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Abstract

We establish self-norming central limit theorems for non-stationary time series aris-

ing as observations on sequential maps possessing an indifferent fixed point. These
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transformations are obtained by perturbing the slope in the Pomeau-Manneville map.

We also obtain quenched central limit theorems for random compositions of these maps.

1 Introduction

In a preceding series of two papers [13], [3], we considered a few statistical properties of non-
stationary dynamical systems arising by the sequential composition of (possibly) different
maps. The first article [13] dealt with the Almost Sure Invariance Principle (ASIP) for the
non-stationary process given by the observation along the orbit obtained by concatenating
maps chosen in a given set. We choose maps in one and more dimensions which were
piecewise expanding, more precisely their transfer operator (Perron-Frobenius, "PF”) with
respect to the Lebesgue measure was quasi-compact structure on a suitable Banach space.
The ASIP was then proved by applying a recent result by Cuny and Merlevede [7], whose
first step was to approximate the original process with a reverse martingale difference plus
an error. The latter was essentially bounded due to the presence of a spectral gap in the
PF operator on a Banach space continuously injected in L (from now on all the L spaces
will be with respect to the ambient Lebesgue measure m and they will be denoted with LP
or LP(m).). Moreover, the same spectral property allowed us to show that for expanding
maps chosen close enough, the variance o2 grows linearly, which permit to approximate the
original process almost everywhere with a finite sum of i.i.d. Gaussian variables with the
same variance.

The second paper [3] considered composition of Pomeau-Manneville like maps, obtained
by perturbing the slope at the indifferent fixed point 0. We got polynomial decay of cor-
relations for particular classes of centered observables, which could also be interpreted as
the decay of the iterates of the PF operator on functions of zero (Lebesgue) average, and
this fact is better known as loss of memory. In this situation the PF operator is not quasi-
compact and although the process given by the observation along a sequential orbit can be
decomposed again as the sum of a reverse martingale difference plus an error, apriori the
latter turns out to be bounded only in L' and this was an obstacle to obtain an almost
sure result like the ASTP by only looking at the almost sure convergence of the reverse mar-
tingale difference. Instead one could hope to get a (distributional) Central Limit Theorem
(CLT); in this regard a general approach to CLT for sequential dynamical systems has been
proposed and developed in [6]. It basically applies to systems with a quasi-compact PF



operator and it is not immediately transposable to maps with do not admit a spectral gap.
The main goal of our paper is to prove the CLT for the sequential composition of Pomeau-
Manneville maps with varying slopes. A fundamental tool in obtaining such a result will
be the polynomial loss of memory bound obtained in [3]; we are now going to recall it also
because it will determine the regularity of the observables to which our CLT will apply; see
Theorem 1.2.
We consider the family of Pomeau-Manneville maps
T+ 20t 0< 2 <1/2
To(z) = 0<a<l (1.1)

2r—1, 1/2<z<1
Actually in [3] we considered a slightly different family of this type, but pointed out that
both versions could be worked out with the same techniques (see [1]), and lead to the same
result; here we prefer to use the classical version (1.1). As in [18], we identify the unit
interval [0,1] with the circle S!, so that the maps become continuous. If 0 < £, < 1
are given, denote by Pg, or P the Perron-Frobenius operator associated with the map
T}, = Tp, w.r.t. the measure m, where 0 < 3; < . For concatenations we use equivalently

the notations
m—m-kl :=Tp,0Tp, yo---0Tp, =TpoT,_10--0T,.
promtl = Pg oPg ,0---0Pg =P,0P, 100 Py,
P".=PT T =T"

where the exponent denotes the number of maps in the concatenation. We use for simplicity
T :=-.-T,o0---0T; for a given sequence of transformations.

The Perron-Frobenius operator Py, associated to T} satisfies the duality relation

/Pkfgdm:/fgodem, for all f € L', g e L™
M M

and this is preserved under concatenation.
We next consider [18, 3] the cone Cy of functions given by (here X (z) = x is the identity

function):

Cy:={f € C°((0,1])NL (m) | f >0, f decreasing, X*™! f increasing, f(z) < az™* m(f)}*

!By ”decreasing” we mean ”nonincreasing”.



Remark 1.1 Some coeflicients that appear later depend on the value a that defines the

cone Co; however, we will not write explicitly this dependence.

Fix 0 < a < 1; as proven in [3], provided a is large enough, the cone C; is preserved by

all operators Pg, 0 < 8 < o < 1. The following polynomial decay result holds:

Theorem 1.2 ([3]) Suppose ¥, ¢ are in Co with equal expectation [ @dm = [ dm. Then
forany 0 < o < 1 and for any sequence Ty, ,--- ,Tg,, n > 1, of maps of Pomeau-Manneville
type (1.1) with 0 < B < a < 1, k € [1,n], we have

_1 1
/'Pﬁn 00 Py, () = Pg, 00 Pg (¥)ldm < Ca(llell + [¢ll)n~a " (logn)a,  (1.2)

where the constant C, depends only on the map T,, and || - ||1 denotes the L' norm.
A similar rate of decay holds for observables ¢ and 1 that are C* on [0,1]; in this case

the rate of decay has an upper bound given by
_1 1
Ca F(leller + IWllor)n™ =" (logn)=

where the function F : R — R is affine.

For the proof of the CLT Theorem 3.1 we need better decay than in L'. In this paper
we improve the above result to decay in LP, provided « is small enough.

Note that P"p € Ca if ¢ € Co and m(P"p) = m(y), so
[P () = P*(¥)] la| <P () la| + P (¥) || < am(p)a™ + am(v)a™
Proposition 1.3 Under the assumptions on Theorem 1.2, if 1 < p < 1/« then

l—ap

_1 1
1P5, 0+ -0 P, (9) = Pg, 00 Py () | oamy < Caplllipll + [9]1)n' 7= (logn)=r=er (1.3)

where the constant Cy,, depends only on the map T, and p.

As in Theorem 1.2, a similar LP-decay result also holds for observables ¢,v € C*([0,1]).

Proof For functions in the cone Ca, Theorem 1.2 gives L!-decay; then Lemma 2.7 together
with the preceding discussion implies LP-decay for o small enough. Note that we use this
Lemma with K = 2a(||¢||1 + [|¢[l1) and the L'-bound given by the Theorem, and then the
coefficient in the LP-bound is proportional to (||¢|[1 + ||¢|1) as well.



To prove the decay for C! observables, we use Lemma 2.4 (same approach as in the
proof of Theorem 1.2). |

Note that the convergence of the quantity (1.2) implies the decay of the non-stationary

correlations with respect to m:

‘/wcpngno---ngldm—/i/Jdm /apngno---oTﬁldm‘

< lelloo Hpﬁn o---0Pg () — Pg,0---0Pg <1 </¢dm>>

1

provided ¢ is essentially bounded and ([ ¢dm)1 is in the functional space where the con-

vergence of (1.2) takes place. In particular, this holds for C'! observables, by Theorem 1.2.
From now on we will take our observables as C'! functions on the interval [0, 1] and for

any ¢ € C!, we will consider the following observation along a sequential orbit:

Yk = [gp]k = — /(p(Tk O-:+0 Tlx)dm

As it is suggested by the preceding loss of memory result, centering the observable is the
good way to define the process when it is not stationary, in order to consider limit theorems.
Conze and Raugi [6] defined the sequence of transformations 7 to be pointwise ergodic

whenever the law of large numbers is satisfied, namely

n

1
lim — Z {@(Tk o---oThz)— /gp(Tk o---oTjz)dm| = 0 for Lebesgue-a.e. x.

We will prove in Theorem 2.10 that such a law of large numbers holds for our observations
provided 0 < a < 1. It is therefore natural to ask about a non-stationary Central Limit

Theorem for the sums "

Sy 1= Z[(p]koTko---oTl (1.4)
k=1
for a given sequence T :=---0T, o---0T} : this will be the content of the next sections.

To be more specific we will prove in Theorem 3.1 a non-stationary central limit theorem
similar to that proved by Conze and Raugi [6] for (piecewise expanding) sequential systems:
_Sn N(0,1). (1.5)

Var(Sy)

At this point, we would like to make a few comments about our result compared to that

of Conze and Raugi. Theorem 5.1 in [6] shows that, when applied to the quantities defined

above and for classes of maps enjoying a quasi-compact transfer operator:



(1) If the norms ||.S,||2 are bounded, then the sequence S,,,n > 1 is bounded.
(2) If ||Sn||2 — oo, then (1.5) holds.

We are not able to prove item (1) for the intermittent map following the same approach as
in [6], since it uses the uniform boundedness of the sequence H,, o T*, where the function
H,, is defined in (2.1) and is just the error in the martingale approximation as we discussed
above. We can only prove that H, is bounded uniformly in n on each set of the form
[a,1),a > 0, and do not expect it to be bounded near 0 (look at the stationary case).

Instead, our central limit theorem will satisfy item (2) under the assumption that the
variance ||Sy||2 grows at a certain rate and for some limitation on the range of values of a.
It seems difficult to get such a result in full generality for the intermittent map considered
here. Conze and Raugi proved the linear growth of the variance in their Theorem 5.3 under
a certain number of assumptions, including the presence of a spectral gap for the transfer
operator. We showed in our paper [13] that those assumptions apply to several classes of
expanding maps even in higher dimensions.

However, for concatenations given by the same intermittent map T, with a < 1/2, the
variance is linear in n, provided the observable is not a coboundary for Tj,. In section 4
we prove that the linear growth of the variance still holds if we take maps T, with 3,
arbitrary but close to a fixed 3, and an observable is not a coboundary for Tjg; therefore,
the CLT holds. See Theorem 4.1. Our proof of Theorem 4.1 uses an estimate of interesting
related work of Leppénen and Stenlund [16], which we learnt about after a first version of
this paper was completed. Their result allowed us to give another example where variance
grows linearly for a sequential dynamical system of intermittent type maps, and hence the
non-stationary CLT holds. The focus of [16] is however more on the strong law of large
numbers and convergence in probability rather than the CLT. They also consider quasi
static systems, introduced in [17].

In section 5 we show that the variance grows linearly for almost all sequences when
we compose intermittent maps chosen from a finite set and we take them according to a
fixed probability distribution. This means that for almost all sequences (with respect to
the induced Bernoulli measure) of maps, the central limit theorem holds (a quenched-like
CLT). See Theorem 5.2.

Remark 1.4 For simplicity, in many of the following statements we will use as rate of



1+1

decay n~ =", ignoring the logn-factor. This is correct if we take for « a slightly larger

value (and is actually the correct rate of decay for the stationary case).

Notation 1.5 For any sequences of numbers {a,} and {b,}, we will write a,, ~ b, if

c1by, < ap < by, for some constants co > ¢ > 0.

2 Cones and Martingales

In order to get the right martingale representation, we begin by recalling a few formulas
concerning the transfer operator; the conditional expectation is considered with respect to

the measure m, and B denotes the Borel o-algebra on [0, 1]. We have:

Pk (p)

o k
P T

Elp | 7748 =

P(poT -¢)=¢-PY)
and therefore, for 0 < /¢ < k

Pri(-PUL))

k
Pk(l) oT".

ElpoT" | T B8] =

Recall that for L?(m)-functions these conditional expectations are the orthogonal projec-
tions in L%(m).

We denote as above: ¢ —m(p o T7) by p; or [¢] ;- However, to simplify notation, it is
convenient to assume that ¢g = [p], = 0. Therefore we have for the centered sum (1.4):
Sn=2ho19ko T =30 gwnoT".

Introduce

H,oT" :=E(S,_1|T "B).
Hence H; = 0, and the explicit formula for H,, is

1
- P

H, [Po(0n—1P" 1) + Py Py1(pn—2P" 1) + -+ + Py Py ... Pi(poP1)] .
(2.1)

It is not hard to check that setting

Sp =M, + H,i0 Tn+1



the sequence {M,,} is a reverse martingale for the decreasing filtration {B,, := T "B}:
E(M,, | Byny1) =0.
In particular,
M, — My_1 =10, oT" with 4, :=p,+H, —H,110T,:1. (2.2)
We recall three lemmas from [14], stated in the current context:

Lemma 2.1 ([14, Lemma 2.6])
n . n .
7= B(Y w0 TV = S BT~ [+ [B2 o7
i=1 i=1
(and Hy =0).
To prove this Lemma we replace our H,, with w,, in [14].

Lemma 2.2 ([14, proof of Lemma 3.3]) Let H; = H;1(H,|<c0,}, where for simplicity

of notation we have left out the dependence on n. Then

2
/ ijoTj'Hj_A'_lOTj-"_l :Z/(ijTJ.H§+1OTj+1)2
j=1 j=1
The last formula in the proof of [14, Lemma 2.6] equivalently gives:

Lemma 2.3 .

on =) Elpfo T +2) E[(Hip;)oT']

i=1 =1

The following Lemma plays a crucial role all along this paper. In a slightly different
form it was introduced and used in [18, Sect. 4], without a proof, and subsequently in [3].

We now give a detailed proof in a more general setting.

Lemma 2.4 Assume given a C'-function ¢ : [0,1] — R and h € Ca. where the cone Cs is
defined with a > 1.



Denote by X the function X (z) = x. If

A< _‘90/‘00
v > —lp+ XX
a
5 > oo + X h
> a+1(\90\ + [Al)m(h)
5 > %\¢+Ax+u|mm(h)

then
(0 +AX +v)h+ 6 € Ca.

Remark 2.5 It follows immediately that if ¢ € C'([0,1]) and h € Cy then we can use
Theorem 1.2 and Proposition 1.3 to obtain decay of P*(¢h — m(ph)): consider ® := (¢ +
AX +v)h+6, U= (AX +v)h++m(ph), with constants chosen according to Lemma 2.4
so that ®, ¥ € Cy (by definition, m(®) = m(¥)), and write

Pl h—m(p-h)) =P S~ D).

Corollary 2.6 In particular, for a sequence wy € C1([0,1]) with ||wk|lcn < K and hy € Co
with m(hg) < M (e.g, hy := P¥(1)), one can choose constants \, v and § so that

(W + AX +v)hi + 6, AX +v)hg + 0 + m(wihg) € Co for all k> 1
and therefore
||73n(wkh;€ — m(wkhk))Hl < Cox.M n_éﬂ(logn)é foralln>1,k>1,

where the constant Cy i v has an explicit expression in terms of a, K and M. Decay in LP

now follows from Lemma 2.7: if 1 < p < 1/« then
||P™ (wkhk - m(wkhk))Hp < Ca.Kk,Mp npa foralln>1,k>1

(ignoring the log-correction, see Remark 1.4) where the constant on the right hand side

depends now upon p too.

Proof of Lemma 2.4 Denote ® := (¢ + AX + v)h + 0. There are three conditions for ®
to be in Cs.



® nonnegative and decreasing. If A < —sup ¢’ and v > —inf(p + AX) then ¢ + A X +

v is decreasing and nonnegative. Therefore @, is also decreasing (because h € Cs) and
nonnegative provided § > 0.

®X 11 increasing. For 0 < z < y < 1, need

[((x) + Az + v)h(x) + 8] 2" < [(e(y) + Ay + v)h(y) + 8]y

h(y) yaJrl ya+1 . 1
h(:):) rotl o+l h

= [p() + Az +v] < [p(y) + Ay + v

. . . atl )
Since hX*! > 0 is increasing, 1 < %zaﬂ, so it suffices to have

ya+1
e =1
= > —[(ey) + Iy +v)— (p(z) +)\:U+y)]#

ratl - ]-

<p(a:)+)m+u§[%0(y)+/\y+v]+6[

By the mean value theorem and using that a < 1, y®* — 22! = (o + 1)¢%(y — ) >

(a4 1)z%(y —x) > (o + 1)x(y — x); therefore

0 < h(zx) _ h(z)xot! < h(z)z® <
e e A C o (VO

am(h)
(a+1)(y—=)

Meanwhile,

—[(e(y) + Ay +v) — (e(z) + Az +v)] < (|¢|oo + Ay — ).

Using these in the above lower bound for 4, we conclude that it suffices to have

a
o>
T a+1

PX* < am(®P). Using that hX* < am(h),

(I¢'Ioo + [A[)m(h)

(0 + AX 4+ )h 4 0] X < (o + AX + )hX® + 6 < sup(p + AX + v)am(h) + 6.

On the other hand, am((p + AX +v)h + ) > ainf(p + AX + v)m(h) + ad, so it suffices to

have

sup(¢ + AX +v)am(h) + 6 < ainf(p + AX + v)m(h) + ad

a
— 0>

0 [sup(¢ + AX +v) —inf(p + AX + v)|m(h).

a —

10



Note that, since the transfer operators are monotone,
Py...Pui1[¢P*1] o] < Po... Poii[l@]ooP*1] lo= @)oo Pr - - - Proy1[PF1] | .
Since |@]ooPr - - - Pry1[P¥1] lies in the cone Cy this implies that
P, ... Poy1[@ePF1]| o< al@]ooz ™.
The following Lemma gives control over the LP-norm of functions with such a bound.

Lemma 2.7 Suppose that f € L'(m) and |f(z)| < Kz=%. Then, provided p > 1 and
ap <1,

l—ap p—1

1f1lp < Capll fI[77 Kp=re

In particular, if |f(z)| < Kz=% and || f]]1 < Mnl=%a, then
1
171l < Cratapn’ 7 for 1<p<1/a.
Therefore, for 1 < p < 1/(2a), there is § > 0 such that ||f||, < Ck aprapn 0.

Proof The case p = 1 is obviously true, so we assume from now on that p > 1. Denote
Ci1 == ||f|]1. Compute, for 0 < z, < 1, and ap < 1: fxl* |fIPde < sup{|f(2)|P7 |z« <2 <
1}f01 |fldx < Kp_lx;a(pfl)Cl, and [ |f|Pde < KP [[* 2~ Pdx = 1I_(p 217 We want to

ap
minimize over x, the quantity

—alp— 1 —a(p—
G(zy) = KPP~y o(p—1) + Kpixi_ap = Az, o(p—1) + Bxi_ap.
1—ap
It reaches its minimum value for xff_l = ﬁs(;f’f;, which gives for the minimum of GY/P the
value
Lmapl  p1 a1
CapCy " 7K' T3,
For the last statement notice that =22 > 1 <= 0 < ap < 1/2. n

po

Corollary 2.8 We have:
1. ||Hyllq ts uniformly bounded in n for 1 < g < i

11



2. ||[Hy o T"|, is uniformly bounded inn for 1 <r < 5= — L.

Proof Recall that H,, is given in (2.1). By [3, Remark 1.3], P"*(1) > D, > 0 on (0, 1].
We now apply Minkowski’s inequality in the sum defining H,,. Thanks to Lemma 2.7 each
term of the form P,P,_1...P,_g(@n_e_1P" 1), £ € [0,n — 1] will be bounded in LP
by Dla Co,Kp El_P%, where K is the C! norm of . The role of h;, in Lemma 2.6 is now
played by P*~¢~11 and therefore M = 1. By summing over ¢ from 1 to infinity, we get a
convergent series whenever pa < 1/2. We now write [ [H,o7"|"dz = [ |H,|"P"1 dz. Since
P"1 belongs to LP(m) for 1 < p < % by the definition of Co and its invariance property,
the function |Hn|rﬁ must be uniformly in L!(m) and therefore, by the previous item,
11

1 —1 1 .
T%<%.Thusweneed1§r<%Taforsomelgp<E,Whlchmeanslgr<%—§.l

As we said in the Introduction, we will also have a pointwise bound on the H,,’s.

Lemma 2.9 For0 < a < 1/2, there is a constant C' depending on o and K = ||¢||c1, such
that
IH,(z)| < Cz™ Y forall z € (0,1], n > 1. (2.3)

Proof By using again formula (2.1) for H,, (where ¢9 = 0) and the bound P"*(1) > D, > 0

we are left with the pointwise estimate of
Po(pn—1P" ') + PoPp1(n—oP" 21) + -+ + Py Py_1 ... Pi(poP"1).

By Corollary 2.6, for each k > 1 one can write ¢, P*1 = (ap —m(po Tk))Pkl = A, — By
where Ay, B, € C2 with m(Ay), m(By) uniformly bounded by some constant Cy g < 00.
Therefore, by the decay Theorem 1.2 (and ignoring the log-correction), there is a new

constant C’ depending only on a and K such that
1
PRt (Ap = Bl < C'(n— k)=, (2.4)

We now recall the footnote to the proof of [18, Lemma 2.3]: if f € Ca with m(f) < M
then
|z f(z) — 2T (y)| < a1+ a)M|z —y| for 0 < z,y < 1. (2.5)

But a bound |g(z) — g(y)| < L|z — y| for the Lipschtz-seminorm |g|rip implies
lgll1 > CLllglloo- (2.6)

12



Combining the above observations and since m(P,?;f (f)) = m(f), we obtain that

P Ak = Blup < (XL (ARl + (X P (Bl < L uniformly for
n>1,1<k<n, and then

_ _ _1
IXHPE (A = Bi)lloo < 1/CL| X P (Ag = Byl < C"(n— k) ~a !
for a new constant C” depending only on «, K, L, which implies that

PRF(Ag — By)(@)] < 201" (n — k)5t

and therefore, for 0 < a < 1/2,

n—1 n—1
Z P,?_:lk(Ak — Bp)(z)| <zl Z(n - /{:)*é+1 < Ozl
k=1 k=1
as desired. [ |

We finish this Section by proving a type of Borel-Cantelli Lemma which is an unavoidable

tool in proving non-stationary limit theorems.

Theorem 2.10 (Strong Borel-Cantelli) Suppose that for j > 1, ¢; € C*([0,1]) with
uniformly bounded C'-norms.
(a) If 0 < oo < 1/2 then

n

YT =D m(w(T7)) = O(n'*(loglogn)*?)  m-a.e.
j=1

j=1
and therefore, if liminf; m(1; o T7) > 0 then

Z?:l 1/’]‘(zj)
Z?:l m(¢; 0 TI)

—1 m-a.e. x.

(b) If 0 < a < 1 then

J=1

% Zq/}j(ij)_Zm(d;joTj) —1 m-ae z.
j=1

Proof To prove the first statement in part (a) we will use the Gél-Koksma Theorem 6.1
in the Appendix. By adding the same constant to all the v;’s, we can assume without loss

of generally that inf; m(¢; o T77) > 0. Thus, it suffices to give a linear upper bound for

13



B[O 0y v (T7) = bp)?], where b, := > i1 (Y (T7)); note that the same estimate can be

derived for sums over m < j < n. Expand

Zw]oTﬂ—b ZE ¥j o TH —m(y; 0 T7))?

7=1

2 Z ZE[(% o T/ —m(; 0 T7) (s 0 T" — m(ty 0 T'))]

i=1 j>i
and use the decay to estimate the mixed terms. Denote sz =; —m(1;o T7). Then, for
J >
E[(45(T7) = m(;(T7)) (i(T*) = m(shi(T"))]| = |E[; 0 T? - 4p; 0 T
= [E[(¢; 0 T3 - & - P = [E[(¢; - PLL (P (1))]]
< 5l IPL P (W) < CG = i)'

where in the last inequality we used Corollary 2.6. Therefore
n .
E[)wi(T7) = b)?]
j=1

<2 |(@(T) = m(@i(T)) s (i(T" +2CZZ]—Z “a <l

i=1 =1 j>1
where the constants C,C’ are independent of j and n.. The conclusion now follows from
the Gal-Koksma Theorem 6.1.
For (b), note that for 1/2 < o < 1 the above computation still gives

E[(Y " 9;(T7) — by)? < On®=
which implies that
5 (T7) = by = O(n'™") s,

for some 1 > 0, see the standard Lemma 2.11. |

Lemma 2.11 Assume the random variables X,, have mean zero, and there are M < oo,

v < 2 such that

| Xnlloo < M, Var (ZXk) < Cn” for all n.
k=1

14



Then
. 1
ZX’“ =0(n") a.s. forn > %
k=1

Proof Denote S, :=>";_; Xi. From Tchebycheff’s inequality,

_ Var(S, o5
P(|Sn| > n'7?) < (nl(_gy) < Cn

Pick § > 0 so that v — 2§ — 2 < 0 and w > 0 such that w(2 — v 4 2§) > 1. Then, for the
subsequence ny := k¥,

> P(ISp,| >0y < o0
k

so, by Borel-Cantelli,
S| = O(n}°%) as. (2.7)

Using (2.7), one has a.s.: if ng, < n < ng4q for some k, then

[Snl < 1Su,| + ki1 = nel sup [ Xelloo < O(my~°) + Ck* 7'M < O(n'™0) + C(n'/*) ' M

-1
n:max{l—é,w}.
w

Optimize over ¢ and w to get the claimed lower bound on 7. |

therefore |S,| = O(n") a.s. with

3 Central Limit Theorem

We assume in this section that 0 < o < 1/2 (note that in the stationary case the CLT holds
only in this range). With our approach we can only prove the non-stationary CLT for a
lower upper bound on «, which will be stated later.

We define scaling constants o2 = Bl 7 ¢j0 T7)?]. This sequence of constants play
the role of non-stationary variance. As we pointed out in the Introduction, giving estimates
on the growth and non-degeneracy of o, in this non-stationary setting is more difficult than

in the usual stationary case.
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Theorem 3.1 (CLT for C! functions) Let ¢ be a C1([0,1]) function, and define S, as
in (1.4),

n
Sn 1:Z<PkOT5kO"'OT,B1-
k=1

Assume that

op = Var(S,) =E[(D_io T ~n’.
=1

Then, provided o < 1/8 and B > 2/3 (see (3.6) for other cases),
Sy s (0,1).
On
Following the approach of Gordin we will express S, = Z?:l ©pj o 77 as the sum of a
(non-stationary) martingale difference array and a controllable error term and then use the
following Theorem from Conze and Raugi [6, Theorem 5.8], which is a modification of a

result of B. M. Brown [5] from martingale differences to reverse martingale differences.

Theorem 3.2 ([6, Theorem 5.8]) Let (X;,F;) be a sequence of differences of square in-
tegrable reversed martingales, defined on a probability space (2, F,P). Forn >0 let

n—1 n—1
Sp=Xo+ ...+ X1, 0o =Y E[XF], Vo= E[XP|Frsa].
k=0 k=0

Assume the following two conditions hold:
(i) the sequence of random variables (o,,2Vy)n>1 converges in probability to 1.
(ii) For each & > 0, lim,,_,o 0;, 2 Zz;é E[X?1{x,|>c001]) = 0.

Then

lim sup =0.

n—oo acR

Sh 1 )
P|l—<a|l ——= e 2 dx
On V2T ) 0o
Proof of Theorem 3.1
Let us take the quantity H,, defined in (2.1) and then the function v, given in (2.2)

wn =¢n+ H, — Hn+1 o Tn+1-

We note that 1, o 7™ is a reverse martingale difference scheme, uniformly bounded in
L™ (m), for some r; verifying the second item in Corollary 2.8; in particular we will take r;

as the exponent for which H, ;1 o 7"*! is bounded in L™ (m). That is, 1 < r; < i - %

16



We will verify conditions (¢) and (i7) of Theorem 3.2. For condition (i) we begin by

noticing that the functions 1, o 7" have a uniformly bounded L?-norm if the same is true

for Hy 41 © Tp+1; this holds provided 2 < % — % — 0<ac< % By Minkowski’s

inequality, [|ton o T"(| 2 Will be bounded uniformly in n by some constant C. Then we

have by Hélder’s and Tchebycheff’s inequality

n—1 n—1
_ _9A 1 _9A n
0.2 Y By seo] < 02°C D milihe] > eon)? < 0n202£.
k=0 k=0

2

2 ~ nf we need

We note at this point that by prescribing a growth of the variance as o
B8 >2/3.

The hard part lies in establishing (7). This is in contrast with the stationary setting
where condition (7) is usually a straightforward consequence of the ergodic theorem.

Once we have established (i) and (é) it follows that lim,_o é D1y T7 — N(0,1)
in distribution. Finally, since [y} ¢ 0 T7] — [3°7_ 1j 0 T?] = Hyyq 0 T"H is bounded
in L",r > 2 (Corollary 2.8), lim,_ Ui" dj=1pj0 T7 — N(0,1) in distribution as well.

For (i), we first prove that

1O :
— Z %2. o777 — 1 in probability as n — co.
o
and then show that in our setting this implies (i) (see Theorem 3.5).
We follow [14, Lemma 3.3 and proof of Theorem 3.1 (II)], which uses an argument of
Peligrad [19]. Since ¥; = ¢; + H;j — Hj11 0 Ty,
W o= oF +20;Hj+ H; + HY 0Ty — 2H 1 0 Thpa (9 + Hy)
= @ +20;H; + H; + Hj ;0 To1 — 2H;p 0 Ty (v + Hja 0 Tpa)

- 90? + (H? - H32‘+1 0Tht1) —2¢; - Hjpq 0Ty + 2¢;H;.

Therefore

Y wjoT! = (HioTi—Hi, 0Tn1) — [> 0T/ -HjpoT ™
j=1

=1

n

Y etoT | 42| Y o T

j=1 j=1

+

17



By the L" uniform boundedness of H, o 7" (Corollary 2.8), H2 o 7" — 0 in
probability.

Next we show that

1

po Z; YjoT? Hy 0T/ =0 in probability. (3.1)
]:

Define
Hj = H;1(n,|<co,)-
By Lemma 2.2,

n n

2
Uﬁ = / Zw] o Tj . H§+1 o j+1] — /ZWJ ° Tj . H;—H o j+1]2.
j=1

=1

Hence, using Lemma 2.1 for the equal below,
2 252 Z / W2 o T

2 2

= 20?2 /( pjoT7)? /H2oTl /H Lo T <%0k (3.2)

7j=1

For any a > € we obtain, using Tchebycheff’s inequality in the third and fourth lines below,

the inequality (3.2), and our uniform L” bound on H; o 77 (Corollary 2.8), given by the
constant D

1 & . .
m | vjoT HioT | >a
o2 4
J=1
n
< m | max |H»+1o7-j+1}>ean +m iz:q/z-o’Tj-HE- o T > a
~ 1<5n J UrzL — J 7+1
J:
n
<

. 1
E . +1 2
m(\HjH oTY ’ > EJn) + mU

n
j=1 n

&2 > 2
n ‘ 1 nD €

a2 = (eon)” | a2

Takea:\ﬁ;ifweusethata,%%nﬂ,thenﬁ>Tw1th1<'r<——f thatlsﬁ>

allows us to obtain (3.1). We defer to the end of this proof the discussion about the poss1ble
choices for a, S.

18



Finally, we show that
1 n
o2 ; 90] +2p;H;) o T/ — 1 in probability. (3.3)

We know from our Strong Borel-Cantelli Theorem 2.10 that

Z cp? 0TI = ZE[@? o T + o(n%%) m-a.e. (3.4)
=1

j=1
We will show in Lemma 3.3 that

Z( Jo T _ ZE oH )o 7']] — 0 in probability. (3.5)

Jj=1

:qw‘ =

In view of Lemma 2.3, equations (3.3) and (3.5) impliy U%[Z’;:l ©?oT7+2 > i (piHj)o
T7] — 1 in probability. n

Lemma 3.3 For < a < 1/8 and the variance growing as o2 ~nP,3 > 2/3, we have:

n

1
o Z( Yo T? — ZE @;H;) o T?] | = 0 in probability.

j=1
Proof Write S, =>"_, (p;H;) o o7’ and E =3 i1 El(p;Hj) o o T7] and estimate

E(|S, — En| > 02¢) = E(|S, — E,* > ole?)

1
U%(C:QE(’STL - En| )

<

When we estimate E(|S,, — E,|?) we have, as usual, the diagonal terms and a double

summation of off-diagonal terms:

E(|Sn — Eal?) =Y E([(¢;H;) o T/ — m[(p;H;) 0 T7)]?)
j=1
n j—1

223 [(H) 0T~ ml(oiH) o T)[(H) o T = m(iFL) o Tl

7j=11i=1

The sum of diagonal terms is O(n) as (¢,;H;) o T/ € L?(m) with uniformly bounded norm
if o < 1/5.
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We note that by prescribing a growth of the variance as 02 ~ nf, the exponent 3 must

verify > 1/2.

We now consider

n j—1
> /[(%‘Hj) o T —m((p;Hy) o T))[(¢iHy) o T' — m((piHi) o T')]de
=1 i=1
=33 [ty — i ) o T o T - [piH = (i) o TO] 0 T'ds
=1 i=1
n Jj*l ) .
= ZZ/[%‘HJ' —m((pHy) o T)] o T - @il — m((pHi) o T)] - P'1 da
j=1i=1
-y Z / oH o7H,) 0 T9)] - PIm HipPL — m((piHy) o T'YPI1] da.
7j=11i=1
We will prove in Lemma 3.4 below that HPZJ;Z [Pi1H,0; — PiAm((o;H)TH]||2 < )’a* ,

where C* is a constant depending only on « and the C'! norm of ¢ (and uniform in i and J)-
Here the numerator ¢ comes about as 1 < i < j—1 and o* = % follows from the decay
Theorem 1.2 and Lemma 2.7, provided o < 5. Note also that ||(¢;H;) — m((¢;H;) o T)||2
is uniformly bounded in j provided a < i, see Corollary 2.8.

We have to show that each row summation satisfies
|Z/ ¢ H;) — m((¢;H;) o THIPL [P p; — P'Am((@iHy) o T')] da| < j*

where n!*X = o(co#) otherwise the double summation contributes a term which is too large.

So we divide the sum into two parts, with 0 < § < 1

Z / o;H (p;Hj) o T )]731+1[7711HchZ Pam((psH;) o TY)] dx
i=j—3°
+3 [l ) = m((e,H) o TOIPLP'tHip: = PLm(piH) 0 T da

The first sum we bound by C*j¢ using L? bounds without decay. The second uses our decay

.5 . .
estimate (see Lemma 3.4) and we get > 7_7 (]g) < OFjl=(@ =18 — O j140-a"0 provided
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a* > 1 (= 0<a<1/2). Then |75 [((pH;) — m((9;H;) o TP/ [P'1H;p; —
Piim((e;H;) o TY)] dz| < C(§° 4 j1+97279) which is lowest for § = 1/a.,. We obtain

n j—1
1> / p;H m((¢;H;) o T/)][(piH) o T' — m((piHi) o T')]dz|

7j=11i=1
< C* n1+1/a* —C* nl/(l—Za)

SO
E(|Sn — Ey|?) < Ont/(1729),

By dividing for o} and asking again for a growth like 2 ~ n” we have now that 3 > 2(171200

This estimate allows us to show that é (Z] (piH;) o T — > i1 Bl(pHy) 0 TJ])
in probability. |

We now collect the various inequalities involving 3, which is the scaling of o2 ~ n?,

and o :
e for our proof of condition (ii) in Brown’s Theorem 3.2 we need 5 > % and o < %;

e in Peligrad’s argument we have 3 > 1=;

1

e in Lemma 3.3, using that a < %, we have 8 > % and 8 > F—2a)

These give

a <

2 4a 1
’ 5>max{3 1 a’2(1—2a)} (36)

(S

which are all satisfied if a < é, B8 > %, or a < 5, 8 >1.
To conclude the proof we need the statement of Lemma 3.4, whose proof is in the
Appendix, and of Theorem 3.5, which allows us to get the convergence in probability of the

conditional expectations from condition (i) in Brown’s Theorem.
Lemma 3.4 For 1 <p<1l/a
, , , _1 1ll-ap
PR ([P 1H 0 — P'am((pH;) o TY)]) |lp < i Cap Cp n” 75 (logn)ar=or

Theorem 3.5 The following inference holds:

n

1 & 1
Uﬁzngoﬂ—w 72 [1)2 0 T" Bpy1] =P 1.
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Proof To do this we will use Burckholder’s inequality (Theorem 2.10 of [8]).
We will show that

1
oA

Z(zpz oT" —E[¢)2 0 T"|By+1]) — 0 in probability.
j=1

First define V, = 92 o T" — E[t)2 o T"|B,,+1] and note that E[V,,|Bp+1] = 0.

We define a martingale, reading from left to right,
Sl = VTM SZ =V, + Vn—l; Vit Vi + Vot ..+

with filtration
Fo = Byy1,F1 = By, Fo = By a1, ..., Fy = Bp = B.

Then V,, is F} measurable as 2 o 7" is B,, measurable, since E[1)2 o T"|B,,11] is Bp11
measurable and By, 11 C B, E[t2 o T"|B,y1] is F} measurable. Similarly V; is Fj,_;11
measurable. This implies S; is F; measurable.

Note that E[V,,_1|F1] = E[V,,—1|B,] = 0 so

E[Sit1|Fi] = E[Vh—i|Fi] + Si = S;.

Hence (S;, F;) is a martingale.

By Burckholder’s inequality taking p = 2 we have

E|Sq|* < CLE(Y_ V?) < Caor,

j=1
where (5 is a universal constant.
Hence P(|S,| > 02¢) = P(|S,|? > 02e?) < 520;% by Chebyshev. |

4 Central Limit Theorem for nearby maps

Theorem 4.1 Given B € (0,1/5) and p € CL([0,1]) if ¢ is not a coboundary (up to a
constant) for Tg there exists € > 0 such that for all parameters B, € (B —¢€,8 + €) the
variance grows linearly for any sequential system formed from concatenation of the maps
Tg, -

Therefore, by Theorem 3.1 and (3.6), the CLT holds.

22



Proof
Recall the quantities defined by a concatenation of different maps.

1

e =5m

[Po(0n—1P" 1) + Py Py_1(pn—aP" 1) + -+ + PPy ... Pi(pgP"1)]

and

wn = n + Hn - Hn+1 o Tn+1-

First assume that the maps all coincide with Tz so that Pyl — hg (at a polynomial rate
in L?), P,P,_1..Py_ = Pg, where hg is the invariant density for T and Pjg is the transfer
operator for Tj3 with respect to Lebesgue measure. Furthermore ¢, = ¢ —m(p(1%)) —
¢ — [ phgdz. Denote the H,, corresponding to this situation by Hg,,.

Note the terms PnPn_l...Pn_j(cpn_j_lpn_j_ll) decay at a polynomial rate in L2,
| PP Prj(on—jm1 PP 71)|]p < ]QT for some 7 > 1 for < 1/4, by Proposition 1.3
and Lemma 2.4. Note that C' and 7 may be taken as uniform over all T}, if 3 is close to f3.

Combining this with the fact that Pg1 — hg in L? (and hence P%“l — % in L? as both
hg and Pg1 are bounded below by d >0 ), we see that given € > 0 there exists an N such
that for all n > N, Hg,,, = 5-[Ps(haw — [ phadz) + P3(hgp — [ phgdr) + ... + P (hsp —
[ phpdx)] + v(B8,n) where |[v(8,n)|l2 < . We define Ggn = %[Pg(hggo — [ phgdz) +
Pi(hpp — [ phpdzr) + ... + Pév(hggo — [ ¢hgdz)] so that Hg,, = Gg n + (3, n).

Now suppose ¢ is not a coboundary for Ts. Denote by Ps the transfer operator for T

with respect to the invariant measure dug = hgdr. Then 156"(@) = %Pg(hﬂ@) where Pg is
the transfer operator for T with respect to Lebesgue measure.

Hence %[Pg(hgcp — [ ¢hpdz) + P3(hgp — [ phgdr) + ... + P (hgp — [ phgdx)] =
Zszl PZ; [ — [ pdug]. If ¢ is not a coboundary then Y 72, Pg [ — [ pdug] converges to a
coboundary H 3 so that

(P:?l}ﬁ‘i'ﬁﬁoTﬁ—ﬁﬁ
defines a martingale difference sequence {Jﬁ o TZ}}, where QZB # 0 in L? (as ¢ is not a
coboundary for Tj). Suppose ||1s]l2 > 7.

Choose N large enough that for all n > N, ||[Hg,, — Hp 1 0Ts] — [Hs — HgoTs]|l2 < 35
and |[Hg — S ]Bé“[go — [eduglll2 < 55 . Then [[¢)(3,n)||2 > % for all n. > N.

Now we consider a concatenation of maps T, where ;. is close to 8. The idea is to
break H,, into a sum of N terms uniformly close to G(8, N) (no matter what the sequence

of maps) and a small error.
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Choose all g’s sufficiently close to S that when we form a concatenation of the maps

Ty, we have

k

IGsn — [Po(n—1P" 1) + Py Po1(pn—oP" 1) + ...

1
Pl
+ PaPy1-+ Po n(nn PPN )] |2 < %

We can do this as we have fixed N and the finite terms are continuous in L? as £, — £,
see [16, Theorem 5.1] and Lemmas 2.4, 2.7.

Recall we also have [|y(8,n)[]2 < g for all n > N.

Using the uniform contraction (7 and C' are uniform for T where § is in a small

neighborhood of ) we have

1
[Hn = g [Pa(en1P"710) + PaPaci(@n2P" 1) + ...

+ PuPy i Py n(pn v PPNl < 2%

for all n > N. Then |[1),||2 > {5 for all n > N and we have linear growth of variance for

the concatenation of maps as 02 = Y_7_; E[tb, o T"]%. |

5 Random compositions of intermittent maps

Suppose S = {T,,,...,Ty,} is a finite number of intermittent type maps as in Section 1,
with a; < %. We will take an iid selection of maps from S according to a probability vector
p = (p1,-..,pe) where the probability of choosing map Ty, is p;. This induces a Bernoulli
measure v on the shift space Q := {1,...,I}"Y, where (i1,42,...,in,...) corresponds to the
sequence of maps: first apply T, then Ty, and so on. Writing elements of w e Q as
sequences w = (wWp,w1,...,Wn,...) the shift operator S : Q@ — Q, (Sw); = w;4+1 preserves
the measure v.

This random system also induces a Markov process on [0, 1] with the transition prob-
ability function P(z, A) = Zle Pa;1a(Tw,(z)). A measure p is invariant for the Markov
process if P*u = p. In this setting Bahsoun and Bose [4] have shown (among other results)
that there is a unique absolutely continuous invariant measure p and that if ¢ : [0,1] - R

is a Holder function then ¢ satisfies an annealed CLT for this random dynamical system in
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the sense that if [ ¢d g =0 then

1 22
v X w,T): — Tisiw)g - - L(w),x) € A} — /e_wdm

for some o2 > 0. In fact the result of Bahsoun and Bose [4] also shows that this convergence
is with respect to (v x m) where m is Lebesgue measure on [0, 1].

This follows from a well known result by Eagleson [9] which states the equivalence of the
convergence in distribution for measures which are absolutely continuous one with respect
to the other.

We will show that almost every realization of choices of concatenations of maps, i.e.

with respect to the product measure v, satisfies a self-norming CLT if:

(%) ¢ is not a coboundary for all maps i.e. there exists an i such that ¢ # 1 o

T4, — for any measurable (hence Holder by standard Livsic theory) function .

First we show that if we take a random composition of a finite number of intermittent type

maps we obtain linear growth of the variance almost surely under assumption (x).

Lemma 5.1 If ¢ is not a coboundary for all maps, i.e. there exists an i such that ¢ #*

Yo Ty, —1 for any measurable v, then for v-almost every sequence of maps T}

2

O‘i::/ ngoTi—m(@o’Ti) dx

Jj=1

grows at a linear rate in that o2 > Cn for sufficiently large n for some C' > 0.

Proof

Under our assumption ¢ is not a coboundary for one of the maps, say Ty, .

We will construct a martingale decomposition using the transfer operator ),, corre-
sponding to the invariant measure 4, for 7;,,. The invariant measure p,, has a density hq, .

The coboundary function is defined by Ha, = > 72, Qhylp — [ ¢dpa,] where Qq, is
the adjoint operator of the Koopman operator Uy = ¢ o T,,, with respect to the invariant
measure dpg, = hqo,dz for Ty, .

When we do the usual decomposition ¢ = 1o, + Ha, — Ha, 0 Ty, then the martingale

difference function 1), is bounded below from zero in L2 Suppose ||t [l2 > p > 0.
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It is known that Q7 () = 7~ P2 (ha, ) where Py, is the adjoint of the Koopman op-
ay
erator of Tj,, with respect to Lebesgue measure. Furthermore P} 1 — hq, (at a polynomial

rate in L?) and since II — j1 lies in the cone Co and [II;11dz =1,
Pk [ha, —11;1] = 0

in L? at a uniform polynomial rate, in fact ||PY [hq, —II;1]|j2 < C'41 where C and 7 are
uniform over II;1.

Now we consider the quantities defined by a concatenation of different maps. We will
use the notation from previous sections.

1
- P

H, [Po(0n-1P" 1) + Py Po1(pn—2P" 1) + -+ + PPy ... Pi(poP"1)]

and v, == ¢on + Hy —Hpp1 0Ty

We will first consider what happens when we have a sequence of k maps T;, applied
one after the other. We will suppose we have concatenated n maps and then apply k Ty,
maps in turn.

Then @i = p— [ @(TE Ty.. Th)dz = ¢ — [ 9Pk ,1dx = p— [ @ha,dx+ [ oP¥ [ho, —
I1,1]dz where ||P¥ [ho, — II1]]l2 < 5.

We are considering here n fixed and k increasing.

Note the terms PnPn_l...Pn_j(gon_j_lpn_j_ll) decay at a polynomial rate in L?, in fact
HPnPn,l...Pn,j(gpn,j,ﬂ)”_j_ll)||2 < ]1% Note that C' and n may be taken as uniform
over all choices of Ty, in the concatenation.

Combining this with the fact that P% II,1 — hq, in L? (and hence W
L? as both h,, and 73211'[”1 are bounded below by § > 0 ), we see that given p > 0 there
exists an r such that for all m > n + rk, H,, = ﬁ[Pal(halgo — [ @ha,dz) + P2 (ha, —
[ ha,dz) + ... + Pk (ha,o — [ @ha,da)] +~(m, a1) where ||y(m, o)z < £

Now i[P(hmcp — [ ha,dz) + P%(hayp — [ Qhaydz) + ... + P¥(hoy o — [ pha,dx)] =
25:1 Qo — [ ¢dpia,]. The infinite sum P Qe — [ ¢dpia,] converges to Hy,, at a
polynomial rate.

We choose k large enough that ||Hy, — Z§:1 QLo — [ edpa]ll2 < %5

Recall

1 -
—>E1n

¥ = 170061 +L’Otl oTOﬂ - Ha1
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defines a martingale difference sequence {14, © Tc{l}, where 14, is bounded away from zero
in L? (as ¢ is not a coboundary for T,,,). We assumed ||[tba, ||2 > p.
We have shown that if we choose k and r large enough then |[H,, — Hq, ||2 < {5 for all

m > n + rk and hence as

wm =m+ H,, — Hm+1 o Tm+1

we see that |1y, — Ha, |l2 < £ and hence [t |2 > §.

This implies linear growth in the random composition setting as almost all choices of
maps will have 7k long sequences of the map T, at a fixed frequency. In fact the only way
we won’t obtain linear growth almost surely is if the function ¢ is a coboundary for all the

maps Ty, . [

The next theorem is an immediate consequence of the previous lemma and Theorem 3.1

(see (3.6) for the bound on «).

Theorem 5.2 If a; < 1/5 for all 1 < i < { and ¢ is not a coboundary for all maps then

02 > Cn for some C > 0 and hence ¢ satisfies a CLT for v almost every sequence of maps.

6 Appendices

6.1 Gal-Koksma Theorem.

We recall the following result of Gal and Koksma as formulated by W. Schmidt [20, 21] and
stated by Sprindzuk [22]:

Theorem 6.1 Let (2, B, i) be a probability space and let fr(w), (k=1,2,...) be a sequence
of non-negative u measurable functions and gr, hi be sequences of real numbers such that
0<gr<hy <1, (k=1,2,...,). Suppose there exists C > 0 such that

2

[ 2 te-w] wmse 3w

m<k<n m<k<n

for arbitrary integers m < n. Then for any € >0

Yo flw)= Y gr+0(0Y%(n)log??t O(n))

1<k<n 1<k<n

for p-a.e. w € Q, where O(n) =3 o, b
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6.2 Proof of Lemma 3.4

Proof For simplicity of notation we discuss only the case k = 1; the general case is
the same, since we use the n Perron-Frobenius maps in P}’ only for the decay given by
Theorem 1.2.

The idea is to write [P'1H;p; — P'Im((¢;H;) o T*)] as a difference of 2i functions in

the cone of the same integral. By writing explicitely H; we get

i k—1
(P'1H, 0 — Pim((o = IS PoseisP ™ )0 — Piam((eiH) o T | =
k=1 j5=0
i k—1 k—1
i—k i i—1 7 _
;JHOPZM WP ) Plgm %PHHP”% PT) e TY| =

: - . 1 . .
Z [%Pf—kﬂ(%—kpl "1)-P 1m((¢iﬁ7)zk—k+1(%—kp 1)o7
k=1

Call Cy; == m((gpiﬁpffkﬂ(goi_kpi_ll) o T%); then consider the quantity
(%) 1= 0P i1 (i kPTFL) = P1C,.
Since p;_j € C' and P *1 € Cy we can write by Lemma 2.4
Qi kPl =F,_; — Gy,

with F;_p,Gi_r € Cs. By the invariance of the cone, the functions hgl_)k =

PE i Fick hg )k = PF . 1Gi_ are still in the cone, and we rewrite (*) as

(*) = szhgl_)k - @zhgi)k - i,kpil-

Although the functions (in the cone), F;_i, G;_j are not of zero mean, we can still apply
Lemma 2.4 and split the product of ¢; with them into the differences of two new functions

belonging to the cone, namely
= Y, ~ M2 = N~ N
with M2, N2 € Cy. We finally have
(6) = MY, + N = M), + N, + CipP'1) 1= Rig — S
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where the functions R;j, S; ) are in the cone and have the same expectation. Before con-
tinuing, let us summarize what we got
[leHiSOi — lem((goiHi) (e] TZ)] = Z(Rlvk — S@k)
k=1
By taking the power P™ on both sides we have by our Theorem 1.2 on the loss of memory

and Proposition 1.3

. . . ¢ _ 1 11—«
IP™ ((P'1H i = P'am((0iHy) o T)]) llp < D Cap| Riglli+Siglli)n™ 7= (log n)a v=an .
k=1

I3

From Lemma 2.4, one observes that if we have ¢ € C'([0,1]) and H € Cs the splitting
oH = A — B, with A, B € Cy is such that the functions A, B depend only on the C'! norm
of ¢ and the integrals m(H), m(¢H). In our case since p;(x) = ¢(z) — m(p o T?), we have
that ||@;||cr < ||¢l|cr; moreover, at each application of Lemma 2.4, the function H is either
Pi1 or obtained by applying P* to a function obtained in the previous step and which only
depends upon |[|¢||c1; in conclusion the norms || R; k|1, ||Sixl/1 are bounded by a function

Cy, which only depends on the choice of the observable ¢. We finally get

l—«

IP™ (P'L[Higi — m((9iHi) o T)) [l < i Cayy Cp 775 (logm) e va

iS}
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