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ABSTRACT. –An initial-boundary value problem for a chemical system with unknown

velocity related to gas chromatography is considered. The system is hyperbolic and existence of

entropy solutions is achieved in fractional BV spaces: BV s, s ≥ 1/3, with less regularity than

usual. We prove that BV 1/3 is the critical space for this problem. A Lagrangian formulation

of the system for the initial value problem provides a smoothing effect in BV and uniqueness

when the first gas is more active than the second one.
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Introduction

A chemical model of fixed-bed adsorption of gases is widely used in chemical engineering
([21]). This model is known to be a hyperbolic system of PDEs [26, 27]. Up to our
knowledge, the first study of the Riemann Problem for two species was done by chemists
in [16]. The first mathematical study was done in BV framework in [4] for an inert gas
and a convex isotherm. Fractional BV spaces, the so called BV s, 0 < s < 1, naturally
appear for conservation laws ([9] completed and generalized in [13]). The first aim of this
paper is to obtain the existence of entropy solutions for a 2× 2 gas-solid chromatography
system in the spaces BV s, s ≥ 1/3. It was shown in a previous work ([8]) that only for
L∞ data blow up can occur and in some sense this existence in the critical space BV 1/3

is optimal. This result was announced in [10]. The second aim of this paper is to write
this 2×2 gas chromatography system in Lagrangian coordinates. The new system for the
Cauchy problem provides a smoothing effect for the concentration in BV as in [18, 20]
and also uniqueness for concave isotherms (Langmuir).

The article is organized as follows. Section 1 presents the derivation of the dimension-
less chemical model to yield an initial-boundary value problem. Section 2 deals with the
existence of the initial-boundary value problem in BV s for s ≥ 1/3. The Euler-Lagrange
change of variables and the Lagrangian formulation are performed in Section 3. Finally, a
smoothing effect and the uniqueness of entropy solutions for the Cauchy problem through
the Lagrangian formulation are given in the last section.

1 The Chemical model: a hyperbolic system

1.1 The dimensionless model

“Pressure Swing Adsorption (PSA) is a technology that is used to separate some species
from a gas under pressure according to these species’ molecular characteristics and affinity
for an adsorbent material. It operates at near-ambient temperatures and so differs from
cryogenic distillation techniques of gas separation. Special adsorptive materials (e.g.,
zeolites) are used as a molecular sieve, preferentially adsorbing the undesired gases at high
pressure. The process then swings to low pressure to desorb the adsorbent material. Using
two adsorbent vessels allows near-continuous production of the target gas. It also permits
the so-called pressure equalization, where the gas leaving the vessel being depressurized
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is used to partially pressurize the second vessel. This results in significant energy savings,
and is common industrial practice.” (Wikipedia)

PSA is used extensively in the production and purification of oxygen, nitrogen and
hydrogen for industrial uses. It can also be used to separate a single gas from a mixture of
gases. A typical PSA system involves a cyclic process where a number of connected ves-
sels containing adsorbent material undergo successive pressurization and depressurization
steps in order to produce a continuous stream of purified product gas.

We focus on a model describing a step of the cyclic process, restricted to isothermal
behavior. As in general fixed bed chromatography, each of the d species (d ≥ 2) simul-
taneously exists under two phases, a gaseous and movable one with concentration ci(t, x)
or a solid (adsorbed) other with concentration qi(t, x), 1 ≤ i ≤ d. In gas chromatography,
velocity variations accompany changes in gas composition, especially in the case of high
concentration solute: it is known as the sorption effect. This effect is taken into account
through a constraint on the pressure. The reader can refer for instance to [16] :“Fixed-Bed
Adsorption of Gases : Effect of Velocity Variations on Transition Types”.

In this section we show how to obtain, under some assumptions, the dimensionless
model which is the subject of our study (see also [4, 5, 7, 8]). The original model, nothing
else that material balances for two adsorbable components, writes:

ρb ∂tqi + ∂t(ε ci) + ∂z(u ci) = 0, i ∈ {1, 2}, (1)

c1 + c2 = c, (2)

where

ci (moles/m
3), i ∈ {1, 2}, is a fluid-phase concentration and qi (moles/kg), i ∈ {1, 2},

is the corresponding adsorbed-phase concentration,

u (m/s) is the superficial fluid velocity (the same for the two components),

c (moles/m3) in (2) is a constant because temperature and pressure are assumed to be
constant: this constraint is related to the sorption effect, as explained before,

ε is the local fraction of the bed occupied by gas, including that within the pore space
of the absorbent. It is assumed to be constant, which means that the local fraction
of the bed occupied by gas is not affected by the adsorbed components,

ρb (kg/m3) is the bulk density of packing.

Notice that the so-called isotherms qi = qi(c1, c2) satisfy

∂qi
∂ci
≥ 0, i ∈ {1, 2}. (3)

In [16] it is assumed that the incoming velocity of the mixture is a constant ub > 0 but
in the sequel we will only assume that there exists u0 > 0 such that ub(t) ≥ u0 > 0 and
we set u∗ = u/u0.
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Using the change of variables τ = t/T, x = εz/u0T , where T is a characteristic
duration of a pressurization or depressurization step, we can write (1-2) under the dimen-
sionless form:

∂τ (c̃i + q∗i (c̃1, c̃2)) + ∂x(u
∗ c̃i) = 0, i ∈ {1, 2}, (4)

c̃1 + c̃2 = 1, (5)

where we have set
c̃i = ci/c, q∗i = ρb qi/εc.

Changing the notations, we write this system under the form:

∂t(c1 + q∗1(c1, c2)) + ∂x(c1 u) = 0, (6)

∂t(c2 + q∗2(c1, c2)) + ∂x(c2 u) = 0, (7)

c1 + c2 = 1. (8)

Next, we set c = c1 ∈ [0, 1] (then c2 = 1− c), qi(c) = q∗i (c, 1− c), i = 1, 2 and we obtain
finally the following system which is the object of our study for x > 0 and t > 0:

∂x(c u) + ∂tI(c) = 0, (9)

∂xu+ ∂th(c) = 0, (10)

where
h(c) = q1(c) + q2(c) ≥ 0, I(c) = c+ q1(c).

Following [16], we introduce a key function which will play a central role in the nonlinear
study of the system, namely,

f = c2 q1 − c1 q2 = q1(c)− c h(c). (11)

Throughout this paper we assume

f ′′(c) 6= 0 and h′(c) > −1 for all c ∈ [0, 1], (12)

which is relevant for a large class of isotherms exchanging c1 and c2 if necessary ([7]).
With theses notations, the relations (3) read q′1 ≥ 0 ≥ q′2.
We will also make use of following functions only depending on the isotherms [5]:

• H(c) = 1 + q′1 − ch′ = 1 + (1− c)q′1 − cq′2 ≥ 1,

• G(c) = exp g(c) where g′ = −h
′

H
.

1.2 The hyperbolic initial-boundary value problem

It is possible to analyze system (9)-(10) in terms of hyperbolic system of PDEs provided
we exchange the time and space variables (cf [5]). The initial-boundary value problem
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is then system (9)-(10) for x > 0 and t > 0 supplemented by the initial (x = 0) and
boundary data (t = 0): 

c(0, t) = cb(t), t > 0,
u(0, t) = ub(t), t > 0,

c(x, 0) = c0(x), x ∈ R+,

(13)

where

0 ≤ cb, c0 ≤ 1, (14)

0 < inf
R
ub ≤ sup

R
ub < +∞. (15)

For this system, the surprising point is the first two equations of (13) correspond to the
initial data and the last one to the boundary data. That is to say that the variable x
is progressive: time-like and t is a space-like variable. To be clear, we distinguish the
physical time t to the mathematical time or hyperbolic time x.

We also study in Lagrangian variables the mathematical initial value problem which is
system (9), (10) for x > 0 and t ∈ R (notice that t negative is considered) supplemented
with initial data: {

c(0, t) = cb(t), t ∈ R,
u(0, t) = ub(t), t ∈ R. (16)

The mathematical initial value problem is physically relevant for applications because
experimenters only control cb, ub, and c0 can be viewed as an equilibrium reached before
the beginning of the process. Moreover, the information propagates with a finite speed
and we only need to know ub, cb on a compact set.

We have shown in [5] that there are two families of entropies: uψ(c) and φ(uG(c)),
where φ and ψ are any real smooth functions. The corresponding entropy flux Q(c) of
the first family satisfies

Q′(c) = h′(c)ψ(c) +H(c)ψ′(c).

The first family is degenerate convex (in variables (u, uc)) provided ψ′′ ≥ 0. So we seek
entropy solutions which satisfy

∂x (uψ(c)) + ∂tQ(c) ≤ 0,

in the distribution sense. The second family is not always convex. There are only two
interesting cases where this family is convex, namely ±G′′(c) > 0 for all c ∈ [0, 1]. When
G′′ > 0 and α > 1, we expect to have ∂x(uG(c))α ≤ 0 which reduces to ∂x(uG(c)) ≤ 0.
In the same way, if G′′ < 0, we get ∂x(uG(c)) ≥ 0.

Now we recall a mathematical definition of entropy solutions.

Definition 1.1 Let T > 0, X > 0, u ∈ L∞((0, T )× (0, X),R+), 0 ≤ c(t, x) ≤ ρ ≡ 1 for
almost all (t, x) ∈ (0, T )× (0, X). Then (c, u) is an entropy solution of system (9)-(10)
with respect to the family of entropies uψ(c) if, for all convex function (or degenerate
convex) ψ,

∂

∂x
(uψ(c)) +

∂

∂t
Q(c) ≤ 0, (17)
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in D′([0, T )× [0, X)), where Q′ = Hψ′ + h′ψ, that is, for all φ ∈ D([0, T )× [0, X);R+),∫ X

0

∫ T

0

(uψ(c) ∂xφ+Q(c) ∂tφ) dt dx+

∫ T

0

ub(t)ψ(cb(t))φ(t, 0) dt

+

∫ X

0

Q(c0(x))φ(0, x) dx ≥ 0.

For this system we reformulate the global existence theorem of entropy solutions with
BV concentration (cf [5]) .

Theorem 1.1 (Existence in BV ) Assume (12) on isotherms, c0 ∈ BV ([0,+∞)x, [0, 1]),
cb ∈ BV ([0,+∞)t, [0, 1]) and lnub ∈ L∞([0,+∞)t,R), then the initial-boundary value
problem (9), (10) on [0,+∞)x ×Rt with initial-boundary data cb, ub, c0 in (13) admits a
global weak entropy solution (c, u). Furthermore, we have the following estimates:

0 ≤ c ≤ 1,

c ∈ L∞([0,+∞)x;BV ([0,+∞)t)) ∩ L∞([0,+∞)t;BV ([0,+∞)x)),

lnu ∈ L∞([0,+∞)t;BV ([0,+∞)x)).

The proof of Theorem 1.1 uses a adapted Godunov scheme given in [4, 5]. The as-
sumption (12) is useful to ensure the hyperbolicity of the PDE system (9), (10). This
assumption is not needed when only one gas is active and the other is inert ([4]). For two
active gases, condition (12) is discussed in section 2.1 for the Riemann Problem.

A goal of this article is to state an existence result in a more general functional context
of fractional BV spaces BV s which appears to be the critical spaces for the existence or
not of entropy solutions for this system.

2 Existence with BV s concentrations

In this section, we give the main result and its proof. The existence is given by a Godunov
scheme and estimates about c and lnu using BV s spaces. Spaces BV s(I), for 0 < s ≤ 1
appear to be a generalization of BV (I), spaces of functions with a bounded variation on
I (I is a non empty interval of R). They are defined as follows.

Definition 2.1 (Definition of BV s(I)) We denote by S(I) the set of the subdivisions
of I, that is the set of finite subsets σ = {x0, x1, · · · , xn} ⊂ I with x0 < x1 < · · · < xn.

Let σ = {x0, x1, · · · , xn} ∈ S(I) and let u be a real function defined on I. The s-total
variation of u with respect to σ is

TV su{σ} =
n∑
i=1

|u(xi)− u(xi−1)|1/s (18)

and the s-total variation of u(.) on I is defined by

TV su{I} = sup
σ∈S(I)

TV su{σ}, (19)
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where the supremum is taken over all the subdivisions σ of I. The set BV s(I) is composed
of functions u : I → R such that TV su{I} < +∞. We define the BV s semi-norm by

|u|BV s(I) = (TV su{I})s . (20)

If 0 < s < t ≤ 1 and I is not reduced to one point then BV t(I) $ BV s(I). The
following inclusion is obtained directly from the definition. For an interval I of R,

∀s ∈ (0, 1], BV s(I) ⊂ L∞(I).

Notice that
⋃
s>0

BV s is strictly smaller than L∞ since bigger generalized BV spaces called

BVΦ belong also in L∞ ([13]).
We also recall the following elementary lemma which is quite different from the case

s = 1.

Lemma 2.1 If 0 < s < 1 and (ai)1≤i≤n is a finite sequence of positive real numbers, then

∑
1≤i≤n

a
1/s
i <

( ∑
1≤i≤n

ai

)1/s

.

This inequality is the converse of the usual triangular inequality. This is the reason
why BV s estimates require to consider all subdivisions (not only the finest ones) unlike
the BV framework. Nevertheless, spaces BV s are well fitted for sharp estimates in the
context of scalar conservation laws (cf [9, 12]) and used now for the 2 × 2 adsorption
system.

Theorem 2.1 (Existence in BV s for s ≥ 1

3
)

Let
1

3
≤ s ≤ 1, X > 0, T > 0. If cb ∈ BV s([0, T ], [0, 1]), c0 ∈ BV s([0, X], [0, 1]),

lnub ∈ L∞([0, T ],R) and condition (12) on isotherms is fulfilled, then there exists an
entropy solution (c, u) on [0, X] × [0, T ] of the initial-boundary value problem (9)-(10)-
(13) such that

0 ≤ c ≤ 1,

c ∈ L∞([0, T ], BV s([0, X])),

lnu ∈ L∞([0, T ]× [0, X]).

It turns out that if c0, cb belong to BV 1/3 then there is no blow up of the velocity at
the characteristic boundary and if the initial concentration c0 does not belong to BV 1/3

the blow-up can occur as suggested in [10]. If s < 1/3 a blow-up is exhibited in Section
2.3, hence we need c ∈ BV s

x with s ≥ 1/3 in the previous result.
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2.1 Riemann Problem for the Eulerian system

To be self-contained, the solution of the Riemann problem is briefly expounded, more
details are in [5, 7, 8] (notice that the notations are not uniform in the previous papers).

The PSA system admits two eigenvalues: 0 and λ =
H(c)

u
> 0 ([5]). It is more convenient

to begin by the resolution of the boundary Riemann problem which is characteristic. The
complete Riemann problem is solved at the end of this subsection with the hyperbolic
time x and then with the physical time t.

The boundary Riemann problem has the form:{
∂xu+ ∂th(c) = 0,

∂x(uc) + ∂tI(c) = 0,
(21)

c(0, x) = c0 ∈ [0, 1], x > 0,

{
c(t, 0) = c+ ∈ [0, 1],
u(t, 0) = u+ > 0,

t > 0. (22)

We are looking for a self-similar solution, i.e.,

c(t, x) = C(z), u(t, x) = U(z) with z =
t

x
> 0.

In the domain t > 0, x > 0, the boundary Riemann problem is solved with a
λ−rarefaction wave or a λ−shock wave since λ is the only positive eigenvalue of the
system and λ is genuinely nonlinear from convex assumption (12).

Proposition 2.1 (([5]) λ−rarefaction waves)
Any smooth non-constant self-similar solution (C(z), U(z)) of (21) in an open domain
Ω = {0 ≤ α < z < β} where f ′′(C(z)) does not vanish, satisfies

dC

dz
=

H(C)

z f ′′(C)
, U(z) =

H(C)

z
.

In particular,
dC

dz
has the same sign as f ′′(C).

Assume for instance that 0 ≤ a < c0 < c+ < b ≤ 1 and f ′′ > 0 in (a, b). Then the
only smooth self-similar solution of (21) is such that

C(z) = c0, 0 < z < z0,
dC

dz
=

H(C)

z f ′′(C)
, z0 < z < z+,

C(z) = c+, z+ < z,

(23)

where

z+ =
H(c+)

u+
, z0 = z+ e−Φ(c+) with Φ(c) =

∫ c

c0

f ′′(ξ)

H(ξ)
dξ.

Moreover, u0 =
H(c0)

z0
and U is given by

U(z) = u0, 0 < z < z0,

U(z) =
H(C(z))

z
, z0 < z < z+,

U(z) = u+ z+ < z.

(24)
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Proposition 2.2 (([5]) λ−shock waves) If (c0, c+) satisfies the following admissibility
condition equivalent to the Liu entropy-condition:

for all c between c0 and c+,
f(c+)− f(c0)

c+ − c0
≤ f(c)− f(c0)

c− c0
,

then the Riemann problem (21) is solved by a shock wave defined as

C(z) =

{
c0 if 0 < z < s,
c+ if s < z,

U(z) =

{
u0 if 0 < z < s,
u+ if s < z,

(25)

where u0 and the speed s of the shock are obtained through

u0([I]− c0[h]) = u+([I]− c+[h]), s =
[h]

[u]
, (26)

with
[u] = u+ − u0, [h] = h(c+)− h(c0), [I] = I(c+)− I(c0).

The notation of the function h is different in [4] so the jump conditions are rewritten.

Proof of Prop.2.2: from (9), (10) the Rankine-Hugoniot conditions read with the

shock speed s =
dt

dx
6= 0, s[u] = [h] and s[uc] = [I]. Thus [uc][h] = [u][I] and also the

relation (26) allows to compute u0 and then s. �

Now, for PSA system (21), we solve the Riemann problem with the following initial
data: {

c(t, 0) = c− ∈ [0, 1],
u(t, 0) = u− > 0,

t < 0,

{
c(t, 0) = c+ ∈ [0, 1],
u(t, 0) = u+ > 0,

t > 0. (27)

c  , u− − c  , u− 0

c  , u− −

c  , u− − c  , u− 0

c  , u
+ +

λ− shockλ− rarefaction

−

c  > c
− +c  < c

− +

x

O
t

x

O
t

0−contact disc. 0−contact disc.

c  , u −
c  , u

+ +

Figure 1: solution of the Riemann problem when f ′′ > 0.

A 0−wave appears on the line {t = 0}. The solution of the Riemann problem for
x > 0 with a convex function f is
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• (c, u) = (c−, u−) for t < 0,

• a 0−contact discontinuity for t = 0,

• a λ− wave for t > 0,

see Fig. 1. In practice, since c0 = c−, we first solve the boundary Riemann Problem (21),
(22). Then u0 is well defined and the 0−contact discontinuity is automatically solved.

To obtain global BV estimates on the concentration, it was shown in [4, 5] that the
physical time t yields to simpler estimate than with the hyperbolic time x. Moreover, the
corresponding Glimm functional is linear (as for the isothermal gas dynamic) with the
physical time t and this functional is still quadratic with the hyperbolic time x ([7]). This
is a reason why, we use the following physical Riemann problem with the physical time
and not the hyperbolic time, see Fig. 2. As for the previous Riemann problem, the initial
data are piecewise constant but now are given on the x axis:{

c(0, x) = c− ∈ [0, 1],
u(0, x) = u− > 0,

x < 0,

{
c(0, x) = c+ ∈ [0, 1],
u(0, x) = u+ > 0,

x > 0. (28)

Figure 2: Physical Riemann problem

There is a λ-wave, which is a rarefaction wave or a shock wave when f is convex (or
concave). The difference with a classic Riemann problem is the jump for the velocity at
t = 0, x > 0: u = u+ for t < 0 and u = u0 for λx > t > 0 (under the λ-wave). There is
never a discontinuity on a horizontal line for a classic Riemann problem, nevertheless, the
problem is tractable. Notice also that the initial value Riemann problem and the initial-
boundary value Riemann problem have the same solution in x > 0, t > 0. Now, a key
point to keep the hyperbolicity of system (9)-(10) is to keep u positive. In all previous
works of the authors ([4, 5, 7, 8]) this assumption is made. Here we show that under
suitable assumptions we get u > 0 after solving the Riemann problem.
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Proposition 2.3 (u > 0 for the Riemann problem) If convex assumption (12) is ful-
filled and

− 1 < inf
[0,1]

h′(c) or sup
[0,1]

h′(c) < 1 (29)

then the solution of the Riemann problem involves a positive velocity.

If h′ > 0 (or h′ < 0) then condition (29) is fulfilled. This is an important chemical case
which means that one gas is more active than the other one, for examples,

• one inert gas and one active gas ([4]),
(For the inert gas c = c1 then q1 = 0 and h′ = q′1 + q′2 = q′2 < 0 < 1).

• two active gases with the binary Langmuir isotherms ([7] Proposition 5.1).

Proof: notice that if the labels for the first and the second gases are exchanged, this
means that the function h(c) is replaced by the function h(1−c) and the condition −1 < h′

also reads h′ < 1.
This result is the same for the Cauchy problem or the boundary problem as illustrated

in Fig. 2, so we consider the boundary value problem (21), (22). Since f is convex or
concave, u is monotonic along a λ-wave according to (24) ([5]) so we only need to prove
that u0 > 0. A λ-wave is a rarefaction wave or a shock wave. First, for a rarefaction wave
the Riemann invariant W = uG(c) is constant along this wave, so u−G(c−) = u0G(c+),
and since G > 0, we obtain u0 > 0. Second, for a shock wave, denoted by [c] = c+−c0 6= 0,
equation (26) is rewritten as

u0

(
[I]

[c]
− c0 [h]

[c]

)
= u+

(
[I]

[c]
− c+ [h]

[c]

)
.

Recall that I(c) = c + q1(c) with q′1 ≥ 0 so I ′ ≥ 1 and
[I]

[c]
− c0 [h]

[c]
≥ 1− suph′ > 0 since

h′(c) < 1 on [0, 1]. The other term with c+ is also positive so u0 > 0. �

2.2 Proof of Theorem 2.1: existence for s ≥ 1

3
In order to get a general existence result via the construction of a sequence of approximate
solutions, we are going to use, as in [4, 5], the modified Godunov scheme to system (9)-
(10) in the BV s framework ([9]): the first step is the resolution of the Riemann problem.
The key point to get the BV s estimates is the suitable choice between the “physical
variables” with t as evolution variable or the “hyperbolic variables” with x as a time
variable. Moreover, BV s estimates are more difficult to handle than BV ones (as pointed
out in [9]). However, we were led to favor the first approach -t as evolution variable- as
in [4] than the other, in [7], which appears to be more complicated. That is why we use
the Eulerian formulation.

The corresponding (CFL) condition requires a upper bound for u which is obtained
thanks to the L∞ control of lnu and we get a BV s bound for the concentration c.

11



Notice also that the BV s estimate for the concentration c is straightforward in La-
grangian variables thanks to [9] because c is the entropy solution of the scalar conser-
vation law (38), but the advection equation (39) does not provide any L∞ estimates for
ln v = − lnu because h(c) is not regular enough (Lipschitz). It is another reason why we
use Eulerian coordinates instead of Lagrangian coordinates in this section. Moreover, we
show how to recover the BV s estimate for c in this framework.

The Godunov scheme in Eulerian variables is based on the resolution of the Riemann
problem in space-time boxes Bi,j = [xi, xi+1) × [tj, tj+1) according to Fig. 3 ([4]), using
the “physical variables”. Here, the contact discontinuity associated to the 0-wave (in
hyperbolic variables) is horizontal in physical variables and only affects u. The shock or

rarefaction wave is associated to the λ-wave with speed
dx

dt
=

u

H(c)
< u. In Fig. 3, we

have z± = u±/H(c±) for rarefaction, and s > 0 for shock.
As in the Lagrangian framework, the essential fact is that c is monotone in each box.

Let T > 0, X > 0 be fixed. For a fixed integer N we set

∆x =
X

N + 1
and ∆t =

T

M + 1
,

where M is an integer depending upon N and is chosen to satisfy a CFL-type condition
which writes here

sup
[0,∆t[×[0,∆x[

u = max(u−, u+) <
∆x

∆t
. (30)

If this CFL condition is always satisfied, we can compute an approximate solution (cN , uN)
row by row (i.e. for each fixed j ∈ {0, · · · ,M}) solving the Riemann problem on each
box Bi,j, i = 0, · · · , N .

Figure 3: the Riemann problem in a box Bij, case f
′′ < 0.

The s-total variation of the concentration is controlled by the initial-boundary s-total
variation TV scIB = TV scIB{[−T,X]} where cIB is defined as

cIB(y) =

{
cb(−y) if −T ≤ y < 0,
c0(y) if 0 ≤ y ≤ X.

12



Proposition 2.4 (BV s estimate for the Godunov scheme) Let (cN , uN)N be the se-
quence of approximate solutions constructed by the Godunov scheme in Eulerian variables.
If the CFL condition (30) is fulfilled, then TV sc{[0, X]} ≤ TV scIB.

Proof: the general structure of the proof follows from those of [4, 5] and we only focus
on the differences due to the BV s framework instead of BV . The first step is the dis-
cretization of the initial-boundary data c0 and cb in order to start with a step function.
This is achieved without increasing the s-total variation taking classically the mean value
in each cell as proved in Lemma 2.2.

The second step consists in the resolution of the Riemann problems associated to the
first row (Bi,0)0≤i≤N . For t < t1, we denote (cN(·, t), uN(·, t)) the solution at time t and
we focuse on cN .
In the interval ]xi−1, xi+1[ (notations of Fig. 3) cN(·, t) is constant on ]ai(t), ai,1(t)[ with
value ci and on ]ai+1(t), xi+1[ with value ci+1 (see Fig. 4) where xi−1 < ai,1(t) ≤ ai+1(t) <
xi+1, i.e. out of the wave fan issued from (xi, 0), and cN(., t) = ci,1(., t) on ]ai,1(t), ai+1(t)[.
Notice that we have ai,1(t) = ai+1(t) if and only if the wave is a shock. We set Mi =
]ai(t), xi+1[: according to Prop. 2.1 cN(., t) is monotone on Mi.

Let σ = {ξ0, · · · , ξp} be a subdivision of [0, X] and

TV scN(·, t){σ} =
∑
| cN(ξi, t)− cN(ξi−1, t) |1/s .

Let σ̃ be the subdivision obtained by removing the points ξi located in a “λ-wave fan”,

i.e.: σ̃ = σ \
⋃
n

[xi, ai+1(t)]. We are going to show that it is possible to add to σ̃ a finite

set P of points located in
⋃
n

]ai(t), xi[ in such a way that

TV scN(·, t){σ̃ ∪ P} ≥ TV scN((·, t){σ}.

This being carried out, we get

TV scN(·, t){σ} ≤ TV scN(·, t){σ̃ ∪ P} ≤ TV scIB.

In the bounded interval [minσ,maxσ] there is a finite number of wave fans and we
just need to consider the case of the one issued from (xi, 0) and its associated monotony
zone Mi in which we assume (for instance) that cN(·, t) is decreasing, as in Fig. 4.
If σ ∩Mi = ∅ then we have nothing to do, else we set k(i) = max{0 ≤ k ≤ p ; ξk ≤ xi} (if
exists) and `(i) = min{0 ≤ k ≤ p ; ξk ≥ ai+1(t)} (if exists).

• If k(i) exists and cN(ξk(i), t) < ci then we add to σ̃ any point yk(i) ∈]ai(t), xi],

• if `(i) exists and cN(ξ`(i), t) > ci+1 then we add to σ̃ any point
y`(i) ∈]ai+1(t), xi+1[,

else we have nothing to do.
Let P be the set of the added points according to the preceding procedure. Thanks to
Lemma 2.1, we get immediately

TV scN(·, t){σ∗} ≥ TV scN(·, t){σ}, where σ∗ = σ̃ ∪ P.
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Moreover, TV scN(·, t){σ∗} is constant on [0, t1[ and thus is controlled by TV scIB.

Figure 4: monotony and subdivisions, case f” < 0.

The last step is the L2 projection step which produces a piecewise constant function
cN(t1, ·) and we just need to apply Lemma 2.2 below to get

TV scN(t1, ·){[0, X]} ≤ TV scIB.

Finally we get Proposition 2.4 by induction as in [4, 5]. �

Lemma 2.2 Let c be a function in BV s(R) and let ∆x > 0. Then the step function

c∆x =
∑
p

c∆x
p 1I(p∆x,(p+1)∆x], with c∆x

p =
1

∆x

∫ (p+1)∆x

p∆x

c(x) dx,

satisfies
TV sc∆x ≤ TV sc.

The same result holds for any interval.

Proof: for all p ∈ N there exists x∆x
p , y∆x

p ∈ (p∆x, (p+ 1)∆x) such that

c(x∆x
p ) ≤ c∆x

p ≤ c(y∆x
p ).

Let us consider a maximal (for inclusion) finite sequence of indexes pi, pi + 1, · · · , pi+1

among those corresponding to a monotonic sequence (c∆x
pi
, · · · , c∆x

pi+1
). We set xi = x∆x

pi

14



if the sequence is increasing, xi = y∆x
pi

else. The maximality of the sequence of indexes
ensures the consistency of this definition. Let σ be a subdivision {xj < xj+1 < · · · < xj+k}.
By Lemma 2.1 we have clearly TV sc[σ] ≥ TV sc∆x[σ], but we also have, from the definition
of the s-total variation, TV sc{R} ≥ TV sc[σ] and the result follows. �

In the next lemma, the projection step is estimated in L1/s with the BV s semi-norm.
It is enough to get the consistency of the Godunov scheme as in [4, 5]. Moreover, it is
used to obtain the Hölder regularity Lips([0, T ], L1/s([0, X])) of the concentration below.

Lemma 2.3 Let L be a positive constant and c ∈ BV s(0, L) with 0 < s ≤ 1. Then,∫ L

0

|c(x)− c|1/sdx ≤ L TV sc{(0, L)},

where c is a mean value of the function c on (0, L), defined by
1

L

∫ L

0

c(x)dx or
c(0+) + c(L−)

2
.

Proof: there exist x−, x+ ∈ (0, L) such that

inf
(0,L)

c ≤ c(x−) ≤ c ≤ c(x+) ≤ sup
(0,L)

c,

so that
|c(x)− c|1/s ≤ max

±
|c(x)− c(x±)|1/s ≤ TV sc{(0, L)}.

Integrating over (0, L) gives the expected inequality. �

Proposition 2.5 For s ≥ 1/3, we have lnu ∈ L∞([0, T ]× [0, X]). More precisely, there
exists a constant C independent of the initial-boundary data such that

| lnu| ≤ | lnub|+ 2‖g‖∞ + C · TV scIB.

Proof: for a continuous solution, using the Riemann invariant lnu+ g(c) we get

| lnu− lnub| = |g(c)− g(cb)| ≤ 2‖g‖∞.

Through a shock wave, thanks to Proposition 3.5, we have
u+

u−
= S(c−, c+) where S is a

smooth function. Thanks to the mean value theorem, there exists a true constant γ such
that

| lnu+ − lnu−| ≤ γ|c+ − c−|. (31)

In the general case, we use the following classical result: shocks curves and rarefaction
curves have a second order contact (see Theorem 8.2.2, page 209 in [15]). Then, through
a simple λ−wave

lnu+ + g(c+) = lnu− + g(c−) +R(c−, c+)

with R(c−, c+) = O(|c+ − c−|3).
Then, for each wave, we have a new term of order O(|c+ − c−|3). Hence,

| lnu− lnub| ≤ |g(cb)− g(c)|+ C
∑
waves

|c+ − c−|3,
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where C is a true constant (depending on the first and second derivatives of the eigenvector
associated to the the λ-wave). As c ∈ BV s with s ≥ 1/3, Proposition 2.5 holds thanks to
the continuous mapping BV s ↪→ BV 1/3. Since 0 ≤ c ≤ 1 the constant C is unchanged.

�

Now, we conclude the proof of Theorem 2.1. Let (cN , uN)N be the sequence constructed
above by the Godunov scheme. The following steps allow to pass to the limit up to a
subsequence, still denoted by (cN , uN)N . These steps are rather classical except the BV s

aspect.

1. cN ∈ L∞([0, T ], BV s([0, X])) if the (CFL) condition holds,

2. | lnuN | ≤ | lnub| + 2‖g‖∞ + C · TV scIB which allows to choose a time step ∆t in
(30) such that the (CFL) condition is fulfilled,

3. adapting Lemma 4.5 in [4], we have stated in [9] the Hölder estimate in time
Lips([0, T ], L1/s([0, X])):

∀t1, t2 ∈ [0, T ], ‖cN(·, t1)− cN(·, t2)‖L1/s([0,X]) =

(∫ X

0

∣∣cN(x, t1)− cN(x, t2)
∣∣1/s)s

≤ C (|t1 − t2|+ ∆t)s , (32)

where the constant C only depends on TV scIB and ‖ub‖∞.

Up to subsequences, (cN)N converges strongly towards a function c and (uN)N converges
weakly towards a function u. This is enough to show that (c, u) is an entropy solution, as
in [4, 5]. �

Remark 2.1 Unlike the case of [4, 5, 7] with s = 1, we only get a weak trace at the
physical boundary {x = 0} for the velocity u because we have no longer BV s estimate.

2.3 Blow-up for lnu when s <
1

3
For 0 < s < 1, an explicit example is built to show that we cannot expect a BV s

x bound for
U = lnu only from inequality (31). Conversely, for s = 1 it is true since TV U ≤ γTV c.
A counter-example for s < 1 is explicitly stated with two piecewise constant functions
(U, c) with values (Uk, ck) on (k, k + 1), k ∈ N and satisfying (31), i.e.,

|Uk+1 − Uk| ≤ γ|ck+1 − ck|.

Let σ be such that

0 < s < σ < 1, ck+1 − ck =
(−1)k

kσ
and Uk+1 − Uk = |ck+1 − ck|.

The function c belongs to BV s(0,+∞), then
∑
k

|Uk+1 − Uk|1/s < +∞, but the function

U is not bounded, so that U /∈ BV s(0,+∞).
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In the general previous counter-example, the Riemann problem is not solved. The
functions U and c are linked through λ−waves. We generalize a blow-up example built in
[8] with ammonia and an inert gas: f ′′ > 0, h′ > 0 (after exchange of c1, c2 with respect
to [8]).

In this paper, the piecewise constant initial data c0(.) does not belong to BVx(0, X) for
a positive fixedX. The following example is built with c0(.) ∈ BV s(0, X) with 0 < s < 1/3

and c0(.) /∈ BV 1/3(0, X). This example shows that
1

3
is the critical exponent as announced

in [10]. We impose constant initial data and piecewise constant concentration at the
boundary in such a way that Riemann problems at the boundary are alternatively solved
by a shock or a rarefaction.

Let us consider a first boundary Riemann problem with data (c−, c+, u0), c− > c+

chosen such that the solution is a shock wave and produces a new speed u1. Next let us
consider a second problem with data (c+, c−, u1) for which the solution is necessarily a
rarefaction wave and produces a new speed u2 with u0 ≤ u2 ≤ u1. We introduce as in [8]
the amplification coefficient R defined by

u2 = Ru0.

It was shown in [8] that R only depends on (c−, c+) and that R > 1 for almost all choices
of (c−, c+) because the system is not in the Temple class ([8]). This is the main ingredient
of our example.

Let N > 1 be a fixed integer, 0 = x0 < x1 < · · · < x2N−1 < X = x2N , 0 < ck < ck < 1

such that R(ck, ck) > 1 and u0 > 0. We choose (ck, ck) such that c /∈ BV 1/3 but in BV s

for some s < 1/3 (see [9] Proposition 2.4) and we can assume that these sequences have
a (common) limit. Let c∞ be a corresponding value of the concentration and also the
common limit of the sequences (ck) and (ck).

Recall that the λ-wave is not linearly degenerate and the system is not in the Temple
class (as shown in [8]) thus shock and rarefaction curves have not a contact of order three
for all states (c, u) (see for instance [28]). For a well chosen c∞, there exists ρ > 0 such
that, near c∞,

R(ck, ck) ≥ 1 + ρ|ck − ck|3. (33)

We solve system (9)-(10) with the following data for 0 < t < T , 0 < x < X, k =
0, 1, · · · , N − 1: 

c(0, t) = c,
u(0, t) = u0,

c(x, 0) =

{
ck if x2k < x < x2k+1,
ck if x2k+1 < x < x2k+2.

(34)

Let us denote by uk the value of u(x, 0+) when xk−1 < x < xk for a given k > 0. With
f ′′ > 0 and h′ > 0 we have N shocks emerging from ((x2k, t = 0))N−1

k=0 and N rarefactions
from ((x2k+1, t = 0))N−1

k=0 . We have u2k < u2k+2 < u2k+1. Furthermore,

u2k+2 = Rk+1 u2k = R(ck, ck)u2k, u2k = Rk Rk−1 ...R1 u0.
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From inequality (33) and since c /∈ BV 1/3 that sum is infinite:
∑
k

|ck+1 − ck|3 = +∞,

which ensures the divergence of the product
k∏
j=1

Rj → +∞ as k goes to infinity, uk → +∞,

so u is not bounded and does not belong to BV s.

3 The Lagrangian formulation

In this section we show that system (9)-(10) admits a Lagrangian formulation thanks to a
change of variables which is given in subsection 3.1. This formulation is simpler than the
Eulerian one because the concentration c satisfies a scalar conservation law. Nevertheless
the boundary becomes a free boundary, so we only study the Cauchy problem. We briefly
present the hyperbolic features of this system and solve the Riemann Problem. The
solution of the Riemann problem is more complicated than the Eulerian one, it is the
reason why we obtain the BV s existence using the Eulerian formulation in section 2.
The Lagrangian formulation will be used in section 4.2 to get a smoothing effect and the
uniqueness of the entropy solution.

3.1 Euler-Lagrange change of variables

Following [29, 22, 23, 24] we perform a Euler-Lagrange change of variables under the
crucial assumption

inf
[0,X]×Rt

u(x, t) > 0. (35)

This assumption is the key assumption to keep the hyperbolicity of system (9)-(10) as it
is explained in section 2.1 and in [5].
The following proposition is a particular case of the results in [22] and [24].

Proposition 3.1 (Lagrangian equations for gas chromatography)
Let X > 0 and (u, c) be an L∞ entropy solution of (9)-(10) on [0, X] × Rt with initial
data cb, ub given in (13). Assume the positivity of the incoming velocity (35), then the
change of variables : (x, t) 7→ (ξ, τ) with ξ = x and τ = T (x, t) such that T (0, 0) = 0 and

dτ = u dt− h(c)dx, (36)

is well-defined and

T (0, t) =

∫ t

0

ub(s) ds. (37)

Let S = T (0, ·)−1: T (0,S(τ)) = τ . The Cauchy problem in Lagrangian variables
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writes

∂ξc+ ∂τ (c+ f(c)) = 0, ξ > 0, τ ∈ R, (38)

∂ξv − ∂τ (v h(c)) = 0, ξ > 0, τ ∈ R, (39)

c(0, τ) = cb(S(τ)), τ ∈ R, (40)

v(0, τ) =
1

ub(S(τ))
, τ ∈ R, (41)

where v =
1

u
.

We write the derivation of the Lagrangian equations for gas chromatography to be self-
contained. The Poincaré’s Lemma says that any closed form is an exact form. Then dτ is
well-defined by equation (10). Condition (35) shows that t 7→ T (0, t) is an R−homeomorphism.
This is also true for any x, the map T is a Lipschitz transformation.

Relation (36) and assumption (35) yield

dt = v dτ + v h(c)dξ,

and then (39) follows. Equation (9) yields the existence of a function z such that

dz = c u dt− I(c) dx = c(dτ + h(c) dx)− I(c) dx = c dτ − (I(c)− c h(c))dξ,

and then, since the last equality is an exact form, ∂ξc − ∂τ (c h(c) − I(c)) = 0. We recall
that f(c) = q1(c)− c h(c) so I(c)− c h(c) = c+ f(c) and (38) follows.

3.2 Hyperbolic features of the Lagrangian system

A natural method is to solve equation (38) which has only one entropy solution and then
solve the linear transport equation with “velocity” −h(c). Unfortunately, linear transport
equation leads to difficult problems: non existence, non uniqueness, Dirac mass appears
with smooth data for too compressive velocity ([1, 2, 3] ). We use another strategy and
solve the system directly.

The eigenvalues in Lagrangian coordinates are simply

λ1(c) = −h(c), λ2(c) = 1 + f ′(c).

We remark that 1 + f ′(c) > −h(c). Thus the system is strictly hyperbolic. Indeed,
1 + f ′(c) = H(c)− h(c) and H > 1 imply 1 + f ′(c) > −h(c). Furthermore, we can check
easily that −h(c) is linearly degenerate and the nonlinearity of 1 + f ′(c) is given by f ′′(c).
Indeed, 1 + f ′(c) is genuinely nonlinear if and only if f ′′(c) 6= 0 for all c ∈ [0, 1]. Then, we
assume in this article that f ′′ > 0 everywhere or f ′′ < 0 everywhere.

Since the Euler-Lagrange change of variables conserves the Riemann invariant we
obtain the following result.

Proposition 3.2 For the eigenvalue 1 + f ′(c), c is a Riemann invariant. For the eigen-
value −h(c), W = u exp(g(c)) is a Riemann invariant.
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The proof of Proposition 3.2 follows from direct computations. In Lagrangian variables
[29, 23] the entropies are simply the usual entropies associated to scalar conservation law
(38). More precisely,

Proposition 3.3 The smooth entropy functions for system (38)-(39) are ψ(c) where ψ is
any real smooth function. The corresponding entropy flux satisfies q′(c) = (1+f ′(c))ψ′(c).

Notice that entropies are independent of u as in Eulerian variables.

3.3 Riemann Problem for the Lagrangian system

A natural idea to solve 2× 2 system (38), (39), would be to solve scalar conservation law
(38) and then advection equation (39). But the equation is ill-posed for L∞ solutions [2].
The solution is not unique and it is generally a measure. We have to control the velocity
to perform the Euler-Lagrange change of variables. Instead, a key idea is to resolve the
problem as a coupled system.

We solve the Riemann problem in Lagrangian variables.

Proposition 3.4 (Riemann problem)
Assume condition (12) on the isotherms. Then the Riemann problem with the initial data

c(0, τ) = c±, v(0, τ) = v±, ±τ > 0,

is solved with two waves associated with eigenvalues λ1(c) = −h(c) < λ2(c) = 1 + f ′(c)
and the intermediary constant state (c0, u0) between the two waves :

• λ1−wave: contact discontinuity, c0 = c−,

• λ2−wave: v0 is determined by a shock if c− < c+ (in the case f ′′ < 0) or a rarefaction
wave,

– shock wave:
v0

v+

=
σ(c−, c+) + h(c+)

σ(c−, c+) + h(c0)
= S(c−, c+), where the shock speed is

σ(c−, c+) = 1 +
[f(c)]

[c]
,

– rarefaction wave:
v0

v+

=
G(c+)

G(c−)
.

Proof: for the linearly degenerate eigenvalue −h(c) we have a contact discontinuity.
Since c is the Riemann invariant, it is constant through a λ1−wave so c0 = c−.
For the shock waves, we have the same results as in Eulerian coordinates:

[c+ f(c)] = σ[c],

−[v h(c)] = σ[v].

with a different slope as in Eulerian coordinates: σ =
[f(c)]

[c]
+ 1. �
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t]

Figure 5: the Riemann problem, case of a λ2 shock wave.

The rarefaction wave is simply given by those of the scalar equation (38). Then, with
the Riemann invariant uG(c) we get u.

In [7], some examples are studied to obtain monotonic λ2- wave curve under convexity
assumption on the isotherms. We assume here that f ′′ < 0.

Proposition 3.5 (Monotonic λ2-waves) The function lnu is monotonic through a λ-
wave if and only if h is monotonic. Furthermore, lnu is increasing only if h is increasing.

Of course, if h(.) is decreasing then lnu is decreasing through a λ-wave. Many impor-
tant examples satisfy this monotonicity assumption on h as quoted after Proposition 2.3.

Proof: for a rarefaction wave, with the Riemann invariant lnu+ g(c), we have

lnu+ − lnu− = − (g(c+)− g(c−)) .

Since g′ = −h′/H and H > 0, lnu has the same monotonicity than h.
For a shock wave (see Lemma 5.1 in [7]) we have

u+

u−
=

σ + h(c+)

σ + h(c−)
,

with σ =
[f ]

[c]
+ 1, [c] = c+ − c−. Then there exists c̃ ∈ (c−, c+) such that σ = f ′(c̃) + 1.

Moreover, σ = f ′(c̃) + 1 > −h(c̃) > −h(c+) because we assume for example h′ > 0. Then
σ + h(c+) > 0 and we have u− > 0, u+ > 0 then σ + h(c−) > 0. Thus, through a shock,
lnu has the same monotony as h. �

4 Consequences of the Lagrangian formulation

In this section, we come back to the Cauchy problem in Lagrangian variables and get
both a regularizing effect and a uniqueness result.
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4.1 Smoothing effect

The scalar equation for the concentration in Lagrangian variables has a nonlinear flux.
The degenerate flux with the genuinely nonlinear assumption on the flux f ′′ 6= 0 gives a
smoothing effect for the concentration.

Proposition 4.1 (Regularized concentration)
Let s ∈ [1/3, 1] and condition (12) on isotherms holds. If cb ∈ BV s(R, [0, 1]) and lnub ∈
L∞(R,R), then the entropy solution (c, u) given by the Godunov scheme on [0,+∞)× R
in Theorem 2.1 of the initial value problem (9)-(10) with initial data

c(0, t) = cb(t), u(0, t) = ub(t), t ∈ R,

becomes more regular in Lagrangian variables:

c(ξ, τ) ∈ L∞loc((0,+∞)ξ, BV (Rτ )) ∩BVloc((0,+∞)ξ × Rτ ) ∩ Lip(Rτ , L
1
loc((0,+∞)ξ)),

and also in space-time variables:

c(x, t) ∈ L∞loc((0,+∞)x, BV (Rt)) ∩BVloc((0,+∞)x × Rt) ∩ Lip(Rt, L
1
loc((0,+∞)x)).

Proof: in the previous section, the existence of entropy solutions is proved. The Euler-
Lagrange change of coordinates is Lipschitz and provides an entropy solution of the La-
grangian formulation (38), (39). The entropy solution of scalar equation (38) with only
L∞ initial data is unique and becomes BVτ ([18, 20]) for positive ξ. Equation (38) gives
the regularity with respect to ξ and the BV regularity with respect to the two variables
(ξ, τ). Coming back to the Euler formulation and thanks to the Lipschitz change of vari-
ables the concentration is also in BVt and BV(x,t),loc. �

4.2 Uniqueness

System (38)-(39) is composed of a nonlinear equation and a linear equation with a non-
smooth coefficient which is −h(c). The non-uniqueness is related to the linear one ([25, 2])
except in the “compressive” case. This last case provides uniqueness for the solution v of
equation (39) and then for the Lagrangian formulation.

Proposition 4.2 (Uniqueness for concave isotherm) Assume h′ > 0 and f ′′ < 0,
s ∈ [1/3, 1], cb ∈ BV s(R, [0, 1]) and lnub ∈ L∞(R,R). Then, there exists one and only
one entropy solution of the initial value problem (9)-(10) with initial data

c(0, t) = cb(t), u(0, t) = ub(t), t ∈ R.

Proof: Theorem 2.1 provides the existence. The uniqueness is obtained in Lagrangian
coordinates. Equation (38) is a scalar conservation law with a unique entropy solution c.
Equation (39) is linear ∂ξv + ∂τ (a v) = 0 with a(ξ, τ) = −h(c). The one-sided Lipschitz
condition for advection equation (39) is ∂xa = −∂xh(c) ≤ −K, where K is a constant,
([2]) i.e.

∂xh(c) ≥ K.
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This inequality imposes the variation of the concentration c through shock waves. The
increasing function h has to be nondecreasing through a shock, which is true when f ′′ < 0
(Proposition 3.4 ). �

The assumptions h′ > 0 and f ′′ < 0 are related to the isotherms, for instance a concave
isotherm (Langmuir) and an inert gas. Other examples are given in [7]. Conversely, for
ammonia the assumptions are not valid since f ′′ > 0. Incidentally, ammonia provides an
example of blow-up in [8].
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