈X µ ω (C 1 (x)) < 1.

  1)dm ψΠ i+t (1)dm = ψΠ i+t (1)dm P i+t . . . P i+1 φΠ i (1)dm Π i (1) dm. = ψP i+t . . . P i+1 (φΠ i (1))dm -ψΠ i+t (1)dm P i+t . . . P i+1 (φΠ i (1))dm -ψP i+t . . . P i+1 φΠ i (1)dm Π

	Consequently we have
	DC(φ, ψ, i, t)

i (1) dm + ψΠ i+t (1)dm P i+t . . . P i+1 φΠ i (1)dm Π i (1) dm = ψ -ψΠ i+t (1)dm P i+t . . . P i+1 Π i (1) φ -φΠ i (1)dm .

Actually, the definition of the (DEC) property in[START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF] is slightly more general since it requires the above property for functions in a suitable subspace, not necessarily that of functions with zero expectation.
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The following lemma has been proved in [START_REF] Rousseau | Hitting times and periodicity in random dynamics[END_REF]. Lemma 6.2. For a random SFT such that assumptions (3) and (4) hold, there exist c 1 , c 2 > 0 and h 1 > 0 such that for any y ∈ X, n ≥ 1 and m ≥ 1, for almost P -almost every ω ∈ Ω,

Since the target sets are cylinders, in order to state the result using an EVL approach, as mentioned earlier, we need to make some adjustments to the definition of the observable function and to the time scale. Hence, proceeding as in [FFT11, Section 5], the stochastic process is defined by X i = ϕ • σ i , where ϕ : X → R ∪ {+∞} instead of being given by (3.9) is given by ϕ

, where n(x) := max{j ∈ N : x ∈ C j (ζ)} and g is as in Section 3.2. As in [FFT11, (5.5)] we let the sequence (u n ) n∈N be such that {x ∈ X : ϕ(x) > u n } = C n (ζ). Moreover, for the time scale we use the sequence (w n ) n∈N given by [FFT11, (5.6)]:

for some τ ≥ 0. Now, we can apply Corollary 6.1 to obtain the following result, which is a translation to the EVL setting of [RT15, Theorem 2.2]. Theorem 6.3. Assume (1)-(4) hold and there exists a constant q > 2 h 0 h 1 such that ψ satisfies ψ(κ)κ q → as κ → +∞. Let ζ ∈ X. Then for P -almost every ω, either In order to use Corollary 6.1 to prove Theorem 6.3, one needs to check that conditions (2.2), Д q (u n,i ), Д q (u n,i ) and (2.8) hold for P -a.e. ω ∈ Ω.

Note that because of the adjustments required to the cylinder setting, for condition (2.2), one needs to check that for P -a.e. ω ∈ Ω we have