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Introduction

In almost all mechanical and structural engineering systems , there exists the situation in which one deformable body comes in contact with another. Due to their complexity, the contact phenomenon between solids is rarely taken into account in structural analysis. These complexity arises due to the inherent nonlinearity of the problem and the multivalued nature of the contact and friction relations, which poses serious mathematical and computational difficulties. Indeed, the introduction of friction between the contacting bodies is another important source of nonlinearity [START_REF] Sh | A finite element method for contact problems of solid bodies[END_REF]- [START_REF] Kikuchi | Contact problems in elastostatics[END_REF]. The nonlinear and irreversible nature of the contact problem requires a reliable and stable numerical algorithm for achieving iteration convergence and solution accuracy. With the advent of more powerful computers the onus has been placed on the numerical method for the solution of contact problems which involves systems of inequalities or nonlinear equation. In recent years, tremendous progress has been made in the solution of frictional contact problems with the finite element method. A large number for numerical techniques used to enforce contact constraints have been presented in the literature. These algorithms can be grouped as follows: the penalty function method [START_REF] Sh | A finite element method for contact problems of solid bodies[END_REF]- [START_REF] Kikuchi | Contact problems in elastostatics[END_REF], the flexibility method [START_REF] Francavilla | A note on numerical computation of elastic contact problems[END_REF], [START_REF] Td | A finite element solution for the two-dimensional elastic contact problems with friction[END_REF], the mathematical programming method [START_REF] Dh | Frictionless contact of elastic bodies by finite element method and mathematical programming technique[END_REF]- [START_REF] Wx | A parametric quadratic programming approach to elastic contact problems with friction[END_REF], the Lagrangian multiplier method [START_REF] Kj | A solution method for planar and axisymmetric contact problems[END_REF], [START_REF] Nour-Omid | A two-level iteration method for solution of contact problems[END_REF] and the augmented Lagrangian method [START_REF] Jean | Implementation of unilateral contact and dry friction in computer codes dealing with large deformation problems[END_REF]- [START_REF] Jh | An augmented Lagrangian method for discrete large slip problems[END_REF]. In the last decade of the twentieth century, De Saxcé and Feng have proposed a new bipotential method derived from a new theory called the implicit standard materials (ISM). In this novel model a new formulation of augmented Lagrangian was presented [START_REF] Saxcé | New inequality and functional for contact with friction: The implicit standard material approach[END_REF], [START_REF] Saxcé | The bipotential method : a constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF]. In the contact bipotential model, the unilateral contact and the friction are coupled and the formulation leads to a unique inequality and a single displacement variational principle [START_REF] Saxcé | New inequality and functional for contact with friction: The implicit standard material approach[END_REF], [START_REF] Saxcé | The bipotential method : a constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF]. Using an Uzawa algorithm [START_REF] Saxcé | New inequality and functional for contact with friction: The implicit standard material approach[END_REF]- [START_REF] Joli | Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework[END_REF], the obtained saddle point problem is solved by means of a prediction-correction process. Furthermore, the prediction-correction solution algorithm combined with projection leads to a sequence of minimization problems under constraints which are reduced to regular minimization problems when a Lagrange multiplyer is introduced [START_REF] Joli | Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework[END_REF]. The frictional contact problem is then treated in a reduced system. Generally, the numerical treatment of contact problems involves the definition of interface laws, and the development of algorithms. In order to simulate the behaviour of complex interfaces, a cohesive model (RCC model) coupling adhesion, friction and unilateral contact was proposed in [START_REF] Raous | A consistent model coupling adhesion, friction and unilateral contact[END_REF] and extended in [START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF] (the RCCM model). This model is based on the adhesion intensity variable, introduced by Fremond [START_REF] Frémond | Adhérence des solides[END_REF], [START_REF] Frémond | Contact with adhesion[END_REF], which is a surface damage variable and takes its values between 0 and 1 (0 is no adhesion and 1 is total adhesion). This model gives a smooth transition from total adhesion to the usual Coulomb friction law with unilateral contact. Because of the non smooth character of the interface law set as multivalued applications (strict Signorini conditions and strict Coulomb law after collapse of the adhesion), the analysis regards non smooth mechanics. The aim of the present paper is to apply the bipotential method for unilateral contact with the coupling of, friction, and adhesion. Adhesion and friction are strongly coupled through a specific compliance with damage that acts only in traction or shear and that disappears when the contact displacements increase. This insures a continuous transition between total adhesive and pure frictional states [START_REF] Cangémi | Frottement et adhérence : Frottement et adhérence: modèle, traitement numérique et application à l'interface fibre/matrice[END_REF], [START_REF] Raous | Un modèle couplant adhérence et frottement pour le contact entre deux solides déformables[END_REF]. The developed algorithm is implemented into the finite element code SYMEF where the contact simulation, based on the bipotentiel method [START_REF] Saxcé | New inequality and functional for contact with friction: The implicit standard material approach[END_REF], [START_REF] Saxcé | The bipotential method : a constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF] has been improved by Berga and Terfaya at the University of Bechar [START_REF] Terfaya | Contribution à la modélisation des problèmes de contact et de frottement bi -dimensionnels[END_REF]- [START_REF] Berga | Architecture des logiciels de simulation[END_REF]. Some numerical examples are performed in this study to show the validity of the model.

II. Unilateral contact and Coulomb friction laws

Before presenting the frictional contact laws, some basic definitions and notations are set up. Let A and B be two deformable bodies coming in contact at a point P (Fig. 1). P' is the target point defined by the normal projection of P on B. Under the small displacement assumption, we define  c the contact zone between A and B, n the normal unit outer vector of B at P' and T(t1, t2) the orthogonal plane to n in  3 . The vector n and the tangential plane T define the local coordinate system. Furthermore, we denote R the contact reaction acting at P' from B onto A and 1 u , 2 u are respectively, the instantaneous velocities of the particles of A and B passing at point P and P'. The relative velocity is 12 u = u -u , where the superposed dot denotes the time derivative. In the local coordinate system, the relative velocity and the contact reaction are decomposed into normal and tangential components as follow:

n u  t u u n (1) t R R n n R 
(2) where n u is the normal relative velocity, t u , the sliding velocity, R n the contact force and R t the friction force.

The unilateral contact law impose three conditions: a geometric condition of non-penetration, a static condition of no-adhesion and a mechanical complementarity condition. These conditions are referred to Signorini conditions and are written in terms of the signed contact distance x n and the normal contact force R n as follow [START_REF] Sh | A finite element method for contact problems of solid bodies[END_REF]- [START_REF] Terfaya | Contribution à la modélisation des problèmes de contact et de frottement bi -dimensionnels[END_REF]:

0 0 0 n n n n x ; R ; and R x    (3 
) Where x n denotes the magnitude of the gap between the contact node and the target surface;

x n = h 0 + u n (4) Denoting by h 0 the initial gap between the solids A and B. The unilateral contact condition [START_REF] Fredriksson | Finite element solution of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problems[END_REF] 

  0 t R f(R) R n K such that .R        (7) 
Where R n , R t are respectively the normal and tangential contact force and  is the friction coefficient of the Coulomb law. By combining the Signorini's condition to the sliding rule, we can define the complete frictional contact law. This complex dissipative law is described by three contact statues: no contact, contact with sticking and contact with sliding. The problem can be stated as: if R n = 0 then

0 n u   separating (no contact) if R  int K  then u = 0  sticking; if R n  0 and R  K  (f (R) = 0) then : (8) 0 n u  and    0 such that t t t R u R    sliding
where 'int K  ' and 'K  ' denote the interior and the boundary of K  . In the above formulation, the first and second part , shows that the frictional contact constitutive model has a multivalued character.

III. The RCCM model

The RCC model (Raous-Cangémi-Cocou) has been first given in [START_REF] Cangémi | Frottement et adhérence : Frottement et adhérence: modèle, traitement numérique et application à l'interface fibre/matrice[END_REF], [START_REF] Raous | Un modèle couplant adhérence et frottement pour le contact entre deux solides déformables[END_REF], and then extensively presented in [START_REF] Raous | A consistent model coupling adhesion, friction and unilateral contact[END_REF]. It has been extended to the present form (RCCM model) including progressive friction with the term (1-β) in [START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF], [START_REF] Monerie | Fissuration des matériaux composites : rôle de l'interface fibre/matrice[END_REF]. The RCCM model has been successfully used for composite materials (matrix-fibre interfaces, ductile cracks) [START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF], steel-concrete interfaces (pull out of reinforced concrete) [START_REF] Raous | Model coupling friction and adhesion for steel-concrete interfaces[END_REF], interfaces in masonry construction [START_REF] Fouchal | Contribution to the modelling of interfaces in masonry construction[END_REF], and pile-soil interface [START_REF] Terfaya | Cohesive zone model and bipotential formulation: application to a pile/soil interface[END_REF]. The In the framework of continuum thermodynamics, the contact zone is considered as a material surface and the local constitutive laws are derived by choosing two specific surface potentials: the free energy and the dissipation potential [START_REF] Raous | A consistent model coupling adhesion, friction and unilateral contact[END_REF], [START_REF] Raous | Un modèle couplant adhérence et frottement pour le contact entre deux solides déformables[END_REF]. The adhesion is characterized in this model by the internal variable β, introduced by Frémond [START_REF] Frémond | Adhérence des solides[END_REF], [START_REF] Frémond | Contact with adhesion[END_REF], which denotes the intensity of adhesion. It is a surface damage variable that takes its value between zero (no adhesion) and one (perfect adhesion). The introduction of a damageable stiffness of the interface ensures a smooth transition between the two contact conditions (initial adhesion and final frictional sliding). The behaviour of the interface is described by the following relations, where equation [START_REF] Wx | A parametric quadratic programming approach to elastic contact problems with friction[END_REF] gives the unilateral contact with adhesion, [START_REF] Kj | A solution method for planar and axisymmetric contact problems[END_REF] gives the Coulomb friction with adhesion and [START_REF] Nour-Omid | A two-level iteration method for solution of contact problems[END_REF] gives the evolution of the adhesion intensity β. Initially, when the adhesion is complete, the interface is elastic as long as the energy threshold w is not reached. After that, damage of the interface occurs gradually and consequently, on the one hand, the adhesion intensity β and the apparent stiffness β 2 C n and β 2 C t decrease, and on the other hand, friction begins to operate. When the adhesion is completely broken (β = 0), we get the classical Signorini problem with Coulomb friction. The model is then written as follows: -unilateral contact (Signorini conditions) with adhesion:

0 ). (R ; 0 ; 0 2 2      n n n n n n n n u u C u u C R   (9) 
-Coulomb friction with adhesion:

2 2 1 r tt r tt R u RR r t n n n n n C ; R R ( ) R C u               (10a)
Where the superscript (.) r means reversible part, with:

  2 2 10 1 0 r t t t r tt r tt t r tt R -R u R -R R -R u R -R n n n n n n if ( -) R -C u if ( -) R -C u ,-                           (10b)
-Evolution of the adhesion intensity: 

1 t t u u n n t n n t ( w ( C u C ) ) if [ , [ ( w ( C u C ) ) if                       
(11) Where (x) -denotes the negative part of x such that : (x) -=max(0;-x);x.Hence,the constitutive parameters of the model are: -C n and C t , the initial stiffness of the interface, -w is the decohesion energy (as long as that threshold is not reached, adhesion stays to be complete and the behavior of the interface is elastic with the initial stiffness C n and C t ), - is the friction coefficient, - is the viscosity associated to the evolution of the adhesion.

IV. The bipotential model

In order to generalize the concept of pseudo-potential, introduced by J.-J. Moreau for multivalued constitutive laws [START_REF] Saxcé | New inequality and functional for contact with friction: The implicit standard material approach[END_REF], to non associated laws, G. De Saxcé [START_REF] Saxcé | New inequality and functional for contact with friction: The implicit standard material approach[END_REF], [START_REF] Saxcé | The bipotential method : a constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF] introduced the concept of bipotential and the Implicit Standard Materials (ISM). Bipotentials are non-smooth mechanics tools, which allows modelling various non associative multivalued constitutive laws of dissipative materials (friction contact, soils, cyclic plasticity of metals, damage). The bipotential theory, based on an extension of Fenchels inequality, leads to a succesful new writing of the constitutive laws of some dissipative materials and permits to recover a flow rule subnormality for non-standard behaviors, specially soils and unilateral contact with dry friction [START_REF] Saxcé | New inequality and functional for contact with friction: The implicit standard material approach[END_REF], [START_REF] Saxcé | The bipotential method : a constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF], [START_REF] Berga | Elastoplastic finite element analysis of soil problems with implicit standard material constitutive laws[END_REF]- [START_REF] Berga | Mathematical and numerical modeling of the nonassociated plasticity of soils-Part 2:Finite element analysis[END_REF].

IV.1. Concept of bipotential

Let us consider a material system S described by a space V of generalized velocities u , carrying a structure of vector space over the field of real numbers  and a dual vector space F of force R is associated to V by a bilinear form ( u ,R)  u . R. This bilinear form define the power of dissipation. The RCCM model presented above is a non-standard dissipative laws. Because of its implicit character, this law is non-associated, and the notion of a superpotential with normality rule, used in classical plasticity, cannot be used anymore. According to De Saxcé and Z-Q. Feng [START_REF] Saxcé | New inequality and functional for contact with friction: The implicit standard material approach[END_REF], [START_REF] Saxcé | The bipotential method : a constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF], the normal dissipation rule can be generalized by constructing a unique function depending on the velocities u and on the forces R, called bipotential and here denoted b :

      V F u R u R b : , : , b ,    (12) 
b is biconvex, namely convex with respect to u , when R is fixed, and convex with respect to R, when u is fixed. Furthermore, the bipotential satisfies the fundamental inequality:

    u R V F u R u.R , ,b ,     ( 13 
)
This generalization of the Fenchel inequality is the cornerstone of the formulation. The couples   u,R are said extremal when equality is reached:

u R u.R b( , )  (14) 
One can show, that the extremal couple is related by the dissipative law. Then, any extremal pair satisfies:

u R u R R. u u u V u R u R u R R R F a ) b( , ) b( , ) ( ) b ) b( , ) b( , ) .( )                (15)
This is equivalent to the differential inclusions characterizing an implicit subnormality law:

R u u R b( , )  and u R u R b( , )  (16) 
The relations ( 16) define a multivalued constitutive law and its inverse.

IV.2. Bipotential coupling contact, friction and adhesion

This formulation is based on the works of Raous et al [START_REF] Raous | A consistent model coupling adhesion, friction and unilateral contact[END_REF] and Raous and Monerie [START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF] on the soft coupling between adhesion and frictional contact. The following thermodynamic variables are introduced: the relative displacements (

t u n u,
) and the adhesion intensity β are chosen as the state variables, and the contact force R and a decohesion force G β , as the associated thermodynamic forces such that:

22 βt G w u n n t ( C u C )    (17)
Based on the work of M. Jean, V. Acaray et Y. Monerie [START_REF] Jean | Non-smooth contact dynamics approach of cohesive materials[END_REF]- [START_REF] Acary | Nonsmooth fracture dynamics using a cohesive zone model[END_REF], we have introduced the following change of variables to take into account the adhesion in contact problems :

adh R R R  (18)
R adh which is quite generally an additional resistance force to normal or tangential separation whose intensity decreases with increased debonding. The interfacial forces R adh induced by the adhesion, are introduced under the form of a compliance law depending on the current state of adhesion β and characterized by the initial stiffness C n and C tth such that:

22 adht t R u c c adhn n n c t c R C u d and C d        (19) 
The Coulomb's cone K  is defined as follow:

  0 tt RR nn K ( R , ), / R      (20) 
where:

n n adhn R R R  , t t adht R R R  , 1 .( )     and R K ( )  
is the sliding surface. The classical Coulomb's friction condition is recovered by setting  = 0 (   ) and we get the usual definition of Coulomb's cone. The Coulomb's friction law with adhesion, as written in relations ( 9), (10a) and (10b), exhibits an aspect similar to the non-associated flow rule in plasticity. Indeed, during sliding, contact is maintained. The normal relative velocity n u is null and not related to the normal component of the reaction n R through normality. That means that the relative velocity u is not normal to the Coulomb's cone. If we regard the contact force R and the velocity u as conjugate quantities of each other, the normality will not occur since it would require that the velocity would have a normal separating component. Furthermore, the relative velocities u (when 0 n u  ) are admissible at the apex of the Coulomb's cone, which indicate that the normality rule will not occur and the concept of pseudo-potential cannot be used. We conclude that Coulomb's frictional contact law with adhesion is non-associated. A change of variable for the sliding velocity is introduced and the following bipotential ( 21) is constructed. It is composed of two parts, one controlling the interface law and the other one controlling the adhesion evolution:

  2 2 1 2 2 β β t -u, ,R G ) R - G u K n - n C b( , I ( ) I ( u ) ( ).R I ( )                   ( 21 
)
where u is the relative velocity, β the intensity of adhesion taking value between 0 and 1, R the contact force and β G the thermodynamic force associated to the state variable β. The parameter  is the adhesion viscosity and  is the friction coefficient. I s denotes the indicator function of the specified sets S. In [START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF], the indicator functions I   impose the unilateral conditions and C I  imposes the condition 0   which means that in the present model, the evolution of the intensity of adhesion is an irreversible and dissipative process depending on β and the adhesion can only decrease.

It has been shown that this bipotential verifies the suitable properties of biconvexity and satisfies ( 13), ( 14) and [START_REF] Klarbring | Mathematical programming and augmented Lagrangian methods for frictional contact problems[END_REF]. Then the contact laws with adhesion can be, respectively, written in the following compact forms of implicit subnormality rules or differential inclusion rules

u R u u R R u R b(-, ); b(-, )     (22) 
where

uR x b(-, ) 
denotes the sub-differential of b with respect to the variable x. The contact law and the equation for the evolution of β, which are explicitly given by expression ( 9), (10a), (10b) and [START_REF] Nour-Omid | A two-level iteration method for solution of contact problems[END_REF], are deduced from the state and complementary laws expressed in term of differential inclusions:

  2 β u R G n n n u n n n u n R b , , , R C u I ( u )             (23)     2 2 1 t t t u β t t u t R u R G R u u t n n n b , , , C R C u                   (24) 
 
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The inverse law derives also from the bipotential

β u R G b( , , , )   :   tt t βt RR u u R G u R K b , , , I ( )           (26) 
 

1 1 β t t u R G R u u R n n n n n K R R n K R u b , , , u I ( ) ( ) u ( ) I ( )                          (27)     β β G β G u R G - b , , ,           ( 28) 
We note here that the expression ( 23) is equivalent to the unilateral contact condition [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], [START_REF] Kikuchi | Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods[END_REF], then we obtain :

    2 2 00 0 n n n n n n n n u ; R C u ; and R C u .( u )          (29) 
Expression ( 29) is the unilateral contact law with adherence. When  = 0, the Signorini conditions is recovered. With similar reasoning, (24) leads to an equivalent relation as follow:

        2 2 2 2 2 2 2 2 1 1 0 1 0 t t t t t t t t t t t t R u R u u R u R u u R u t n n n t n n n t n n n t t C R C u C R C u C R C u C such as C                                                 (30)
It is the friction law with adhesion, and when  = 0 we have the usual Coulomb friction law. Using [START_REF] Berga | Architecture des logiciels de simulation[END_REF], expression of   , and by introducing the expression (17) for G  , a study on variable  which holds in [0, 1[ makes it possible to express the adhesion evolution in the following form:

      22 22 01 1 t t u u n n t n n t w C u C if , w C u C if                              (31) 
Where: x, (x) -= max(0; -x); the negative part of x. The relations [START_REF] Monerie | Fissuration des matériaux composites : rôle de l'interface fibre/matrice[END_REF] to [START_REF] Fouchal | Contribution to the modelling of interfaces in masonry construction[END_REF] show clearly that the RCCM model, coupling contact, friction and adherence expressed by ( 9), (10a), (10b) and ( 11) can be obtained from a unique function that is the bipotential

β u R G b( , , , )   .

V. Local algorithm

In the method described above, the unilateral contact and friction are coupled to the adhesion through a contact bipotential. Unlike the RCCM model using two inequalities and two separate algorithms for the unilateral contact and friction, this model leads to a single inequality and one variational principle. The constitutive law coupling contact, friction and adhesion is represented by inequalities and the contact potential is non-differentiable and the non-associativity of the constitutive law is responsible for numerical troubles. The bipotentiel ,,,)   represented by the expression [START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF], where the adhesion is combined with the friction and the unilateral conditions, has a differentiable part and another part with no-differentiable potentials as the case of the contact and friction with adhesion. The variation of the intensity of adhesion governed by a differentiable expression will not induce any difficulties. Indeed the values of β can be obtained from the differential system (31) by a numerical integration (Method of Euler, -Method...etc.) for displacements increments provided at the beginning step of time. In order to avoid non-diferentiable potentials that occur in contact problems with adhesion , it is convenient to use the Augmented Lagrangian Method [START_REF] Simo | An augmented Lagrangian treatment of contact problems involving friction[END_REF], [START_REF] Klarbring | Mathematical programming and augmented Lagrangian methods for frictional contact problems[END_REF]. The application of the augmented Lagrangian method to the contact laws leads to implicit equations of projection onto the Coulomb friction cone. The method leads to the following implicit equations:

β u R G b(
  R τ Pr oj ,K   ( 32 
)
where  is the modified augmented contact reaction defined by:

  tt τ R u u n n u . .        (33) 
The equality [START_REF] Terfaya | Cohesive zone model and bipotential formulation: application to a pile/soil interface[END_REF] means that R is the projection of  onto the closed convex Coulomb cone K  . The parameter  is a real positive numbers that can be chosen in order to ensure numerical convergence, such as the maximum value of the diagonal terms of the local contact stiffness matrix or chosen according to the eigenvalue of the contact flexibility matrix. In our analysis, the factor  is calculated using the diagonal terms of the flexibility matrix W:

  1 nn tt min W ,W   (34) 
The flexibility matrix W, is defined in the local coordinate system by W = H T K -1 H. Where K denotes the stiffness matrix and H the rotation matrix between the local frame (t 1 , t 2 , n) and global one (X; Y; Z). The local problem is treated in a reduced system by means of reliable and efficient predictor-corrector algorithm. A saddle point problem is obtained and an iterative Uzawa algorithm can be used to solve the implicit equation ( 32) [START_REF] Joli | Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework[END_REF]. This algorithm has been successfully applied by Feng [START_REF] Feng | 2D or 3D frictional contact algorithms and applications in a large deformation context[END_REF] and Feng et al. [START_REF] Feng | Solution of large deformation contact problems with friction between Blatz-Ko hyperelastic bodies[END_REF]. A prediction-correction process combined with projection leads to a sequence of minimization problems under constraints which are reduced to regular minimization problems when a Lagrange multiplyer is introduced. The Uzawa algorithm leads to an iterative process involving one predictorcorrector step:

-Predictor:

  1 tt τ R u u n i i i i i n ρ u μ .         (35) 
-Corrector:

  11 R τ ii proj ,K    (36) 
According to [START_REF] Terfaya | Cohesive zone model and bipotential formulation: application to a pile/soil interface[END_REF] and corrector steps, the process is iterative and at the (i + 1) th iteration, the local stage can be summarized by:

-Predictor:

  1 t t τ R u u n i i i i i n ρ u μ .            (37) 
-Corrector:

1 1 1 0 t R j j j n if then          (separating) (38a) 1 1 1 1 t j j j j n else if τ then R τ       (sticking) (38b)
else:

1 1 1 1 2 1 . 1 j j j t n j 1 j t j t τ τ R τ n τ                              (sliding) (38c)
The iterative solution procedure involving contact modelling with adhesion is written as below: 

  1 t τ R u u n i i i i i n t ρ u μ .            -Corrector   1 1 R τ i i proj ,K     3 

VI. Numerical results

The algorithms presented above have been implemented and tested in the finite element code SYMEF developed by Berga and Terfaya at FIMAS laboratory, at the University of Bechar [START_REF] Terfaya | Contribution à la modélisation des problèmes de contact et de frottement bi -dimensionnels[END_REF]- [START_REF] Berga | Architecture des logiciels de simulation[END_REF]. Many application examples involving frictional contact with adhesion, in static or quasi-static cases, have been carried out using the present method. In order to validate the developed model, we propose to study two different benchmarks for simulating delamination [START_REF] Raous | Quasi-static Signorini problem with Coulomb friction and coupling to adhesion[END_REF]- [START_REF] Antoni | Localisation de rupture au voisinage d'interface : couplage d'endommagement volumique et surfacique[END_REF] which have been developed in the framework of a joint project with the LCPC laboratory (Laboratoire Central des Ponts et Chaussées ) [START_REF] Raous | Modélisation de l'adhésion par collage[END_REF] focusing on adhesion and gluing in civil engineering. The presented model is compared with the RCCM model developed by Raous et al. and implemented in the GYPTIS90 code (LMA Marseille) [START_REF] Latil | Module Gyptis version 1.0. Contact unilatéral avec frottement en mécanique des structures[END_REF]. To show the performance of the present approach, we give the CPU time and number of iterations provided by the two codes. The adhesion intensity β, the tangential displacement u t and the normal displacement u n are presented along the interface. It is noted that these analysis were performed on a PC (Hp Pavilion G6 i5).

VI.1. Delamination of a thin layer of aluminium submitted to vertical loading

The first example concerns a 2D plane strain delamination of a thin layer of Aluminium with L =50 mm ; h = 2.5 mm, initially adhered to a rigid support [START_REF] Raous | Modélisation de l'adhésion par collage[END_REF]- [START_REF] Antoni | Localisation de rupture au voisinage d'interface : couplage d'endommagement volumique et surfacique[END_REF]. The geometric configuration, the boundary conditions and finite element mesh used are given on Figure 2. A vertical prescribed displacement (v) is applied incrementally at point A with a maximum value of v = 0.3mm (in 10 sec), divided into 210 increments. The elastic behaviour is assumed. Only the behaviour of the interface is considered with dissipative law ( α ≠ 0). The same contact stiffness was chosen for the normal and the tangential interface behavior : The initial conditions are supposed to be complete adhesion (β = 1 ) and zero displacement (u n =0, u t = 0).

C n = C t = C.
For comparison purpose, we have used the same mesh. The finite element discretization includes 130 three-node isoparametric plane strain elements and 100 nodes. The interface consists of 33 contact nodes. The successive deformed meshes are displayed in Figure 3 for three time step t1, t2 and t3. Fig. 4, presents the results given by the models : RCCM and the bipotential, for t1 = 3.571s and t2 = 5.143s. The The results are almost the same as shown in Fig. 4 and a good agreement can be observed between the bipotential model results and the RCCM ones. Fig. 5 shows the evolution of the normal adhesive reaction R adh and the adhesion intensity β versus time at points B of the interfaces.

Under the imposed displacement, an adhesive resistance (

2 c adhn n n c R C u d     
) is mobilized (elasticity with damage). The intensity of adhesion starts to decrease 0   (0<β<1) when the displacement is sufficiently large such that the elastic energy becomes larger than the limit of adhesion energy w. Evolution of the adhesion is then governed by [START_REF] Fouchal | Contribution to the modelling of interfaces in masonry construction[END_REF]. When adhesion is totally broken (β = 0), the classical Signorini problem is obtained [START_REF] Td | A finite element solution for the two-dimensional elastic contact problems with friction[END_REF]. The performance of the present algorithm in terms of CPU time, the number of iterations related to the calculation of β and contact reactions compared to RCCM's model, is reported in Table 1.

It shows that, globally, the RCCM algorithm needs more iterations than the bipotential algorithm, particularly for contact iterations. These results show the robustness and accuracy of the proposed method. 

VI.2. Shear delamination of a block of aluminium

To reinforce the role of friction, one studied the case of an Aluminum block compressed on a rigid plane. Initially the system is in total adhesion [START_REF] Raous | Quasi-static Signorini problem with Coulomb friction and coupling to adhesion[END_REF], [START_REF] Raous | Modélisation de l'adhésion par collage[END_REF]. The block is submitted to a displacement imposed on its left lateral edge. The loading is of u = 20mm in 10s. On the upper face of the block a vertical displacement of v = -0.5 mm is applied. Geometry , boundary conditions, and finite element mesh are given on Fig 6. In the figures below we have ploted along the interface, the evolution of debonding, tangential sliding and the adhesion intensity β obtained by RCCM and bipotential models, for the given times t 1 , t 2 , and t 3. In Figure 9, the contact conditions are presented. For a point of interface we have ploted the adhesive reaction Radh, and the contact reactions R. Let us now analyze the interface by considering the shear behavior (see Fig. 9). We suppose initially that we have a complete adhesion (β = 1) and zero displacement (u n = u t = 0). Under compression, the sliding limit is n R  because u n = 0. As long as the norm of the tangential force is smaller than the sliding limit, sliding does not occur (u t = 0) as initial condition and t u = 0 in expression [START_REF] Raous | Model coupling friction and adhesion for steel-concrete interfaces[END_REF]. Under the lateral displacement u, an elastic tangential displacement occurs, and the sliding limit is reached. An adhesive resistance (

2 c adh c R C u d    
) is active and the tangential behavior is elastic with damage. When the displacement is sufficiently large, the elastic energy becomes larger than the limit of adhesion energy w and the adhesive limit is reached. After that, damage of the interface occurs and consequently, on the one hand, the intensity of adhesion β starts to decrease which involve a reduction in the adhesive reactions until their complete vanishing, and on the other hand, friction begins to operate. When the adhesion is completely broken (β = 0), the usual Coulomb friction conditions are obtained. Table 2 summarizes the number of iterations and the computational times (total CPU time) for the two models. These results show once again the efficiency of the proposed method. 

VII. Conclusion

The RCCM model developed by Raous, Cangémi, Cocou and Monerie is a cohesive interface model taking into account strict unilateral contact to avoid the interpenetration of the two bodies in contact, initial adhesion which will progressively decrease when the loading increases, and Coulomb's friction which is progressively introduced when adhesion decreases. The model is based on thermodynamic considerations and surface interactions concepts. Because of its implicit character, the Coulomb friction law with adhesion in the RCCM model is non-associated, and the notion of superpotential with normality rule cannot be used anymore. To overcome this undesirable lack of normality, G. De Saxcé and Feng [START_REF] Saxcé | New inequality and functional for contact with friction: The implicit standard material approach[END_REF], [START_REF] Saxcé | The bipotential method : a constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF] introduced the class of implicit standard materials (ISM) based on the concept of bipotential. A major result of the ISM theory was the possibility of representing many nonstandard dissipative laws by a suitable pseudopotential depending on the dual variables, internal variable rates and associated variables. The concept of bipotential is based on an extension of the Fenchel inequality, and is a generalization of the notion of pseudo-potential which enables us to write the evolution laws as implicit normality rules. The contact law is then written as a differential inclusion and the choice of a convenient bipotential allows us to uncover a normality rule. In this paper, by using a variational formulation of the frictional contact law based on the ISM concept, a bipotential formulation for the RCCM model, coupling adhesion and friction has been theoretically investigated and numerically implemented. It has shown that on the interface, the frictional contact law with adhesion described by a non-associated sliding rule and its inverse are obtained by applying the normality rule to a single scalar-valued function called a bipotential, which leads to a single displacement variational principle and a single inequality. The unilateral contact with adhesion and the friction with adhesion are coupled.

By doing so, the local stage involves only a single predictor-corrector step reducing significantly the computing time, where the developed algorithm, solves the contact problem iteratively in a reduced linear system and computes the displacements in the whole structure, using contact reactions as external loading. The algorithms developed have been implemented and tested in the finite element code SYMEF developed by Berga and Terfaya at FIMAS laboratory, at the University of Bechar. The ability of the framework was illustrated by simulations and the model is tested with benchmark for simulating delamination. Two examples considering normal and shear behavior of interface for a 2D case have been studied in detail. A comparative study has been made between the newly proposed model and the previously developed RCCM Model. The numerical test shows that both algorithms give same results, however the RCCM algorithm needs more iterations than the bipotential algorithm. The above results demonstrated that our model could provide better performance in terms of numerical stability and precision when compared to the RCCM Model for the local analysis of frictional contact problems. The Signorini conditions and Coulomb friction laws are quite well satisfied. The algorithms presented in this work can be extended in the future by taking into account other complex problems such as material non-linearities and it can be readily extended to dynamic contact problems.

Fig. 1 :

 1 Fig. 1 : Kinematics of contact
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  The characteristics of this example are given as below: Young's modulus: E =6.9E+04 MPa; Poisson's ratio: ν = 0.333. The decohesion energy: w = 1.E-06 mJ/mm² ; The initial stiffnesses of the interface: C n = C t = 2.E+05 MPa/mm The interface viscosity: α = 1 Ns/mm ; The friction coefficient: µ = 0.2
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 3 Fig 3. Deformed meshes
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 5 Fig. 5 : Evolution of the normal adhesive reaction Radh and the adhesion intensity β

Fig. 4 :Fig. 6 :

 46 Fig. 4 : The adhesion intensity β, the tangential displacement ut and the normal displacement un along the interface for loading step: t1, t2

  The block sizes are L= 50 mm as length , h = 25 mm as height. The Young modulus of the Aluminum block was E = 6.9E+4 MPa. Poisson's ratio was ν = 0.333. The characteristics used in the numerical test are as follows: w = 1.E-3 mJ/mm² ; C n = C t = 1.64 MPa/mm;  = 1 Ns/mm ; µ = 0.2. Initial conditions : β = 1, u n = 0,and u t = 0. The structure is discretized using linear triangular elements. The interface consists of 33 nodes and one used 210 time increments. The successive deformed meshes are displayed in figure7for times t1 = 2.143s, t2 = 3143, and t3 = 3.571s.
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 8 Fig. 7 : Deformed meshes
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 9 Fig. 9 : Contact forces

  The formulation of Signiorini's condition in terms of velocities allow us to write the complete frictional contact law when bodies are in contact . Regarding the dry friction law, it is generally characterized by a kinematic slip rule. Let the closed convex set K  be the isotropic Coulomb's cone, which defines the set of admissible forces satisfying:

										turns into:
	n u		0	n ; R		0	n n ; and R u		0	(5)
	For bodies in contact (	0 u  ), the unilateral contact law n
	(Signorini's conditions) can be expressed equivalently in
	terms of velocities:						
	n u		0	n ; R		0	n n ; and R .u		0	(6)
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	COMPARISON OF CPU TIME

TABLE 2 .
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				COMPARISON OF CONVERGENCE AND CPU TIME			
						Steps				
	Model	Parameters	1	10	40	60	100	150	200	GLOBAL CPU (s)
		β Iterations	1	2	3	5	1	1	1	
	RCCM	Contact Iterations CPU (s)	132 0.750	132 0.703	132 0.905	132 0.694	175 0.906	175 0.893	175 1. 21	8m:17s.367c
	Bipotential	β Iterations Contact Iterations CPU (s)	1 2 0.20	2 4 0.23	3 5 0.18	9 5 0.18	1 58 0.19	1 58 0.19	1 58 0.19	2m 16s 50c